Under review as a conference paper at ICLR 2026

KVCACHE-CENTRIC MEMORY FOR LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM agents in complex, long-horizon workflows are constrained by the model’s context
window. Current plaintext-based memory systems suffer from unstable retrieval accu-
racy and disrupt prefix caching, harming both performance and efficiency. We propose
MemArt, a novel memory paradigm that operates directly within the LLM-native for-
mat: the key-value (KV) cache. Instead of using plaintext, MemAurt stores conversational
turns as reusable KV cache blocks and retrieves relevant memories by computing attention
scores in latent space. To enable accurate and efficient retrieval, we develop a multi-token
aggregation retrieval strategy that uses compressed keys for efficient KV selection and a
decoupled position encoding mechanism to ensure retrieved blocks are safely and coher-
ently reused. On the LoCoMo benchmark, MemArt improves accuracy by over 11% (up
to 39.4%) compared to state-of-the-art plaintext-based memory methods, nearly matching
full-context performance. Critically, it achieves this while reducing prefill tokens by over
two orders of magnitude (91-135x), representing a significant leap forward for building
powerful and efficient long-context agents.

1 INTRODUCTION

“The true art of memory is the art of attention.” — Samuel Johnson, English writer

Large language model (LLM) agents are emerging as a new paradigm for applying foundation models in
complex, real-world workflows, including scientific exploration (e.g., deep research (Xu & Pengl 2025)),
coding assistants (Liu et al.| [2024), and autonomous task planning systems (Wang et al.| [2024a). Unlike
single-turn prompting or short-lived chatbots, these agents are designed to operate over extended horizons,
often spanning hours or days of execution and involving tens to hundreds of iterative LLM calls. During
such long-running sessions, agents continuously accumulate rich context that quickly grows beyond the
context window of even frontier models with million-token capacities (Google DeepMind, 2025)). To address
this scalability bottleneck, recent work has introduced external memory systems that store and selectively
retrieve historical context (Chhikara et al., 2025} Rasmussen et al., |2025; |JAmazon Web Services|, 2025]).
Such memory mechanisms are essential for sustaining reasoning efficiency, accuracy, and robustness in
long-horizon agent workflows.

Most deployed memory systems, including MemO (Chhikara et al.l 2025), Zep (Rasmussen et al., [2025)),
and AWS AgentCore memory (Amazon Web Services,, 2025), adopt plaintext-based memory. They segment
or summarize historical context into sentence-level memory entries, which are then indexed and retrieved
using vector databases or graph structures. While straightforward, this approach exhibits two fundamental
limitations. First, context summarization and retrieval based on vector similarity or graph traversal often fail
to preserve the full semantic dependencies of long, multi-turn interactions. As a result, the retrieved memory
may omit critical context or include irrelevant information, leading to degraded LLM inference performance
compared to full-context inference. Second, the segmentation and summarization of historical context into
discrete memory entries disrupts the natural sequential structure of prompt prefixes. Modern LLM engines

Under review as a conference paper at ICLR 2026

1
Prompt : Prompt
é —»| | The true art of memory is Introduce — : é_, Introduce —_— ——> Answer
the art of attention Samuel Johnson 1 Samuel Johnson
Agent . S ~ LLM | Agent S LLm
Plaintext-based Memory[2) Query@ ‘ X Query[@ S
Save l TRetrievaI Answer | Save l I Retrieval
1
1
Plaintext-based Memory | KVCache-centric Memory é E 13
(a) Plaintext-based Memory Paradigm (b) KVCache-centric Memory Paradigm

Figure 1: Paradigm comparison between plaintext-based memory and KVCache-centric memory. In the
plaintext paradigm (a), the agent must explicitly retrieve and insert memory into the prompt, which often
leads to inaccurate retrieval and breaks prefix caching. In the KVCache-centric paradigm (b), the LLM
natively stores and reuses KV blocks, so the agent only issues the new query, enabling more accurate retrieval
in latent space and efficient prefill reuse.

accelerate inference using prefix caching (Qin et al.| 2025} |Gao et al.|[2024;[Zheng et al.,[2024)—reusing the
key-value (KV) cache of shared prefixes across calls—but segmented and summarized memory introduces
prefix discontinuities, undermining these efficiency gains.

We propose MemArt, a new memory paradigm that shifts from plaintext-based memory to KVCache-centric
memory to enhance both performance and efficiency. As illustrated in Figure [I] instead of managing plain-
text, MemAurt stores historical context directly as reusable KV blocks and retrieves relevant memory by
computing attention scores between the current prompt and the stored KV blocks in latent space. This ap-
proach offers three key advantages: (1) High-Fidelity Retrieval: Operating in latent space allows retrieval
to align directly with the model’s attention mechanism, offering superior semantic accuracy compared to
methods relying on plaintext similarity. (2) Maximal Inference Efficiency: Retrieved KV blocks are directly
reused during prefill, eliminating redundant token processing and significantly reducing computational over-
head and latency. (3) Seamless Integration: The entire framework is model-agnostic and functions as a
plug-and-play component, requiring no modifications to model weights or architecture.

