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Abstract

The augmentation of algorithms with predictions of the optimal solution, such as
from a machine-learning algorithm, has garnered significant attention in recent
years, particularly in facility location problems. Moving beyond the traditional
focus on utilitarian and egalitarian objectives, we design learning-augmented
facility location mechanisms on a line for the envy ratio objective, a fairness
metric defined as the maximum ratio between the utilities of any two agents. For
the deterministic setting, we propose a mechanism which utilizes predictions to
achieve α-consistency and α

α−1 -robustness for a selected parameter α ∈ [1, 2], and
prove its optimality. We also resolve open questions raised by Ding et al. [2020],
devising a randomized mechanism without predictions to improve upon the best-
known approximation ratio from 2 to 1.8944. Building upon these advancements,
we construct a novel randomized mechanism which incorporates predictions to
achieve improved performance guarantees.

1 Introduction

In the uni-dimensional facility location problem, we are given a set of agents who are located along an
interval, and are tasked with finding an ideal location to place a facility. Each agent has single-peaked
preferences, preferring the facility to be located as close to them as possible. Due to its simplicity as
a continuous, single-peaked preference aggregation problem, the facility location problem has many
industrial and societal applications, such as school/library/hospital placement [Schummer and Vohra,
2002], social/economic policy selection [Dragu and Laver, 2019] and budget aggregation [Freeman
et al., 2021]. Among these applications, it is particularly important to achieve a fair solution, in
which no agent (or subset of agents) is excessively distant from the facility. As a result, this problem
has been widely studied in operations research, microeconomics, and theoretical computer science,
with numerous papers proposing various solution concepts.

In social choice problems, a common egalitarian fairness concept is to maximize the utility/well-being
of the worst-off agent, and when translated to the facility location problem, this is equivalent to the
minimizing the worst-off agent’s distance from the facility. This is achieved by placing the facility at
the midpoint of the left- and right-most agents, but as Mulligan [1991] remarks, this solution is prone
to perturbations of the extreme agent locations. Accordingly, numerous papers (e.g. [McAllister,
1976, Marsh and Schilling, 1994]) have proposed alternative fairness objectives which provide an
improved measure of the inequality within an instance.
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Our paper’s focus is on the envy ratio objective, which was proposed for the facility location problem
by Ding et al. [2020] and later expanded upon by Liu et al. [2020]. Informally speaking, the envy
ratio of an instance is defined as the largest ratio between any two agents’ utilities, in which each
agent’s utility is equal to the difference between the length of the domain and their distance from the
facility. Unlike the maximum distance objective, the envy ratio objective is a pairwise fairness notion
which additionally takes into account the relative well-being of the best-off agent. To further illustrate
the difference and added nuance, consider an instance with two agents, located at the extremities
of the interval. When the facility is placed at the midpoint, the addition of new agents near the
midpoint does not affect the maximum distance, but causes the envy ratio to increase, as the agents
at the endpoints become envious of the agents who are located near the facility. When considering
instances that correspond to a large approximation ratio, the envy ratio’s dependence on the agents’
utilities creates a comparatively larger focus on instances where agents’ receive low welfare from
the mechanism, such as when they are located at the domain endpoints. Importantly, the envy ratio
objective also respects fundamental fairness principles such as the Pigou-Dalton principle [Sen, 1997]
and the Rawlsian Principle [Rawls, 2017].

Aside from fairness concerns, we typically desire a solution which is additionally strategyproof,
incentivizing agents to reveal their true locations by ensuring that any misreporting is not beneficial.
This is important when the agents’ locations are assumed to be private information, and is the defining
goal in the extensive literature on approximate mechanism design [Moulin, 1980, Procaccia and
Tennenholtz, 2013]. Essentially, the aim is to design strategyproof mechanisms which have a bounded
approximation for some (typically utilitarian or egalitarian) objective, and to compute a lower bound
on the best-possible approximation by a strategyproof mechanism. For the envy ratio objective, Ding
et al. [2020] show that deterministic strategyproof mechanisms can achieve a 2-approximation at best,
and give bounds on the approximation achievable by randomized mechanisms.

In this work, we ask whether we can improve upon the best-known envy ratio approximation results
by designing mechanisms which additionally utilize a prediction of the optimal facility placement
(such as from a machine-learning algorithm trained on historical data). This approach stems from
the field of learning-augmented algorithms, which has seen significant interest in recent years,
as the additional prediction information is leveraged to improve upon the traditional ‘worst-case’
approximation ratio bounds. In this context, an ideal mechanism provides an outcome which is
close to the social optimum when the predictor provides accurate information (consistency), and also
retains worst-case approximation guarantees when the predictor is inaccurate (robustness).

1.1 Our Results

In this paper, we apply learning augmentation to design anonymous and strategyproof mechanisms
which have a bounded approximation ratio for the envy ratio objective. Our main results are as
follows.

1. In the deterministic setting, we propose the novel α-Bounding Interval Mechanism (α-BIM),
where α ∈ [1, 2] serves as a tunable parameter based on the confidence level of the prediction. This
mechanism obtains α-consistency and α

α−1 -robustness.

2. We demonstrate the optimality of the α-BIM mechanism by showing that no deterministic,
strategyproof, and anonymous mechanism can achieve (α−ε)-consistency and ( α

α−1 −ε)-robustness.
We further explore fine-grained approximation ratios parameterized by the prediction error, which
smoothly transition from α-consistency to α

α−1 -robustness as the error bound increases.

3. We next revisit open problems relating to randomized mechanisms without predictions. We first
introduce a class of randomized mechanisms termed (α, p)-LRM constant mechanisms, and prove
that the (

√
5
2 − 1, 2

5 )-LRM constant mechanism achieves a 1 + 2√
5
≈ 1.8944-approximation w.r.t.

envy ratio, which is optimal within the family of (α, p)-LRM mechanisms. Our results resolve an
open question posed by Ding et al. [2020], which asked whether a randomized mechanism with an
approximation ratio strictly below 2 could be found.

4. We show that any randomized mechanism without predictions has an approximation ratio of at
least 1.1125, improving the best-known lower bound from 1.0314.

5. To address the challenging problem of devising randomized mechanisms with predictions, we
propose the Bias-Aware Mechanism (BAM), in which the probability distribution of the facility
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depends on the deviation of location prediction ŷ from the interval midpoint 1
2 . We demonstrate that

BAM achieves (−4c2 + 2)-consistency and (c+ 2)-robustness when c ∈ [ 14 ,
1
2 ], and 7

4 -consistency
and 9

4 -robustness when c ∈ [0, 1
4 ), where c = |ŷ − 1

2 |. BAM strictly outperforms the deterministic
α-BIM in terms of both consistency and robustness performance guarantees. In addition to BAM, we
investigate other potential mechanisms to provide a broader perspective on the learning-augmented
mechanism design. Results lacking full proofs are proven in the appendix.

1.2 Related Work

Fairness in Facility Location Mechanism Design Fairness concerns and objectives have been
long-studied in facility location problems; early works in operations research (e.g., [McAllister, 1976,
Marsh and Schilling, 1994, Mulligan, 1991]) discuss optimal solutions for fairness objectives such
as the Gini coefficient and the mean deviation, quantifying various inequity notions. On the other
hand, the seminal paper by Procaccia and Tennenholtz [2009] introduces an approximate mechanism
design approach, in which they design strategyproof facility location mechanisms with a bounded
approximation ratio for various objectives, including the cost/distance incurred by the worst-off agent.
This measure of egalitarian fairness has a similar underlying principle as our envy ratio objective,
which represents, in a multiplicative sense, the envy that the worst-off agent has for the best-off agent.
This objective was introduced for the one-facility location problem by Ding et al. [2020], and later
extended to multiple facilities in the subsequent work [Liu et al., 2020]. A similar notion of minimax
envy quantifies the envy in an additive sense (i.e., the maximum difference between any two agents’
distances from the facility), and was studied by Cai et al. [2016] and Chen et al. [2022]. Walsh [2025]
studied Gini index in facility location mechanism design.

Other than egalitarian/worst-off fairness, fairness objectives relating to groups of agents can be
considered. For instance, Zhou et al. [2022, 2024] consider two group-fair objectives, the maximum
total cost incurred by a group of agents, and the maximum average cost incurred by a group of
agents. One may also consider representing group fairness via axioms that must be satisfied by a
‘group-fair’ mechanism. For instance, distance/utility guarantees can be imposed for endogenously
defined groups of agents at or near the same location, in which the magnitude of the guarantee is
proportional to the size of the group [Aziz et al., 2022, Lam et al., 2024, Aziz et al., 2025]. For other
related work and variations of facility location problems, we refer the reader to a recent survey by
Chan et al. [2021].

Facility Location Mechanisms with Predictions Research on facility location mechanisms which
are augmented with predictions has flourished in recent years, beginning with the paper by Agrawal
et al. [2022], which studies deterministic mechanisms that take a prediction of the optimal facility
location as an additional input. They provide best-of-both-worlds style results, designing mechanisms
which perform (in terms of their approximation ratio) consistently well when an accurate prediction
is provided, and are robust to entirely inaccurate predictions. The concept of measuring both the
consistency and robustness of learning-augmented algorithms was first introduced by Lykouris
and Vassilvitskii [2021], and it has since been applied in numerous extensions of facility location
problems. Balkanski et al. [2024] studied randomized mechanisms for the egalitarian/maximum cost
objective, whilst Chen et al. [2024] extend the domain to a continuous general metric space. For the
two-facility location problem, Barak et al. [2024] design randomized mechanisms which use mostly
and approximately correct (MAC) predictions of the agents’ locations, supplementing the work by Xu
and Lu [2022], which explores a deterministic mechanism for the same problem. Aside from facility
location problems, learning-augmented algorithms have been used for a wide variety of settings. For
additional references, readers may refer to the ALPS website [Lindermayr and Megow, 2022].

2 Preliminaries

For any t ∈ N, denote [t] := {1, 2, . . . , t}. Let N = [n] be a set of agents, where each agent i has
a location2 xi ∈ [0, 1]. We denote the location profile of N by x = (x1, x2, . . . , xn) ∈ [0, 1]n. A
deterministic mechanism f : [0, 1]n → [0, 1] takes a location profile x as input, and outputs a facility
location y ∈ [0, 1], under which each agent i ∈ N has a utility of u(y, xi) = 1 − d(y, xi), where
d(y, xi) = |y − xi| represents the distance between the facility y and i’s location. A randomized

2Our results hold w.l.o.g. for any compact interval domain.
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mechanism f : [0, 1]n → ∆([0, 1]) maps the location profile x to a probability distribution P over
[0, 1], under which each agent i ∈ N has an expected utility of u(P, xi) = 1− Ey∈P [|y − xi|].
We are primarily focused with the envy ratio objective, formally defined for an instance as the ratio
between the best-off and worst-off agents’ utilities.3

Definition 2.1 (Envy Ratio). Given a location profile x ∈ Rn and mechanism f , the envy ratio is

ER(f(x),x) = max
i ̸=j

u(f(x), xi)

u(f(x), xj)
.

