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ABSTRACT

The Mixture of Experts (MoE) framework is widely used in continual learning
to mitigate catastrophic forgetting. MoEs typically combine a small inter-task
shared parameter space with largely independent expert parameters. However, as
the number of tasks increases, the shared space becomes a bottleneck, reintroduc-
ing forgetting, while fully independent experts require explicit task ID predictors
(e.g., routers), adding complexity. In this work, we eliminate the inter-task shared
parameter space and the need for a task ID predictor by enabling expert commu-
nication and allowing knowledge to be shared dynamically, akin to human col-
laboration. We bridge the inter-expert knowledge sharing by leveraging the open-
set learning capabilities of a multimodal foundation model (e.g., CLIP), thereby
providing “expert priors” that bolster each expert’s task-specific representations.
Guided by these priors, experts learn calibrated inter-task posteriors. Additionally,
Multivariate Gaussians over the learned posteriors promote complementary spe-
cialization among experts. We propose new evaluation benchmarks that simulate
realistic continual learning scenarios, and our prior-conditioned strategy consis-
tently outperforms existing methods across diverse settings without relying on
reference datasets or replay memory.

1 INTRODUCTION

Continual learning (CL) emerges as a highly realistic and significant problem in pursuing Artificial
General Intelligence (De Lange et al., 2022). Unlike classical supervised learning, which operates
within fixed problem boundaries and assumes access to static, independent, and identically dis-
tributed (i.i.d.) datasets, continual learning emphasizes the need for models to continuously adapt
to new tasks while being restricted from accessing past-task data. The core objective of continual
learning is to enable models to generalize across previously encountered tasks and gain the ability
to solve a broad range of learning challenges over time.

While early research in continual learning mainly focused on single-modal data, modern ma-
chine learning increasingly relies on multimodal resources, such as vision-language or vision-audio
data (Zheng et al., 2023; Yu et al., 2024). This shift demonstrates multimodal data’s growing preva-
lence and importance in real-world applications. Developing continual learning methods to handle
such data is critical to ensure robust performance across diverse downstream tasks. In addition,
multimodal learning offers promising solutions to some inherent challenges single-modal continual
learning faces. For example, a typical failure case in single-modal learning happens when an image
contains overlapping concepts among different tasks. Consider an image of a flower on a table; its
label might be “flower” in one task and “table” in the later task. A single-modal learner relying solely
on image features will overfit to the most recently learned task, connecting the learned features of
the image with “table” and forgetting about the label “flower”. On the other hand, multimodal data
provides textual descriptions like “Flowers on the table” and “A table with flowers on its top” to help
the model disentangle specific features. Aligning visual and textual information helps models learn
robust, meaningful features and retain task-specific knowledge despite domain shifts. We provide
an analysis of this behavior in Appendix E.

Furthermore, the complementary nature of multimodal data enables robust zero-shot learning, as
exemplified by CLIP (Radford et al., 2021), which shows strong generalization from large-scale
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True: table
Top: tulip (0.32)
2nd: table (0.32)

True: table
Top: couch (0.77)
2nd: table (0.76)

True: boy
Top: girl (0.81)
2nd: boy (0.71)

True: possum
Top: mouse (0.48)

2nd: possum (0.47)
True: beetle

Top: poppy (0.36)
2nd: butterfly (0.35)

True: table
Top: table (0.10)
2nd: tulip (0.02)

True: table
Top: table (0.20)

2nd: couch (0.06)
True: boy

Top: boy (0.45)
2nd: girl (0.12)

True: possum
Top: possum (0.07)
2nd: mouse (0.06)

True: beetle
Top: beetle (0.16)
2nd: poppy (0.03)

Figure 1: Comparison of independently trained experts (top) vs. our MoE design (bottom) on
CIFAR-100 (10 steps). Top: OOD experts exhibit overconfidence despite incorrect predictions,
leading to erroneous task identification. For instance, in the third image from the right, an expert
trained in “boy” images shows less confidence than one who has never seen such images. Bottom:
our MoE yields the correct task ID and final prediction. See Appendix C.3 for details.

image-text pairs (Thengane et al., 2022). This capability is particularly valuable in CL scenarios
where initiating a new learning phase often involves limited training data. Multimodal learners can
leverage these zero-shot abilities to kick-start new tasks with the reduced risk of catastrophic for-
getting (CF), a common phenomenon of CL (French, 1999; McCloskey & Cohen, 1989). Even
with only single-modal data, incorporating multimodal frameworks can enhance learning outcomes.
By leveraging large pre-trained generators to create complementary modalities (e.g., pairing visual
data with textual descriptions), models gain richer inputs and benefit from the performance boost
of multimodal learning. Although multimodal models exhibit strong zero-shot learning capabili-
ties, relying solely on this strength is insufficient to address the core challenges of CL. CL not only
requires models to achieve reasonable performance on new tasks but also demands a delicate bal-
ance between improving task-specific performance and preserving previously acquired knowledge.
Several recent methods, such as parameter regularization and parameter-efficient fine-tuning, have
attempted to address these challenges by enhancing the adaptability of multimodal models like CLIP
across tasks (Zheng et al., 2023; Yu et al., 2024). These approaches aim to retain prior knowledge
while fine-tuning for new tasks. However, in practice, they often overfit the current task learning
objective, overwriting knowledge from previous tasks, resulting in CF. This outcome should not be
surprising. While multimodality can sometimes mitigate CF, such as in our earlier example, where
textual descriptions provided sufficient complementary information to guide task-specific feature
learning, this is not universally effective. Overfitting and CF remain significant challenges when the
modalities involved fail to provide adequate signals to distinguish between task-specific patterns or
when the model’s tunable parameters are insufficient to support effective disentanglement. In these
cases, the complementary nature of multimodal data alone is insufficient to resolve the broader is-
sues inherent in CL, particularly in balancing task-specific learning with knowledge retention.

To tackle these limitations, we adopt the Mixture of Experts (MoE) architecture (Yu et al., 2024;
Ma et al., 2024; Wu et al., 2024; Rypeść et al., 2023) as a robust framework for multimodal CL.
A key advantage of MoE is its divide-and-conquer design, which allocates separate learning spaces
for different tasks, thereby mitigating CF by preventing direct interference between task-specific
knowledge. However, conventional MoE implementations rely on shared parameters as a commu-
nication mechanism between experts. While this design benefits static learning setups, it becomes
problematic in a CL setting. The low-level and hard-to-control information flow between experts
allows “shortcut features” from previous tasks to propagate unchecked, distorting the learning of
new tasks. For example, suppose the first expert is trained to classify “cow”. During learning, it not
only captures features specific to cows but also stores background cues like grass as a useful feature
within the shared parameters. When a second expert is later introduced to learn “horse”, it inherits
these shared parameters and shortcuts the learning process by associating grass with the “horse”
label rather than focusing on the distinct features of horses. This uncontrolled transfer of shortcut
features distorts task-specific learning and increases the risk of overconfident false positives in CL.

To address the abovementioned issues, we propose modifying the MoE design by entirely remov-
ing shared parameters and enabling expert communication through a dynamic temperature scaling
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mechanism based on expert predictions. This approach ensures that new experts actively incorpo-
rate the opinions of past experts when learning from current task data rather than passively inheriting
signals from a shared backbone. As a result, our design prevents harmful biases from being implic-
itly transferred while allowing task-specific learning to remain adaptive. As shown in Figure 1, this
significantly reduces overfitting to shortcut features and mitigates the issue of overconfident classi-
fications. Additionally, leveraging the strengths of multimodal models in out-of-distribution (OOD)
detection, we introduce distribution-aware multivariate Gaussian based weighting, which enhances
expert coordination during inference. Our experiments demonstrate that our method consistently
outperforms existing approaches across various benchmarks. In summary, this paper advances CL
in multimodal models through the following contributions:

• We propose a novel expert collaboration scheme based on dynamic confidence-aware temperature-
scaling, which enables experts to interact without parameter sharing. This approach provides a
memory-free and scalable continual learning framework with robust in-distribution (IND) and
OOD confidence calibration, without requiring reference datasets or routers as prior methods do.

• We provide a formal analysis showing how our confidence-aware temperature scaling introduces
an implicit epistemic prior that improves predictive certainty in regions dominated by shortcut
features.

• We enhance expert communication during inference via a distribution-aware weighting mecha-
nism that regularizes outputs and improves task-specific expert selection, boosting performance.

