Under review as a conference paper at ICLR 2026

KVCACHE-CENTRIC MEMORY FOR LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM agents in complex, long-horizon workflows are constrained by the model’s context
window. Current plaintext-based memory systems suffer from unstable retrieval accu-
racy and disrupt prefix caching, harming both performance and efficiency. We propose
MemArt, a novel memory paradigm that operates directly within the LLM-native for-
mat: the key-value (KV) cache. Instead of using plaintext, MemAurt stores conversational
turns as reusable KV cache blocks and retrieves relevant memories by computing attention
scores in latent space. To enable accurate and efficient retrieval, we develop a multi-token
aggregation retrieval strategy that uses compressed keys for efficient KV selection and a
decoupled position encoding mechanism to ensure retrieved blocks are safely and coher-
ently reused. On the LoCoMo benchmark, MemArt improves accuracy by over 11% (up
to 39.4%) compared to state-of-the-art plaintext-based memory methods, nearly matching
full-context performance. Critically, it achieves this while reducing prefill tokens by over
two orders of magnitude (91-135x), representing a significant leap forward for building
powerful and efficient long-context agents.

1 INTRODUCTION

“The true art of memory is the art of attention.” — Samuel Johnson, English writer

Large language model (LLM) agents are emerging as a new paradigm for applying foundation models in
complex, real-world workflows, including scientific exploration (e.g., deep research (Xu & Pengl 2025)),
coding assistants (Liu et al.| 2024)), and autonomous task planning systems (Wang et al., [2024). Unlike
single-turn prompting or short-lived chatbots, these agents are designed to operate over extended horizons,
often spanning hours or days of execution and involving tens to hundreds of iterative LLM calls. During
such long-running sessions, agents continuously accumulate rich context that quickly grows beyond the
context window of even frontier models with million-token capacities (Google DeepMind, 2025)). To address
this scalability bottleneck, recent work has introduced external memory systems that store and selectively
retrieve historical context (Chhikara et al., 2025} Rasmussen et al., |2025; |JAmazon Web Services|, 2025]).
Such memory mechanisms are essential for sustaining reasoning efficiency, accuracy, and robustness in
long-horizon agent workflows.

Most deployed memory systems, including MemO (Chhikara et al.l 2025), Zep (Rasmussen et al., [2025)),
and AWS AgentCore memory (Amazon Web Services,, 2025), adopt plaintext-based memory. They segment
or summarize historical context into sentence-level memory entries, which are then indexed and retrieved
using vector databases or graph structures. While straightforward, this approach exhibits two fundamental
limitations. First, context summarization and retrieval based on vector similarity or graph traversal often fail
to preserve the full semantic dependencies of long, multi-turn interactions. As a result, the retrieved memory
may omit critical context or include irrelevant information, leading to degraded LLM inference performance
compared to full-context inference. Second, the segmentation and summarization of historical context into
discrete memory entries disrupts the natural sequential structure of prompt prefixes. Modern LLM engines

Under review as a conference paper at ICLR 2026

1
Prompt : Prompt
é —»| | The true art of memory is Introduce — : é_, Introduce —_— ——> Answer
the art of attention Samuel Johnson 1 Samuel Johnson
Agent . S ~ LLM | Agent S LLm
Plaintext-based Memory[2) Query@ ‘ X Query[@ S
Save l TRetrievaI Answer | Save l I Retrieval
1
1
Plaintext-based Memory | KVCache-centric Memory é E 13
(a) Plaintext-based Memory Paradigm (b) KVCache-centric Memory Paradigm

Figure 1: Paradigm comparison between plaintext-based memory and KVCache-centric memory. In the
plaintext paradigm (a), the agent must explicitly retrieve and insert memory into the prompt, which often
leads to inaccurate retrieval and breaks prefix caching. In the KVCache-centric paradigm (b), the LLM
natively stores and reuses KV blocks, so the agent only issues the new query, enabling more accurate retrieval
in latent space and efficient prefill reuse.

accelerate inference using prefix caching (Qin et al.| 2025} |Gao et al.|[2024;[Zheng et al.,[2024)—reusing the
key-value (KV) cache of shared prefixes across calls—but segmented and summarized memory introduces
prefix discontinuities, undermining these efficiency gains.

We propose MemArt, a new memory paradigm that shifts from plaintext-based memory to KVCache-centric
memory to enhance both performance and efficiency. As illustrated in Figure [I] instead of managing plain-
text, MemAurt stores historical context directly as reusable KV blocks and retrieves relevant memory by
computing attention scores between the current prompt and the stored KV blocks in latent space. This ap-
proach offers three key advantages: (1) High-Fidelity Retrieval: Operating in latent space allows retrieval
to align directly with the model’s attention mechanism, offering superior semantic accuracy compared to
methods relying on plaintext similarity. (2) Maximal Inference Efficiency: Retrieved KV blocks are directly
reused during prefill, eliminating redundant token processing and significantly reducing computational over-
head and latency. (3) Seamless Integration: The entire framework is model-agnostic and functions as a
plug-and-play component, requiring no modifications to model weights or architecture.