Despite its promise, achieving KVCache-centric memory introduces two key challenges. First, how can we
perform high-fidelity retrieval without a full memory scan? As the memory grows, exhaustively scanning
every KV block to find the most relevant ones becomes computationally prohibitive. The challenge lies in
designing a mechanism that can quickly identify the most salient memories from a large repository without
sacrificing accuracy. Second, how to ensure the safe reuse of retrieved KV blocks? A standard KV cache
that can reuse corresponds to a single, contiguous prefix. Retrieved blocks, however, are non-contiguous
and carry their original positional information. Simply concatenating them creates a positionally incoherent
sequence that disrupts the model’s attention, ultimately harming output quality.

For efficient and accurate retrieval, MemArt first computes a compressed representative key for each KV
block to enable a fast search that avoids a full memory scan. It then employs a multi-token aggregation
retrieval strategy that synthesizes attention scores from all prompt tokens to ensure the final selection is
highly relevant. For safe reuse, MemArt uses a decoupled position encoding mechanism. This component
validates and adjusts the positional information of retrieved blocks, guaranteeing they can be integrated into
the current context without creating positional conflicts.

We evaluate MemArt on the widely used LoCoMo benchmark (Maharana et al., 2024). Experimental
results show that MemArt improves inference accuracy by 11.8-39.4% over state-of-the-art plaintext-based
memory approaches, approaching the performance of full-context inference. Critically, it reduces 91-135x
prefill tokens over plaintext-based memory approaches. These results highlight KVCache-centric memory
as a promising foundation for accurate and efficient long-context LLM agents.

Under review as a conference paper at ICLR 2026

A
Memo e -20.8% é Prgmpt e e — | NewKV
em " —> umma uel
9 Agent 2 2 LLM Cache
-] - 0 .)
£ zep 35.06 &A’ Queryl TRetrievaI Search l T Mismatch x
[]
= |5ummaryg |Summaryé |5ummaryé |Context0| |Context1| |Context2|
FullContext 42.25 3 7 3
PrefixKV | | PrefixKV| | PrefixkKV
0 10 20 30 40
F1 Score Context0| | Contextl| |Context2 Cache0 Gl Cache2
(a) Accuracy loss of plaintext-based memory re- (b) Prefix cache reuse failure due to prefix context mismatch.

trieval on Qwen-2.5-7B-Instruct.

Figure 2: Limitations of plaintext-based memory: accuracy degradation and prefix cache reuse failure.

2 BACKGROUND AND RELATED WORK

Prefix Caching in LLM Inference LLMs based on the Transformer architecture generate tokens autore-
gressively, with each token attending to all preceding tokens. To avoid redundant computation, the key (K)
and value (V) tensors of previous tokens are stored as KVCache, enabling the prefill phase to cache K and
V for the input prompt and the decode phase to generate new tokens by computing K and V only for the
latest token. Building on this mechanism, prefix caching accelerates inference by sharing the KVCache of
identical prefixes across requests, and has been widely adopted in recent systems to reduce computation and
latency (Kwon et al., 2023} |/Zheng et al., [2024} |Qin et al.| 2025} Yao et al.l 2025; |Gao et al., 2024)).

Plaintext-Based Memory for LLM Agents Plaintext-based methods explicitly store and manipulate
information in human-readable form. Early systems such as MemoryBank (Zhong et al., 2024) and
MemGPT (Packer et al.| [2023) rely on predefined policies for storage, integration, and retrieval. Recent
efforts shift toward structured representations, such as temporal knowledge graphs in Zep (Rasmussen et al.|
2025), atomic notes in A-MEM (Xu et al.,|2025)), and hierarchical graph memories in MemO (Chhikara et al.}
2025)), which capture relational, temporal, and hierarchical dependencies but remain rule-based. Recent ef-
forts also conceptualize memory as an operating system. MemoryOS (Kang et al.l [2025) defines dynamic
updates from short- to mid- to long-term memories, while MemOS (Li et al.| [2025)) defines unified repre-
sentation, scheduling, and evolution across different memory types. However, MemOS does not provide
detailed mechanisms for how these memory types coordinate or transform among each other. In parallel,
Memory-R1 (Yan et al., 2025) employs a reinforcement learning based manager to learn memory operations,
though at the cost of significant training overhead.

Limitations of Plaintext-Based Memory Plaintext-based memory suffers from two inherent limitations:

1) Accuracy Degradation: As shown in Figure [2[a), we evaluate the plaintext-based memory retrieval base-
line MemO (Chhikara et al., 2025) and Zep (Rasmussen et al., [2025)) on the LoCoMo benchmark with the
Qwen-2.5-7B-Instruct model, which exhibit F1 gaps of 20.8% and 17.0%, respectively, compared to full-
context inference. This highlights the difficulty of plaintext-based summarization and similarity retrieval
in capturing long-range semantic dependencies. Critical information is frequently omitted, while irrelevant
segments are introduced, both of which harm downstream reasoning.

2) Prefix Caching Invalidation: Prefix caching reuses the KV cache only when exact prompt prefixes match.
However, plaintext memory systems typically segment, summarize, or alter historical context, breaking
textual continuity. As illustrated in Figure[Jb), this textual mismatch prevents cache reuse and forces costly
recomputation of the KV cache, undermining one of the most important efficiency gains in modern LLM
inference.