2 RELATED WORK

Continual Learning (CL) in deep neural networks aims to mirror human lifelong learning while
mitigating catastrophic forgetting (CF) (Chen & Liu, 2018). The main CL paradigms are Class-
Incremental Learning (CIL) (Oren & Wolf, 2021; Belouadah & Popescu, 2019; De Min et al.,
2023; Liu et al., 2023; Yan et al., 2021; Douillard et al., 2022), where the task-ID (TID) is unknown
during inference (making it the most challenging (Chen & Liu, 2018)), and Task-Incremental
Learning (TIL) (Mallya & Lazebnik, 2018; Oren & Wolf, 2021), where the TID is provided. To
mitigate CF, researchers have explored regularization-based methods (Kirkpatrick et al., 2017; Zhu
et al., 2021; Zeng et al., 2019), which constrain parameters across tasks; replay-based methods (Re-
buffi et al., 2017; Ebrahimi et al., 2021; Buzzega et al., 2020; Boschini et al., 2022; Lopez-Paz
& Ranzato, 2017), which reuse stored data from previous tasks; and parameter-isolation meth-
ods (Mallya et al., 2018; Serra et al., 2018; Kim et al., 2022; Wang et al., 2022a;b; Rusu et al., 2016;
Aljundi et al., 2017; Rosenfeld & Tsotsos, 2018), which allocate distinct parameters for each task.
More recently, the CL community has turned to multimodality, such as Vision-Language Models
(VLMs), which learn from both visual and textual inputs, enabling zero-shot transfer. In particular,
Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) trains separate encoders
for images and text using a contrastive objective and often outperforms traditional CL approaches
with no additional training (Thengane et al., 2022). ZSCL (Zheng et al., 2023), which uses CLIP,
employs a parameter-regularization fine-tuning strategy to mitigate CF, but CLIP’s large parameter
count poses computational challenges. To address this, MoE-Adapters (Yu et al., 2024) propose
a parameter-efficient fine-tuning (Zhang et al., 2020; Karimi Mahabadi et al., 2021; Jia et al.,
2022) framework using Mixture-of-Experts (MoEs) layers (Shazeer et al., 2017), although their
shared-parameter structure remains susceptible to CF. Moreover, both (Zheng et al., 2023; Yu et al.,
2024) rely on a reference dataset, which limits real-world applicability, while some task-specific
methods still require TID during inference (Wen et al., 2020; Hung et al., 2019; Golkar et al., 2019;
Fernando et al., 2017; Collier et al., 2020). Li et al. (2024) provides complementary theoretical
analyses of MoEs in CL. Beyond these expert-based approaches, HiDe-PET (Wang et al., 2025)
introduces a hierarchical decomposition for parameter-efficient tuning (PET). It decomposes the CL
objective into within-task prediction (WTP), task-identity inference (TII), and task-adaptive predic-
tion (TAP), and leverages PET techniques to explicitly optimize all three. However, they cannot
achieve knowledge transfer due to task-specific parametrs isolation, whereas our work introduces
dynamic inter-expert communication. A more recent approach, Regression-based Analytic Incre-
mental Learning (RAIL) (Xu et al., 2024) uses ridge regression on VLMs image embeddings. RAIL
is limited in its use of only the pretrained vision embeddings and requires memory. Another branch,
Cross-domain Task-Agnostic Incremental Learning (X-TAIL), addresses domain shifts across
tasks (Xu et al., 2024). X-TAIL extends Multi-Domain Task Incremental Learning (MTIL) (Yu
et al., 2024) by removing domain hints, which enables TIL to handle multi-domain scenarios and
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evaluate zero-shot transfer. However, it does not comprehensively assess generalization performance
on unseen subpopulations (Santurkar et al., 2020; Liang et al., 2022).

Our approach diverges by focusing on zero-shot transfer and robustness in multimodal CL, targeting
more practical, real-world benchmarks such as sub-population shifts and traditional CL benchmarks,
without relying on any form of memory or a reference dataset.
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Figure 2: (a) CLIP confidently predicts the correct class “cat” when the true label is present, but
makes a high-confidence mistake (open-set error) when the “cat” label is absent. (b) training: open-
set errors from previous experts filter semantically similar samples (Equation 3), and selective scal-
ing (shown as darker green) calibrates the current expert (Equation 4). The expert also learns a
multivariate Gaussian from the vision embeddings (Equation 7). (c) expert architecture as adapters.
(d) inference: MD offers sample-specific guidance (darker purple denotes weight) (Equation 8).

3 METHODOLOGY

Preliminary. We define the CL setting as follows. Consider a pre-trained multimodal foundation
model F : X → Y that learns across T tasks and maps input X to output Y . The tasks {T t}Tt=1
arrive sequentially, with only one accessible at each timestamp t. Each task T t={Dt, Ct} includes
a dataset Dt={(xt

i, y
t
i)}

|Dt|
i=1 , sampled i.i.d. from PXt×Yt

, and a set of classes Ct = {ctj}M
t

j=1, where
M t is the number of classes in Dt. In class-incremental learning (CIL), each task has disjoint label
spaces (Yi ∩ Yj = ∅, ∀i ̸= j). In domain-incremental learning (DIL), tasks share the same labels
(Yi=Yj) but have different input domains (Xi ̸= Xj). Our approach generalizes across both settings.

To demonstrate a multimodal model as a continual learner, we will henceforth consider Contrastive
Language-Image Pre-training (CLIP) as a running example. CLIP, denoted as F = G{Evisual,Etext},
uses two parallel encoders: a Transformer-based text encoder Etext and an image encoder Evisual
(e.g., Vision Transformer). Both produce embeddings of the same dimension, mapping images and
text into a joint embedding space. To fine-tune the model on a given task T t, each class category
ctj is transformed via a prompt template (e.g., "a photo of a {category}"), and the text
encoder Etext yields text embeddings {ttj}M

t

j=1. For an image xti, the visual encoder Evisual produces
vti. Cosine similarities sti,j= sim(ttj , vti) are calculated on the joint embedding space. Finally, cross-
entropy loss is calculated in the form of equation 1 where L is CLIP’s logit scaling parameter.

Lt =
1

|Dt|

|Dt|∑
i=1

LCE
(
θt; xti, y

t
i

)
; whereLCE

(
θt; xti, y

t
i

)
= −

Mt∑
j=1

yti,j ln
 exp

(
L · sti,j

)
∑Mt

k=1 exp
(
L · sti,k

)

(1)

3.1 MIXTURE-OF-EXPERTS DESIGN.

The Mixture-of-Experts (MoE) (Jacobs et al., 1991) framework has been widely adopted by the
research community. In MoE, each expert is a distinct neural network with independent inputs
and outputs, potentially sharing or maintaining separate parameters (Shazeer et al., 2017; Chen
et al., 2023). The primary goal is to enable each expert to learn unique perspectives or handle
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different tasks. As discussed in Section 1, we use task-specific experts to facilitate two benefits: (1)
maximizing task-specific performance and (2) facilitating incremental expansion as new tasks arise.

Although MoE offers modularity, assigning full models to each expert leads to growing parameter
overhead as tasks accumulate. We follow prior strategies like LoRA (Hu et al., 2021) and adopt
lightweight task-specific adapters {ϵt}Tt=1 using a pre-trained CLIP backbone:

F t =
{
{Etext,Eimage}, {ϵt}Tt=1

}
. (2)

Where ϵt(xi) denotes the expert t’s prediction on xi. To avoid catastrophic forgetting and reduce
reliance on task-ID prediction during inference, we strictly isolate experts by freezing the shared
backbone and all task-specific adapters except the current one. Our design ensures that each expert
learns independently without interference from other tasks. Unlike other parameter sharing methods,
our approach encourages experts to maintain epistemic uncertainty outside their own domain rather
than falsely generalizing to unseen tasks.

While expert isolation prevents interference between tasks, all experts still rely on the same pre-
trained backbone for feature extraction. In our preliminary study on CLIP-based MoE continual
learners, a counterintuitive yet interesting pattern consistently emerged: the model often appears
confident, yet remains uncertain about task-relevant meaning. This is because its confidence reflects
alignment strength between visual and text embeddings—not actual certainty about the label. For
example, an image of a boy may be confidently matched with girl due to shared context in the pre-
training corpus (Figure 1, (top)). These errors are not caused by epistemic uncertainty—the model
has likely seen the feature—but rather by aleatoric uncertainty in the backbone’s task-agnostic rep-
resentation. Such shortcut features can activate multiple experts, making expert selection unreliable.
However, past experts often have low epistemic uncertainty about these features, having encountered
them in different task contexts. In the next section, we propose a temperature scaling strategy that
leverages this asymmetry by leveraging predictive epistemic uncertainty from past experts to guide
the training of new experts, helping resolve the ambiguity introduced by the shared backbone.

3.2 TEMPERATURE-GUIDED EXPERT MIXTURE

We propose a Temperature-Guided Expert Mixture mechanism based on the challenges discussed
in Section 3.1. Confidence calibration via temperature scaling aims to align a model’s predicted
probabilities with the true likelihood of correctness. Tu et al. (2024) has shown that the CLIP model
suffers from poor calibration, often producing misleading confidence scores. Though the foundation
model includes a learned temperature-like parameter L (see eq. 1) to scale contrastive similarity
scores, this mainly affects embedding sharpness and class separation rather than calibration quality.

To form a true expert mixture, we introduce temperature {τ(xti)}
|Dt|
i=1 where each τ(xt

i) modifies
an expert’s logits. When τ(xti) > 1, predictions become more uniform (lower confidence), and
when τ(xt

i) < 1, predictions become sharper (higher confidence). However, traditional scaling
only improves intra-expert calibration and fails to enhance inter-expert mixture quality or OOD
detection, as intra-expert scaling does not mitigate high-confidence errors on OOD samples.

To improve the experts’ awareness of OOD detection, we incorporate an adaptive threshold scaling
mechanism. For this purpose, we first filter out samples from the current task dataset using the
open-set error. The rationale behind this is that if previous experts, who were not trained on the
current task’s dataset, show high-confidence predictions on these samples, such high-confidence
samples likely have a high semantic correlation with their corresponding training sets. Additionally,
since experts are independent, their logits are not directly comparable. Therefore, we use distinct
thresholds for each expert based on their overall confidence in the current task. This automated and
adaptive mechanism ensures that only high-confidence samples by each expert are selected. For a
previous task, p < t, the top-k confidence set in the eyes of an expert ϵp is:

confp = argmax
S⊂Dt, |S|=k

∑
xt∈S

ϵp(xt), p = 1, . . . , t− 1. (3)

Finally, we applied temperature scaling to the filtered samples differently to adjust their confidence.
This results in a clear distinction between in-distribution (IND) and OOD samples, as the model
adjusts confidence on semantically similar samples. With pre-defined upper bound τUB and lower
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bound τLB we can rewrite equation 1 with the adaptive threshold temperature τ(xti) as follows:

Lt =
1

|Dt|

|Dt|∑
i=1

1

τ(xti)
· LCE(θ

t; xti, y
t
i); where τ(xti) =

{
τLB , xti ∈

⋃t−1
p=0 confp

τUB , otherwise
(4)

Although the proposed temperature-guided training is operationally local to each expert at present,
it implicitly breaks the strict task boundary in continual learning problems. Without introducing
additional memory or replay, each current expert is regularized by the statistical properties of the
prior task captured through confidence-scaled gradients from early experts. To better understand this
effect, we formalize our scaling act as inducing an epistemic prior in the general Bayesian inference,
and we show that the prior adaptively sharpens the posterior over the current expert in regions of
shortcut activated samples. We show that this encourages the current expert to increase its predictive
certainty over such samples, effectively amplifying a confidence gap that can later assist in expert
selection at test time. This theoretical view supports our central claim: that temperature scaling not
only improves local task fitting but also enhances global task coordination in continual learning.
Proposition 1 (Equivalence of temperature scaling to general bayesian inference under epistemic
energy prior). The temperature-scaled objective 1

