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Abstract

We introduce soundscape connectomes, which are graph representations of acoustic1

relationships of a landscape where nodes are geographical sites and edges reflect2

relations derived from each site’s biophony. Soundscape connectomes are built3

from passive acoustic monitoring (PAM) recordings and are enabled by the unique4

acoustic signatures of habitats. However, in ecoacoustic analysis, ground-truth5

graphs or labels are often not available. We propose an unsupervised pipeline6

that decomposes recordings into sonotypes, builds per-site acoustic structures,7

infers graphs with several methods, and compares them using a smoothness-based,8

unsupervised criterion that scores reconstruction of held-out nodes. We apply the9

proposed method to a large-scale real-life data set acquired in the Colombian Andes10

with over 19.598 recordings on 17 sites and 292 sonotypes. Results show the stabil-11

ity of the generated connectomes for a variety of graph inference methods. These12

results provide a practical way to select a graph model without prior information13

and position soundscape connectomes as a complement to remote-sensing analyses14

for monitoring and conservation.15

1 Introduction16

Network maps or connectomes provide compact summaries of complex systems by linking units17

through data-driven relationships. In neuroscience, they have reshaped how function and disease are18

studied, from the “human connectome” formulation to large-scale initiatives that integrate distributed19

sensors into network representations [1; 2]. We adopt a similar organizing idea for ecoacoustics20

and define soundscape connectomes: graphs whose nodes are study sites and whose edges encode21

acoustically driven relations derived from each site’s biophony. In this ecological analogue, passive22

acoustic monitoring (PAM) acts as the distributed sensor network, providing scalable, non-invasive,23

long-term measurements of biophony across space and time [3; 4; 5], enabling label-free comparison24

among sites. As a management tool, these networks may complement remote sensing by revealing25

on-the-ground dynamics of vocal communities (often at understory and sub-canopy levels) that are26

informative for monitoring, prioritization, and conservation decision-making [6; 5].27

Advancements in ecoacoustic research, which includes both supervised and unsupervised detection28

and classification of vocal taxa as well as the analysis of acoustic indices [7; 8; 9; 10], have led29

to studies demonstrating that land-cover and habitat types can be identified directly from sound.30

Furthermore, it has been shown that habitats possess unique acoustic signatures, which positions31

acoustic data as a valuable complement to traditional site characterization methods [11; 12]. Following32

this idea, in [13], the authors decomposed recordings into sonotypes, time–frequency entities, and for33

each analyzed site counted their occurrences to construct a site-by-sonotype matrix for unsupervised34

cross-site comparison. Since sonotypes can later be linked to species, the representation remains35

biologically interpretable [14]. Using these site–level features as node attributes, relationships among36

sites were then inferred using a sparse Gaussian graphical model (Graphical Lasso), and edges were37

interpreted with sonotype information and ecological context.38

In the context of graphs, several methods for graph inference can be applied to site-by-sonotype39

features. These methods include sparse statistical models (such as precision-matrix estimation),40

smoothness-based graph learning derived from graph signal processing (GSP), and simple neigh-41

borhood graphs (like k-NN), along with neural variants that can also learn the graph topol-42
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ogy [15; 16; 2; 17]. However, in ecoacoustics, when the goal is to compare sites and their connectivity43

rather than to identify specific species, there is typically no available ground-truth information; in44

this context, land-cover types are, at best, rough proxies. Selecting from different plausible graph45

inference methods thus becomes a label-free problem of network structure inference (unsupervised46

graph inference).47

The objective of this study is to compare different graph inference approaches and to articulate a prac-48

tical, unsupervised selection criterion to obtain a soundscape connectome. Under a smoothness–based49

view, we treat site features as graph signals and prefer graphs in which a held–out node is accurately50

reconstructed from its neighbors, summarizing reconstruction quality with the normalized mean51

squared error (NMSE). We implement this idea with a node-removal ablation test and report error52

rates (mean and standard deviation). To render edges ecologically interpretable, we analyze which53

sonotypes most significantly influence the similarity or dissimilarity between sites, examining their54

time-frequency information and temporal acoustic pattern. Ultimately, we aim to provide a usable55

criterion for selecting the most suitable graph-inference methods to derive soundscape connectomes56

and, via acoustic biodiversity, to assess ecosystem health and relationships among sites.57

2 Methodology58

Acoustic Dataset and node features: To perform the soundscape connectome analysis, we used59

a database derived from PAM conducted in a rural area of Puerto Wilches, Santander, Colombia60

(7◦21′52.5”N, 73◦51′33.0”W ). Recordings were collected in March 2021 (dry season) with a Song61

Meter Mini device, programmed to capture 1 min every 10 min at 48 kHz, yielding 19.598 clips over62

10 days. 17 recorders were spaced by at least 300 m within a ∼9 km2 area to reduce shared sources.63