For a given mechanism f , we can quantify its worst-case performance (over all possible location
profiles) with respect to the envy ratio objective via its approximation ratio.
Definition 2.2 (Approximation Ratio). A mechanism f is said to have an approximation ratio of ρ if

ρ = sup
x∈[0,1]n

ER(f(x),x)

ER(OPT(x),x)
,

where OPT(x) is the optimal solution which minimizes the envy ratio for any given location profile
x ∈ [0, 1]n. For any specific instance x, let ρ(x) denote the approximation ratio of f under x.

Note that ρ ≥ 1 for all f . As proven by Ding et al. [2020], the OPT mechanism is the well-known
midpoint mechanism which places the facility halfway between the left-most and right-most agent
locations.
Lemma 2.3 (Ding et al. [2020]). Given any location profile instance x, the midpoint mechanism
f(x) = mid(x) = lm(x)+rm(x)

2 (where lm(x) := mini∈N{xi}, and rm(x) := maxi∈N{xi})
optimizes the envy ratio objective.

Throughout the paper, our proofs focus on the case where lm(x) < rm(x) and omit the case where
lm(x) = rm(x), in which any feasible facility location f(x) achieves an optimal envy ratio of 1.

As standard in facility location mechanism design, we assume that the agents’ true locations are
private information, and that the mechanism takes as input the locations which are reported by the
agents. Accordingly, we restrict our attention to strategyproof mechanisms, which disincentivize
agents from misreporting their location.
Definition 2.4 (Strategyproofness). A mechanism f is strategyproof if for any location profile
x ∈ [0, 1]n, we have u(f(x), xi) ≥ u(f(x−i, x

′
i), xi) for all i ∈ N and x′

i.

Note that by definition, strategyproofness is defined in expectation if f is a randomized mechanism.

In this paper, we discuss learning-augmented mechanisms, which take a prediction ŷ of the optimal
facility location as an additional input. We denote these mechanisms by f(x, ŷ). Our goal is to
design strategyproof mechanisms which have best-of-both-worlds approximation ratio guarantees,
performing consistently well when ŷ is a perfectly accurate prediction, and also being robust to
inaccurate predictions of the optimal solution. Formally, we define the two performance metrics as
follows.
Definition 2.5 (γ-consistency). A mechanism f is γ-consistent if it achieves an approximation ratio
of γ when given a correct prediction ŷ = OPT(x), i.e.,

γ = sup
x∈[0,1]n

ER(f(x,OPT(x)),x)

ER(OPT(x),x)
.

Definition 2.6 (β-robustness). A mechanism f is β-robust if it achieves an approximation ratio of β
under any prediction ŷ, i.e.,

β = sup
x∈[0,1]n,ŷ∈[0,1]

ER(f(x, ŷ),x)

ER(OPT(x),x)
.

Note that the mechanism which always places the facility at the predicted location ŷ is 1-consistent
but has unbounded robustness. We also remark that if a mechanism does not admit a prediction as
input and is ρ-approximate, then it is ρ-consistent and ρ-robust in the learning-augmented setting.

3Note that a utility-based formulation is necessary to define this objective, as a distance-based definition
results in an unbounded envy ratio whenever the facility coincides with an agent’s location.
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3 Deterministic Mechanisms

We begin with the deterministic setting, in which any strategyproof mechanism without predictions
is known to have an approximation ratio of at least 2 (Theorem 1 in [Ding et al., 2020]), and that
this lower bound is matched by the constant- 12 mechanism which always places the facility at 1

2 . By
admitting a facility location prediction as an additional input, we are able to extend the Constant- 12
mechanism to the following α-Bounding Interval Mechanism, which defines an interval based on a
parameter α ∈ [1, 2], and places the facility at the prediction ŷ if it lies within this interval. Otherwise,
the facility is placed at a boundary point of this interval.

Mechanism 1 α-Bounding Interval Mechanism (α-BIM)

Input: Location profile x, facility location prediction ŷ, and parameter α ∈ [1, 2].
Output: Facility location f(x, ŷ).

1: if ŷ ∈ [1− 1
α ,

1
α ] then

2: Return f(x, ŷ)← ŷ;
3: else if ŷ ∈ ( 1

α , 1] then
4: Return f(x, ŷ)← 1

α ;
5: else
6: Return f(x, ŷ)← 1− 1

α ;
7: end if

Note that the output of this mechanism ranges from f(x, ŷ) = ŷ when α = 1, to f(x, ŷ) = 1
2

when α = 2, and thus its performance ranges from 1-consistency and unbounded robustness to
2-consistency and 2-robustness. As we will show, the α-Bounding Interval Mechanism specifically
has α-consistency and α

α−1 -robustness. While we do not achieve a strict improvement over the
2-consistency and 2-robustness of the Constant- 12 mechanism, the added flexibility from the α
parameter enables the central decision maker to choose their desired consistency-robustness tradeoff
depending on their confidence in the prediction accuracy. We also remark that the mechanism is
additionally anonymous, meaning that the output is invariant under any permutation of the agents’
labelings. Before analyzing the consistency and robustness of α-BIM, we first introduce a crucial
lemma which simplifies the space of location profiles which need to be considered.
Lemma 3.1. For any instance x, and a distribution of facility locations P , there always exists a
2-agent instance x′ = (lm(x), rm(x)) such that Ey∈P

[
ER(y,x)

ER(mid(x),x)

]
≤ Ey∈P

[
ER(y,x′)

ER(mid(x′),x′)

]
.

The proof idea is that given any instance x and for any location y ∈ P , either y ∈ [lm(x), rm(x)] or
y /∈ [lm(x), rm(x)], we show that the approximation ratio under x is always upper-bounded by that
under x′ = (lm(x), rm(x)). The complete proof is relegated to Appendix A.1.

By Lemma 3.1, when analyzing the performance of mechanisms, we only need to focus on 2-agent
instances. We now formally prove the consistency and robustness of α-BIM.
Theorem 3.2. α-BIM is anonymous, strategyproof, and satisfies α-consistency and α

α−1 -robustness.

Proof. α-BIM is trivially strategyproof and anonymous, as the output is independent of the agents’
locations. We next move to the analysis of consistency and robustness. From Lemma 3.1 we only
need to consider instances x = (x1, x2) with two agents where x1 < x2.

(Consistency). Consider an arbitrary 2-agent instance x in which ŷ is accurate, i.e., ŷ = mid(x). If
mid(x) = ŷ ∈ [1− 1

α ,
1
α ], α-BIM trivially satisfies 1-consistency. There are two remaining cases:

either mid(x) = ŷ ∈ [0, 1 − 1
α ) or mid(x) ∈ ( 1

α , 1]. Due to symmetry, it suffices to focus on the
former case, in which α-BIM returns f(x, ŷ) = 1 − 1

α . Since ŷ < 1 − 1
α , the maximum utility

achieved by the facility location 1− 1
α is contributed by x2, and the minimum utility achieved by the

facility location 1− 1
α is contributed by x1. Moreover, the utility of the agent at x2 is at most 1. The

utility of the agent at x1 is at least 1− (1− 1
α ) =

1
α . Hence, the consistency is at most

γ = sup
x∈[0,1]n

ER(f(x,mid(x)),x)

ER(mid(x),x)
≤ 1

1− (1− 1
α )

= α.
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For a matching lower bound, consider an instance with 2 agents located at x1 = 0 and x2 = 1− 1
α .

Here, Mechanism 1 places the facility at 1− 1
α , leading to a consistency of at least α. Therefore, we

conclude that α-BIM achieves α-consistency.

(Robustness). Consider an arbitrary 2-agent instance x, suppose the mechanism outputs y. Since
y ∈ [1− 1

α ,
1
α ], the minimum utility is at least 1− 1

α and the maximum utility is at most 1. Hence,
the robustness is at most

β = sup
x∈[0,1]n,ŷ∈[0,1]

ER(f(x, ŷ),x)

ER(mid(x),x)
≤ 1

1− 1
α

=
α

α− 1
.

For a corresponding lower bound, consider a 2-agent instance, with the agents located at 1 − 1
α

and 1. The optimal facility location in this case would be 1 − 1
2α , achieving an envy ratio of 1. If

ŷ ∈ [0, 1− 1
α ), then the mechanism selects 1− 1

α as the facility location, leading to an envy ratio
(and therefore robustness lower bound) of α

α−1 .

We next show that for the envy ratio objective, α-BIM obtains the best possible consistency and
robustness guarantees among all strategyproof and anonymous deterministic mechanisms, establishing
the optimality of the mechanism.4

Theorem 3.3 (Optimality). Given any parameter α ∈ (1, 2], there is no deterministic, strategyproof,
and anonymous mechanism that is (α − ε)-consistent and ( α

α−1 − ε)-robust with respect to envy
ratio, for any ε > 0.

Proof. By the characterization of Moulin [1980] (Proposition 2), a deterministic strategyproof and
anonymous mechanism must be a phantom mechanism with n+ 1 ‘constant’ points/phantoms. A
phantom mechanism places the facility at the median of the n agent points and the n+ 1 constant
points. Note that the ‘phantom’ locations may be a function of the prediction.

Observe that when α ∈ (1, 2], we have 1− 1
α ≤ 1

α . Next, given any prediction ŷ, we will show that
all n + 1 phantoms must be in [1 − 1

α ,
1
α ] in order for the robustness to be α

α−1 or better. To see
this, suppose for contradiction that one of those phantoms (denoted by pi = fi(ŷ)) is in [0, 1− 1

α ).
Since pi only depends on ŷ, we have that pi ∈ [0, 1− 1

α ) is a fixed point for every set of locations
xi, . . . , xn. Now consider a location profile with n− 1 agents at pi and one agent at 1. Under this
location profile, the facility will be placed at pi, which leads to an envy ratio of pi and implies an
approximation ratio of at least 1

pi
. Since pi < 1− 1

α , the robustness will be strictly greater than α
α−1 .

Next, for the same fixed ŷ, we consider another location profile with n− 1 agents at 1
α and one agent

at 1. The facility will be placed in the interval [1− 1
α ,

1
α ], leading to α-consistency at best. Therefore,

if the robustness is α
α−1 or better, the consistency cannot be better than α, proving the result.

2 4 6 8 10 12

1.2

1.4

1.6

1.8

2 (2, 2)

robustness

consistency

Figure 1: Trade-off between consistency and robustness under α-BIM

We also depict the trade-off between consistency and robustness, as determined by the parameter α,
in Figure 1 below. One may adjust the parameter α according to the confidence of the prediction, i.e.,
setting a small (resp. large) α when the confidence in the prediction is high (resp. low).

4For α = 1, it is trivial that no mechanism with 1-consistency can achieve bounded robustness.
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Approximation Ratio Parameterized by Prediction Error We now extend the consistency and
robustness results for α-BIM to obtain a refined approximation ratio parameterized by the prediction
error. Let y∗ denote the optimal facility location OPT(x) and η denote the upper bound of the
distance gap between the optimal location and prediction location, i.e., η = sup |ŷ − y∗|, and ρα(η)
be the approximation ratio for any specific α under prediction error η.