Despite its promise, achieving KVCache-centric memory introduces two key challenges. First, how can we
perform high-fidelity retrieval without a full memory scan? As the memory grows, exhaustively scanning
every KV block to find the most relevant ones becomes computationally prohibitive. The challenge lies in
designing a mechanism that can quickly identify the most salient memories from a large repository without
sacrificing accuracy. Second, how to ensure the safe reuse of retrieved KV blocks? A standard KV cache
that can reuse corresponds to a single, contiguous prefix. Retrieved blocks, however, are non-contiguous
and carry their original positional information. Simply concatenating them creates a positionally incoherent
sequence that disrupts the model’s attention, ultimately harming output quality.

For efficient and accurate retrieval, MemArt first computes a compressed representative key for each KV
block to enable a fast search that avoids a full memory scan. It then employs a multi-token aggregation
retrieval strategy that synthesizes attention scores from all prompt tokens to ensure the final selection is
highly relevant. For safe reuse, MemArt uses a decoupled position encoding mechanism. This component
validates and adjusts the positional information of retrieved blocks, guaranteeing they can be integrated into
the current context without creating positional conflicts.

We evaluate MemArt on the widely used LoCoMo benchmark (Maharana et al., 2024). Experimental
results show that MemArt improves inference accuracy by 11.8-39.4% over state-of-the-art plaintext-based
memory approaches, approaching the performance of full-context inference. Critically, it reduces 91-135x
prefill tokens over plaintext-based memory approaches. These results highlight KVCache-centric memory
as a promising foundation for accurate and efficient long-context LLM agents.

Under review as a conference paper at ICLR 2026

A
Memo e -20.8% é Prgmpt e e — | NewKV
em " —> umma uel
9 Agent 2 2 LLM Cache
-] - 0 .)
£ zep 35.06 &A’ Queryl TRetrievaI Search l T Mismatch x
[]
= |5ummaryg |Summaryé |5ummaryé |Context0| |Context1| |Context2|
FullContext 42.25 3 7 3
PrefixKV | | PrefixKV| | PrefixkKV
0 10 20 30 40
F1 Score Context0| | Contextl| |Context2 Cache0 Gl Cache2
(a) Accuracy loss of plaintext-based memory re- (b) Prefix cache reuse failure due to prefix context mismatch.

trieval on Qwen-2.5-7B-Instruct.

Figure 2: Limitations of plaintext-based memory: accuracy degradation and prefix cache reuse failure.

2 BACKGROUND AND RELATED WORK

Prefix Caching in LLM Inference LLMs based on the Transformer architecture generate tokens autore-
gressively, with each token attending to all preceding tokens. To avoid redundant computation, the key (K)
and value (V) tensors of previous tokens are stored as KVCache, enabling the prefill phase to cache K and
V for the input prompt and the decode phase to generate new tokens by computing K and V only for the
latest token. Building on this mechanism, prefix caching accelerates inference by sharing the KVCache of
identical prefixes across requests, and has been widely adopted in recent systems to reduce computation and
latency (Kwon et al., 2023} |/Zheng et al., [2024} |Qin et al.| 2025} Yao et al.l 2025; |Gao et al., 2024)).

Plaintext-Based Memory for LLM Agents Plaintext-based methods explicitly store and manipulate
information in human-readable form. Early systems such as MemoryBank (Zhong et al., 2024) and
MemGPT (Packer et al.| [2023) rely on predefined policies for storage, integration, and retrieval. Recent
efforts shift toward structured representations, such as temporal knowledge graphs in Zep (Rasmussen et al.|
2025), atomic notes in A-MEM (Xu et al.,|2025)), and hierarchical graph memories in MemO (Chhikara et al.}
2025)), which capture relational, temporal, and hierarchical dependencies but remain rule-based. Recent ef-
forts also conceptualize memory as an operating system. MemoryOS (Kang et al.l [2025) defines dynamic
updates from short- to mid- to long-term memories, while MemOS (Li et al.| [2025)) defines unified repre-
sentation, scheduling, and evolution across different memory types. However, MemOS does not provide
detailed mechanisms for how these memory types coordinate or transform among each other. In parallel,
Memory-R1 (Yan et al., 2025) employs a reinforcement learning based manager to learn memory operations,
though at the cost of significant training overhead.