τ(x)LCE(θ
t; x, y) corresponds to a posterior update

under Generalized Bayesian Inference (GBI) with an epistemic prior of Boltzmann distribution form:
pE(θ

t) ∝ exp{E(θt)}, where E(θt) is a confidence-guided energy regularizer derived from a
previous expert’s belief.
Theorem 1 (Confidence separation over finite shortcut ambiguous samples via δ-temperature scal-
ing). Specify each ϵt as a softmax classifier, whose posterior is approximated by qt(θ) via black-box
variational inference maximizing the ELBO of the GBI objective:

F [qt] = KL[qt||p0] +
∑

x,y∈Dt

a(x)Eqt [L(θ; x, y)] (5)

where a(x) = 1
τ(δ)−1 , with δ = conft−1(x) := max

y
ϵt−1(x) and p0 is the prior. Define δ-shortcut

activated region: Aδ
t−1 = {x ∈ Dt|conft−1(x) ≥ δ}. Then under the softmax likelihood and

Laplace approximation to qt(θ), the following confidence improvement holds for all x ∈ Aδ
t−1:

1

|Aδ
t−1|

∑
x∈Aδ

t−1

[conft(x)− conft−1(x)] ≥ g(δ) = C · τ(δ)σ2 (6)

where σ2 denotes the epistemic variance under qt−1(θ) and C > 0 is a constant that depends on
model curvature.

Proof sketch. We extend the intuitive definition of shortcut features by Geirhos et al. (2020) and
define a set Aδ

t−1 of shortcut-activated samples in the context of incremental continual learning with
MoE. During the posterior learning, our temperature scaling assigns higher ELBO weights to those
samples, simulating their repetition and as a result, amplifies posterior curvature (i.e., Hessian of the
log posterior) and shrinks the predictive variance (Kruschke, 2010; Bissiri et al., 2016). Under the
Laplace approximation, the posterior mean remains stable, so predictive confidence increases with
variance contraction. Then we can lower-bound confidence gain over Aδ

t−1 as a function of δ, τ ,
and prior uncertainty.

This sample-level confidence gain also hints at a broader effect. Since shortcut features remain easy
to fit, achieving higher confidence under temperature scaling implicitly drives the expert to discover
additional task-relevant cues and thus move beyond shortcut reliance without replay.

3.3 DISTRIBUTION-AWARE WEIGHTING

While our adaptive threshold-based scaling improves OOD detection, we observe that the softmax
of expert logits still yields overconfident posteriors for specific samples. Recent work has shown
that Mahalanobis distance (MD) and Gaussian-based approximations are practical for OOD detec-
tion (Lee et al., 2018). However, these methods are often used in CL with memory buffers (Lin
et al., 2023), which are impractical and unscalable in real-world scenarios. In contrast, multimodal
model embeddings capture richer semantics than traditional deep networks, enabling samples to
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cluster meaningfully, even across classes. This property allows us to characterize in-distribution
(IND) behavior in embedding space.

To incorporate MD-based weighting, we first embed the training set into a low-dimensional space
using the task expert’s visual encoder. We model the data distribution with a multivariate Gaussian.
Specifically, let vt

i ∈ RD denote the visual embedding of sample i from the expert trained on task
t, where D is the hidden dimensionality of the encoder. We then estimate the empirical mean and
covariance of the embeddings as: µt= 1

|Dt|
∑|Dt|

i=1 vt
i , Σ

t= 1
|Dt|−1

∑|Dt|
i=1 (v

t
i−µt)(vt

i−µt)T . Where
µt ∈ RD and Σt ∈ RD×D. For a test sample xtest, we obtain its embeddings from each task expert,
denoted {vt

test}Tt=1, and compute the MD to each task’s distribution. A smaller MD indicates the
sample is closer to that task’s in-distribution (IND). The MD for a test sample xtest from task t is:

MDt(vt
test) =

√
(vt

test − µt)TΣt−1(vt
test − µt) (7)

We apply softmax to convert inverse MDs into a normalized weight distribution. We use a small
value ζ in softmax to make the weight distribution more selective. Finally, we apply weights to each
expert’s sample-specific probability distribution over the classes. This results in test sample-specific
weights for each expert, rather than assigning fixed weights per expert. The final prediction is:

ŷtest = argmax concatt
[
wt(xtest) · ϵt(xtest)[:]

]
; wt(xtest) = softmax

([
MDt(vt

test)× ζ
]−1

)
(8)

Here, [:] denotes slicing and ŷtest is the prediction for xtest. Figure 2 illustrates our framework.

4 EXPERIMENTS

Evaluation overview. We design our experimental setting based on recent literature. Our main ex-
periment is divided into three parts. First, we conduct experiments on the traditional CIL benchmark.
Then, we conduct experiments on the more challenging subpopulation shift benchmarks. Finally,
we conduct experiments on uneven subpopulation shift to further demonstrate the robustness of the
model. We also perform experiments on the Cross-domain Task-Agnostic Incremental Learning (X-
TAIL) benchmark. Additionally, we conduct ablation studies to justify the effectiveness of different
proposed components in our method. Implementation details are available in the Appendix I.

Baseline. We compare our method with eight CLIP-backbone-based baselines: CLIP Zero-shot,
Fine-tune, LwF (Li & Hoiem, 2017), iCARL (Rebuffi et al., 2017), LwF-VR (Ding et al., 2022),
ZSCL (Zheng et al., 2023), MoE-Adapters (Yu et al., 2024), RAIL (Xu et al., 2024), and additional
non CLIP backbone based baselines: UCIR (Hou et al., 2019) and DyTox (Douillard et al., 2022).
For subpopulation shift benchmarks, we compare our method with four CLIP-backbone-based base-
lines. For ZSCL (Zheng et al., 2023), we use their reported reference dataset, Conceptual Caption
(CC). For MoE-Adapters (Yu et al., 2024), we match the number of experts with ours to ensure a fair
comparison. For RAIL (Xu et al., 2024), we use the primal form. We use other settings and hyper-
parameters as reported in the respective works. We utilize publicly available results when possible.

Table 1: Performance on CIFAR-100 and TinyImageNet in the CIL setting. “Average” and “last”
accuracies (%) are reported across incremental steps. ∆ indicates gain over second-best.

Method
CIFAR100 TinyImageNet

10 step 20 step 50 step 5 step 10 step 20 step
Avg. ↑ Last ↑ Avg. ↑ Last ↑ Avg. ↑ Last ↑ Avg. ↑ Last ↑ Avg. ↑ Last ↑ Avg. ↑ Last ↑

UCIR (Hou et al., 2019) 58.66 43.39 58.17 40.63 56.86 37.09 50.30 39.42 48.58 37.29 42.84 30.85
DyTox (Douillard et al., 2022) 74.10 62.34 71.62 57.43 68.90 51.09 55.58 47.23 52.26 42.79 46.18 36.21
CLIP Zero-shot 74.47 65.92 75.20 65.74 75.67 65.94 69.62 65.30 69.55 65.59 69.49 65.30
Fine-tune 65.46 53.23 59.69 43.13 39.23 18.89 61.54 46.66 57.05 41.54 54.62 44.55
LwF (Li & Hoiem, 2017) 65.86 48.04 60.64 40.56 47.69 32.90 60.97 48.77 57.60 44.00 54.79 42.26
iCARL (Rebuffi et al., 2017) 79.35 70.97 73.32 64.55 71.28 59.07 77.02 70.39 73.48 65.97 69.65 64.68
LwF-VR (Ding et al., 2022) 78.81 70.75 74.54 63.54 71.02 59.45 77.56 70.89 74.12 67.05 69.94 63.89
ZSCL (Zheng et al., 2023) 82.15 73.65 80.39 69.58 79.92 67.36 80.27 73.57 78.61 71.62 77.18 68.30
MoE-Adapters (Yu et al., 2024) 85.21 77.52 83.72 76.20 83.60 75.24 81.12 76.81 80.23 76.35 79.96 75.77
RAIL (Xu et al., 2024) 84.03 76.09 84.82 76.01 85.11 76.10 75.88 71.97 75.90 72.09 75.85 72.07
Ours 87.28 80.6 86.4 79.32 85.68 77.34 82.42 78.95 82.13 78.31 81.64 77.42
∆ +2.4% +3.9% +1.9% +4.1% +0.7% +1.6% +1.6% +2.7% +2.4% +2.6% +2.1% +2.1%
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4.1 CLASS-INCREMENTAL LEARNING PERFORMANCE

Setting. Following (Zheng et al., 2023; Yu et al., 2024), to evaluate in the traditional CIL setting,
we use the CIFAR-100 (Krizhevsky, 2009) and TinyImageNet (Le & Yang, 2015) datasets. For
CIFAR-100, we divide the 100 classes into 10, 20, and 50 steps. For TinyImageNet, which has 200
classes, we initially learn 100 classes, with the remaining classes learned in increments of 5, 10, and
20 steps. For example, if a dataset has a total of M classes and we divide it into K steps, then each
step introduces M/K new classes. We report two metrics: Average, the mean accuracy across all
tasks and timestamps, and Last, the mean accuracy after the final task. See Appendix C.1 for more.

Analysis. Table 1 shows the CIL results. Our method consistently achieves the highest “Average”
and “Last” accuracies, outperforming all competing methods, including recent baselines RAIL (Xu
et al., 2024) and MoE-Adapters (Yu et al., 2024). RAIL uses a single modality (vision embeddings)
and a memory buffer, while MoE-Adapters employs a trainable DDAS router for task ID pre-
diction. The shared experts in MoE-Adapters are prone to forgetting and task detection errors; in
contrast, our method mitigates both by compartmentalizing experts. Although task accuracy de-
pends on OOD detection, our adaptive temperature scaling, guided by Mahalanobis distance using
multivariate Gaussian distributions over high-dimensional embeddings, addresses this challenge.