Theorem 3.4. Let η denote sup |ŷ − y∗|. When α ∈ [1, 1+
√
5

2 ], the approximation ratio is

ρα(η) =


α η ∈ [0, α−1

2(α+1) ]

1 + 4η
1−2η η ∈ ( α−1

2(α+1) ,
1
α − 1

2 ]

1 + 2αη
α−1 η ∈ ( 1

α − 1
2 ,

1
2α ]

α
α−1 η ∈ ( 1

2α ,+∞)

.

When α ∈ ( 1+
√
5

2 , 2], the approximation ratio is

ρα(η) =


α η ∈ [0, (α−1)2

2α ]

1 + 2αη
α−1 η ∈ ( (α−1)2

2α , 1
2α ]

α
α−1 η ∈ ( 1

2α ,+∞)

.

Proof Sketch. Recall that α-BIM places the facility at ŷ when it is in the interval [1 − 1
α ,

1
α ], and

otherwise places it at the nearest endpoint of that interval. We obtain the approximation ratio as a
function of η by treating these two placement regimes separately and taking the worst case in each.
When ŷ ∈ [1 − 1

α ,
1
α ], by Lemma 3.1, we focus on the two-agent instances and analyze the worst

case approximation ratio parameterized by η when moving the facility from y∗ to ŷ as η grows from
0 to∞. Similarly, when ŷ /∈ [1− 1

α ,
1
α ] and the facility is placed at the nearest endpoint. We again

consider the worst case when moving the facility from y∗ to 1− 1
α (or 1

α ). Taking the worst case over
the two placement regimes produces a single approximation ratio expressed as a piecewise function
of η, which monotonically increases from α to α

α−1 as the error bound η increases continuously.

To better illustrate Theorem 3.4, we present the approximation ratios in Figure 2. For each fixed
value of α, the approximation ratio is a piecewise function, which is smooth, specifically, continuous
and monotonic with respect to error bound η. We further observe that when the error bound
η ≤

√
5
2 − 1 ≈ 0.118, the approximation ratio achieves

√
5+1
2 ≈ 1.62, which shows that α-BIM can

substantially improve the ratio with a well-performed prediction model.

0.0 0.1 0.2 0.3 0.4 0.5
η

1

2

3

4

5

6

ρ
α
(η

)

Approximation ratio parameterized by η under varing α

α =1.2

α =1.4

α =1.6

α =1.8

α =2.0

ρα(η) = α

ρα(η) = 1 + 4η
1−2η

ρα(η) = 1 + 2αη
α−1

ρα(η) = α
α−1

Figure 2: Approximation ratio parameterized by error bound η with various α values.

4 Randomized Mechanisms

In the context of randomized mechanism design (without predictions) for envy ratio minimization,
Ding et al. [2020] proved that any strategyproof mechanism must have an approximation ratio of at
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least 1.0314, and showed that an approximation ratio of 2 is achieved by the deterministic mechanism
which always places the facility at 1

2 . However, they were unable to construct any randomized
strategyproof mechanism beyond 2-approximation. In this section, we address this gap and open
problem within both the classic setting (without predictions), and mechanism design with predictions.

4.1 Without Prediction

Since it remains an open question whether a randomized mechanism can achieve an approximation
ratio better than 2, we address this by introducing a novel family of (α, p)-LRM constant mechanisms
(Algorithm 2). The mechanism is inherently strategyproof and anonymous. By carefully selecting the
parameters, we show that there exists a mechanism within this family that achieves an approximation
ratio of approximately 1.8944.

Mechanism 2 (α, p)-LRM Constant Mechanism

Input: Location profile x.
Output: Distribution of facility locations f(x).

1: With probability p: return f(x) = 1
2 − α;

2: With probability 1− 2p: return f(x) = 1
2 ;

3: With probability p: return f(x) = 1
2 + α;

We now compute the optimal parameters of α and p which minimize the mechanism’s approximation
ratio. By the following lemma, we show that it suffices to restrict our attention to mechanisms with
α ≤ 1

4 , as any (α, p)-LRM constant mechanism with α > 1
4 will have a worse approximation ratio

than the deterministic mechanism which simply places the facility at 1
2 .

Lemma 4.1. When α > 1
4 , every (α, p)-LRM constant mechanism has an approximation ratio of at

least 2.

Given that α ≤ 1
4 , we show that the optimal parameters of α and p can be found by solving the

following optimization problem, which concerns the mechanism’s performance over 2 different
location profiles.
Lemma 4.2. Let x = (x1 = 0, x2 = 1

2 ) and x′ = (x′
1 = 0, x′

2 = 1
2 + α). When α ≤ 1

4 , the
(α∗, p∗)-LRM constant Mechanism optimizes the approximation ratio of envy ratio objective where
(α∗, p∗) = argmin(α,p){max{ρ(x), ρ(x′)}}.

Finally, by solving this optimization problem, we show that setting α =
√
5
2 − 1 and p = 2

5 leads to
the optimal approximation ratio among all (α, p)-LRM constant mechanisms.

Theorem 4.3. (
√
5
2 − 1, 2

5 )-LRM constant mechanism is anonymous, strategyproof, and achieves an
approximation ratio of 1 + 2√

5
, which is optimal among all (α, p)-LRM constant mechanisms.

Proof Sketch of Theorem 4.3. By Lemma 4.2, it suffices to find the optimal parameters α∗ and p∗ for
the optimization problem min(α,p){max{ρ(x), ρ(x′)}}. Specifically, we show that when α ∈ [0, 1

6 ),
by setting α =

√
5
2 − 1, and p = 2

5 , the (
√
5
2 − 1, 2

5 )-LRM mechanism achieves an approximation
ratio of 1 + 2√

5
≈ 1.8944 while when α ∈ [ 16 ,

1
4 ], the optimal parameters are α = 1

6 , and p = 4
11 ,

which yields an approximation ratio of 21
11 ≈ 1.909. Therefore, the (

√
5
2 − 1, 2

5 )-LRM mechanism is
optimal within the family of (α, p)-LRM Constant mechanisms.

With an approximation ratio of approximately 1.8944, our (
√
5
2 − 1, 2

5 )-LRM Constant mechanism
significantly improves upon the upper bound among mechanisms without predictions. We also further
tighten the gap by establishing an improved lower bound. Previously, Ding et al. [2020] showed that
any randomized strategyproof mechanism (without predictions) has an approximation ratio of at least
1.0314. We advance this lower bound by carefully selecting a location profile and constructing an
upper bound on the facility’s expected distance from an agent’s location, in terms of its probability to
be located within certain intervals, which gives us a lower bound of 1.12579.
Theorem 4.4. Any randomized strategyproof mechanism has an approximation ratio of at least
1.12579.
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4.2 With Prediction

Next, we extend our investigation to the paradigm of randomized mechanism design with predictions,
proposing a new randomized mechanism that outperforms the α-BIM. An immediate idea may be to
run the (

√
5
2 − 1, 2

5 )-LRM constant mechanism within the α-BIM, returning the former mechanism’s
output when the prediction lies outside the bounding interval. However, this modification performs
worse than the original α-BIM. Further details are provided in Appendix C.

To demonstrate the difficulty of this problem, consider an extreme 2-agent instance x = (x1 =
0, x2 = 1), with prediction ŷ = 0. For any mechanism that places the facility at ŷ with positive
probability, the robustness of the mechanism becomes unbounded. However, intuitively, assigning
a higher probability to placing the facility at ŷ improves consistency. This reveals the fundamental
challenge of balancing consistency and robustness. To address this, we adapt the underlying design
principle of the α-BIM: the mechanism locates the facility at ŷ if ŷ lies within a specified closed
interval. Otherwise, the facility is placed at the boundary of that interval. This design can be viewed
as a threshold mechanism, where the placement decision is based on the distance between ŷ and
1
2 . By integrating this threshold-based approach in a probabilistic manner, we design our novel
Bias-Aware mechanism, which we introduce as follows.

Mechanism 3 Bias-Aware Mechanism (BAM)

Input: Location profile x, facility location prediction ŷ.
Output: Facility location f(x, ŷ).

1: Compute bias c = |ŷ − 1
2 |

2: Compute probability p = 1
2 − c

3: With probability p: return f(x, ŷ) = ŷ
4: With probability 1− p: return f(x, ŷ) = 1

2

Theorem 4.5. BAM is anonymous, strategyproof and (−4c2 +2)-consistency and (c+2)-robustness
when c ∈ [ 14 ,

1
2 ],

7
4 -consistency and 9

4 -robustness when c ∈ [0, 1
4 ).

Proof. BAM is immediately anonymous and strategyproof as the output is independent of the agents’
locations. We now consider its consistency and robustness. From Lemma 3.1, we only need to
consider instances with two agents, in which the optimal envy ratio is always 1. Hence, we only need
to consider the envy ratio achieved by the mechanism. Given any profile x and ŷ, without loss of
generality, we assume that x1 < x2 and ŷ ≤ 1

2 , giving us p = ŷ and c = 1
2 − ŷ.

(Robustness). We first consider robustness. Observe that when placing the facility at ŷ (resp. 1
2 ),

the minimum utility of any agent is at least 1 − ŷ (resp. 1
2 ) as the distance from ŷ (resp. 1

2 ) is at
most 1 − ŷ (resp. 1

2 ). The equalities hold when x2 = 1. If x1 < ŷ, moving x1 to ŷ will increase
the maximum utility achieved by ŷ and 1

2 . If x1 > 1
2 , moving x1 to 1

2 will increase the maximum
utility achieved by ŷ and 1

2 . Hence, we only need to consider the case where x1 ∈ [ŷ, 1
2 ], in which

the robustness is expressed as

ER(f(x, ŷ),x) = ŷ · 1− (x1 − ŷ)

ŷ
+ (1− ŷ) · 1− ( 12 − x1)

1
2

≤ 5

2
− ŷ = 2 + c,

which reaches the maximum when x1 reaches 1
2 .

(Consistency). Consider any arbitrary instance x and ŷ is accurate, i.e., ŷ = mid(x). Let δ = x2−x1

2 .
If ŷ ≤ 1

4 , we have x2 ≤ 1
2 . The envy ratio achieved by f(x, ŷ) = ŷ is 1 and the envy ratio achieved

by f(x, ŷ) = 1
2 is 1−( 1

2−x2)

1−( 1
2−x1)

=
1−( 1

2−ŷ−δ)

1−( 1
2−ŷ+δ)

, where we have δ ≤ ŷ as 0 ≤ x1 ≤ ŷ. For consistency, it
is

ER(f(x, ŷ),x) = ŷ · 1 + (1− ŷ) · 1− ( 12 − ŷ − δ)

1− ( 12 − ŷ + δ)
≤ ŷ + (1− ŷ)(1 + 4ŷ) = −4c2 + 2,

which reaches the maximum when δ = ŷ.
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When ŷ > 1
4 , the envy ratio achieved by f(x, ŷ) = ŷ is 1 and the envy ratio achieved by f(x, ŷ) = 1

2

is 1−(δ−( 1
2−ŷ))

1−(δ+ 1
2−ŷ)

, where δ ≤ ŷ as 0 ≤ x1 ≤ ŷ. Hence, the consistency is

ER(f(x, ŷ),x) = ŷ · 1 + (1− ŷ)
1− (δ − ( 12 − ŷ))

1− (δ + 1
2 − ŷ)

≤ ŷ + (1− ŷ)(3− 4ŷ) = 4c2 + 2c+ 1,

which is maximized when δ = ŷ. Note that in this case, both consistency and robustness are
monotonically increasing w.r.t. c, reaching the maximum of ( 74 ,

9
4 ) when c = 1

4 .