Limitations of Plaintext-Based Memory Plaintext-based memory suffers from two inherent limitations:

1) Accuracy Degradation: As shown in Figure [2[a), we evaluate the plaintext-based memory retrieval base-
line MemO (Chhikara et al., 2025) and Zep (Rasmussen et al., [2025)) on the LoCoMo benchmark with the
Qwen-2.5-7B-Instruct model, which exhibit F1 gaps of 20.8% and 17.0%, respectively, compared to full-
context inference. This highlights the difficulty of plaintext-based summarization and similarity retrieval
in capturing long-range semantic dependencies. Critical information is frequently omitted, while irrelevant
segments are introduced, both of which harm downstream reasoning.

2) Prefix Caching Invalidation: Prefix caching reuses the KV cache only when exact prompt prefixes match.
However, plaintext memory systems typically segment, summarize, or alter historical context, breaking
textual continuity. As illustrated in Figure[Jb), this textual mismatch prevents cache reuse and forces costly
recomputation of the KV cache, undermining one of the most important efficiency gains in modern LLM
inference.

Under review as a conference paper at ICLR 2026

I:l Request KVCache W/O PE I:l Request Querys I:l Attention Score
I:l Historical KVCache W/O PE Compressed Keys E Key Cache W/ PE

Q
] / (b) Memory Retrieval (c) Decoupled Position Encoding\
_—. 4 >
— Z Fusion [TTTTITTITT] 2
= V i Unified ®
ifi il
Kv v [OTiT2T5TATST6I7T8] pogiion | (3|
=3 O nswer
Request | il | & [1T1T] e
| | "K Attention Estimation Topk Seletion] /
1! TRetrievaI
((a) Key Compression (d) Memory Pool w Compressed Keys)
m=m=s=s o q Store
L LY N
Keys Compressed Ke: !) ;
\BS x'dim 1x dim Historical KVCache Y,

Figure 3: The architectural overview of MemArt.

3 MEMART: KVCACHE-CENTRIC AGENT MEMORY

To improve both performance and efficiency of agent inference, we propose MemArt, a new paradigm we
term KVCache-centric memory. Instead of using plaintext, MemArt stores the KV cache as LLM-native
memory. For each new request, MemAurt identifies the most relevant historical KV blocks via latent-space
attention and seamlessly reuses them for prefill. This design inherently yields three advantages: superior
retrieval accuracy, dramatic gains in inference efficiency, and seamless plug-and-play integration. We now
detail the MemArt framework and its core algorithmic components.

3.1 OVERALL FRAMEWORK

To enable efficient storage, retrieval, and reuse of KVCache-centric memory, MemArt adopts the framework
shown in Figure[3] which comprises four key components:

a) Key Compression: Historical memory is stored as fixed-size KV blocks, each assigned a com-
pressed key derived from its key set, providing a lightweight index that reduces retrieval overhead.

b) Memory Retrieval: For a new query request, attention scores are computed between the Q heads
of all query tokens and compressed keys. The top-k most relevant KV blocks are selected via
multi-token aggregation retrieval and reused in the prefill phase.

c) Decoupled Position Encoding: Since historical memory may exceed the context window of LLMs,
positional misalignment can weaken attention and degrade inference. To address this, KV blocks
are stored without positional encodings and later re-embedded with new encodings after retrieval,
ensuring alignment within the current context window and consistency for downstream attention.

d) Memory Pool: A centralized memory pool manages the collection of KV blocks, each indexed by
its compressed key for efficient organization and access.

Building on these components, the inference workflow follows Algorithm[I} (i) retrieve query-relevant mem-
ory using compressed keys, (ii) concatenate the retrieved KV blocks with the KV cache of the query request,
(iii) re-embed new positional encodings to align within the context window, and (iv) compute memory-
augmented attention. Meanwhile, the memory pool is asynchronously updated with newly generated KV
cache and its compressed keys. Formally, the process is given by:

O = Attn(EmbPE(Q, Concat(K s, K)), Concat(Vas, V) (1)

where K, Vs denotes the KV blocks retrieved from MemArt.

Under review as a conference paper at ICLR 2026

Algorithm 1 Inference Workflow with MemArt
1: Input: Current Query @, Current KVCache (K cyrry Veyrr)

2: Memory: Compressed Indices CompK, Memory Pool (K ,em, Vinem)
Memory Augmented Generation
3: (K, Vi) Retrieve(Q, CompK) # Query-Aware Memory Retrieval
4: Kgug < Concat(Knr, Keurr), Vaug < Concat(Var, Veurr) # Memory Integration
5: Q' Kpyy < EmbPE(Q, Koug) # Align positional encodings
6: O < Attention(Q', K, Vaug) # Augmented Attention Computation
Memory Pool Update (Asynchronous)
7. Kme'm — Append(Kmem> Kcurr)a Vmem — Append(Vmem; V;:urr)
8: CompK <+ Append(CompK, Compress(K) # Key Compression

9: Return: Output O

3.2 ALGORITHM DESIGN

This subsection details the design of the core components of MemArt, including the key compression algo-
rithm, the memory retrieval strategy, and the decoupled positional encoding.