Table 2: Performance comparison in sub-population shift incremental learning setting on Entity-
13 (5 steps) and Entity-30 (4 steps) benchmarks with Even Update. We report “seen”, “unseen” (in
parentheses), and “All” accuracies (%) across steps. ∆ indicates gain over second-best.

Steps 0 1 2 3 4 5 All
Method Breeds Entity 13 Benchmark with 5 Steps (Even Update)

CLIP Zero-shot 75.09 71.2 70.10 70.77 72.17 72.28 71.93
ZSCL (Zheng et al., 2023) 69.86 (66.10) 86.56 (73.17) 86.19 (77.84) 86.27 (74.69) 85.78 (83.92) 83.52 79.62
MoE-Adapters (Yu et al., 2024) 97.08 (79.72) 92.54 (68.86) 87.26 (69.05) 86.97 (70.15) 84.74 (78.23) 74.06 79.43
RAIL (Xu et al., 2024) 96.30 (71.30) 89.98 (71.33) 88.49 (71.74) 87.66 (72.22) 87.29 (72.28) 85.95 81.06
Ours 97.09 (79.75) 96.53 (79.53) 93.65 (81.25) 91.7 (80.84) 90.36 (84.46) 89.71 87.08 ∆ +7.43%

Breeds Entity 30 Benchmark with 4 Steps (Even Update)
CLIP Zero-shot 68.53 65.3 65.64 66.28 66.03 - 66.35
ZSCL (Zheng et al., 2023) 56.82 (55.93) 84.32 (76.35) 86.18 (73.37) 85.93 (74.8) 84.41 - 76.96
MoE-Adapters (Yu et al., 2024) 95.92 (72.42) 88.23 (70.13) 83.28 (65.1) 81.63 (70.4) 75.39 - 77.06
RAIL (Xu et al., 2024) 95.50 (65.81) 89.22 (65.98) 87.01 (66.15) 86.30 (66.03) 85.25 - 78.63
Ours 96.0 (72.13) 94.69 (77.80) 71.38 (79.5) 90.22 (76.33) 88.84 - 84.88 ∆ +7.95%
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4.2 SUB-POPULATION SHIFT INCREMENTAL PERFORMANCE

Setting. For the subpopulation shift evaluation, we use the BREEDS benchmark (Santurkar et al.,
2020), which simulates real-world subpopulation shifts based on the ImageNet dataset (Deng et al.,
2009; Russakovsky et al., 2015). Specifically, we utilize the Entity-13 and Entity-30 benchmarks,
which contain 13 and 30 superclasses and 260 and 240 subclasses, respectively. We follow the
protocol proposed by (Liang et al., 2022). For Entity-13, we use 5 incremental steps, while for
Entity-30, we use 4 steps. In Entity-13, the first task includes 10 subclasses per superclass, with 130
unseen subclasses for incremental updates; in the 5-step setup, each task adds 2 new subclasses per
superclass. Similarly, in Entity-30, the initial task includes 4 subclasses per superclass, with 120
unseen subclasses for incremental updates; in the 4-step setup, each step adds 1 new subclass per
superclass. Both benchmarks simulate an even update, meaning that during each incremental step,
there will be samples for each superclass. Subpopulations are strictly unseen and disjoint for each
increment. In both protocols, training, and inference are performed using superclass labels, while
samples are introduced with subclass labels. We report Seen, Unseen, and All accuracy, averaged
incremental accuracy on seen tasks, unseen tasks, and both, respectively.
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Figure 7: Comparison of different components of our method on the CIFAR-100 with 10 steps.

Analysis. Table 2 shows results on Entity-13 and Entity-30 with evenly introduced subpopulation
shifts. The main challenge is adapting to new subclasses without forgetting previously learned ones.
For example, if the model initially learns to classify “goose” as a type of “bird” and then encounters
a shift to the “flamingo” subpopulation, it should learn to classify “flamingo” as “bird” without
forgetting how to classify “goose” as “bird”. Our method consistently outperforms baselines on
both benchmarks, maintaining balanced performance across seen and unseen tasks throughout all
steps. In contrast, ZSCL (Zheng et al., 2023) initially lags due to parameter regularization but
improves over time; MoE-Adapters (Yu et al., 2024) and RAIL (Xu et al., 2024) perform well early
but struggle to retain seen knowledge. Overall, our method achieves the most stable and balanced
performance throughout incremental adaptation. See Appendix F for more.

4.3 MODELS ROBUSTNESS

Setting. We conduct an analysis of the robustness of our method in a more challenging subpopu-
lation shift setting with uneven updates. The uneven updates mimic the situation where part of the
population (i.e., superclasses) receives samples (i.e., from unseen subclasses) during training. We
also use a longer step size to measure its ability to stay unbiased toward newer tasks. We use the
Entity-13 and Entity-30 benchmarks with 10 and 13 steps for the former, and 8 and 15 steps for the
latter, respectively. As the model receives unbalanced and uneven updates, learning new classes and
preserving knowledge of old classes, and long-run bias are additional key issues with subpopulation
shifts. Moreover, we follow (Xu et al., 2024) to present results on the X-TAIL benchmark.

Analysis. Figures 3 and 4 present a performance comparison on the Entity-13 and Entity-30
benchmarks, using both “even” (5 steps for Entity-13, 4 steps for Entity-30) and “uneven” (10
and 13 steps for Entity-13, 8 and 15 steps for Entity-30) update intervals. This is a more
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Figure 8: Effectiveness of δ-
temperature scaling from Theorem 1.

realistic setting than the benchmark described in sec-
tion 4.2, as samples from all subpopulations might not al-
ways be available for training. For example, when the
model is learning about “garment” and “insect” categories,
samples from both subpopulations, such as “T-shirt” and
“butterfly” may arrive at the same time. However, at
another timestamp, only a sample from “garment” (e.g.,
“skirt”) might arrive, with no new samples from “insect”.
This situation can arise for various reasons, such as data
unavailability, differences in subpopulation sizes (i.e., not
all populations have the same number of subpopulations),
or data imbalance. In Figures 3 and 4, we observe that
our method outperforms all baselines on the “All” metric,
demonstrating balanced learning between seen and unseen
sub-populations in even and uneven update intervals, as
well as in both short- and long-term scenarios. Figure 5
shows our model’s robustness on X-TAIL versus three base-
lines (details on Appendix G).

Effectiveness of δ-temperature scaling from Theorem 1. We analyze the distribution of predictive
variances across all continual learning tasks, with and without our temperature scaling-based epis-
temic prior (See Figure 8) on the CIFAR100 dataset with 10 steps. While we cannot directly measure

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

shortcut samples due to the lack of ground-truth annotation, the distributional behavior itself is in-
formative. If temperature scaling had a uniform influence on all samples, the predictive variances
would decrease at roughly the same rate, resulting in a simple downward shift of the distribution
while preserving its shape. However, this is not what we observe. The baseline (w/o temperature)
exhibits a pronounced long-tail of high-variance samples, whereas our method (w/ temperature) not
only lowers the mean variance but also substantially contracts the tail, producing a more concen-
trated, approximately Gaussian-like distribution. This change in distributional shape indicates that
variance reduction is not uniform across samples. Instead, a specific subset experiences dispropor-
tionately faster epistemic variance contraction. This selective contraction is precisely the behavior
predicted by our theoretical analysis: the epistemic prior introduced by temperature scaling imposes
stronger curvature along shortcut-prone directions, causing posterior variances associated with those
regions to converge more rapidly. Thus, even without explicit shortcut labels, the observed collapse
of the high-variance tail provides indirect but consistent empirical evidence supporting our theoreti-
cal claim that temperature scaling accelerates epistemic convergence for shortcut-like samples. See
Appendix B for more.

4.4 ABLATION STUDY

We analyze the effects of temperature scaling and MD on task ID detection. Figure 7 shows
heatmaps of task ID detection on CIFAR100 after learning all tasks. Independently trained experts
show clear task detection performance (Figure 7(a)). However, our simple yet effective adaptive
threshold temperature scaling improves task separation by reducing overlap between task-specific
outputs (Figure 7(b)). While the diagonal elements clearly demonstrate that most tasks benefit from
scaling, a few tasks are also impacted by side effects. The multivariate Gaussian is also effective
for the task ID detection using MD as a weight (Figure 7(c)). Finally, our combined method, which
benefits from both temperature scaling and MD, shows the best overall performance (Figure 7(d)).
Figure 6 shows the overall task ID prediction accuracy on two datasets. Overall, our method yields
more diverse and generalizable predictions. Additional ablations are provided in Appendix D.

5 CONCLUSIONS

We introduce a multimodal approach for continual learning, addressing diverse settings like class-
incremental, domain-incremental, and subpopulation-incremental learning. Our analysis identifies
key challenges, such as reliance on shortcut features and the need for sample task ID prediction,
which limit the adaptability of the multimodal model. To address these, we propose adaptive thresh-
old scaling and a distribution-aware expert weighting mechanism, enabling dynamic task adjustment
and reducing spurious correlations. We provide a theoretical view to support our claim. Our method
is reference dataset-free and memory-free, making it efficient and scalable. It demonstrates robust
performance and significant improvements over baselines across diverse benchmarks.

ETHICS STATEMENT

This work uses only publicly available datasets and does not involve human subjects or sensitive
data. We conducted the research in accordance with the ICLR Code of Ethics and identified no
conflicts of interest.

Usage of LLMs: Large Language Models (LLMs) were used only for polishing writing, not for
generating ideas, methods, or results.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. The implementation de-
tails of our proposed method are provided in Section 4, with further implementation and workstation
specifications outlined in Appendix I. Proofs of our theoretical claims are included in Appendix B,
and instructions for accessing the source code are given in Appendix J. Together, these materials
offer sufficient information for independent verification of our work.
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A ORGANIZATION

We organize the Appendix into multiple sections. In the second section, we provide the proof of the
theorem. The third section provides further details on class-incremental learning, including results
on additional baselines and benchmarks, as well as qualitative and additional task ID detection re-
sults. In the fourth section, we provide additional ablation studies. In the fifth section, we present
the impact of multimodality on learning. In the sixth section, we present further details and step-
wise performance on sub-population shift incremental learning. Next, we provide detailed results
on cross-domain task-agnostic incremental learning across 11 datasets. Finally, we discuss some
limitations and implementation details, and provide instructions to access the source code to ensure
the reproducibility of our method.