Finally, we conclude that BAM satisfies (−4c2 + 2)-consistency and (c + 2)-robustness when
c ∈ [ 14 ,

1
2 ],

7
4 -consistency and 9

4 -robustness when c ∈ [0, 1
4 ).

Intuitively, BAM reduces the probability that the facility is placed at ŷ as the distance between ŷ and
the midpoint increases, in which the probability reaches 0 when ŷ reaches 0 or 1. This prevents the
mechanism from having unbounded robustness, and improves the balance between consistency and
robustness by effectively using the prediction. Figure 3 highlights that BAM is strictly better than
the deterministic α-BIM in terms of both consistency and robustness. Further discussion is provided
in Appendix C. For instance, we show that if we modify BAM by replacing the 1

2 output with the
(
√
5
2 − 1, 2

5 )-LRM, both the consistency and robustness worsen.

1.2 1.4 1.6 1.8 2

2.2

2.4

2.6

2.8

3

3.2

(1, 2.5)

(1.75, 2.25)

Consistency

Robustness

Figure 3: Comparison between α-BIM (red solid line) and BAM (blue dashed line). Note that, unlike α-BIM,
the range of approximation ratios for BAM is not dependent on a chosen parameter, but rather on |ŷ − 1

2
|.

5 Conclusion and Discussion

In this paper, we revisit the problem of facility location mechanism design problems for the envy
ratio objective, through the scope of learning-augmentation. We provide tight results by devis-
ing the deterministic α-BIM, which reaches the Pareto frontier of deterministic, anonymous and
strategyproof mechanisms. For randomized mechanisms without prediction, we improve upon the
best-known lower bound, and propose the (

√
5
2 − 1, 2

5 )-LRM Constant mechanism which achieves a
1.8944-approximation, resolving the open question of devising a mechanism with an approximation
ratio better than 2. Finally, we proposed BAM, a learning-augmented randomized mechanism which
outperforms α-BIM in terms of both consistency and robustness. For α-BIM , we provide a com-
prehensive analysis regarding the approximation ratio parameterized by prediction error, however,
regarding BAM, the randomized mechanism with prediction, unfortunately, we are unable to derive
a closed-form expression for approximation ratio ρ(η). The inherent difficulty is that when one
performs a case-by-case analysis, each case is expressed in the form maxj{fj(η, ŷ)}, in which the
presence of ŷ in the probability terms introduces significant complexity, especially the numerator,
which includes quadratic expressions and cross terms. This prevents us from deriving an explicit
form for the η-parameterized approximation ratio.

For future work, exploring lower bounds for randomized mechanisms with predictions presents
a challenging yet meaningful task. Due to the significant differences in optimization objectives,
the state-of-the-art techniques used by Balkanski et al. [2024] for learning-augmented randomized
mechanisms are difficult to extend to the envy ratio scenario studied in this paper. Thus, developing a
novel approach to establish lower bounds would be beneficial. Additionally, it is promising to apply
the learning-augmented framework to other fairness notions within the literature.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outlines the problem setting, applications,
and theoretical results of our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumptions of our results are clearly outlined, and any open questions
are stated where necessary.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The assumptions stem from the problem setting, which is clearly outlined in
Section 2. Any further assumptions are clearly outlined within the statement of the result,
and all formal proofs are either given in the main body or in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As a theoretical paper which lacks experiments, the paper clearly conforms to
the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The introduction implicitly outlines how our results and mechanisms can lead
to fairer outcomes in facility placement. We do not anticipate any direct negative societal
impacts of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not include experiments or code.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve the use of any LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Omitted Proofs for Section 3

A.1 Proof of Lemma 3.1

Proof. For an arbitrary location profile x = (x1, . . . , xn), without loss of generality, we assume
that x1 ≤ . . . ≤ xn. Let ũ and ū denote the maximum and minimum agent utilities, respectively,
when the facility is placed at mid(x). Consequently, the optimal envy ratio can be expressed as
ER(mid(x),x) = ũ

ū .

For any facility location y ∈ P , if y ∈ [x1, xn], the maximum utility is at most ũ + |y −mid(x)|,
while the minimum utility under y is at least ū− |y −mid(x)|. Therefore, we derive the following
inequality:

ER(y,x)

ER(mid(x),x)
≤ (ũ+ |y −mid(x)|)/(ū− |y −mid(x)|)

ũ/ū

≤ (ū+ |y −mid(x)|)/(ū− |y −mid(x)|)
ū/ū

(∵ ratio is non-increasing w.r.t. ũ)

=
(ū+ |y −mid(x)|)
(ū− |y −mid(x)|) ,

Equality holds when all the agents are at x1 and xn. In this case, consider a new 2-agent in-
stance x′ = (x1, xn). Notice that both x1 and xn achieve the minimum utility under mid(x), i.e.,
u(mid(x), x1) = u(mid(x), xn) = ū. For this instance, the approximation ratio of placing the
facility at y is

ER(y,x′)

ER(mid(x′),x′)
=

ū+ |y −mid(x′)|/ū− |y −mid(x′)|
1

=
(ū+ |y −mid(x)|)
(ū− |y −mid(x)|) ≥

ER(y,x)

ER(mid(x),x)
.

For the case where y /∈ [x1, xn], without loss of generality, assume y > xn. Since x1 and xn always
achieve the minimum utility under mid(x), we have d(mid(x), x1) = d(mid(x), xn) = 1 − ū.
When changing the facility location to y > xn, x1 achieves the minimum utility while xn achieves
the maximum utility. Specifically, u(y, x1) = 1 − d(y, x1) = 1 − (y − mid(x) + (1 − ū)) =
−y+mid(x)+ū, while u(y, xn) = 1−d(y, xn) = 1−(y−mid(x)−(1−ū)) = 2−y+mid(x)−ū.
Thus, the envy ratio is

ER(y,x)

ER(mid(x),x)
≤ (2− y +mid(x)− ū)/(−y +mid(x) + ū)

ũ/ū

≤ 2− y +mid(x)− ū

−y +mid(x) + ū
. (∵ ratio is non-increasing w.r.t. ũ)

Equality holds when all the agents are located at x1 and xn. By considering the new instance
x′ = (x1, xn), it can be verified that

ER(y,x′)

ER(mid(x′),x′)
=

2− y +mid(x′)− ū

−y +mid(x′) + ū

=
2− y +mid(x)− ū

−y +mid(x) + ū
≥ ER(y,x)

ER(mid(x),x)
.

In conclusion, for any location profile x and distribution of facility locations P , we can always
construct a new 2-agent instance x′ = (lm(x), rm(x)) such that the approximation ratio of any
y ∈ P under x is upper-bounded by the approximation ratio of y under x′. Formally,

Ey∈P

[
ER(y,x)

ER(mid(x),x)

]
≤ Ey∈P

[
ER(y,x′)

ER(mid(x′),x′)

]
.

This completes the proof.
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A.2 Proof of Theorem 3.4

Proof. When ŷ ∈ [1− 1
α ,

1
α ], the α-BIM mechanism places the facility at ŷ. Without loss of generality,

assume that y∗ ∈ [0, 1
2 ] (the case y∗ ∈ [ 12 , 1] is symmetric). Suppose the prediction error satisfies

|ŷ − y∗| ≤ η. We analyze the approximation ratio by cases on η. Note that for α ∈ [1, 2], it always
holds that 1

α − 1
2 ≤ 1

2α .

Case 1. η ∈ [0, 1
α − 1

2 ]. By Lemma 3.1, we may restrict to a two-agent instance x = (x1, x2) with
x2 = 2y∗ − x1. Since y∗ is optimal, the approximation ratio for placing the facility at ŷ is bounded
by

ρ ≤ 1− (y∗ − x1) + η

1− (y∗ − x1)− η

≤ 1− 1
2 + η

1− 1
2 − η

(since x1 ≥ 0, y∗ ≤ 1
2 )

= 1 +
4η

1− 2η
.

Case 2. η ∈ ( 1
α − 1

2 ,
1
2α ]. Here the prediction error exceeds 1

α − 1
2 , implying a tighter bound on y∗

since y∗ ≤ 1
2 and ŷ ∈ [1− 1

α ,
1
α ]. Thus,y∗ ≤ ŷ − η ≤ 1

α − η ≤ 1
2 .

Consider any instance x = (x1, x2 = 2y∗−x1). When the facility moves from y∗ to ŷ, the maximum
utility can increase by at most η, and the minimum utility can decrease by at most η. Hence,

ρ ≤ 1− (y∗ − x1) + η

1− (y∗ − x1)− η

≤ 1− ( 1
α − η) + η

1− ( 1
α − η)− η

(since x1 ≥ 0, y∗ ≤ 1
α − η)

= 1 +
2αη

α− 1
.

Case 3. η > 1
2α . In this regime, the approximation ratio is upper-bounded by the robustness ratio:

ρ ≤ 1
1− 1

α

= α
α−1 . This bound is tight for the instance x = (0, 1

α ), where y∗ = 1
2α and ŷ = 1

α .

Next, consider ŷ ∈ [0, 1− 1
α ) or ŷ ∈ ( 1

α , 1], where α-BIM places the facility at the endpoint 1− 1
α

or 1
α . Without loss of generality, we analyze the case ŷ = 1− 1

α .

Case 1. y∗ ≤ 1− 1
α . Here x2 is closer to ŷ than x1 is. The utility of agent 1 is at least 1

α , and that of
agent 2 is at most 1, yielding ρ ≤ 1

1/α = α. Equality holds when ŷ = y∗ = 1
2 − 1

2α for any η ≥ 0.

Case 2. y∗ > 1− 1
α . We further distinguish subcases:

(a) If η ∈ [0, 1
α − 1

2 ], then y∗ = ŷ + η ≤ 1− 1
α + η ≤ 1

2 . Hence,

ρ ≤
1
α

1− (2y∗ − (1− 1
α ))
≤

1
α

1− (2(1− 1
α + η)− (1− 1

α ))
=

1

1− 2αη
.

(b) If η ∈ ( 1
α − 1

2 ,
1
2α ], for any instance x = (x1, 2y

∗ − x1), moving x1 to 1− 1
α (if it lies to

the right) increases the ratio while maintaining y∗ − ŷ ≤ η. Thus, we only need to consider
x1 ≤ 1− 1

α , giving

ρ ≤ 1− ((1− 1
α )− x1)

1− ((2y∗ − x1)− (1− 1
α ))

≤
1
α + 2y∗ − 1

1− 1
α

≤ 1− 1
α + 2η

1− 1
α

= 1 +
2αη

α− 1
,

where the second inequality follows from x1 ≥ 2y∗− 1, and the third from y∗ ≤ 1− 1
α + η.
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(c) If η > 1
2α , the approximation ratio is bounded by α

α−1 , which is tight for x = (1 − 1
α , 1)

with y∗ = 1− 1
2α and ŷ = 1− 1

α − ε for any ε > 0.