3.2.1 AABB-BASED KEY COMPRESSION

The generated KV cache is partitioned into memory blocks of size BS and stored in a memory pool. To en-
able efficient retrieval, each key block K is compressed into an axis-aligned bounding box (AABB) (Van den
Bergenl, (1997} |Cai et al.| [2014; |Chen et al., [2024), defined by the maximum and minimum vectors that en-
close all key vectors within the block, as shown in Equation [2] This compact representation preserves
coarse-grained semantic information while avoiding exhaustive comparisons with individual key vectors,
thereby enabling rapid and accurate retrieval.

min B~S B-S S 1xdi
sS(K) = (mink; 1, mink; o, ..., mink; gip,) € R4
i=1 i=1 i=1 ?)
BS BS BS ;
S"N(K) = (malx ki1, max kioy..., max ki dim) € RIXdim
1= 1= 1=

AABB compression is well-suited for high-dimensional keys because it is lightweight (2 x dim values per
block), preserves coordinate-wise extrema without distortions from projections like principal component
analysis (PCA) (Hotelling, |1933)), and provides a natural coarse-grained filter before fine-grained attention.

3.2.2 MULTI-TOKEN AGGREGATION BASED MEMORY RETRIEVAL

Our retrieval process operates at the block level, building on the principle that neighboring keys in a KV
cache often share semantic importance (Jiang et al., [2024). To do this efficiently, we retrieve memory at
the block level using the compressed keys introduced earlier. Following Arkvale (Chen et al., 2024), the
relevance between a single query token ¢ € R4 and block K € RE>*dm 5 defined as the maximum
dot product:

dim

I(q,K) = max (g:s]"*" (K), qis]""(K)) 3
i=1

This formulation provides an upper-bound estimate of the attention scores between ¢ and all keys within
K, without exhaustively comparing each key. Consequently, I(q, K1) > I(q, K3) indicates that block K
contains at least one key vector whose attention with g exceeds that of every key in Ks.

Under review as a conference paper at ICLR 2026

Table 1: Formulations of normalization and aggregation strategies for multiple token relevance scoring.

Normalization = Aggregation Formula for 7(Q, K) Notes
exp(I(g, K))

Softmax Sum Sharp normalization;
q€Q Yrrex exp(I(q, K")) Balances all tokens.
I(q, K
Softmax Max max exp(I(q, 7) 7 Sharp normalization;
9€Q Yok 'eK exp((g, K7)) Selects the strongest token.
Reciprocal Rank Sum Z _r Smooth normalization;
a€Q rankg (K) + ¢ Balances all tokens.
1
Reciprocal Rank Max max —————— Smooth normalization;

acQ rankg(K) + ¢ Selects the strongest token.

Nevertheless, unlike the decoding scenario that Arkvale targets (Chen et al.l [2024), which uses a single
query token, agent memory retrieval occurs during prefill and must account for a multi-token prompt Q).
This introduces a key challenge: relevance scores from different query tokens are not directly comparable,
and different tokens may prioritize different memory blocks. A naive aggregation (e.g., averaging) would
dilute these varied signals.

To create a unified relevance score for the entire prompt, we introduce a two-step aggregation procedure:
I(QaK:) = Aggqu (NormKEK (I(an>)) (4’)

Here, KC denotes the collection of all compressed keys. The process works as follows: (1) Normalize per
Token: For each query token ¢ € @, we first normalize its relevance scores {I(q, K) | K € K} across
all compressed keys. This crucial step makes the scores from different tokens comparable. (2) Aggregate
across Tokens: Next, we aggregate these normalized scores across all query tokens to produce a single, final
relevance score for each block.

We systematically consider several strategies for these two steps (Table [I)). For Normalization, we can use
Softmax to amplify the strongest signals or Reciprocal-Rank to create a smoother distribution that is less
sensitive to outliers (Cormack et al.| 2009). For Aggregation, we can employ Sum to weigh evidence from
all tokens and Max to prioritize the single strongest token-block interaction.

Finally, based on the aggregated scores I(Q, K), we select the top-k memory blocks. For efficiency, the
same set of k blocks is selected for all attention heads. These blocks are then concatenated in their original
chronological order to preserve temporal consistency for the final prefill computation.

3.2.3 DECOUPLED POSITIONAL ENCODING

A major challenge in reusing KV cache as long-term memory is the misalignment of positional embed-
dings across temporal spans. Cached key-value states with their original positional encodings can cause (i)
incoherent attention when historical tokens’ positions no longer match their locations in the reconstructed
sequence, and (ii) positions exceeding the model’s context window, leading to inference failure.