Under review as a conference paper at ICLR 2026

I:l Request KVCache W/O PE I:l Request Querys I:l Attention Score
I:l Historical KVCache W/O PE Compressed Keys E Key Cache W/ PE

Q
] / (b) Memory Retrieval (c) Decoupled Position Encoding\
_—. 4 >
— Z Fusion [TTTTITTITT] 2
= V i Unified ®
ifi il
Kv v [OTiT2T5TATST6I7T8] pogiion | (3|
=3 O nswer
Request | il | & [1T1T] e
| | "K Attention Estimation Topk Seletion] /
1! TRetrievaI
((a) Key Compression (d) Memory Pool w Compressed Keys)
m=m=s=s o q Store
L LY N
Keys Compressed Ke: !) ;
\BS x'dim 1x dim Historical KVCache Y,

Figure 3: The architectural overview of MemArt.

3 MEMART: KVCACHE-CENTRIC AGENT MEMORY

To improve both performance and efficiency of agent inference, we propose MemArt, a new paradigm we
term KVCache-centric memory. Instead of using plaintext, MemArt stores the KV cache as LLM-native
memory. For each new request, MemAurt identifies the most relevant historical KV blocks via latent-space
attention and seamlessly reuses them for prefill. This design inherently yields three advantages: superior
retrieval accuracy, dramatic gains in inference efficiency, and seamless plug-and-play integration. We now
detail the MemArt framework and its core algorithmic components.

3.1 OVERALL FRAMEWORK

To enable efficient storage, retrieval, and reuse of KVCache-centric memory, MemArt adopts the framework
shown in Figure[3] which comprises four key components:

a) Key Compression: Historical memory is stored as fixed-size KV blocks, each assigned a com-
pressed key derived from its key set, providing a lightweight index that reduces retrieval overhead.

b) Memory Retrieval: For a new query request, attention scores are computed between the Q heads
of all query tokens and compressed keys. The top-k most relevant KV blocks are selected via
multi-token aggregation retrieval and reused in the prefill phase.

c) Decoupled Position Encoding: Since historical memory may exceed the context window of LLMs,
positional misalignment can weaken attention and degrade inference. To address this, KV blocks
are stored without positional encodings and later re-embedded with new encodings after retrieval,
ensuring alignment within the current context window and consistency for downstream attention.

d) Memory Pool: A centralized memory pool manages the collection of KV blocks, each indexed by
its compressed key for efficient organization and access.

Building on these components, the inference workflow follows Algorithm[I} (i) retrieve query-relevant mem-
ory using compressed keys, (ii) concatenate the retrieved KV blocks with the KV cache of the query request,
(iii) re-embed new positional encodings to align within the context window, and (iv) compute memory-
augmented attention. Meanwhile, the memory pool is asynchronously updated with newly generated KV
cache and its compressed keys. Formally, the process is given by:

O = Attn(EmbPE(Q, Concat(K s, K)), Concat(Vas, V) (1)

where K, Vs denotes the KV blocks retrieved from MemArt.

Under review as a conference paper at ICLR 2026

Algorithm 1 Inference Workflow with MemArt
1: Input: Current Query @, Current KVCache (K cyrry Veyrr)

2: Memory: Compressed Indices CompK, Memory Pool (K ,em, Vinem)
Memory Augmented Generation
3: (K, Vi) Retrieve(Q, CompK) # Query-Aware Memory Retrieval
4: Kgug < Concat(Knr, Keurr), Vaug < Concat(Var, Veurr) # Memory Integration
5: Q' Kpyy < EmbPE(Q, Koug) # Align positional encodings
6: O < Attention(Q', K, Vaug) # Augmented Attention Computation
Memory Pool Update (Asynchronous)
7. Kme'm — Append(Kmem> Kcurr)a Vmem — Append(Vmem; V;:urr)
8: CompK <+ Append(CompK, Compress(K) # Key Compression

9: Return: Output O

3.2 ALGORITHM DESIGN

This subsection details the design of the core components of MemArt, including the key compression algo-
rithm, the memory retrieval strategy, and the decoupled positional encoding.

3.2.1 AABB-BASED KEY COMPRESSION

The generated KV cache is partitioned into memory blocks of size BS and stored in a memory pool. To en-
able efficient retrieval, each key block K is compressed into an axis-aligned bounding box (AABB) (Van den
Bergenl, (1997} |Cai et al.| [2014; |Chen et al., [2024), defined by the maximum and minimum vectors that en-
close all key vectors within the block, as shown in Equation [2] This compact representation preserves
coarse-grained semantic information while avoiding exhaustive comparisons with individual key vectors,
thereby enabling rapid and accurate retrieval.

min B~S B-S S 1xdi
sS(K) = (mink; 1, mink; o, ..., mink; gip,) € R4
i=1 i=1 i=1 ?)
BS BS BS ;
S"N(K) = (malx ki1, max kioy..., max ki dim) € RIXdim
1= 1= 1=

AABB compression is well-suited for high-dimensional keys because it is lightweight (2 x dim values per
block), preserves coordinate-wise extrema without distortions from projections like principal component
analysis (PCA) (Hotelling, |1933)), and provides a natural coarse-grained filter before fine-grained attention.