Combining the above, when ŷ ∈ [0, 1− 1
α ) or ( 1

α , 1], we obtain:

ρ ≤


α, η ∈ [0, α−1

2α2 ],
1

1−2αη , η ∈ [α−1
2α2 ,

1
α − 1

2 ],

1 + 2αη
α−1 , η ∈ [ 1α − 1

2 ,
1
2α ],

α
α−1 , η ∈ [ 1

2α ,+∞).

Finally, we combine all bounds by distinguishing two parameter ranges.

• When α ∈ [1, 1+
√
5

2 ], note that α−1
2(α+1) ≤ 1

α − 1
2 and that α ≥ 1+2η

1−2η for η ≤ α−1
2(α+1) . Hence:

ρα(η) =


α, η ∈ [0, α−1

2(α+1) ],

1 + 4η
1−2η , η ∈ ( α−1

2(α+1) ,
1
α − 1

2 ],

1 + 2αη
α−1 , η ∈ ( 1

α − 1
2 ,

1
2α ],

α
α−1 , η ∈ ( 1

2α ,+∞).

• When α ∈ ( 1+
√
5

2 , 2], we obtain:

ρα(η) =


α, η ∈ [0, (α−1)2

2α ],

1 + 2αη
α−1 , η ∈ ( (α−1)2

2α , 1
2α ],

α
α−1 , η ∈ ( 1

2α ,+∞).

This completes the analysis of approximation ratio parameterized by prediction error bound.

B Omitted Proofs for Section 4

B.1 Proof of Lemma 4.1

Proof. For any arbitrary (α, p)-LRM constant mechanism with α ∈ ( 14 ,
1
2 ], we first consider a

2-agent instance x = (x1 = 0, x2 = 1
2 ). The approximation ratio ρ(x) under the instance x can be

represented as

ρ(x) = p · 1− α

1− ( 12 − α)
+ (1− 2p) · 1− 0

1− 1
2

+ p · 1− α

1− ( 12 + α)

= 2(1− 2p) + p · 4− 4α

1− 4α2
.

It is straightforward to verify that ρ(x) is monotonically increasing with respect to α for α ∈ ( 14 ,
1
2 ].

This implies that ρ(x) ≥ 2(1− 2p) + p · 4−1
1− 1

4

= 2(1− 2p) + 4p = 2 with equality attained when

α = 1
4 . In other words, as long as α > 1

4 , the approximation of (α, p)-LRM is at least 2, regardless
of the choice of parameter p ∈ [0, 1

2 ].

B.2 Proof of Lemma 4.2

Proof. Note that by Lemma 3.1, it suffices to consider two-agent instances x = (x1, x2). Without
loss of generality, we assume 0 ≤ x1 ≤ x2 ≤ 1. Let mid(x) = x1+x2

2 be the midpoint of the
agents’ locations. By symmetry, we focus on the case where mid(x) ∈ [0, 1

2 ] (the analysis for
mid(x) ∈ [ 12 , 1] follows analogously). Let u denote the utility of both agents when the facility is
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placed at mid(x), and define δ = 1
2 −mid(x) as the distance between mid(x) and 1

2 . Consequently,
we derive that u ≥ 1

2 + δ as u = 1 − (mid(x) − x1) ≥ 1 −mid(x) = 1 − ( 12 − δ) = 1
2 + δ. We

first consider the situation where α ∈ [0, 1
6 ), that is 1− 2α > 1

2 + α. We consider the following two
cases.

Case (1). δ ∈ [0, α], i.e., mid(x) ∈ [ 12−α, 1
2 ]. For any such instance x = (x1, x2), the approximation

ratio is upper-bounded by

ρ(x) ≤ p · u+ (α− δ)

u− (α− δ)
+ (1− 2p) · u+ δ

u− δ
+ p · u+ (α+ δ)

u− (α+ δ)
.

This bound follows from the observation that moving the facility location from mid(x) to 1
2 − α

results in a maximum utility increase (decrease) of α− δ, regardless of whether x1 or x2 is closer to
mid(x). Similarly, moving the facility to 1

2 or 1
2 + α changes an agent’s utility by at most δ or α+ δ,

respectively.

Notice that ρ(x) is monotonically non-increasing with respect to u and u ≥ 1
2 + δ, we further

upper-bound the ratio by

ρ(x) ≤ p ·
1
2 + α

1
2 + 2δ − α

+ (1− 2p) ·
1
2 + 2δ

1
2

+ p ·
1
2 + 2δ + α

1
2 − α

= p · 1 + 2α

1 + 4δ − 2α
+ (1− 2p) · (1 + 4δ) + p · 1 + 4δ + 2α

1− 2α

≤ p · 1 + 2α− 4δ

1− 2α
+ (1− 2p) · (1 + 4δ) + p · 1 + 4δ + 2α

1− 2α
(∵ convexity of 1+2α

1+4δ−2α and 0 ≤ δ ≤ α)

= 2p · 1 + 2α

1− 2α
+ (1− 2p) · (1 + 4δ).

Since ρ(x) is monotonically increasing with respect to δ and δ ∈ [0, α], it follows that ρ(x) is at most
2p · 1+2α

1−2α +(1− 2p) · (1+ 4α) in which δ = α, i.e., when mid(x) = 1
2 −α, the approximation ratio

is maximized, and the worst case falls into the instance (0, 1− 2α) where the inequalities become
equality.

Case (2). δ ∈ (α, 1
2 ], i.e., 0 ≤ mid(x) < 1

2 − α, we first introduce the following claim.

Claim B.1. When mid(x) ∈ [0, 1
2 − α), for any instance x = (x1, x2), the approximation ratio of

(α, p)-LRM mechanism under x is upper-bounded by the approximation ratio under x′ = (0, x2).

Proof. The proof starts by observing that for any instance x = (x1, x2), it holds that y−x1 ≥ |y−x2|
for any y ∈ { 12−α, 1

2 ,
1
2 +α}. That is, agent 1 always obtains a smaller utility than agent 2. We prove

this by considering the location of x2 and each potential facility location y. If x2 ≤ y, the expression
trivially holds as x2 ≥ x1. Conversely, we have x2 − y ≤ y − x1 as mid(x) = x1+x2

2 ≤ 1
2 − α and

y ≥ 1
2 − α.

Let u1(y) and u2(y) be the utilities of agent 1 and 2 under a potential facility location y ∈ { 12 −
α, 1

2 ,
1
2 + α}. As we know that u1(y) ≤ u2(y) for each y ∈ { 12 − α, 1

2 ,
1
2 + α}, the approximation

ratio of (α, p)-LRM mechanism is upper-bounded by

ρ(x) = p · u2(
1
2 − α)

u1(
1
2 − α)

+ (1− 2p) · u2(
1
2 )

u1(
1
2 )

+ p · u2(
1
2 + α)

u1(
1
2 + α)

= p · u2(
1
2 − α)

1− (( 12 − α)− x1)
+ (1− 2p) · u2(

1
2 )

1− ( 12 − x1)
+ p · u2(

1
2 + α)

1− (( 12 + α)− x1)

≤ p · u2(
1
2 − α)

1− (( 12 − α)− x′
1)

+ (1− 2p) · u2(
1
2 )

1− ( 12 − x′
1)

+ p · u2(
1
2 + α)

1− (( 12 + α)− x′
1)

= ρ(x′).
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With the claim in hand, we now turn our attention into the instances x = (0, x2) when mid(x) ∈
[0, 1

2 − α]. We divide the proof into subcases depending on the location of x2.

Sub-Case (a). x2 ∈ [0, 1
2 − α]. The approximation ratio is represented as

ρ(x) = p · 1− ( 12 − α− x2)

1− ( 12 − α)
+ (1− 2p) · 1− ( 12 − x2)

1− 1
2

+ p · 1− ( 12 + α− x2)

1− ( 12 + α)

= p · 1 + 2α+ 2x2

1 + 2α
+ (1− 2p) · (1 + 2x2) + p · 1− 2α+ 2x2

1− 2α
.

Here, ρ(x) has a derivative of

dρ(x)

dx2
=

2p

1 + 2α
+ 2(1− 2p) +

2p

1− 2α
≥ 0,

as p ∈ [0, 1
2 ] and α ∈ [0, 1

6 ]. This implies that ρ(x) is monotonically increasing with respect to x2.
Since x2 ∈ [0, 1

2 − α], we have that the approximation ratio of any instance x where x2 ∈ [0, 1
2 − α]

is maximized under the instance x = (x1 = 0, x2 = 1
2 − α).

Sub-Case (b). x2 ∈ ( 12 −α, 1
2 ]. We slightly modify the approximation ratio expression from sub-case

(a) and get

ρ(x) = p · 1− (x2 − ( 12 − α))

1− ( 12 − α)
+ (1− 2p) · 1− ( 12 − x2)

1− 1
2

+ p · 1− ( 12 + α− x2)

1− ( 12 + α)

= p · 3− 2x2 − 2α

1 + 2α
+ (1− 2p) · (1 + 2x2) + p · 1− 2α+ 2x2

1− 2α
.

Similarly, we compute the derivative of ρ(x) with respect to x2

dρ(x)

dx2
= − 2p

1 + 2α
+ 2(1− 2p) +

2p

1 + 2α
=

8pα

1− 4α2
+ 2(1− 2p) ≥ 0.

(∵ p ∈ [0, 1
2 ], α ∈ [0, 1

6 ])

It follows that the instance with the maximum approximation ratio has x2 = 1
2 , i.e., x = (x1 =

0, x2 = 1
2 ).

Sub-Case (c). x2 ∈ ( 12 ,
1
2 + α]. In this case, we have

ρ(x) = p · 1− (x2 − ( 12 − α))

1− ( 12 − α)
+ (1− 2p) · 1− (x2 − 1

2 )

1− 1
2

+ p · 1− ( 12 + α− x2)

1− ( 12 + α)

= p · 3− 2x2 − 2α

1 + 2α
+ (1− 2p) · (3− 2x2) + p · 1− 2α+ 2x2

1− 2α
.

The derivative is written as
dρ(x)

dx2
= − 2p

1 + 2α
− 2(1− 2p) +

2p

1− 2α
=

8pα

1− 4α2
+ 4p− 2.

Notably, when given α and p, the derivative is a constant, implying that the approximation ratio is
either monotonically increasing or decreasing with respect to x2. That is, for any instance in this
sub-case, the approximation ratio is either upper-bounded by that under x = (x1 = 0, x2 = 1

2 ) or
x = (x1 = 0, x2 = 1

2 + α).