We address this by decoupling positional information from the stored KV cache. During storage, we omit
the rotary positional encoding (RoPE) (Su et al., 2024) and preserve only content-dependent KV cache:

K™ = Wy, V™ = W,)
where x; is the hidden state of the ¢-th token, and Wy, W, are the key and value projection matrices. At
inference, after retrieving top-k memory blocks { K, ..., K%} based on the current query @, the memory

Under review as a conference paper at ICLR 2026

tokens are concatenated in historical order and re-encoded with a unified positional scheme:
Qj = Bpn@j", Kj =Ry K7™, Vy = Vi, 6)

where p(-) is the absolute position in the concatenated sequence and the RoPE rotation matrix R,,. This
ensures queries and historical memory share consistent positional information.

For example, if a query @ contains three tokens and one memory block { K¢, K17, ..., Ka3} is selected,
after concatenation, the Ks in the memory block are reassigned positions p(KX) = [0, 1,. .., 7] and the query
tokens have p(Q) = [8,9, 10]. Applying RoPE re-encodes all tokens into a unified positional space, enabling
coherent attention across memory and query.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets and Models We adopt the LoCoMo benchmark (Maharana et al., [2024])), a widely used suite for
assessing long-term conversational memory in agent systems. It comprises 10 conversations, each contain-
ing an average of 589 dialogues and 13,960 words. To enable precise evaluation, each dialogue is paired
with approximately 200 questions and their corresponding correct answers, allowing models to be tested
on retrieving specific details from the full conversation history. We exclude the adversarial subset, as it
does not provide ground-truth answers. We implement MemArt on top of HuggingFace Transformers (Wolf]
et al.| |2020), and all experiments are conducted on LLaMA-3.1-8B-Instruct (Grattafiori et al., |2024) and
Qwen-2.5-7B-Instruct (Yang et al., [2025).

Metrics Following prior work (Chhikara et al., 2025} L1 et al.,[2025), we evaluate inference accuracy using
two categories of metrics: lexical similarity and semantic correctness. Lexical similarity is measured with
F1 Score (F1) and BLEU-1 (B1), which capture token-level overlap. Semantic correctness is measured with
BERTScore-F1 (BERT) and cosine similarity (Sim) over sentence embeddings, reflecting meaning-level
alignment. The average of these four metrics provides a more holistic measure of generation quality.

Baselines We compare MemArt against following representative baselines: (1) Full-Context Inference:
The entire dialogue history is provided as input to the LLMs. (2) Zep: A retrieval-oriented agent that
implements structured memory access strategies, enabling effective reasoning over temporally extended and
multi-turn queries (Rasmussen et al.} 2025). (3) Mem0: A modular memory architecture featuring explicit
in-context memory operations, designed to facilitate scalable deployment while maintaining high retrieval
fidelity (Chhikara et al.,2025)).

4.2 MAIN RESULTS

We evaluate MemArt against MemO and Zep on the LoCoMo benchmark using LLaMA-3.1-8B-Instruct
and Qwen-2.5-7B-Instruct. For fairness, we tune the retrieval hyperparameters of all methods to yield com-
parable KV lengths during decoding. Specifically, MemArt adopts a block size of 16 with top-k = 128
(Softmax-Max) for LLaMA and top-k = 256 (RR-Max) for Qwen. MemO is configured with top-k = 100
(LLaMA) and 150 (Qwen), while Zep uses 20 (LLaMA) and 25 (Qwen).

4.2.1 PERFORMANCE COMPARISON

Table [2] shows the performance comparison of MemArt and the baselines on LoCoMo. MemArt achieves
99.9% of the FullContext accuracy on LLaMA and 98.9% on Qwen, indicating that it can nearly match

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison between MemArt and baselines on the LoCoMo benchmark. Models
are assessed on F1, B1, BERT, and Sim metrics (higher is better). Aver.S denotes the average score across
metrics. Best scores are highlighted in bold, and second-best scores are underlined.

LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct
F1 B1 BERT Sim Aver.S F1 B1 BERT Sim AverS

FullContext | 48.12 40.34 6424 7410 56.70 | 4245 3579 61.52 7097 52.68
Zep 30.60 24.67 4576 6498 4150 | 35.06 28.14 56.60 66.72 46.63
MemO 26.86 21.60 53.18 6093 40.64 | 3347 2836 57.68 6655 46.51
MemArt 47.72 4029 64.25 7443 56.67 | 41.67 3354 6192 7135 52.12

Method

Table 3: Efficiency comparison between MemArt and baselines on the LoCoMo benchmark.