B PROOFS OF THEOREM AND PROPOSITION

B.1 PROOF OF PROPOSITION 1

Let ϵt(x) = p(y|x) =
∫
p(y|x,θ)p(θ|Dt) denote the predictive distribution from a Bayes learner

trained on the dataset Dt(i.e. expert t’s prediction), where θ denotes the tunable parameters. We
want to formalize the process of learning θ′ for expert t′, t′ > t, as general Bayes inference (Bissiri
et al., 2016) under epistemic guided prior.

A typical posterior in GBI is defined as

p(θ|D) ∝ p(θ) exp {−
∑
i

ηiL(θ; xi, yi)} (9)

where p(θ) is the prior distribution of θ. Li is the per-sample loss function. ηi is the trust/precision
parameter.

We first define a joint prior pJoint(θ
′) over θ′ with two components.

1. A base prior p0(θ′) shared by all experts. (i.e. initialization belief)
2. A epistemic prior pE(θ

′|ϵt).

Thus,
pJoint(θ

′) := p0(θ
′)pE(θ

′|ϵt) (10)

We further assume that the influences of different data samples are conditionally independent given
a former expert’s prediction. Such that the following factorization holds:

pE(θ
′) =

1

ZE

|Dt′ |∏
i

ψi(θ
′; ϵt(xi)) (11)

where ZE is the normalization constant.

Substituting equation 10 back to equation 9 we have the posterior belief update given by

p(θ′|Dt′) ∝ p0(θ
′)

|Dt′ |∏
i

ψi(θ
′; ϵt(xi)) exp {−

|Dt′ |∑
i=1

L(θ; xi, yi)}

= p0(θ
′) exp {−

|Dt′ |∑
i=1

L(θ′; xi, yi) + L̃i(θ
′)} (12)

where L̃i(θ
′) := − lnψi(θ

′; ϵt(xi)). We now assume that the epistemic prior contributes an addi-
tive loss-like connection to posterior update, given by L̃i(θ

′) = aiL(θ′; xi, yi), then we can rewrite
the GBI loss in equation 12 as Leff = (1 + ai)L(θ′; xi, yi), which means that the prior increases
or decreases the effective strength of each data sample. We can further justify this structure from
an energy-based perspective. ψi(θ

′) = exp {Ei(θ
′)} with Ei(θ

′) := aiL(θ′; xi, yi). This demon-
strates the epistemic trust induced by the past expert: a small ai means a stronger prior, therefore
suppresses the posterior update with sample xi, while a larger ai encourages the model to fit to xi.
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Now let τ(xi) be a summarized confidence function of ϵt,

τ(xi) = h(ϵt(xi)), h := Py → (0,+∞) (13)

Setting ai = 1
τ(x) − 1, the effective posterior update becomes

p(θ′|Dt′) ∝ p0(θ
′)

|Dt′ |∏
i=1

p(yi|xi;θ′)
1

τ(xi) (14)

which is exactly the proposed confidence-guided temperature scaling learning objective.

Remark 1. While the generalized Bayesian framework grants flexibility in the choice of loss func-
tions, its true expressive power lies in how it emphasizes the interpretability and structure of the
prior. In our formulation, we leverage this freedom to specify a data-dependent, epistemically
grounded prior, which enables our confidence-based temperature scaling to emerge as a princi-
pled posterior update. This derivation shows that temperature scaling emerges as a special case of
generalized Bayesian inference, where confidence-adjusted energy terms serve as epistemic priors
regulating posterior updates.
Remark 2. Note that each energy term E(θ′) in the epistemic prior is negative, so the epistemic
prior is indeed in Boltzmann form, where lower loss implies higher prior belief.

B.2 PROOF OF THEOREM 1

We aim to quantify how scaling the ELBO with confidence-aware temperature improves predictive
certainty in regions dominated by shortcut features.

Let qt(θ) = N (µt,Σt) be the Laplace approximation of the variational posterior for expert t.

Let Aδ
t−1 := {x ∈ Dt | conft−1(x) ≥ δ} be the shortcut activated region induced by expert t− 1.

Let fθ(x) denote the softmax output of sample x.

Using the second-order delta method, the expected prediction is given by:

Eqt [f(θ)] ≈ fµt(x) +
1

2
∇θfθ(x)⊤|µt ·Σt · ∇θfθ(x)|µt

(15)

Let vx denote ∇θfθ(x)|µt .

Then
conft(x) = max

y
Eqt [fθ] ≥ fµt

(x) + v⊤
x Σtvx

Assume µt ≈ µt−1 (the characteristic of shortcut feature),

conft−1(x) ≈ fµt
(x)

Then
conft(x)− conft−1(x) ≥ v⊤

x Σtvx

Since qt is a Laplace approximation,

Σt =
(
∇2

θ [− log qt(θ)]
)−1

From the GBI objective:

F(qt) = KL(qt∥p0) +
∑

x∈Dt

a(x)Eqt [L(θ, x, y]

Take the Hessian on both sides and rearrange:

∇2
θ[− ln qt(θ)] = ∇2

θ[− ln p0] +
∑

a(x)∇2
θ[− ln p(y | x,θ)]
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So when a sample receives weight a(x) = 1
τ(δ)−1 , we have

Σt = τ(δ) ·H0, where H0 = ∇2
θ[− ln qt(θ)] with τ(δ) ≥ 1 (i.e., x /∈ Aδ

t−1)

Which implies that

Varqt [fθ(x)] = v⊤x Σtvx = τ(δ)v⊤
xH

−1
0 vx = τ(δ) · σ2

where σ2 denotes the variance in the direction Vx under unscaled posterior gradient.

Thus, we have:

conft(x)− conft−1(x) ≥ 1

2
τ(δ)∥vx∥2 · σ2

Averaging over x ∈ Aδ
t−1, and denote C := 1

|Aδ
t−1|

∑
x∈Aδ

t−1
∥vx∥2,

We have:
1

|Aδ
t−1|

∑
x∈Aδ

t−1

(conft(x)− conft−1(x)) ≥ 1

2
τ(δ) · C · σ2 ■

C CLASS INCREMENTAL LEARNING

C.1 ADDITIONAL CIL BASELINES AND BENCHMARK

Setting. We follow the same setting as Section 4 to report results on additional class incremental
learning baselines. Specifically, we focus on recent methods built on the CLIP (Radford et al., 2021)
backbone, as is our approach, and designed for the CIL setting. The baselines are CLAP4CLIP (Jha
et al., 2024), CIL-CLIP (Huang et al., 2024), and PROOF (Zhou et al., 2025). We evaluate on
CIFAR-100 (B0 Inc10), where each task consists of 10 classes. In addition, we compare with
ImageNet-R (Hendrycks et al., 2021), where each task contains 20 incremental classes (B0 Inc20).
The notation (B-x Inc-y) denotes the split, where Base-x indicates the number of classes in the first
stage, and Inc-y indicates the number of new classes in each subsequent task. Here, x = 0 means
that each task contains y classes (Zhou et al., 2025). We follow Huang et al. (2024) to design
ImageNet-R (B0 Inc20).

Analysis. Table 3 reports the comparative results. Overall, our method consistently outperforms
prior approaches on both CIFAR-100 (B0 Inc10) and ImageNet-R (B0 Inc20). Notably, despite
not relying on any replay buffer, our approach achieves the highest average and last-task accuracies
across both benchmarks. This highlights our methods effectiveness and efficiency compared to
existing methods.

Table 3: Results on class-incremental learning with CIFAR-100 (B0 Inc10) and ImageNet-R (B0
Inc20). Average (Avg) and Last accuracies (%) are reported across incremental steps.

CIFAR100 (B0 Inc10) ImageNet-R (B0 Inc20)
Method Avg Last Avg Last Exemplar

CLAP4CLIP (Jha et al., 2024) 86.13 78.21 85.77 79.98 Required
CIL-CLIP (Huang et al., 2024) 86.19 79.04 85.58 80.28 Required simulated reply
PROOF (Zhou et al., 2025) 86.70 79.05 85.34 80.10 Required
Ours 87.28 80.6 86.91 80.95 Not Required

C.2 ADDITIONAL DETAILS FOR TABLE 1 (MAIN PAPER)

As described in Section 4 of the main paper, we rely on publicly available results. To provide
standard deviation information, we provide additional details for Table 1 from the main paper in
Table 4.
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Table 4: Results (Last Accuracy) with standard deviations over three runs.

CIFAR100 TinyImageNet
Method 10 step 20 step 50 step 5 step 10 step 20 step
MoE-Adapters 77.60 ± 0.21 76.12 ± 0.18 74.69 ± 0.78 76.97 ± 0.23 76.11 ± 0.33 75.94 ± 0.23
RAIL 75.87 ± 0.31 76.36 ± 0.49 76.03 ± 0.39 71.68 ± 0.41 71.89 ± 0.28 72.10 ± 0.15
Ours 80.70 ± 0.26 79.29 ± 0.22 77.20 ± 0.48 78.90 ± 0.25 78.35 ± 0.31 77.48 ± 0.18

C.3 QUALITATIVE RESULTS

Setting. In Figure 9, we present the qualitative results of our method on the CIFAR100 dataset
with 10 steps. True denotes the true label, Predicted represents the predicted label with the pre-
dicted probability (inside parentheses), and Second indicates the second-highest probability after
the predicted one. The top group of images (9(a)) represents class-incremental learning predictions
by independent experts without any scaling applied during training. The middle group (9(b)) shows
predictions made by our method on the same test images as the first group. The last group (9(c)) dis-
plays training images selected by our method during training for scaling. We present Table 5, which
shows the Expert IDs and their corresponding in-distribution (IND) classes to provide a clearer illus-
tration of the analysis. Additionally, we highlight the Expert IDs and the relevant classes discussed
in the following analysis section.