3.2.2 MULTI-TOKEN AGGREGATION BASED MEMORY RETRIEVAL

Our retrieval process operates at the block level, building on the principle that neighboring keys in a KV
cache often share semantic importance (Jiang et al., [2024). To do this efficiently, we retrieve memory at
the block level using the compressed keys introduced earlier. Following Arkvale (Chen et al., 2024), the
relevance between a single query token ¢ € R4 and block K € RE>*dm 5 defined as the maximum
dot product:

dim

I(q,K) = max (g:s]"*" (K), qis]""(K)) 3
i=1

This formulation provides an upper-bound estimate of the attention scores between ¢ and all keys within
K, without exhaustively comparing each key. Consequently, I(q, K1) > I(q, K3) indicates that block K
contains at least one key vector whose attention with g exceeds that of every key in Ks.

Under review as a conference paper at ICLR 2026

Table 1: Formulations of normalization and aggregation strategies for multiple token relevance scoring.

Normalization = Aggregation Formula for 7(Q, K) Notes
exp(I(g, K))

Softmax Sum Sharp normalization;
q€Q Yrrex exp(I(q, K")) Balances all tokens.
I(q, K
Softmax Max max exp(I(q, 7) 7 Sharp normalization;
9€Q Yok 'eK exp((g, K7)) Selects the strongest token.
Reciprocal Rank Sum Z _r Smooth normalization;
a€Q rankg (K) + ¢ Balances all tokens.
1
Reciprocal Rank Max max —————— Smooth normalization;

acQ rankg(K) + ¢ Selects the strongest token.

Nevertheless, unlike the decoding scenario that Arkvale targets (Chen et al.l [2024), which uses a single
query token, agent memory retrieval occurs during prefill and must account for a multi-token prompt Q).
This introduces a key challenge: relevance scores from different query tokens are not directly comparable,
and different tokens may prioritize different memory blocks. A naive aggregation (e.g., averaging) would
dilute these varied signals.

To create a unified relevance score for the entire prompt, we introduce a two-step aggregation procedure:
I(QaK:) = Aggqu (NormKEK (I(an>)) (4’)

Here, KC denotes the collection of all compressed keys. The process works as follows: (1) Normalize per
Token: For each query token ¢ € @, we first normalize its relevance scores {I(q, K) | K € K} across
all compressed keys. This crucial step makes the scores from different tokens comparable. (2) Aggregate
across Tokens: Next, we aggregate these normalized scores across all query tokens to produce a single, final
relevance score for each block.

We systematically consider several strategies for these two steps (Table [I)). For Normalization, we can use
Softmax to amplify the strongest signals or Reciprocal-Rank to create a smoother distribution that is less
sensitive to outliers (Cormack et al.| 2009). For Aggregation, we can employ Sum to weigh evidence from
all tokens and Max to prioritize the single strongest token-block interaction.

Finally, based on the aggregated scores I(Q, K), we select the top-k memory blocks. For efficiency, the
same set of k blocks is selected for all attention heads. These blocks are then concatenated in their original
chronological order to preserve temporal consistency for the final prefill computation.

3.2.3 DECOUPLED POSITIONAL ENCODING

A major challenge in reusing KV cache as long-term memory is the misalignment of positional embed-
dings across temporal spans. Cached key-value states with their original positional encodings can cause (i)
incoherent attention when historical tokens’ positions no longer match their locations in the reconstructed
sequence, and (ii) positions exceeding the model’s context window, leading to inference failure.

We address this by decoupling positional information from the stored KV cache. During storage, we omit
the rotary positional encoding (RoPE) (Su et al., 2024) and preserve only content-dependent KV cache:

K™ = Wy, V™ = W,)
where x; is the hidden state of the ¢-th token, and Wy, W, are the key and value projection matrices. At
inference, after retrieving top-k memory blocks { K, ..., K%} based on the current query @, the memory

Under review as a conference paper at ICLR 2026

tokens are concatenated in historical order and re-encoded with a unified positional scheme:
Qi = Boy Q5™ K = By K™, V= VP™, (©)

where p(-) is the absolute position in the concatenated sequence and the RoPE rotation matrix R,,. This
ensures queries and historical memory share consistent positional information.

For example, if a query @ contains three tokens and one memory block { K¢, K17,. .., Ko3} is selected,
after concatenation, the Ks in the memory block are reassigned positions p(K) = [0, 1, ..., 7] and the query
tokens have p(Q) = [8, 9, 10]. Applying RoPE re-encodes all tokens into a unified positional space, enabling
coherent attention across memory and query.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets and Models We adopt the LoCoMo benchmark (Maharana et al.,|2024)), a widely used suite for
assessing long-term conversational memory in agent systems. It comprises 10 conversations, each contain-
ing an average of 589 dialogues and 13,960 words. To enable precise evaluation, each dialogue is paired
with approximately 200 questions and their corresponding correct answers, allowing models to be tested on
retrieving specific details from the full conversation history. We exclude the adversarial subset, as it does not
provide ground-truth answers. We implement MemArt on top of HuggingFace Transformers (Wolf et al.|
2020), and all experiments are conducted on LLaMA-3.1-8B-Instruct (Grattafiori et al., [2024)), Qwen-2.5-
7B-Instruct (Yang et al., 2025b) and Qwen-3-32B-A3B-Instruct (Yang et al.| [2025a)).