Method LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct
of Prefill Tokens KV Lengths in Decode | # of Prefill Tokens KV Lengths in Decode
FullContext 21,892 21,912 22,125 22,145
Zep 3,285 3,305 4,160 4,180
MemO 2911 2,931 4,982 5,002
MemArt 32 2,100 37 4,153

full-context generation while retrieving only a subset of memory. Compared with Zep and Mem0O, MemArt
improves the accuracy by 36.5% and 39.4% for LLaMA and 11.8% and 12.1% for Qwen, respectively.

4.2.2 EFFICIENCY ANALYSIS

Table[3|reports the efficiency of MemArt against baselines on LoCoMo. Prefill efficiency is measured by the
number of tokens computed per request, while decode efficiency is measured by the effective KV length.

For prefill, MemArt requires only 32 and 37 tokens on average for each request with LLaMA and Qwen,
respectively, since it computes only the new query while reusing retrieved KV blocks. In contrast, plaintext-
based methods (Zep, Mem0) must recompute all retrieved tokens, leading to 91-135x more prefill tokens.
Compared with FullContext inference, MemAurt achieves an additional 598-684 x reduction.

For decoding, MemArt processes only the KV blocks selected for retrieval plus the current KV cache of
query, reducing KV length by 0.6%—36.4% over Zep and MemO and by 81.2%-90.4% over FullContext.

End-to-end latency results in Figure @] confirm these gains: despite KV selection and I/0 overhead, MemAut
delivers up to 2.26x and 2.38 x speedup over Zep and Mem0, and 11.6-15.8 x speedup over FullContext.

4.2.3 ABLATION STUDY

Figure [5] evaluates different multi-token aggregation retrieval strategies in MemArt on LLaMA and Qwen.
Each memory block is scored by normalizing per-token relevance I(Q, K) (Table (1)) and aggregating across
query tokens. We compare Softmax vs. Reciprocal Rank (RR) normalization, Sum vs. Max aggregation,
and varying block sizes.

Results show that Max aggregation consistently outperforms Sum, especially with fewer retrieved tokens,
highlighting the benefit of emphasizing the strongest query-block interaction. Between normalization meth-
ods, Softmax and RR perform similarly on LLaMA, while RR-Max is superior on Qwen. Retrieval accuracy
is largely insensitive to block size (8 vs. 16). In general, the choice of aggregation dominates the retrieval
quality, while normalization and block size play secondary roles.

Under review as a conference paper at ICLR 2026

1 Prefill 771 Decode 1 Prefill 771 Decode
FullContext 17 04+3.12 o) FullContext 4 5342.49 e
x7. X5.
2€P12,07+0.8; 2€P12,15+0.89
x7.4 x4.9
Mem013.94+0.7 Mem015.56+0.94 |~
15.8 11.6
MemArt 1o, 6546.63 MemArt 19 6440783
0 2 4 16 18 20 0 2 4 12 14 16
Average Latency (s) Average Latency (s)
(a) Average latency on LLaMA-3.1-8B-Instruct. (b) Average latency on Qwen-2.5-7B-Instruct.

Figure 4: The average request execution latency of different methods.

—o— MAX SUM —m— RR_MAX RR_SUM
— . |
= B]
f<7 50] 50
550 50 -
3 45 25
3 40
<40 40 40
35
30 35
2k 4k 6k 8k 2k 4k 6k 8k 2k 4k 6k 8k 2k 4k 6k 8k
of Selected KV tokens # of Selected KV tokens # of Selected KV tokens # of Selected KV tokens

(a) LlaMA, Block Size 8 (b) LlaMA, Block Size 16 (c) Qwen, Block Size 8 (d) Qwen, Block Size 16

Figure 5: Ablation study of multi-token aggregation retrieval strategies.

5 DISCUSSIONS

Differences from Sparse Attention Methods Dynamic sparse attention methods such as InfLLM (Xiao
et al.,|2024), Quest (Tang et al.| 2024), ArkVale (Chen et al.| 2024), and NSA (Yuan et al., 2025) retain the
entire active KV cache and dynamically select important blocks at each decoding step. In contrast, MemArt
treats historical KV cache as external memory, retrieving relevant blocks once during prefill using all query
tokens. Despite this fundamental difference, both approaches share the principle of leveraging attention
scores to identify important KV blocks.

Memory Access Efficiency Accessing the memory pool for reads and writes may introduce non-trivial
latency, potentially offsetting the efficiency gains of the proposed paradigm. To fully realize the benefits of
KVCache-based memory, effective management strategies—such as asynchronous I/O, pipeline optimiza-
tion, hierarchical HBM-DRAM management—are required. We leave such system-level optimizations to
future work, as they are orthogonal to the algorithmic contributions of this paper.