Sub-Case (d). x2 ∈ ( 12 + α, 1− 2α]. The approximation ratio is computed as

ρ(x) = p · 1− (x2 − ( 12 − α))

1− ( 12 − α)
+ (1− 2p) · 1− (x2 − 1

2 )

1− 1
2

+ p · 1− (x2 − ( 12 + α))

1− ( 12 + α)

= p · 3− 2x2 − 2α

1 + 2α
+ (1− 2p) · (3− 2x2) + p · 3 + 2α− 2x2

1− 2α
.

The derivative of ρ(x) w.r.t. x2 is

dρ(x)

dx2
= − 2p

1 + 2α
− 2(1− 2p)− 2p

1− 2α
= − 4p

1− 4α2
− 2(1− 2p) ≤ 0.
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x1 = 0 1
2
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2 − α 1

2 + α 1− 2α
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x2 = 1

2
− α x2 = 1

2
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1
2

or x2=
1
2+α x2 = 1

2
+ α

Figure 4: Summary of Analysis when mid(x) ∈ [0, 1
2
− α]

Since ρ(x) is monotonically non-increasing with respect to x2 and x2 ∈ ( 12 + α, 1− 2α], it follows
that ρ(x) is upper-bounded by the approximation ratio under the instance x = (x1 = 0, x2 = 1

2 +α).

Figure 4 depicts the worst instances under 4 sub-cases in Case (2).

We next observe that the approximation ratio of instance x = (x1 = 0, x2 = 1
2 −α) is no worse than

that of instance x = (x1 = 0, x2 = 1
2 ), and the approximation ratio of instance x = (x1 = 0, x2 =

1− 2α) under Case (1) is no worse than that of instance x = (x1 = 0, x2 = 1
2 + α).

By combining all aforementioned subcase discussions, we conclude that when α ≤ 1
6 , computing the

general optimal (α, p)-LRM mechanism boils down to finding the optimal (α, p) which optimizes the
approximation ratio of envy ratio objective under instance x = (x1 = 0, x2 = 1

2 ) and x′ = (x′
1 =

0, x′
2 = 1

2 + α).

We next consider the remaining main case where α ∈ [ 16 ,
1
4 ]. We consider three subcases depending

on the position of mid(x). Since we only consider mid(x) ∈ [0, 1
2 ], the approximation ratio ρ(x)

is viewed as a function of u (recall u is the optimal utility under mid(x)), which is monotonically
decreasing with respect to u. Note that u ≥ 1

2 + δ, which implies that we only need to consider the
cases where x1 = 0. By fixing x1 = 0, we mainly consider the location of x2 as follows.

Case (1). x2 ∈ [0, 1
2 − α]. The approximation ratio is represented as

ρ(x) = p · 1− ( 12 − α− x2)

1− ( 12 − α)
+ (1− 2p) · 1− ( 12 − x2)

1− 1
2

+ p · 1− ( 12 + α− x2)

1− ( 12 + α)

= p · 1 + 2α+ 2x2

1 + 2α
+ (1− 2p) · (1 + 2x2) + p · 1− 2α+ 2x2

1− 2α
,

which is monotonically increasing with respect to x2, implying the worst instance in this case is
x = (x1 = 0, x2 = 1

2 − α).

Case (2). x2 ∈ ( 12 − α, 1
2 ]. The approximation ratio is represented as

ρ(x) = p · 1− (x2 − ( 12 − α))

1− ( 12 − α)
+ (1− 2p) · 1− ( 12 − x2)

1− 1
2

+ p · 1− ( 12 + α− x2)

1− ( 12 + α)

= p · 3− 2x2 − 2α

1 + 2α
+ (1− 2p) · (1 + 2x2) + p · 1− 2α+ 2x2

1− 2α
.

Consequently, the derivative of ρ(x) over x2 is

dρ(x)

dx2
= − 2p

1 + 2α
+ 2(1− 2p) +

2p

1− 2α
=

8pα

1− 4α2
+ 2(1− 2p) ≥ 0.

Therefore, the approximation ratio is upper-bounded by the instance where x1 = 0, x2 = 1
2 .

Case (3). x2 ∈ ( 12 , 1− 2α]. The approximation ratio is represented as

ρ(x) = p · 1− (x2 − ( 12 − α))

1− ( 12 − α)
+ (1− 2p) · 1− (x2 − 1

2 )

1− 1
2

+ p · 1− ( 12 + α− x2)

1− ( 12 + α)

= p · 3− 2x2 − 2α

1 + 2α
+ (1− 2p) · (3− 2x2) + p · 1− 2α+ 2x2

1− 2α
.

We compute the derivative of ρ(x) with respect to x2

dρ(x)

dx2
= − 2p

1 + 2α
− 2(1− 2p) +

2p

1− 2α
.
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Case (4). x2 ∈ (1− 2α, 1
2 + α]. The approximation ratio is represented as

ρ(x) = p · 1− ( 12 − α)

1− (x2 − ( 12 − α))
+ (1− 2p) · 1− (x2 − 1

2 )

1− 1
2

+ p · 1− ( 12 + α− x2)

1− ( 12 + α)

= p · 1 + 2α

3− 2x2 − 2α
+ (1− 2p) · (3− 2x2) + p · 1− 2α+ 2x2

1− 2α
.

Similarly, the derivative of ρ(x) over x2 is written as

dρ(x)

dx2
=

2p(1 + 2α)

(3− 2x2 − 2α)2
− 2(1− 2p) +

2p

1− 2α
.

Notably, the derivative in Case (4) is no less than that of Case (3). It follows that if ρ(x) is
monotonically increasing w.r.t. x2 in Case (3), then ρ(x) is monotonically increasing w.r.t. x2 in
Case (4). Conversely, if ρ(x) is monotonically decreasing w.r.t. x2 in Case (3), ρ(x) could be either
monotonically increasing or decreasing. This implies that the instance with worst approximation
ratio is either x2 = 1

2 or x2 = 1
2 + α.

Case (5). x2 ∈ ( 12 + α, 1]. Recall the definition of δ = 1
2 −mid(x), we write the approximation

ratio ρ(x) as a function of δ

ρ(x) ≤ p ·
1
2 + α

1
2 + 2δ − α

+ (1− 2p) ·
1
2 + 2δ

1
2

+ p ·
1
2 + 2δ + α

1
2 − α

= p · 1 + 2α

1 + 4δ − 2α
+ (1− 2p) · (1 + 4δ) + p · 1 + 4δ + 2α

1− 2α
.

Since x2 ∈ ( 12 + α, 1], we have δ ∈ [0, 1
4 − α

2 ]. Likewise, we use the same technique in Case (1)
when considering α ∈ [0, 1

6 ]. From the convexity of the term 1+2α
1+4δ−2α , we get

ρ(x) ≤ p · (− 2 + 4α

(1− 2α)2
δ +

1 + 2α

1− 2α
) + (1− 2p) · (1 + 4δ) + p · 1 + 4δ + 2α

1− 2α
.

Consider the derivative of the RHS.
dρ(x)

dδ
= − (2 + 4α)p

(1− 2α)2
+ 4(1− 2p) +

4p

1− 2α

≥ −2 + 2
3

4
9

p+ 4(1− 2p) +
4p

1− 1
3

(∵ monotonically increasing w.r.t. α ∈ [ 16 ,
1
4 ])

= 4− 8p ≥ 0.

This implies that the RHS is monotonically increasing with respect to δ when δ ∈ [0, 1
4 − α

2 ]. Hence,
ρ(x) is upper-bounded by the instance when δ = 1

4 − α
2 , i.e., x = (x1 = 0, x2 = 1

2 + α).

By combining the two main cases, i.e., α ∈ [0, 1
6 ) and α ∈ [ 16 ,

1
4 ], we derive that x = (x1 =

0, x2 = 1
2 ) and x′ = (x′

1 = 0, x′
2 = 1

2 + α) are the two instances with the worst approximation
ratio. Formally, when α ≤ 1

4 , the (α∗, p∗)-LRM constant Mechanism optimizes the approximation
ratio of envy ratio objective where (α∗, p∗) = argmin(α,p){max{ρ(x), ρ(x′)}}. This completes the
proof.

B.3 Proof of Theorem 4.3

Proof. Anonymity and strategyproofness are immediate. From Lemma 4.1 and Lemma 4.2, it suffices
to only consider the two special instances x = (x1 = 0, x2 = 1

2 ), and x′ = (x′
1 = 0, x′

2 = 1
2 + α).

Consider any arbitrary (α, p)-LRM mechanism where α ∈ [0, 1
4 ). We express the approximation

ratio for instances x and x′ as a function of α and p as follows. The approximation ratio under x can
be expressed as

ρ(x) = p · 1− α

1− ( 12 − α)
+ (1− 2p) · 1− 0

1− 1
2

+ p · 1− α

1− ( 12 + α)
.
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The expression of the approximation ratio under x′ slightly varies depending on the range of α. In
particular, when α ∈ [0, 1

6 ], it can be represented as

ρ(x′) = p · 1− 2α
1
2 + α

+ (1− 2p) · 1− α
1
2

+ p · 1
1
2 − α

= p · 2− 4α

1 + 2α
+ (1− 2p)(2− 2α) + p · 2

1− 2α
.

When α ∈ ( 16 ,
1
4 ], for instance x′, when placing the facility at 1

2 − α, x1 is the agent who has higher
utility. Henceforth, the approximation ratio is written as

ρ(x′) = p ·
1
2 + α

1− 2α
+ (1− 2p) · 1− α

1
2

+ p · 1
1
2 − α

= p · 1 + 2α

2− 4α
+ (1− 2p)(2− 2α) + p · 2

1− 2α
.

Since the approximation ratio under instance x′ varies with respect to the range of α. We compute
the optimal parameters of α and p by considering α ∈ [0, 1

6 ] and α ∈ ( 16 ,
1
4 ], respectively.

Case (1). α ∈ [0, 1
6 ]. We show that minα∈[0, 16 ),p∈[0, 12 ]

max{ρ(x), ρ(x′)} takes an optimal value of

approximately 1 + 2√
5
≈ 1.8944 when α =

√
5
2 − 1 and p = 2

5 .

We first consider the values of α and p which satisfy ρ(x) = ρ(x′).

We have

2(1− 2p) + p · 4− 4α

1− 4α2
= p · 2− 4α

1 + 2α
+ (1− 2p)(2− 2α) + p · 2

1− 2α
.

Dividing both sides by 2 simplifies the expression to

1− 2p+ p · 2− 2α

1− 4α2
= p · 1− 2α

1 + 2α
+ (1− 2p)(1− α) + p · 1

1− 2α
,

⇐⇒ α− 2αp =
p(1− 2α)2

1− 4α2
+

p(1 + 2α)

1− 4α2
− p(2− 2α)

1− 4α2

⇐⇒ (α− 2αp)(1− 4α2) = p(1− 4α+ 4α2 + 1 + 2α− 2 + 2α)

⇐⇒ α− 4α3 − 2αp+ 8α3p = 4α2p

⇐⇒ p(8α2 − 4α2 − 2α) = 4α3 − α

⇐⇒ p =
4α2 − 1

2(4α2 − 2α− 1)
.