Metrics Following prior work (Chhikara et al., 2025} Li et al.|[2025)), we evaluate inference accuracy using
two categories of metrics: lexical similarity and semantic correctness. Lexical similarity is measured with
F1 Score (F1) and BLEU-1 (B1), which capture token-level overlap. Semantic correctness is measured with
BERTScore-F1 (BERT) and cosine similarity (Sim) over sentence embeddings, reflecting meaning-level
alignment. The average of these four metrics provides a more holistic measure of generation quality.

Baselines We compare MemArt against following representative baselines: (1) Full-Context Inference:
The entire dialogue history is provided as input to the LLMs. (2) Zep: A retrieval-oriented agent that
implements structured memory access strategies, enabling effective reasoning over temporally extended and
multi-turn queries (Rasmussen et al., [2025). (3) Mem0: A modular memory architecture featuring explicit
in-context memory operations, designed to facilitate scalable deployment while maintaining high retrieval
fidelity (Chhikara et al.| 2025). (4) H20: A KV cache sparse approach that retains heavy-hitter keys to
shrink the active KV set during current inference (Zhang et al., |[2023)).

4.2 MAIN RESULTS

We evaluate MemArt on the LoCoMo benchmark against MemO and Zep using LLaMA-3.1-8B-Instruct
(L3), Qwen-2.5-7B-Instruct (Q2), and Qwen-3-32B-A3B-Instruct (Q3). To ensure fairness, we tune each
method so that their KV lengths during decoding are comparable. MemArt uses a block size of 16 with
top-k=128 (Softmax-Max) for L3 and Q3, and top-£=256 (RR-Max) for Q2. Mem0 is set to top-£=100 for
L3/Q3 and 150 for Q2, while Zep uses top-k=20 for .3/Q3 and 25 for Q2. For the KV cache sparse method
H20, we configure it to use the same heavy KV cache budget as MemArt.

4.2.1 PERFORMANCE COMPARISON

Table [2| shows the performance comparison of MemArt and the baselines on LoCoMo.

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison between MemArt and baselines on the LoCoMo benchmark. Models are
assessed on F1, B1, BERT, and Sim metrics (higher is better). Aver.S denotes the average across metrics.
Best scores are in bold; second-best are underlined.

LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct Qwen-3-30B-A3B-Instruct
Fl Bl BERT Sim AverS | Fl Bl BERT Sim AverS| Fl Bl BERT Sim AverS

FullContext | 48.12 40.34 6424 74.10 56.70 | 42.45 3579 61.52 7097 52.68 |51.06 43.65 6629 7621 59.30
Zep 30.60 24.67 4576 6498 4150 |35.06 28.14 56.60 66.72 46.63 |42.23 36.17 61.19 72.15 53.18
Mem0 26.86 21.60 53.18 60.93 40.64 | 33.47 2836 57.68 66.55 46.51 |3496 28.85 58.16 68.10 47.51
H20 38.48 3090 59.38 6842 4929 |29.44 2232 5403 6251 4207 |40.77 3243 59.86 69.16 50.55
MemArt | 47.72 40.29 64.25 7443 56.67 | 41.67 33.54 61.92 7135 52.12 | 51.54 44.54 67.86 76.39 60.08

Method

Table 3: Efficiency comparison between MemArt and baselines on the LoCoMo benchmark.

Method LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct Qwen-3-30B-A3B-Instruct
Prefill Tokens KV Length (Decode) | # Prefill Tokens KV Length (Decode) | # Prefill Tokens KV Length (Decode)
FullContext 21,892 21,912 22,125 22,145 22,125 22,145
Zep 3,285 3,305 4,160 4,180 3,491 3,511
MemO 2911 2,931 4,982 5,002 2,879 2,899
H20 21,892 2,304 22,125 4,352 22,125 2,304
MemArt 32 2,100 37 4,153 37 2,105

MemArt reaches 99.9% of FullContext accuracy on L3, 98.9% on Q2, and 101.3% on Q3, showing that it
nearly matches full-context generation while retrieving only a small fraction of memory. Relative to Zep
and Mem0, MemArt improves accuracy by 36.5%/39.4% on L3, 11.8%/12.1% on Q2, and 12.9%/26.4% on
Q3, respectively. Compare to KV Cache pruning method H20, MemArt improves accuracy by 14.9% on
L3, 23.9% on Q2, and 18.8% on Q3, respectively.

4.2.2 EFFICIENCY ANALYSIS

Table[3|reports the efficiency of MemArt against baselines on LoCoMo. Prefill efficiency is measured by the
number of tokens computed per request, while decode efficiency is measured by the effective KV length.

For prefill, MemArt requires only 32 and 37 tokens on average for each request with LLaMA and Qwen,
respectively, since it computes only the new query while reusing retrieved KV blocks. In contrast, plaintext-
based methods (Zep, Mem0) must recompute all retrieved tokens, leading to 91-135x more prefill tokens.
H20, which computes the entire KV cache during prefill and defers pruning to decode, therefore incurs a
similarly high prefill cost. Compared with FullContext inference and H20, MemArt achieves an additional
598-684 x reduction. For decoding, MemArt processes only the KV blocks selected for retrieval plus the
current KV cache of query, reducing KV length by 0.6%-36.4% over Zep, Mem0 and H20 and by 81.2%—
90.4% over FullContext.