6 CONCLUSION

This paper introduced MemArt, a paradigm that shifts agent memory from plaintext to the LLM’s native KV
cache. Our experiments on the LoCoMo benchmark show that this KVCache-centric approach is not only
dramatically more efficient—reducing prefill tokens by over 90 x—but also more accurate, improving accu-
racy by over 11%. Our work demonstrates that operating in the model’s latent state is a more powerful and
promising foundation for agent memory. Future research could explore learned KV cache compression and
more sophisticated retrieval strategies. The code for MemArt will be made publicly available to encourage
further exploration in this direction.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide the necessary code, datasets, evaluation scripts, and the raw data used to derive our experimental
conclusions in the supplementary material to ensure reproducibility.

REFERENCES

Amazon Web Services. Add memory to your ai agent — amazon bedrock agentcore docu-
mentation. https://docs.aws.amazon.com/bedrock—agentcore/latest/devguide/
memory .html} 2025.

Panpan Cai, Chandrasekaran Indhumathi, Yiyu Cai, Jianmin Zheng, Yi Gong, Teng Sam Lim, and Peng
Wong. Collision detection using axis aligned bounding boxes. In Simulations, Serious Games and Their
Applications, pp. 1-14, 2014.

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, Size Zheng, Xiuhong Li, Xuechao Wei, Shengen Yan,
Meng Li, and Yun Liang. Arkvale: Efficient generative 1lm inference with recallable key-value eviction.
In Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems, pp.
113134-113155, 2024.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413, 2025.

Gordon V Cormack, Charles L A Clarke, and Stefan Biittcher. Reciprocal rank fusion outperforms condorcet
and individual rank learning methods. In Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval, pp. 758759, 2009.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou
Yu, and Pengfei Zuo. Cost-efficient large language model serving for multi-turn conversations with cache-
dattention. In Proceedings of the 2024 USENIX Annual Technical Conference, pp. 111-126, 2024.

Google DeepMind. Gemini 2.5 pro. https://blog.google/technology/google—deepmind/
gemini-model-thinking-updates—-march-2025/, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, and et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24(6):417—-441, 1933.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference 1.0: Accelerat-
ing pre-filling for long-context LLMs via dynamic sparse attention. In Proceedings of the Thirty-eighth
Annual Conference on Neural Information Processing Systems, pp. 52481-52515, 2024.

Jiazheng Kang, Mingming Ji, Zhe Zhao, and Ting Bai. Memory os of ai agent. arXiv preprint
arXiv:2506.06326, 2025.

10

https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/memory.html
https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/memory.html
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuyun Liu, Haiyang Zheng, Xi Li, Ying Zhang, Ziyan Fu, Yuhong Han, Xing Huang, and
Zhaonan Zhao. Efficient memory management for large language model serving with pagedattention. In
Proceedings of the 29th ACM Symposium on Operating Systems Principles, pp. 611-626, 2023.

Zhiyu Li, Shichao Song, Chenyang Xi, Hanyu Wang, Chen Tang, Simin Niu, Ding Chen, Jiawei Yang,
Chunyu Li, Qingchen Yu, Jihao Zhao, Yezhaohui Wang, Peng Liu, Zehao Lin, Pengyuan Wang, Jiahao
Huo, Tianyi Chen, Kai Chen, Kehang Li, Zhen Tao, Huayi Lai, Hao Wu, Bo Tang, Zhenren Wang,
Zhaoxin Fan, Ningyu Zhang, Linfeng Zhang, Junchi Yan, Mingchuan Yang, Tong Xu, Wei Xu, Huajun
Chen, Haofen Wang, Hongkang Yang, Wentao Zhang, Zhi-Qin John Xu, Siheng Chen, and Feiyu Xiong.
Memos: A memory os for Al system. arXiv preprint arXiv:2507.03724, 2025.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and Yiling Lou. Large
language model-based agents for software engineering: A survey. arXiv preprint arXiv:2409.02977,2024.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei Fang.
Evaluating very long-term conversational memory of llm agents. arXiv preprint arXiv:2402.17753,2024.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez. Memgpt:
Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin Zheng,
and Xinran Xu. Mooncake: Trading more storage for less computation—a kvcache-centric architecture
for serving llm chatbot. In Proceedings of the 23rd USENIX Conference on File and Storage Technologies,
pp- 155-170, 2025.

Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: A temporal
knowledge graph architecture for agent memory. arXiv preprint arXiv:2501.13956, 2025.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568(C), 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: query-aware
sparsity for efficient long-context llm inference. In Proceedings of the 41st International Conference on
Machine Learning, pp. 47901-47911, 2024.