Hence, we know that ρ(x) = ρ(x′) when p = 4α2−1
2(4α2−2α−1) . Note that this solution also requires

4α2 − 1 ̸= 0 and 4α2 − 2α − 1 ̸= 0, which are achieved under α ∈ [0, 1
6 ). Substituting p =

4α2−1
2(4α2−2α−1) into 2(1− 2p) + p · 4−4α

1−4α2 gives us

2

(
1− 4α2 − 1

4α2 − 2α− 1

)
+

4α2 − 1

2(4α2 − 2α− 1)
· 4− 4α

1− 4α2
=

8α2 − 4α− 2− 8α2 + 2

4α2 − 2α− 1
+

2α− 2

4α2 − 2α− 1

=
2α+ 2

−4α2 + 2α+ 1
,

which has a derivative of

d

dα

(
2α+ 2

−4α2 + 2α+ 1

)
=

8α2 + 16α− 2

(−4α2 + 2α+ 1)2
.

This derivative is equal to 0 when α = −1 −
√
5
2 or when α =

√
5
2 − 1 ≈ 0.118. We ignore the

former value as α ≥ 0. Substituting α =
√
5
2 − 1 into p = 4α2−1

2(4α2−2α−1) gives p = 2
5 .
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By substitution, we have that ρ(x) = ρ(x′) = 1+ 2√
5
≈ 1.8944 when α =

√
5
2 − 1 and p = 2

5 . From
Lemmas B.2 and B.3, it follows that minα∈[0, 16 ),p∈[0, 12 ]

max{ρ(x), ρ(x′)} = 1 + 2√
5

, proving the
optimality of the mechanism.

Case (1). α ∈ [ 16 ,
1
4 ]. With a similar method of analysis in (1), we can prove that

minα∈[ 16 ,
1
4 ],p∈[0, 12 ]

max{ρ(x), ρ(x′)} takes an optimal value of approximately 21
11 ≈ 1.8944 when

α = 1
6 and p = 4

11 . Similarly, we first consider the value of α and p which satisfy ρ(x) = ρ(x′).
That is,

2(1− 2p) + p · 4− 4α

1− 4α2
= p · 1 + 2α

2− 4α
+ (1− 2p)(2− 2α) + p · 2

1− 2α
.

It follows that

p =
16α3 − 4α

32α3 − 4α2 − 28α+ 3
.

Henceforth, ρ(x) = ρ(x′) when p = 16α3−4α
32α3−4α2−28α+3 . By substituting the p back into ρ(x), we

have

ρ(x) = ρ(x′) =
8α2 − 56α+ 6

32α3 − 4α2 − 28α+ 3
,

which is monotonically increasing with respect to α ∈ [ 16 ,
1
4 ]. Hence, by leveraging the very similar

technique as in (1), we obtain that when α = 1
6 and p = 4

11 , minα∈[ 16 ,
1
4 ]
max{ρ(x), ρ(x′)} = 21

11 ≈
1.909.

By combining these two case analysis, we conclude that the (
√
5
2 − 1, 2

5 )-LRM constant mechanism
optimizes the approximation ratio at 1 + 2√

5
≈ 1.8944.

Lemma B.2. If ρ(x) < 1 + 2√
5

, then ρ(x′) > 1 + 2√
5

.

Proof. We have

ρ(x) < 1 +
2√
5

⇐⇒ 2− 4p+ p · 4− 4α

1− 4α2
< 1 +

2√
5

⇐⇒ 4p

(
1− 1− α

1− 4α2

)
> 1− 2√

5

⇐⇒ p >
(1− 2√

5
)(1− 4α2)

4α(1− 4α)
.

Note that the approximation ratio under x′ can be rewritten as

ρ(x′) = p · 2− 4α

1 + 2α
+ (1− 2p)(2− 2α) + p · 2

1− 2α

= p

(
2− 4α

1 + 2α
+ 4α− 4 +

2

1− 2α

)
+ 2− 2α

= p

(
8α2(3− 2α)

(1− 2α)(2α+ 1)

)
+ 2− 2α.

Since p · 2−4α
1+2α + (1 − 2p)(2 − 2α) + p · 2

1−2α ≥ 0 for all 0 ≤ α ≤ 1
6 , we can substitute

p >
(1− 2√

5
)(1−4α2)

4α(1−4α) to obtain

ρ(x′) >

(
(1− 2√

5
)(1− 4α2)

4α(1− 4α)

)(
8α2(3− 2α)

(1− 2α)(2α+ 1)

)
+ 2− 2α

=
(1− 2√

5
) · 2α(3− 2α)

1− 4α
+ 2− 2α.
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The derivative of this expression is

d

dα

(
(1− 2√

5
) · 2α(3− 2α)

1− 4α
+ 2− 2α

)
= −4(4(5 + 2

√
5)α2 − 2(5 + 2

√
5)α+ 3

√
5− 5

5(1− 4α)2
,

which is equal to 0 when α =
√
5
2 − 1 or α = 3−

√
5

2 . Thus, we see that when α ∈ [0, 1
6 ], the

expression takes a minimum of 1 + 2√
5

when α =
√
5
2 − 1. Therefore, ρ(x′) > 1 + 2√

5
when

ρ(x) < 1 + 2√
5

.

Lemma B.3. If ρ(x′) < 1 + 2√
5

, then ρ(x) > 1 + 2√
5

.

Proof. We have

ρ(x′) < 1 +
2√
5

⇐⇒ p

(
8α2(3− 2α)

(1− 2α)(2α+ 1)

)
< 2α− 1 +

2√
5

⇐⇒ p <
(2α− 1 + 2√

5
)(1− 4α2)

8α2(3− 2α)
.

Note that when α < 1
2 − 1√

5
, the RHS becomes negative and consequently, the inequality cannot be

satisfied. We therefore restrict our attention to α ∈ [ 12 − 1√
5
, 1
6 ].

Note that ρ(x) = 2 + 4p
(

4α2−α
1−4α2

)
, and that 4α2−α

1−4α2 < 0 when α ∈ [ 12 − 1√
5
, 1
6 ]. Therefore, by

substituting p <
(2α−1+ 2√

5
)(1−4α2)

8α2(3−2α) , we have that when ρ(x′) < 1 + 2√
5

,

ρ(x) > 2 +
(2α− 1 + 2√

5
)(4α− 1)

2α(3− 2α)
.

The derivative of the RHS is

d

da

(
2 +

(2α− 1 + 2√
5
)(4α− 1)

2α(3− 2α)

)
=

4(15 + 4
√
5)α2 + (20− 8

√
5)α+ 6

√
5− 15

10(3− 2α)2α2
,

which is equal to 0 when α =
√
5
2 − 1 or when α = 6

29 − 9
√
5

58 . We therefore see that when α ∈ [0, 1
6 ],

the expression takes a minimum of 1 + 2√
5

when α =
√
5
2 − 1, proving that ρ(x) > 1 + 2√

5
when

ρ(x′) < 1 + 2√
5

.

B.4 Proof of Theorem 4.4

Proof. To show the lower bound, we first consider the location profile with two agents x = (x1 =
0.29, x2 = 0.71). Note that for any randomized mechanism f , we have either Ey∈f(x)[|y − 0.29|] ≥
0.21 or Ey∈f(x)[|y − 0.71|] ≥ 0.21.

We first consider the former case, where Ey∈f(x)[|y − 0.29|] ≥ 0.21. Let x′ = (0, 0.71). Then we
must have

Ey∈f(x′)[|y − 0.29|] ≥ Ey∈f(x)[|y − 0.29|] ≥ 0.21,

otherwise agent 1 at x1 = 0.29 has an incentive to change her reported location to x′
i = 0 for a better

outcome, violating strategyproofness. Denote δ := 617
4300 ≈ 0.14, and

p1 := Pr{f(x′) ∈ [0.29− δ, 0.29 + δ]},
p2 := Pr{f(x′) ∈ [0, 0.29− δ) ∪ (0.29 + δ, 0.58]},
p3 := Pr{f(x′) ∈ (0.58, 1]}.
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Then, we have

Ey∈f(x′)[|y − 0.29|] ≤ δp1 + 0.29p2 + 0.71p3

= δ + (0.29− δ)p2 + (0.71− δ)p3.

Substituting Ey∈f(x′)[|y − 0.29|] ≥ 0.21 gives us

δ + (0.29− δ)p2 + (0.71− δ)p3 ≥ 0.21,

which we can rearrange to form the inequality

p3 ≥
0.21− δ − (0.29− δ)p2

0.71− δ
.

Finally, we have

ER(f(x′),x′)

≥ p1 +
1− (0.71− (0.29 + δ))

1− (0.29 + δ − 0)
p2 +

1− (0.71− 0.58)

1− 0.58
p3

= p1 +
0.58 + δ

0.71− δ
p2 +

0.87

0.42
p3

= 1 +
2δ − 0.13

0.71− δ
p2 +

15

14
p3

≥ 1 +
2δ − 0.13

0.71− δ
p2 +

15

14
· 0.21− δ − (0.29− δ)p2

0.71− δ

= 1 +

(
2δ − 0.13

0.71− δ
− 15

14
· 0.29− δ

0.71− δ

)
p2 +

15

14
· 0.21− δ

0.71− δ

≥ 1.12579,

where in the last inequality, we substitute δ = 617
4300 so that the term in front of p2 becomes equal to

zero. Note that ER(mid(x′),x′) = 1, leading to our approximation ratio lower bound of 1.12579.

For the remaining case where Ey∈f(x)[|y − 0.71|] ≥ 0.21, we let x′ = (0.29, 1) and make a
symmetric argument.

C Missing Details on Randomized Mechanisms with Prediction

For randomized mechanisms with prediction, by incorporating the newly devised (
√
5
2 − 1, 2

5 )-LRM
constant mechanism with the learning augmentation scheme, we have the following randomized
mechanism.

Mechanism 4 α-Bounding Interval Randomized Mechanism

Input: Location profile x, optimal locaiton prediction ŷ.
Output: Distribution of facility location f(x, ŷ).

1: Initialize the confidence parameter α ∈ (1, 2].
2: if ŷ ∈ [1− 1

α ,
1
α ] then

3: Return f(x, ŷ)← ŷ;
4: else
5: Return f(x, ŷ)← (

√
5
2 − 1, 2

5 )-LRM constant mechanism with input x.
6: end if

The α-Bounding Interval Randomized Mechanism adopts a similar approach to α-BIM. It begins
by defining a “trustworthy” interval associated with the predicted optimal facility location. When
the prediction falls outside this interval, the mechanism employs the (

√
5
2 − 1, 2

5 )-LRM constant
mechanism to ensure the small robustness. However, our next analysis shows that it achieves even
worse consistency and robustness than α-BIM.
Proposition C.1. α-Bounding Interval Randomized Mechanism is strategyproof and satisfies min{1+
( 12+4

√
5

5 )(1− 1
α ), (

3
5 +

2
√
5

5 )+ 8
5 (1− 1

α ), 1+
2√
5
}-consistency, α

α−1 -robustness with respect to envy
ratio, where α ∈ (1, 2].
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Proof. Strategyproofness directly holds for the α-Bounding Interval Randomized Mechanism. We
mainly focus on the proof of the bounds of consistency and robustness.