The landscape is dominated by oil palm of varying ages with patches of secondary vegetation, forest,64

grassland, and aquatic vegetation (for map and detailed description see A.1).65

As shown by [14], the analysis of this dataset revealed that the identified sonotypes follow patterns that66

are similar to the acoustic indices usually linked to biophony. In this study area, these findings indicate67

that the acoustic patterns derived from sonotypes are predominantly influenced by strong biophonic68

activity. Following [13], the recordings are preprocessed to retain primarily biophonic activity, and69

are then decomposed into sonotypes using an unsupervised pipeline that segments acoustic activity70

and clusters time–frequency patterns; sonotypes behave as biophony-oriented descriptors, and the71

approach requires no parameterization [14]. For each site, we then build its acoustic structure by72

counting the occurrences of every sonotype, producing an n×m acoustic–structure matrix X . Here,73

n is the number of recording sites (graph nodes) and m is the number of detected sonotypes. The74

entry Xi,j is the count of occurrences of sonotype j at site i. Each row xi ∈ Rm serves as the feature75

vector for node i in subsequent graph–inference methods. Details of the acoustic structure generation76

are provided in A.2.77

Graph inference models: We compare three representative graph–inference methods over the78

site–by–sonotype features. (i) Sparse statistical (Graphical Lasso): This method estimates a sparse79

precision matrix Θ (the inverse covariance). An edge appears when Θij ̸=0, meaning sites i and80

j are conditionally linked after accounting for all others [15]. Is the baseline introduced in [13].81

(ii) Laplacian learning (GSP smoothness): This method learns nonnegative edge weights W (and82

Laplacian L) so that site signals vary little across connected nodes [16]. This encodes the idea that83

acoustically similar sites should be adjacent. We test two simple similarities to seed the learning:84

Euclidean distance and correlation. (iii) Distance baseline using k–nearest neighbors (kNN): This85

approach builds a local graph directly from pairwise distances dij (e.g., Euclidean); each site connects86

to its k closest neighbors, resulting in an intuitive bounded-degree topology. For comparability across87

methods, we rescale edge weights to [0, 1].88

Edge interpretation: After inferring the graphs, we explain the connections (edges) by comparing89

sonotype distributions between linked sites using Total Variation Distance (TVD) (more details in90

A.3). We focus on sonotypes with low TVD and low variance as potential drivers of similarity and91

summarize them with a time-frequency scatter plot (showing hours versus peak frequency) along92

with acoustic temporal patterns. This approach reveals which acoustic entities support or oppose the93

connections we observe. In this context, we refer to the entities that are common across the inferred94

graph methods.95
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Unsupervised model–selection criterion: Since no expert–defined ground truth graph exists96

(land–cover types are only coarse surrogates), standard graph–quality metrics are ill–suited here.97

Link prediction scores (AUC/AP) require labeled positive/negative edges; community measures98

(e.g., modularity, NMI) assume known partitions; and global statistics such as average path length99

or diameter presuppose a single connected component and minimum degree conditions we do not100

impose (isolated nodes can be ecologically meaningful). Consequently, an unsupervised model101

selection criterion is needed to compare candidate graphs in this setting. We therefore adopt a102

smoothness–based view: treat each site’s feature vector as a graph signal, and assume that sites joined103

by an edge should carry similar acoustic information. Intuitively, a preferable graph is one that makes104

the signal vary smoothly along its edges. To evaluate candidate graphs without labels, we repeatedly105

hide a random fraction of nodes (20–80%), reconstruct their features from neighbors while keeping106

observed nodes close to their original values. Reconstruction balances two terms: (i) a data–fidelity107

term for observed nodes and (ii) a smoothness term that penalizes large differences across connected108

sites. Each holdout level is run 100 times with independent splits; performance is summarized with109

Frobenius-normalized NMSE (mean ± SD).110

3 Results111

From sonotypes to node features: Passive acoustic recordings were decomposed into sonotypes and112

per–site acoustic structures were built by counting sonotype occurrences (here, n=17 sites, m=292113

sonotypes). This representation is label–free at construction time yet biologically interpretable, since114

sonotypes can be linked post hoc to specific species during interpretation or downstream analyses.115

The resulting site–by–sonotype matrix serves as the node–feature matrix for graph inference; the full116

step-by-step workflow from raw audio to acoustic structures is summarized in Fig. 1 (more details in117

A.2).118
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Figure 1: From recordings to node features. Left: data acquisition with passive recorders at 17 sites.
Middle: unsupervised identification of sonotypes using [14]. Right: per–site acoustic structures
(site–by–sonotype counts; here n=17, m=292) used as node features for graph inference.