End-to-end latency results in Figure] confirm these gains: despite KV selection and I/O overhead, MemArt
delivers up to 2.30x and 2.38 x speedup over Zep and Mem0, 13.70x over H20 and 9.9-15.8x speedup
over FullContext.

4.2.3 ABLATION STUDY

Figure [3] evaluates different multi-token aggregation retrieval strategies in MemArt on LLaMA3.1-8B-
Instruct and Qwen2.5-7B-Instruct. Each memory block is scored by normalizing per-token relevance
I(Q,K) (Table EI) and aggregating across query tokens. We compare Softmax vs. Reciprocal Rank (RR)
normalization, Sum vs. Max aggregation, and varying block sizes. Results show that Max aggregation con-

Under review as a conference paper at ICLR 2026

1 Prefill 771 Decode
18
20.0 % 7
1.1 x7.4| x7.0/x15.8 16 1.1 x4.9| x5.6|x11.6 25 1.1 x4.8| x4.3 x9.9
@ 175{ /J %
> 14
Q
3 15.0 20
= 12
-
© 4
E ﬁ @ @% ° @ @
[0 7
¢ o 2 4
1 0.63 2 1.27)
17.04 16.79 1.94 2.07 0.65 14.52 14.20 2.56 2.15 0.64 22.49 22.06 4.17 4.55 1.41
FullCtx H20 MemO Zep MemArt FullCtx H20 MemO Zep MemArt FullCtx H20 MemO Zep MemArt
(a) LIaMA-3.1-8B-Instruct (b) Qwen2-7B-Instruct (c) Qwen3-30B-A3B-Instruct
Figure 4: The average request execution latency of different methods.
—e— MAX SUM —=— RR_MAX RR_SUM
8= — /./- J\\. -
v h 7>< 50] 50
350 50 -
] 45 5
] 40
240 40 40
35
35
2k 4k 6k 8k 2k 4k 6k 8k 2k 4k 6k 8k 2k 4k 6k 8k

of Selected KV tokens
(a) LlaMA, Block Size 8

of Selected KV tokens
(b) LlaMA, Block Size 16

of Selected KV tokens
(c) Qwen, Block Size 8

of Selected KV tokens
(d) Qwen, Block Size 16

Figure 5: Ablation study of multi-token aggregation retrieval strategies.

sistently outperforms Sum, especially with fewer retrieved tokens, highlighting the benefit of emphasizing
the strongest query-block interaction. Between normalization methods, Softmax and RR perform similarly
on LLaMA, while RR-Max is superior on Qwen. Retrieval accuracy is largely insensitive to block size (8
vs. 16). In general, the choice of aggregation dominates the retrieval quality, while normalization and block
size play secondary roles.

Table 4: Latency breakdown when storing KVCache in
HBM vs. DRAM (Llama-3.1-8B-Instruct, 14k context).

Method /Time(ms) Attn FEN re-RoPE Sel. TopK Mem. Ops
Full Ctx 10,072.7 5,397.2 0.0 0.0 0.0
MemArt (HBM) 17.9 235 55 117.5 29.9
MemArt (DRAM) 18.1 22.9 5.4 111.7 237.8

Table [] details the latency breakdown of the
prefilling phase when storing the 14k-token KV
cache in HBM versus DRAM for the Llama-3.1-
8B-Instruct model. The dramatic reduction in
Attn and FFN latency is attributed to the signifi-
cantly reduced computational scope: in contrast
to the full context baseline (14k x 14k), MemArt
computes attention using a query length of 32
against a retrieved context of 32 4+ 2048. This
results in an over 2900 x reduction in FLOPs.

Similarly, the FFN operates on a sequence length of only 32, compared to 14k in the baseline. The posi-
tional re-encoding adds a trivial 5.5 ms latency, while the cost of Top-K selection is acceptable due to our
compressed key representation (AABB). Consequently, the primary latency bottleneck shifts to cross-tier
memory transfers, specifically the migration of KV blocks from DRAM to HBM via PCle. Note that these
results reflect a naive, fully serialized implementation; this overhead can be substantially mitigated in future
iterations through prefetching and overlapped compute.

Under review as a conference paper at ICLR 2026

H [] Prefill Token
|:| Decode Token
[] Historical Token

(a) Decode Sparse (b) Prefill Sparse (c) MemArt

Figure 6: Comparison of attention mechanisms between MemArt and sparse attention.

5 DISCUSSIONS

Differences from Sparse Attention Methods Although MemArt and sparse attention methods share the
principle of utilizing the attention mechanism to identify salient information, they are fundamentally distinct.
The primary differences lie in their temporal scope, core purpose, and the source of their attention scores.
Specifically, sparse attention focuses on in-session acceleration by employing self-attention over the current
context for sparsity, while MemAurt targets memory-augmented generation by leveraging Query-Memory
cross-attention over current and historical context for retrieval.

As shown in Figure [f] sparse attention generally falls into two categories. Decode sparse methods (e.g.,

H20 (Zhang et al.} 2023), InfLLM 2024)), Quest 2024) and ArkVale (Chen et al.