Gino Van den Bergen. Efficient collision detection of complex deformable models using AABB trees.
Journal of Graphics Tools, 2(4):1-13, 1997.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large language model
based autonomous agents. Frontiers of Computer Science, 18(6), 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 38—45, 2020.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, and
Maosong Sun. InfLLM: Training-free long-context extrapolation for LLMs with an efficient context mem-
ory. In Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems,
pp. 119638-119661, 2024.

11

Under review as a conference paper at ICLR 2026

Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies, and
applications. arXiv preprint arXiv:2506.12594, 2025.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory
for 1lm agents. arXiv preprint arXiv:2502.12110, 2025.

Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen Ma, Hinrich
Schiitze, Volker Tresp, and Yunpu Ma. Memory-rl: Enhancing large language model agents to manage
and utilize memories via reinforcement learning. arXiv preprint arXiv:2508.19828, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2025.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and
Zexi Jiang. Cacheblend: Fast large language model serving for rag with cached knowledge fusion. In
Proceedings of the 20th European Conference on Computer Systems, pp. 94-109, 2025.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, Yuxing
Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang, and Wangding
Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse attention. In Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics, pp. 23078-23097, 2025.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured lan-

guage model programs. Proceedings of the Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, pp. 62557-62583, 2024.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: enhancing large lan-
guage models with long-term memory. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial
Intelligence, 2024.

A APPENDIX

A.1 STATEMENT ON THE USE OF LLMS

We used a large language model (ChatGPT) solely as a writing assistant to polish the language of this paper,
such as improving grammar and clarity. The model was not involved in research ideation, methodological
design, data analysis, or interpretation of results. All scientific content and conclusions were conceived and
verified entirely by the authors.

A.2 STRATEGY ABLATION ACROSS MULTIPLE METRICS

Figure[6|provides a granular view of the retrieval strategy ablation study, broken down by evaluation metric.
The results reinforce the main findings presented in the body of the paper. We observe several consistent
trends across all model and block-size configurations:

e Max aggregation is consistently superior to Sum, especially when retrieving a smaller number of
tokens.

12

Under review as a conference paper at ICLR 2026

—o— MAX SUM —m— RR_MAX RR_SUM

2k 4k 6k 8k 2k 4k 6k 8k 2k 4k 6k 8k 2k 4k 6k 8k
of Selected KV tokens # of Selected KV tokens # of Selected KV tokens # of Selected KV tokens
(a) LlaMA, Block 8 (b) LIaMA, Block 16 (c) Qwen, Block 8 (d) Qwen, Block 16

Figure 6: Ablation study of retrieval strategies on LLaMA and Qwen models with block sizes 8 and 16,
evaluated across F1, B1, BERT, and Sim metrics.

* On LLaMA, Softmax and Reciprocal-Rank (RR) normalization perform comparably, while the
RR-Max combination yields the best results on Qwen.

 Retrieval accuracy shows low sensitivity to block size (8 vs. 16), suggesting the approach is robust.

Overall, the aggregation method is the dominant factor in retrieval quality, with normalization and block size
playing secondary roles.

A.3 THE IMPORTANCE OF DECOUPLED POSITIONAL ENCODING

The necessity of decoupling positional encodings for reliable long-term memory is illustrated in the case
study shown in Figure[7} In this experiment, we load the system with a large historical context (approx. 1M
tokens) and compare performance with and without our decoupling mechanism.

As shown, when reusing KV cache with the standard, coupled positional encoding, the model’s positional
awareness breaks down once the context length exceeds its native window size. This misalignment leads to a
catastrophic failure, resulting in degenerative, repetitive text. In contrast, our decoupled positional encoding
mechanism completely resolves this issue, enabling the model to correctly utilize information from the

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Coupled Positional Encoding Decoupled Positional Encoding

Context
Prior conversation of about 1M tokens.

Question

What did Caroline research?

Please answer the last question in few words
and do not repeat the answer above:

Answer
the the the the the the the the the the

J

\

Context
Prior conversation of about 1M tokens.

Question

What did Caroline research?

Please answer the last question in few words
and do not repeat the answer above:

Answer
Adoption agencies.

Figure 7: Case study on the importance of positional encoding decoupling for long-term memory.

distant past and generate a coherent answer. This demonstrates that decoupling is not just an optimization

but an essential component for enabling robust, long-term memory in KVCache-centric systems.

14

	Introduction
	Background and Related Work
	MemArt: KVCache-Centric Agent Memory
	Overall Framework
	Algorithm Design
	AABB-Based Key Compression
	Multi-token Aggregation Based Memory Retrieval
	Decoupled Positional Encoding

	Evaluation
	experimental setup
	Main Results
	Performance Comparison
	Efficiency Analysis
	Ablation Study

	Discussions
	Conclusion
	Appendix
	Statement on the Use of LLMs
	Strategy Ablation Across Multiple Metrics
	The Importance of Decoupled Positional Encoding