Analysis. In Figure 9, we observe that, since no task-ID (TID) is provided during testing, multiple
experts predict with high confidence. For example, in the rose image on the second row rightmost
(9(a)), Expert No. 8, trained on “rose”, makes the correct prediction. However, Expert No. 6,
trained on “poppy”, also makes a high-confidence prediction, resulting in both an incorrect TID
prediction and a wrong final class prediction. In contrast, our method incorporates all previous ex-
perts, including Expert No. 6, during the training of Expert No. 8. This enables our method to
identify samples contributing to the “open set error.” In this case, specific “rose” images (such as
the one in the 9(c) bottom row rightmost) from the task 8 train set, where Expert No. 6 made an
open set error, are selected for temperature scaling. This allows the model to better account for the
confidence levels of other experts. As a result, our method makes the correct prediction, as demon-
strated in the rose image from 9(b) (second row rightmost). Some of the test images shown in the
figure are even challenging for humans to classify. However, our dual task ID prediction mecha-
nism, combining adaptive threshold scaling (which accounts for epistemic uncertainty, i.e., model
uncertainty) and multivariate Gaussian Mahalanobis Distance (MD) (which accounts for aleatoric
uncertainty, i.e., data uncertainty), effectively solves the TID detection problem.

This example highlights the advantages of introducing structured mechanisms over merely increas-
ing the volume of memory space in continual learning. In real-world scenarios, the knowledge re-
quired to solve a task often spans multiple domains. We observe that, in many tasks, multiple experts
provide rational predictions, which, in a sense, transcend the original problem definition to produce
more accurate and knowledge-rich predictions. The effective collaboration mechanism among ex-
perts that we propose allows the MoE structure to demonstrate more organized and fine-grained
control over memory retrieval. This capability enables the MoE to excel in handling complex, dy-
namic tasks, a feat that is challenging to achieve in traditional continual learning frameworks based
on centralized, unstructured memory.

D ADDITIONAL ABLATION

D.1 ABLATION STUDY ON DIFFERENT MODEL COMPONENTS

We conduct an additional ablation study on different components of our method using the Tiny-
ImageNet (Le & Yang, 2015) dataset with 5 steps. The base step contains a total of 100 classes,
while each subsequent step includes 20 classes. Figure 10(a) presents the results on zero-shot CLIP,
where we observe clear task separation demonstrating CLIP’s OOD capabilities. Incorporating the
MoE structure further improves performance, as shown in Figure 10(b). Adding temperature scal-
ing enhances task separation further, though with minor side effects, as depicted in Figure 10(c).
In Figure 10(d), we observe that the Mahalanobis distance (MD) from the learned embeddings’
Gaussian distribution also reveals a clear pattern, though it achieves the lowest performance among
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True 20:table 
 Predicted 11:tulip (0.32) 
 Second: 20:table (0.32)

True 20:table 
 Predicted 46:couch (0.77) 

 Second: 20:table (0.76)

True 27:boy 
 Predicted 98:girl (0.81) 
 Second: 27:boy (0.71)

True 54:poppy 
 Predicted 17:butterfly (0.97) 

 Second: 54:poppy (0.94)

True 65:clock 
 Predicted 80:lamp (0.77) 
 Second: 65:clock (0.75)

True 89:possum 
 Predicted 37:mouse (0.48) 
 Second: 89:possum (0.47)

True 80:lamp 
 Predicted 57:bottle (0.99) 

 Second: 80:lamp (0.94)

True 95:otter 
 Predicted 13:seal (0.99) 
 Second: 95:otter (0.76)

True 93:beetle 
 Predicted 54:poppy (0.36) 
 Second: 17:butterfly (0.35)

True 72:rose 
 Predicted 54:poppy (0.74) 

 Second: 72:rose (0.72)

(a) CIL Predictions on Test Samples (w/o Temperature).

True 20:table 
 Predicted 20:table (0.10) 

 Second: 11:tulip (0.02)

True 20:table 
 Predicted 20:table (0.20) 
 Second: 46:couch (0.06)

True 27:boy 
 Predicted 27:boy (0.45) 
 Second: 98:girl (0.12)

True 54:poppy 
 Predicted 54:poppy (0.37) 

 Second: 11:tulip (0.05)

True 65:clock 
 Predicted 65:clock (0.13) 
 Second: 80:lamp (0.09)

True 89:possum 
 Predicted 89:possum (0.07) 

 Second: 37:mouse (0.06)

True 80:lamp 
 Predicted 80:lamp (0.13) 
 Second: 57:bottle (0.12)

True 95:otter 
 Predicted 95:otter (0.17) 

 Second: 13:seal (0.10)

True 93:beetle 
 Predicted 93:beetle (0.16) 
 Second: 54:poppy (0.03)

True 72:rose 
 Predicted 72:rose (0.06) 
 Second: 54:poppy (0.03)

(b) CIL Predictions on Test Samples (Ours).

(c) Some Train-set samples selected for scaling during training by our method.

Figure 9: Qualitative examples in the CIL setting. For each sample, we present the true label and
predicted label along with the corresponding predicted probability. Additionally, we display the
second-highest probability and its associated label. The overall figure demonstrates how indepen-
dent experts can make incorrect predictions with high confidence, compared to our method’s predic-
tions on the same test samples. We also include examples of training samples selected for scaling
during training.
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Table 5: Expert IDs and corresponding In-Distribution (IND) Classes for the CIFAR100 Dataset
with 10 Steps. Examples included in both the analysis and Figure 9 are bold-underlined, while
those only presented in Figure 9 are underlined.

Expert ID In-distribution Classes
Expert 1 television, apple, oak tree, pickup truck, lizard, trout, road, wolf, mushroom, camel
Expert 2 wardrobe, tulip, bowl, seal, mountain, snake, plate, butterfly, bicycle, telephone
Expert 3 table, willow tree, caterpillar, cockroach, flatfish, lobster, tiger, boy, beaver, ray
Expert 4 rocket, raccoon, snail, maple tree, spider, turtle, dinosaur, mouse, pear, sweet pepper
Expert 5 castle, streetcar, lawn mower, bridge, house, pine tree, couch, chair, squirrel, shark
Expert 6 aquarium fish, cup, bee, man, poppy, sunflower, orange, bottle, elephant, skunk
Expert 7 kangaroo, porcupine, forest, shrew, crocodile, clock, hamster, bear, can, chimpanzee
Expert 8 plain, cattle, rose, train, tractor, lion, bed, leopard, rabbit, skyscraper
Expert 9 lamp, dolphin, cloud, tank, baby, whale, palm tree, motorcycle, sea, possum

Expert 10 woman, bus, worm, beetle, fox, otter, orchid, crab, girl, keyboard
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(a) Zero-shot.
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(b) w/o Temperature.
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(c) w/ Temperature.
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(d) MD as TID.
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(e) Ours.

Figure 10: Comparison of different components of our method on the TinyImageNet dataset with 5
steps. For TinyImageNet, the initial step (i.e., task one) contains a total of 100 classes and 5,000 test
samples (task one value scaled to 1000 to match with other tasks). There is a bias towards Task One
due to the class imbalance across the other tasks.

the components. Finally, Figure 10(e) demonstrates the best overall performance by combining all
components. There is a bias towards Task One due to the class imbalance across the other tasks.

D.2 ABLATION STUDY ON SCALABILITY

We conduct a scalability analysis concerning the number of model parameters. Our approach in-
troduces approximately 1.9M trainable parameters per expert, constituting the only task-specific
trainable component. This design ensures that most model parameters remain frozen, leading to
computational efficiency and modular scalability. Table 6 presents a comparison against other CLIP-
backbone-based baselines. For a fair comparison, we align the number of experts in our method with
those used in the Mixture-of-Experts (MoE) baselines.
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Table 6: Training parameters.

Method Parameters ↓
LwF 149.6M

LwF-VR 149.6M
ZSCL 149.6M

MoE-Adapters 59.8M
Ours 43.6M

Table 7: Effect of τ in Equation (4).

τUB τLB Avg Last
1.0 1.0 85.57 77.88
1.0 0.8 87.28 80.6
1.0 0.7 86.44 79.7
1.3 0.7 84.37 76.27

Table 8: Effect of ζ in Equation (8).

Value Avg Last
ζ=1.0 85.92 78.55
ζ=0.1 86.21 79.02
ζ=0.01 87.28 80.6
ζ=0.001 85.69 77.72

Table 9: Effect of threshold in Equation (3).

Value Avg Last
95 87.29 80.99
90 87.28 80.60
80 86.86 80.59
50 85.41 78.93

D.3 SENSITIVITY ANALYSIS OF KEY HYPERPARAMETERS

We present a sensitivity analysis of the key hyperparameters in our method. The experiments are
conducted under the same setting as Section 4. In the tables 7 and 8 we report on CIFAR100 with
10 steps.

Effect of τ in Equation (4). In the table 7, when τUB == τLB , the experts apply no adaptive
confidence scaling to semantically similar samples, leading to reduced performance. Setting τLB =
0.8 allows for effective regularization via confidence-scaled gradients from earlier experts, resulting
in improved performance. However, further lowering τLB (e.g., to 0.7) causes the prior to overly
dominate the posterior of the current expert, introducing confusion and reducing effectiveness. We
also show that increasing τUB leads to lower performance, which is expected, as it reduces the
confidence for unfiltered classes and negatively impacts in-distribution classes. Overall, the results
demonstrate that the method is robust to reasonable variations in this hyperparameter, with a clear
performance peak when moderate scaling is applied.

Effect of ζ in Equation (8). In the table 8, we evaluate the effect of ζ on softmax weighting. Re-
ducing ζ improves OOD detection and overall performance compared to no weighting (ζ = 1.0).
However, setting it too low (e.g., 0.001) degrades performance, likely due to overly aggressive down-
weighting of uncertain samples. These results indicate that our method is robust to this hyperparam-
eter, with ζ = 0.01 providing the best balance.