Graph inference models: Figure 2 presents the soundscape connectomes inferred using four different119

approaches: Graphical Lasso (the baseline from 13), and the Kalofolias Laplacian learning with120

both Euclidean and correlation variants, as well as the k–NN method with k=3. The four graphs are121

broadly similar and identify a consistent set of strong connections. Most of these connections link122

sites with the same land cover type (for example, sites with oil palm are connected), while a smaller123

number connect sites with different land covers. The obtained graphs link places that sound alike, not124

just places that look alike on a land-cover map. A notable example is the connection between sites125

2 and 8, which remain strongly linked despite their differing land covers and geographic distances.126

This connection is explained by shared sonotypes and synchronized acoustic temporal activity (see127

Appendix Fig. A4). Conversely, sites with sparse or unique sonotype profiles, such as sites 6 and128

9, rarely establish connections with other sites. For visualization purposes, nodes are positioned129

based on their geographic coordinates and colored according to land cover types (orange for oil palm,130

light green for secondary vegetation, and dark green for forest). It is important to note that these131

labels were not used to construct the graphs; they serve solely for qualitative interpretation of the132

connectome. The width of the edges reflects the weight assigned by each method.133
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Figure 2: Soundscape connectomes inferred with four methods. The nodes represent 17 recording
sites, each designated by geographic coordinates. The color of each node indicates the type of land
cover: orange for oil palm plantations, light green for secondary vegetation, and dark green for forests.
The edges illustrate the inferred similarities among these sites.

Unsupervised selection criterion: Patterns obtained in Figure 2 are encouraging but raise a practical134

question: if several methods yield similar graphs, which should be used for mapping and downstream135

analysis? Table 1 reports an unsupervised model selection criterion summary, mean ± SD of136

Frobenius-normalized NMSE over 20–80% node removal, which keeps methods comparable despite137

differences in scale or sparsity. As expected, error increases with the held-out fraction; the full138

ablation (NMSE as a function of the removal level) is shown in Appendix Fig. A5. Across the139

20–80% range, the Kalofolias–correlation variant attains the lowest average NMSE with the tightest140

dispersion, with GLasso and kNN close behind. Although the gaps are modest, they are consistent,141

indicating that a simple reconstruction view can help choose among graph-inference methods even142

when no ground-truth topology exists.143

Table 1: Unsupervised graph selection criterion summary. Reported is the mean ± SD of Frobe-
nius–normalized NMSE (lower is better), averaged over holdout levels from 20% to 80% with
repeated random removals per level. All methods use identical preprocessing; NMSE vs holdout
curves are in Appendix Fig. A5.

Method Avg NMSE ↓ (20–80%)
Glasso 0.506 ± 0.056
Laplacian learning (Kalofolias-Euclidean) 0.527 ± 0.053
Laplacian learning (Kalofolias-Correlation) 0.494 ± 0.045
kNN (k=3) 0.526 ± 0.051

4 Conclusions144

Soundscape connectomes provide a compact complement to structural landscape analyses by linking145

sites that sound similar and revealing recurrent acoustic relationships that land cover maps often146

overlook. Using methods such as GLasso, Laplacian learning (Euclidean/correlation), and k-Nearest147

Neighbors (k-NN), we observed a consistent core of connections, even though there were method-148

specific differences. This highlights the need for an unsupervised model selection criterion; our149

smoothness-based reconstruction approach is a preliminary step in that direction. The findings suggest150

that graph-based representations can improve mapping and monitoring workflows, allowing for the151

prioritization of sites based on information that remote sensing might overlook. However, there are152

important limitations to consider: this is a static analysis, we aggregate all recordings and ignore153

temporal dynamics (diurnal/seasonal), and it relies on edge visualizations that employ thresholds.154

Future work should aim to formalize the unsupervised selection criterion, evaluate graph-inference155

methods on unthresholded, weighted graphs, scale the analysis to incorporate temporal structure156

(diurnal and seasonal) to reveal ecosystem dynamics, and strengthen ecological explanations for157

observed edges, deriving them directly from graph structure and complementing sonotype-based158

interpretations. The long-term goal is to deliver decision-ready soundscape connectome maps to159

support monitoring and conservation.160
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A Appendix218

A.1 Dataset and study area219

The study area is a rural landscape in Puerto Wilches (Santander, Colombia) dominated by oil–palm220

stands of varying ages (75%), interspersed with secondary vegetation (7.6%), forest patches (6.1%),221

grasslands (5.5%), and aquatic vegetation (3.2%). Human activity near recorders is low: roads222

are private and infrequently used, and dwellings are sparse and distant from sensors, reducing223

anthropogenic noise. The map below complements the main text by showing (a) land–cover context224

and (b) exact recorder positions with IDs used throughout the analysis.225
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Fig. A 1: Study site map. (a) Land–cover context. (b) Geographic positions and IDs of the 17
recorders.