Consistency. Consider any instance x with a correct prediction of the optimal facility location,
i.e., ŷ = mid(x). If ŷ is within [1 − 1

α ,
1
α ], the mechanism outputs ŷ, providing 1-consistency.

Next, we consider the case where ŷ ∈ [0, 1− 1
α ], in which the mechanism returns the output of the

(
√
5
2 − 1, 2

5 )-LRM constant mechanism. Here, we consider the following sub-cases divided by the
range of the parameter α. By Lemma 3.1, it suffices to consider instances with two agents where
0 ≤ x1 < x2 ≤ 2(1− 1

α ).

We first notice that when α ∈ [ 43 , 2], i.e., 2(1− 1
α ) ∈ [ 12 , 1], the consistency is always bounded by

1 + 2√
5

since there always exists one two-agent instance achieving approximation ratio of 1 + 2√
5

,
regardless the prediction location ŷ. Therefore, we mainly consider two cases

Case (1). 2(1− 1
α ) ≤ 3−

√
5

2 , i.e., α ∈ [1,
√
5− 1] which implies that both x1 and x2 are on the left

side of 3−
√
5

2 . Henceforth, the approximation ratio is upper-bounded by

ρ(x) ≤ 2

5
· 1− ( 3−

√
5

2 − 2(1− 1
α ))

1− 3−
√
5

2

+
1

5
· 1− ( 12 − 2(1− 1

α ))

1− 1
2

+
2

5
· 1− (

√
5−1
2 − 2(1− 1

α ))

1−
√
5−1
2

= 1 + (
12 + 4

√
5

5
)(1− 1

α
),

where the equality holds when x1 = 0 and x2 = 2(1− 1
α ).

Case (2). 2(1− 1
α ) >

3−
√
5

2 , i.e., α ∈ (
√
5− 1, 4

3 ]. The approximation ratio is upper-bounded by

ρ(x) ≤ 2

5
· 1− (2(1− 1

α )− 3−
√
5

2 )

1− 3−
√
5

2

+
1

5
· 1− ( 12 − 2(1− 1

α ))

1− 1
2

+
2

5
· 1− (

√
5−1
2 − 2(1− 1

α ))

1−
√
5−1
2

= (
3

5
+

2
√
5

5
) +

8

5
(1− 1

α
).

where the equality holds when x1 = 0 and x2 = 2(1− 1
α ).

Robustness. Now we consider the robustness of the mechanism. By Mechanism 1, we can see
that if branch achieves α

α−1 -robustness and else branch achieves 21
11 < α

α−1 robustness. Hence, the
robustness β = α

α−1 .

Next, we extend BAM by leveraging the (
√
5
2 − 1, 2

5 )-LRM Mechanism, that is, with probability
(1− p) running (

√
5
2 − 1, 2

5 )-LRM mechanism, rather than putting the facility at 1
2 .

Mechanism 5 Bias-Aware LRM Mechanism
Input: Location profile x, facility location prediction ŷ.
Output: Facility location f(x, ŷ).

1: Compute bias c = |ŷ − 1
2 |

2: Compute probability p = 1
2 − c

3: With probability p: return ŷ

4: With probability 1− p: return (
√
5
2 − 1, 2

5 )-LRM constant mechanism with input x.

We next show that Bias-Aware LRM Mechanism is worse than BAM by constructing some special
instances.

Proposition C.2. Bias-Aware LRM mechanism is strategyproof and satisfies
(

23+9
√
5

20

)
-

consistency and
(

1
2 + 4√

5

)
-robustness when c ∈ [0, 1

4 ], and
(

−8c2+2(
√
5−1)c+

√
5+6

5

)
-consistency,(

1
10 (4
√
5c+ 7

√
5 + 5)

)
-robustness when c ∈ [ 14 ,

√
5−1
4 ], and

(
− 4(3+

√
5)

5 c2 +
√
5+8
5

)
-consistency,(

1
10 (4
√
5c+ 7

√
5 + 5)

)
-robustness when c ∈ [

√
5−1
4 , 1

2 ].
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Proof. Strategyproofness directly holds for the Bias-Aware LRM mechanism. We mainly focus on
the proof of the lower bounds of consistency and robustness. Without loss of generality, we assume
that ŷ ≤ 1

2 .

Consistency. By Lemma 3.1 and the proof of Theorem 4.3, we only need to consider instances with
two agents where 0 = x1 < x2 ≤ 1. Note that the envy ratio achieved by ŷ is 1. The envy ratio
achieved by (

√
5
2 − 1, 2

5 )-LRM is always 5+2
√
5

5 . When moving x2 from location 1 to location
√
5−1
2

(the right boundary of (
√
5
2 − 1, 2

5 )-LRM), the probability of using (
√
5
2 − 1, 2

5 )-LRM will increase.
Thus the expected approximation ratio will increase. Therefore, we only need to consider the case
where 0 = x1 < x2 ≤

√
5−1
2 . Consider any instance x with correct prediction of optimal facility

location ŷ, i.e., mid(x) = ŷ. We have ŷ ≤
√
5−1
4 .

If 0 ≤ ŷ ≤ 3−
√
5

4 , then c ∈ [
√
5−1
4 , 1

2 ], and the consistency is

γ =
ER(f(x, ŷ),x)

ER(mid(x),x)

= ŷ · 1 + (1− ŷ)

(
2

5
·

√
5−1
2 + 2ŷ
√
5−1
2

+
1

5
·

1
2 + 2ŷ

1
2

+
2

5
·

3−
√
5

2 + 2ŷ

3−
√
5

2

)

= −4(3 +
√
5)

5
c2 +

√
5 + 8

5
,

which is monotonically decreasing with respect to c.

If 3−
√
5

4 ≤ ŷ ≤ 1
4 , then c ∈ [ 14 ,

√
5−1
4 ], and the consistency is

γ =
ER(f(x, ŷ),x)

ER(mid(x),x)

= ŷ · 1 + (1− ŷ)

(
2

5
·

5−
√
5

2 − 2ŷ
√
5−1
2

+
1

5
·

1
2 + 2ŷ

1
2

+
2

5
·

3−
√
5

2 + 2ŷ

3−
√
5

2

)

=
1

5

(
−8c2 + 2(

√
5− 1)c+

√
5 + 6

)
which is monotonically decreasing with respect to c.

If 1
4 ≤ ŷ ≤

√
5−1
4 , then c ∈ [ 3−

√
5

4 , 1
4 ], and the consistency is

γ =
ER(f(x, ŷ),x)

ER(mid(x),x)

= ŷ · 1 + (1− ŷ)

(
2

5
·

5−
√
5

2 − 2ŷ
√
5−1
2

+
1

5
·

3
2 − 2ŷ

1
2

+
2

5
·

3−
√
5

2 + 2ŷ

3−
√
5

2

)

=
2c√
5
+

1√
5
+ 1,

which is monotonically increasing with respect to c.

Robustness. If 0 ≤ ŷ ≤ 3−
√
5

2 , then c ∈ [
√
5−2
2 , 1

2 ]. By using a similar analysis as Theorem 4.3 we
have that the worst case satisfies x2 = 1. If x1 < ŷ, we can show that moving this agent from x1 to
ŷ will increase the expected envy ratio. To see this, the envy ratio achieved by ŷ is increasing and
the envy ratio achieved by (

√
5−1
2 , 2

5 )-LRM constant mechanism is increasing. If x1 > 3−
√
5

2 , we
can also use a similar analysis to show that moving this agent from x1 to

√
5−1
2 will increase the

expected envy ratio. Then we consider x1 ∈ [ŷ, 1
3 ]. Let δ = x1 − ŷ, by using the similar analysis as

Theorem 4.3 we can show that the approximation ratio satisfies the monotonicity with respect to δ.
Hence, we only need to compare the envy ratio between two cases (ŷ, 1) and ( 3−

√
5

2 , 1).
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For case (ŷ, 1), if ŷ ≤
√
5− 2 (c ∈ [ 52 −

√
5, 1

2 ]), we have the robustness

β = ŷ · 1
ŷ
+ (1− ŷ)

(
2

5
·

√
5−1
2 + ŷ

3−
√
5

2

+
1

5
·

1
2 + ŷ

1
2

+
2

5
·

√
5−1
2

3−
√
5

2 + ŷ

)

= −4(
√
5− 5)c3 + 4(4

√
5− 13)c2 + (21

√
5− 53)c− 34

√
5 + 89

5(
√
5− 3)(2c+

√
5− 4)

.

If
√
5− 2 ≤ ŷ ≤ 3−

√
5

2 (c ∈ [
√
5−2
2 , 5

2 −
√
5]), we have the robustness

β = ŷ · 1
ŷ
+ (1− ŷ)

(
2

5
·

√
5−1
2 + ŷ

3−
√
5

2

+
1

5
·

1
2 + ŷ

1
2

+
2

5
·

3−
√
5

2 + ŷ
√
5−1
2

)

=
1

10

(
−4(3 +

√
5)c2 + (2 + 4

√
5)c+ 3

√
5 + 14

)
.

For case ( 3−
√
5

2 , 1), we have the robustness

β = ŷ ·
√
5−1
2 + ŷ

ŷ
+ (1− ŷ)

(
2√
5
+ 1

)
=

1

10
(4
√
5c+ 7

√
5 + 5),

which is monotonically increasing with respect to c, and always larger than the robustness achieved
by (ŷ, 1).

If 3−
√
5

2 ≤ ŷ ≤ 1
2 , then c ∈ [0,

√
5−2
2 ]. When x1 = ŷ and x2 = 0, the envy ratios achieved by ŷ and

(
√
5−1
2 , 2

5 )-LRM reach the maximum. Then the robustness is

β = ŷ · 1
ŷ
+ (1− ŷ) · (5 + 2

√
5

5
))

≤ (
2√
5
+ 1)c+

1√
5
+

3

2
,

which is monotonically increasing with respect to c. Combined with the consistency, we have that
when c ∈ [0, 1

4 ), both the consistency and robustness are better than c = 1
4 (in this case, it is

upper-bounded by ( 23+9
√
5

20 )-consistency and ( 12 + 4√
5
)-robustness), which can be omitted.

We compare the consistency and robustness of all aforementioned four mechanisms, including α-BIM,
BAM, α-Bounding Interval Randomized Mechanism, and Bias-Aware LRM Mechanism in Figure 5.

1.2 1.4 1.6 1.8 2

3

4

5

6

7

8

Consistency

Robustness

Figure 5: Comparison between α-BIM (red solid line), BAM (blue dashed line), α-Bounding Interval Random-
ized Mechanism (green dashdotted line), and Bias-Aware LRM Mechanism (orange dotted line).

BAM clearly outperforms both α-BIM and the α-Bounding Interval Randomized Mechanism. While
the Bias-Aware LRM Mechanism shares the same framework as BAM, it is slightly less effective and
involves greater complexity.
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