Effect of threshold in Equation (3). Table 9 presents a sensitivity analysis of the threshold value
in Equation (3). As discussed in Section 3.2, our threshold mechanism is adaptive per task expert,
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Table 10: TIL Results on CIFAR-100 – 10 Steps

Tasks 1 2 3 4 5 6 7 8 9 10
w/ MD 98.30 95.90 93.20 95.70 94.90 98.30 94.10 97.30 96.60 96.10
w/o MD 98.30 95.90 93.20 95.70 94.90 98.30 94.10 97.30 96.60 96.10

Table 11: CIL Results (Last Accuracy) on CIFAR-100 – 10 Steps

Tasks 1 2 3 4 5 6 7 8 9 10
w/ MD 82.1 82.1 63.0 78.0 82.5 89.6 76.1 85.0 84.4 83.2
w/o MD 79.20 81.20 56.90 80.10 81.20 88.50 73.10 83.10 83.70 78.10

ensuring that only high-confidence samples for the corresponding expert are filtered. From Table 9,
we observe that using a threshold between the 80th and 95th percentile effectively adapts to key
shortcut samples and thus improves learning. However, lowering the threshold too much hampers
performance, as an excessive number of samples are filtered out as shortcut samples. We therefore
recommend choosing a value between the 80th and 95th percentile for balanced performance across
benchmarks.

D.4 IMPACT OF MD ON TIL VS CIL

We describe our distribution-aware weighting mechanism in Section 3.3. This mechanism further
supports our experts during prediction. However, as noted in Equation (8), the weighting is sample-
specific rather than task-specific, which ensures that within-task predictions are not hampered and
enables better out-of-distribution detection. In Table 10, we show that with and without the MD
component, our method’s performance on task-incremental learning (task identity always available)
remains the same. On the other hand, Table 11 demonstrates that in class-incremental learning,
where the task ID is unavailable during prediction (making it more challenging than TIL), our MD
component helps achieve improved performance, as expected.

D.5 SINGLE VS PER-CLASS GAUSSIAN

In Section 3.3 we introduce our multivariate Gaussian, which acts as MD weight per sample for
an expert. Our expert communication alone is sufficient to differentiate OOD samples, and the sin-
gle multivariate Gaussian further supports effective OOD detection. We additionally experimented
with using per-class Gaussians (see Table 12). However, as the results show, the simpler per-task
Gaussian already provides strong OOD signals, and switching to per-class Gaussians does not sig-
nificantly boost performance. This behavior is expected. Because our experts are independently
optimized for each task (without parameter sharing), the per-task Gaussian naturally aligns with the
expert predictions. Consequently, introducing additional per-class Gaussians results in distributions
that heavily overlap with the existing expert outputs, thereby providing limited benefit. Moreover,
the per-task setup is both more memory-efficient and computationally efficient.

D.6 MD VS ROUTER

As described in Section 3.3, our distribution-aware weighting (i.e, MD) mechanism leverages
learned visual embeddings and is applied during inference as Equation (7). This process is sig-
nificantly lighter than traditional routing mechanisms. In Table 13, we compare the computational
overhead of our MD mechanism against the router used by Yu et al. (2024).

Table 12: Per class Gaussian (CIFAR100 with 10 steps Last Accuracy)

MD Variant 1 2 3 4 5 6 7 8 9 10
Single Gaussian (ours) 82.1 82.1 63.0 78.0 82.5 89.6 76.1 85.0 84.4 83.2
Per-class GMM 82.0 82.5 61.2 78.9 81.7 90.9 75.1 80.6 83.3 77.7
w/o Gaussian 79.20 81.20 56.90 80.10 81.20 88.50 73.10 83.10 83.70 78.10
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Table 13: MD vs Router

Method GPU ↓ Times ↓
DDAS Router 2461 MiB 0.21 seconds

MD 392 MiB 0.0016 seconds

Table 14: Ablation with CLIP using a ResNet-50 image encoder.

Method CIFAR100 (10 Steps)
MoE-Adapters 33.57
Ours 42.98

D.7 ABLATION ON DIFFERENT MODEL ARCHITECTURE

We conduct an ablation study using a different CLIP model variant, RN50x16, as the image encoder.
We keep all other settings the same and apply LoRA adapters to the ResNet at the pooled feature
level, after the standard convolutional layers and attention pooling. We compare our method with
the MoE-based baseline for a fair evaluation. As shown in Table 14, even with this substantially
different image-encoder architecture, our method exhibits performance trends similar to those in
Table 1. This demonstrates the robustness of our method across different architectures.

E IMPACT OF MULTIMODALITY ON LEARNING

Setting. We use the Colorized-MNIST(Jayaneetha, 2020) dataset, which contains handwritten digits
(0–9) overlaid on colorized backgrounds. There are three background colors available. To study the
impact of background cues when textual information is not available, we divide the training set into
three groups: digit 0 is paired exclusively with a red background, digit 1 with blue, and digit 2 with
green. Since only three background colors are available, we restrict the study to these three digits.
In the test set, however, each digit appears against all three background colors. We use a pre-trained
ResNet-50 and a pre-trained CLIP model for this experiment. We use the prompt template for CLIP:
‘‘a bad photo of a handwritten digit {}’’.

Analysis. We evaluate model performance using classification accuracy, averaged over three runs.
CLIP achieves an average accuracy of 81.67%, while ResNet-50 achieves only 31.05%. Figure 11
shows the Qualitative results of this experiment. Both models perform well on the training set
(Figures 11(a), achieving on average 99.9% accuracy. However, on the test set, where digits appear
with mix-and-match background colors (i.e., digit 0 with red, blue or green, which is different from
the train set), ResNet-50 relies on background cues and frequently misclassifies digits (Figure 11(b)).
In contrast, CLIP leverages its text prompts to correctly identify the digit shape, demonstrating
robustness to background variations (Figure 11(c)).

Overall, this experiment highlights the advantage of multimodal learning. Aligning visual and lin-
guistic information helps models learn more semantically meaningful and robust features, enabling
better generalization beyond superficial cues.

F SUB-POPULATION SHIFT INCREMENTAL LEARNING

Setting. Following Section 4.2 in the main paper, we provide additional details on the Sub-
population Shift. For the sub-population shift, we use the BREEDS benchmark (Santurkar et al.,
2020) following the protocol outlined in (Liang et al., 2022). For Entity-13 with 10 steps, each step
receives one unseen subclass. For 13 steps, we randomly sample 10 out of 13 classes, with each re-
ceiving one unseen subclass sample. For Entity-30 with 8 steps, 15 randomly sampled classes from
the 30 superclasses receive one unseen subclass at each step. Similarly, for Entity-30 with 15 steps,
8 randomly sampled classes from the 30 superclasses receive one unseen subclass at each step. This
protocol mimics two real-life situations: 1) when each superclass receives at least one sample, we
refer to it as even; and 2) when part of the superclasses receives samples, we refer to it as an uneven
update. We utilize the maximum confidence score for the final prediction, and the number of experts
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(a) Colorized MNIST Train Set.

(b) ResNet50 on the Colorized MNIST Test Set.

(c) CLIP on the Colorized MNIST Test Set.

Figure 11: Qualitative examples on the Colorized MNIST dataset demonstrate that CLIP, by aligning
information from language modalities, helps the model learn more robust features.

Table 15: Performance comparison in the sub-population shift incremental learning setting with
other baselines on Entity-13 with 10 steps (Even Update). We report both “seen”, “unseen” (inside
parentheses), and “All” accuracy in % over the last eight incremental steps. ∆ denotes performance
improvement with respect to the second-best method.

Entity 13 Benchmark 10 Steps (Even Update)
Model 3 4 5 6 7 8 9 10 All
CLIP Zero-shot 67.04 69.11 69.46 70.15 72.19 71.84 72.09 72.02 71.04
ZSCL (Zheng et al., 2023) 86.20 (75.60) 80.70 (71.74) 79.69 (71.16) 84.84 (71.35) 87.02 (75.25) 82.35 (84.0) 83.96 (75.38) 80.66 77.78
MoE-Adapters (Yu et al., 2024) 89.11 (71.86) 83.53 (68.87) 82.34 (67.87) 85.04 (70.96) 85.24 (71.38) 81.92 (80.46) 74.91 (67.69) 71.75 77.02
RAIL (Xu et al., 2024) 86.86 (70.98) 86.62 (71.29) 85.88 (71.66) 86.16 (72.04) 85.86 (71.99) 85.82 (72.06) 85.85 (72.02) 84.56 79.30
Ours 93.08 (80.90) 91.28 (81.17) 89.13 (81.75) 88.47 (80.34) 88.77 (77.99) 87.12 (83.77) 87.57 (79.23) 87.13 84.96 ∆+7.14%

is set to 11. We match the expert count with (Yu et al., 2024) for a fair comparison. Other details
follow those mentioned in (Zheng et al., 2023; Yu et al., 2024).

Analysis. Table 15 presents the results for Entity-13 with 10 steps. This represents an even update
situation, and we observe that our method consistently outperforms other baselines by a significant
margin. Table 16 demonstrates an uneven update situation. Finally, Tables 17 and 18 illustrate even
more complex scenarios, where the step size is larger and the updates are uneven. Even in these
more challenging situations, our method demonstrates its superiority compared to other baselines.
These results further validate the robustness of our method.

G CROSS-DOMAIN TASK-AGNOSTIC INCREMENTAL LEARNING

Setting. Following (Xu et al., 2024), we also compared our method on the Cross-domain Task-
Agnostic Incremental Learning (X-TAIL) benchmark, as discussed in the main paper, Section 4,
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Table 16: Performance comparison in the sub-population shift incremental learning setting with
other baselines on Entity-30 with 8 steps (Uneven Update). We report both “seen”, “unseen” (inside
parentheses), and “All” accuracy in % over the last eight incremental steps. ∆ denotes performance
improvement with respect to the second-best method.