A.1.1 Codes and Dataset repository226

Codes and dataset is available in: https://anonymous.4open.science/r/227

Graph-inference-and-model-selection-1FE8228

A.2 Acoustic structures of the sites229

First, sonotypes are obtained with the unsupervised method provided by Guerrero et al. [14], which230

automatically segments acoustic activity in the recordings and clusters events by similarities in231

time–frequency descriptors. The resulting clusters exhibit distinct acoustic patterns that can be232

linked to species calls. In our study, we do not assign species labels; instead, we treat sonotypes as233

soundscape descriptors and use their occurrence frequencies to construct each site’s acoustic structure.234

The procedure is fully unsupervised and requires no manual parameterization.235

After extracting sonotypes, we compile for each site the counts per sonotype, forming an n × m236

matrix (n sites, m sonotypes). In the figure 2, each bar (S1. . . Sm) denotes a unique sonotype and237

bar length is proportional to its number of detections, providing a rapid view of the site’s dominant238
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acoustic patterns. These structures enable quantitative comparisons within and across sites, revealing239

sonotype richness, acoustic diversity, and differences in biophony composition without training data240

or prior knowledge of how many species are present.241

Acoustic structre site 1 

Sm

30

Acoustic structre site n 

m

30

Fig. A 2: (a) Site 1; (b) Site n. Each radial spoke (S1. . . Sm) is a distinct sonotype (colored
consistently), and its radius encodes the number of detections. The plot serves as an acoustic
fingerprint, highlighting sonotype diversity and the site’s biophony. Even when two sites share many
sonotypes, their occurrence profiles can differ, enabling direct comparative analysis.

A.2.1 Santander soundscape fingerprints (study area)242

The acoustic dataset was processed as described in Section 2 yielding a 17× 292 site-by-sonotype243

count matrix spanning 10 recording days. Each site is thus summarized by its acoustic structure. For244

illustration, Fig. 3 shows a simplified rendering in which only the first ten sonotypes (the same set for245

all sites) are displayed to improve readability. The sonotype–occurrence matrix was then normalized246

and used as the input to the graph inference models.247
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Fig. A 3: For each site sampled in Puerto Wilches (Santander, Colombia), we built an acoustic
structure using a shared sonotype set. For visualization only, colors indicate land cover as documented
by experts: yellow = oil palm plantations, light green = secondary vegetation, dark green = forest.
Crucially, land-cover labels were not used to estimate acoustic heterogeneity or to infer connections
among sites.

A.3 Edge interpretation with sonotypes248

For each connected pair of sites, we turn sonotype counts into relative frequencies and compare249

their sonotype profiles with the Total Variation Distance (TVD). TVD tells us how different the two250

distributions are: 0 means “the profiles look the same,” 1 means “they are completely different.” We251

then keep the sonotypes that show low TVD between the two sites, these are the shared, acoustic252

entities that most plausibly drive the similarity (they explain why the edge exists). Sonotypes with253

high TVD are noted as contrasts (they explain differences).254

TVD(P,Q) =
1

2

∑
k

∣∣P (k)−Q(k)
∣∣

P (k) and Q(k) are the relative frequencies of sonotype k at each site; |P (k)−Q(k)| is the absolute255

difference for that sonotype; the sum adds differences across all sonotypes; the factor 1
2 scales the256

result to the range [0, 1].257

For each pair in Fig. A4 we show: (i) per–site diurnal profiles (hourly counts) to assess alignment258

in daily activity, and (ii) a time–frequency scatter of the selected low–TVD sonotypes, the shared259

drivers of similarity, where each point marks a detection at its hour and peak frequency. In Fig. 4A260

(Sites 2–8), the connection is strong, supported by many shared sonotypes and tightly aligned activity261

with peaks around dawn and dusk.262

In Fig. 4B (Sites 6–9), connectivity is weak: few shared sonotypes and poor diurnal alignment. Only263

shared (low–TVD) sonotypes are plotted in the time–frequency panels.264
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Fig. A 4: Sonotype-based interpretation of graph structure. (A) Stable cross-cover link (Sites
2–8): top, hourly sonotype counts show aligned acoustic time activity; bottom, time–frequency plots
display shared sonotypes (colored markers) across sites. (B) Low-degree/non-connecting sites (Sites
6–9): weak alignment and sparse, site-specific sonotype sets explain the lack of edges.
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A.4 Ablation curves for the selection criterion265

We repeatedly hide a random fraction of nodes (20–80%), reconstruct held–out features from266

neighbors under a smoothness prior, and summarize performance with Frobenius–normalized NMSE.267

Each holdout level is run 100 times with independent splits. Curves (median; shaded SD) complement268

the summary table in the main text.269
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Fig. A 5: Node-removal ablation. Normalized MSE (median; shaded = SD) as a function of
the fraction of held-out nodes (20–80%) for each graph-inference approach. Curves illustrate the
smoothness-based reconstruction perspective and complement the summary in Table 1.
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