Entity 30 Benchmark 8 Steps (Uneven Update)
Model 1 2 3 4 5 6 7 8 All
CLIP Zero-shot 67.13 64.22 67.09 65.06 66.66 65.92 68.16 65.76 66.50
ZSCL (Zheng et al., 2023) 78.30 (51.08) 86.94 (76.58) 86.96 (68.90) 87.29 (75.69) 87.47 (64.97) 85.69 (72.93) 86.49 (56.40) 82.82 75.65
MoE-Adapters (Yu et al., 2024) 87.47 (51.67) 88.08 (67.66) 79.23 (51.81) 80.93 (63.36) 80.99 (57.06) 75.55 (56.93) 78.69 (39.87) 67.15 70.23
RAIL (Xu et al., 2024) 90.10 (66.12) 87.52 (66.44) 86.98 (66.31) 85.81 (66.62) 85.31 (66.61) 85.40 (66.61) 85.07 (65.76) 84.59 77.23
Ours 94.03 (66.81) 91.63 (78.33) 87.29 (71.94) 86.69 (78.36) 84.61 (69.55) 85.52 (72.45) 84.34 (50.93) 83.64 79.85 ∆+3.4%

Table 17: Performance comparison in the sub-population shift incremental learning setting with
other baselines on Entity-13 with 13 steps (Uneven Update). We report both “seen”, “unseen” (inside
parentheses), and “All” accuracy in % over the odd incremental steps. ∆ denotes performance
improvement with respect to the second-best method.

Entity 13 Benchmark 13 Steps (Uneven Update)
Model 1 3 5 7 9 11 13 All
CLIP Zero-shot 72.34 71.67 67.91 70.33 71.84 72.62 71.96 71.25
ZSCL (Zheng et al., 2023) 84.57 (65.48) 85.50 (68.48) 84.42 (72.7) 81.64 (70.26) 83.85 (74.5) 79.36 (79.4) 81.70 76.26
MoE-Adapters (Yu et al., 2024) 91.17 (62.76) 82.55 (65.22) 84.71 (58.47) 80.08 (67.5) 83.25 (74.5) 79.34 (74.69) 79.35 74.55
RAIL (Xu et al., 2024) 91.40 (70.84) 86.41 (70.57) 86.33 (71.34) 85.54 (71.87) 85.68 (72.37) 85.47 (72.26) 84.50 79.07
Ours 95.99 (75.84) 92.85 (79.1) 89.07 (81.89) 87.56 (81.3) 87.52 (79.7) 86.10 (80.69) 86.48 83.81∆+5.9%

Table 18: Performance comparison in the sub-population shift incremental learning setting with
other baselines on Entity-30 with 15 steps (Uneven Update). We report both “seen”, “unseen” (inside
parentheses), and “All” accuracy in % over the odd incremental steps. ∆ denotes performance
improvement with respect to the second-best method.

Entity 30 Benchmark 15 Steps (Uneven Update)
Model 1 3 5 7 9 11 13 15 All
CLIP Zero-shot 74.76 64.07 67.50 64.28 66.75 65.50 67.91 65.61 66.76
ZSCL (Zheng et al., 2023) 79.08 (53.51) 86.75 (62.27) 89.06 (66.77) 84.70 (71.43) 85.11 (66.79) 84.40 (66.06) 85.79 (49.12) 81.76 74.24
MoE-Adapters (Yu et al., 2024) 95.84 (65.92) 65.94 (42.39) 79.21 (52.17) 68.44 (51.03) 65.62 (40.20) 62.85 (43.62) 56.65 (14.5) 53.90 59.99
RAIL (Xu et al., 2024) 90.54 (66.06) 87.12 (66.12) 85.65 (66.07) 84.90 (66.25) 84.82 (66.26) 85.00 (66.88) 84.71 (66.32) 84.25 76.27
Ours 96.56 (70.12) 91.25 (75.58) 87.77 (73.75) 85.87 (78.34) 85.58 (72.83) 83.99 (73.06) 84.17 (53.25) 81.82 79.58 ∆+4.34%

Table 19: Comparison on X-TAIL benchmark with other SOTA baselines. Overall, our method
showcases superior adaptability to cross-domain tasks without the help of reference dataset or
replay buffer. Bold denotes best and underline denotes second-best.
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MoE-Adapters (Yu et al., 2024) 64.2 35.9 32.9 17.3 60.6 86.6 23.0 87.2 63.7 57.1 52.9
RAIL (Xu et al., 2024) 69.7 37.3 36.5 36.6 60.7 84.0 46.6 86.7 66.1 62.5 58.7
Ours 63.25 39.29 36.73 51.52 71.19 88.58 43.00 88.9 63.77 60.79 60.70

Average

ZSCL (Zheng et al., 2023) 33.4 57.9 41.0 37.7 20.3 68.1 84.0 36.1 82.0 57.7 55.2 52.1
MoE-Adapters (Yu et al., 2024) 42.4 66.4 55.3 49.0 38.3 74.9 86.2 46.7 87.4 66.2 58.4 61.0
RAIL (Xu et al., 2024) 45.0 88.8 57.8 56.8 66.2 81.0 85.2 63.4 87.8 68.9 64.7 69.6
Ours 53.15 78.73 68.45 58.42 80.45 83.32 90.01 63.01 90.18 67.83 62.50 72.37

Last

ZSCL (Zheng et al., 2023) 31.4 59.6 43.9 39.7 28.4 71.6 86.4 40.7 82.6 77.0 70.8 57.5
MoE-Adapters (Yu et al., 2024) 41.8 66.2 59.5 53.7 45.9 84.3 85.8 86.8 87.7 76.2 71.7 69.1
RAIL (Xu et al., 2024) 45.2 94.4 74.7 70.7 87.3 97.9 86.5 92.8 91.9 81.7 76.7 81.8
Ours 52.87 89.46 85.34 73.94 97.3 93.43 92.0 98.05 93.76 86.12 79.66 85.63
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and Figure 5. The X-TAIL benchmark comprises a total of 11 tasks, with each task corresponding to
an individual dataset rather than a single dataset divided into multiple tasks. This ensures that each
task originates from a distinct domain. This benchmark represents a cross-domain variation of the
Multi-domain Task Incremental Learning (MTIL) (Yu et al., 2024) benchmark. The 11 datasets used
are Aircraft (Maji et al., 2013), Caltech101 (Fei-Fei et al., 2004), CIFAR100 (Krizhevsky, 2009),
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), Flowers (Nilsback & Zisserman, 2008),
Food (Bossard et al., 2014), MNIST (Deng, 2012), OxfordPet (Parkhi et al., 2012), StanfordCars
(Krause et al., 2013), and SUN397 (Xiao et al., 2010). Specifically, the Aircraft dataset contains
100 classes, Caltech101 has 101 classes, CIFAR100 includes 100 classes, DTD has 47 classes, Eu-
roSAT 10 classes, Flowers 102 classes, Food 101 classes, MNIST 10 classes, OxfordPet 37 classes,
StanfordCars 196 classes, and SUN397 comprises 397 classes. Together, these 11 tasks encompass
a total of 1,201 classes. For this benchmark, we used the same settings mentioned in the main pa-
per. Additionally, to enable zero-shot prediction, we utilized the thresholding method described in
(Yu et al., 2024). However, unlike (Yu et al., 2024), our thresholds were approximated using the
training dataset for each task and were calculated during the training process. Using Equation (7)
from the main paper, we computed the Mahalanobis Distance (MD) for each training sample in
a task and selected the 99th percentile value as the threshold for that task (i.e., threshold = 99th
percentile). During the inference stage, if a sample exceeded this threshold, it was treated as an
out-of-training distribution and redirected to zero-shot prediction. We utilize the metrics proposed
by (Zheng et al., 2023) to evaluate our method on the X-TAIL benchmark. We show results on
“Transfer,” “Average,” and “Last.” The “Transfer” metric evaluates the model’s zero-shot transfer
capability on unseen data, while “Last” measures the model’s ability to retain and utilize histor-
ical knowledge. “Average” serves as a composite metric, representing the mean performance on
“Transfer” and “Last”. We use publicly available results when available.

Analysis. Table 19 presents a performance comparison with state-of-the-art methods across Trans-
fer, Average, and Last accuracy metrics, where higher values indicate better performance. Our
method consistently achieves the highest scores in all three metrics across multiple tasks, high-
lighting its robustness. Notably, unlike existing baselines that rely on a reference dataset,
replay buffer, or CLIP’s zero-shot capabilities to mitigate out-of-distribution challenges, our
approach operates entirely without such dependencies. This independence enhances its practicality
and compatibility with real-world deployment. Overall, the superior cross-domain adaptability of
our method underscores its strong generalization, stability, and robustness.

H LIMITATIONS

While our method benefits from a dual perspective, such as adaptive temperature scaling and multi-
variate Gaussian-based MD for two different kinds of uncertainty, epistemic uncertainty (i.e., model
uncertainty) and aleatoric uncertainty (i.e., data uncertainty), it still has some limitations. One of the
main limitations is that our method only accounts for past experiences while optimizing the current
expert, and its zero-shot prediction directly depends on a threshold mechanism. In future work, we
aim to utilize a threshold-free technique.

I IMPLEMENTATION DETAILS

Throughout our experiments, we use the CLIP (Radford et al., 2021) with a ViT-B/16 (Dosovitskiy,
2020) image encoder. For expert implementation, we utilize a LoRA (Hu et al., 2021) adapter,
which is the only trainable component of our method, while the backbone remains frozen. We use
the adapter for both text and vision components. The number of experts is set equal to the task
size for all benchmarks. We apply label smoothing (Müller et al., 2019) and the AdamW optimizer
(Loshchilov, 2017), training our method for 1,000 iterations. We use the 90th percentile as the
threshold for top-k confidence set with τUB and τLB ranging from 0.8 to 1.0, and ζ is set to 0.01.
We follow (Zheng et al., 2023; Yu et al., 2024; Novack et al., 2023; Xu et al., 2024) for other settings.

I.1 WORKSTATION DETAILS.

Our workstation is equipped with an AMD Ryzen Threadripper PRO 5955WX processor featuring
16 cores running at 4.00 GHz, six NVIDIA RTX A6000 GPUs, and 128 GB of RAM.
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J SOURCE CODE

The anonymous source code is available on the ICLR 2026 discussion forum, where it is visible to
the reviewers and area chairs, as outlined in the Frequently Asked Questions section of the Author
Guide.
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