2024)) maintain full attention during prefill but selectively compute important tokens at each decoding step.
Prefill sparse methods (e.g., MInference and NSA 2025))) introduce sparsity
by restricting each query token during the prefill stage to attend only to a subset of keys. The core goal of both
categories is to accelerate the current inference speed or reduce the in-session KV Cache memory footprint,
rather than to enhance long-horizon generation quality. Their sparsity is determined by self-attention over the
current context window to infer which content is unimportant or redundant, thereby reducing computation.

In contrast, MemArt is an external, persistent long-term memory system whose primary goal is to signifi-
cantly enhance the model’s reasoning and generation quality. MemArt operates across a temporal divide:
it performs retrieval once, prior to the prefill stage, injecting historical KV blocks from past sessions di-
rectly into the computation. Its attention scores are derived from cross-session cross-attention between the
current request (Query) and the historical memory blocks (Keys), judging which historical information is
most relevant and enhancing for the current inference. This essential spatio-temporal leap (historical data vs.
current inference) and the blending of external retrieval with internal computation fundamentally distinguish
MemArt from all sparse attention methods, providing the unique capability of long-horizon, non-contiguous
memory recall.

6 CONCLUSION

This paper introduced MemArt, a paradigm that shifts agent memory from plaintext to the LLM’s native KV
cache. Our experiments on the LoCoMo benchmark show that this KVCache-centric approach is not only
dramatically more efficient—reducing prefill tokens by over 90 x—but also more accurate, improving accu-
racy by over 11%. Our work demonstrates that operating in the model’s latent state is a more powerful and
promising foundation for agent memory. Future research could explore learned KV cache compression and
more sophisticated retrieval strategies. The code for MemArt will be made publicly available to encourage
further exploration in this direction.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide the necessary code, datasets, evaluation scripts, and the raw data used to derive our experimental
conclusions in the supplementary material to ensure reproducibility.

REFERENCES

Amazon Web Services. Add memory to your ai agent — amazon bedrock agentcore docu-
mentation. https://docs.aws.amazon.com/bedrock—agentcore/latest/devguide/
memory .html} 2025.

Panpan Cai, Chandrasekaran Indhumathi, Yiyu Cai, Jianmin Zheng, Yi Gong, Teng Sam Lim, and Peng
Wong. Collision detection using axis aligned bounding boxes. In Simulations, Serious Games and Their
Applications, pp. 1-14, 2014.

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, Size Zheng, Xiuhong Li, Xuechao Wei, Shengen Yan,
Meng Li, and Yun Liang. Arkvale: Efficient generative 1lm inference with recallable key-value eviction.
In Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems, pp.
113134-113155, 2024.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413, 2025.

Gordon V Cormack, Charles L A Clarke, and Stefan Biittcher. Reciprocal rank fusion outperforms condorcet
and individual rank learning methods. In Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval, pp. 758-759, 2009.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective Lo norm-
based strategy for KV cache compression. 2024.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou
Yu, and Pengfei Zuo. Cost-efficient large language model serving for multi-turn conversations with cache-
dattention. In Proceedings of the 2024 USENIX Annual Technical Conference, pp. 111-126, 2024.

Google DeepMind. Gemini 2.5 pro. https://blog.google/technology/google—deepmind/
gemini-model-thinking-updates—-march-2025/, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, and et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24(6):417-441, 1933.

Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar, Camillo J

Taylor, and Dan Roth. Know me, respond to me: Benchmarking 1lms for dynamic user profiling and
personalized responses at scale. arXiv preprint arXiv:2504.14225, 2025.

11

https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/memory.html
https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/memory.html
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

Under review as a conference paper at ICLR 2026

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference 1.0: Accelerat-
ing pre-filling for long-context LLLMs via dynamic sparse attention. In Proceedings of the Thirty-eighth
Annual Conference on Neural Information Processing Systems, pp. 52481-52515, 2024.

Jiazheng Kang, Mingming Ji, Zhe Zhao, and Ting Bai. Memory os of ai agent. arXiv preprint
arXiv:2506.06326, 2025.

Woosuk Kwon, Zhuyun Liu, Haiyang Zheng, Xi Li, Ying Zhang, Ziyan Fu, Yuhong Han, Xing Huang, and
Zhaonan Zhao. Efficient memory management for large language model serving with pagedattention. In
Proceedings of the 29th ACM Symposium on Operating Systems Principles, pp. 611-626, 2023.

Zhiyu Li, Shichao Song, Chenyang Xi, Hanyu Wang, Chen Tang, Simin Niu, Ding Chen, Jiawei Yang,
Chunyu Li, Qingchen Yu, Jihao Zhao, Yezhaohui Wang, Peng Liu, Zehao Lin, Pengyuan Wang, Jiahao
Huo, Tianyi Chen, Kai Chen, Kehang Li, Zhen Tao, Huayi Lai, Hao Wu, Bo Tang, Zhenren Wang,
Zhaoxin Fan, Ningyu Zhang, Linfeng Zhang, Junchi Yan, Mingchuan Yang, Tong Xu, Wei Xu, Huajun
Chen, Haofen Wang, Hongkang Yang, Wentao Zhang, Zhi-Qin John Xu, Siheng Chen, and Feiyu Xiong.
Memos: A memory os for Al system. arXiv preprint arXiv:2507.03724, 2025.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and Yiling Lou. Large
language model-based agents for software engineering: A survey. arXiv preprint arXiv:2409.02977, 2024.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei Fang.
Evaluating very long-term conversational memory of llm agents. arXiv preprint arXiv:2402.17753, 2024.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez. Memgpt:
Towards 1lms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin Zheng,
and Xinran Xu. Mooncake: Trading more storage for less computation—a kvcache-centric architecture
for serving llm chatbot. In Proceedings of the 23rd USENIX Conference on File and Storage Technologies,
pp- 155-170, 2025.

Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: A temporal
knowledge graph architecture for agent memory. arXiv preprint arXiv:2501.13956, 2025.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568(C), 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: query-aware
sparsity for efficient long-context llm inference. In Proceedings of the 41st International Conference on
Machine Learning, pp. 47901-47911, 2024.

Gino Van den Bergen. Efficient collision detection of complex deformable models using AABB trees.
Journal of Graphics Tools, 2(4):1-13, 1997.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large language model
based autonomous agents. Frontiers of Computer Science, 18(6), 2024a.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adaptive kv
cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024b.

12

Under review as a conference paper at ICLR 2026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 38-45, 2020.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, and
Maosong Sun. InfLLM: Training-free long-context extrapolation for LLMs with an efficient context mem-
ory. In Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems,
pp- 119638-119661, 2024.

Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies, and
applications. arXiv preprint arXiv:2506.12594, 2025.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory
for 1lm agents. arXiv preprint arXiv:2502.12110, 2025.

Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen Ma, Hinrich
Schiitze, Volker Tresp, and Yunpu Ma. Memory-rl: Enhancing large language model agents to manage
and utilize memories via reinforcement learning. arXiv preprint arXiv:2508.19828, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li,
Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang
Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui,
Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yugiong Liu, Zeyu Cui, Zhenru Zhang,
and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2025b.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and
Zexi Jiang. Cacheblend: Fast large language model serving for rag with cached knowledge fusion. In
Proceedings of the 20th European Conference on Computer Systems, pp. 94—109, 2025.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, Yuxing
Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang, and Wangding
Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse attention. In Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics, pp. 23078-23097, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H20: Heavy-hitter oracle for effi-
cient generative inference of large language models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

13

Under review as a conference paper at ICLR 2026

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured lan-
guage model programs. Proceedings of the Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, pp. 62557-62583, 2024.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: enhancing large lan-
guage models with long-term memory. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial
Intelligence, 2024.

A APPENDIX

A.1 STATEMENT ON THE USE OF LLMS

We used a large language model (ChatGPT) solely as a writing assistant to polish the language of this paper,
such as improving grammar and clarity. The model was not involved in research ideation, methodological
design, data analysis, or interpretation of results. All scientific content and conclusions were conceived and
verified entirely by the authors.

A.2 STRATEGY ABLATION ACROSS MULTIPLE METRICS

Figure[7provides a granular view of the retrieval strategy ablation study, broken down by evaluation metric.
The results reinforce the main findings presented in the body of the paper. We observe several consistent
trends across all model and block-size configurations:

* Max aggregation is consistently superior to Sum, especially when retrieving a smaller number of
tokens.

* On LLaMA, Softmax and Reciprocal-Rank (RR) normalization perform comparably, while the
RR-Max combination yields the best results on Qwen.

* Retrieval accuracy shows low sensitivity to block size (8 vs. 16), suggesting the approach is robust.

Overall, the aggregation method is the dominant factor in retrieval quality, with normalization and block size
playing secondary roles.

A.3 THE IMPORTANCE OF DECOUPLED POSITIONAL ENCODING

The necessity of decoupling positional encodings for reliable long-term memory is illustrated in the case
study shown in Figure|8| In this experiment, we load the system with a large historical context (approx. 1M
tokens) and compare performance with and without our decoupling mechanism.

As shown, when reusing KV cache with the standard, coupled positional encoding, the model’s positional
awareness breaks down once the context length exceeds its native window size. This misalignment leads to a
catastrophic failure, resulting in degenerative, repetitive text. In contrast, our decoupled positional encoding
mechanism completely resolves this issue, enabling the model to correctly utilize information from the
distant past and generate a coherent answer. This demonstrates that decoupling is not just an optimization
but an essential component for enabling robust, long-term memory in KVCache-centric systems.

A.4 INTERPRETABILITY CASE STUDIES

In this section, we provide the case study to illustrate how MemAurt retrieves and uses historical KV blocks.
This case consists of: (1) A KV-to-text-span mapping, showing the original textual segment corresponding

14

Under review as a conference paper at ICLR 2026

—o— MAX —4+— SUM —— RR_MAX RR_SUM

Y
|
i
?
|

.r
|

Bl
\J

.
b
:

3

:
|
l

)
]
i

—

2k 4k 6k 8k 2k 4k 6k 8k 2k 4k 6k 8k 2k 4k 6k 8k
of Selected KV tokens # of Selected KV tokens # of Selected KV tokens # of Selected KV tokens
(a) LlaMA, Block 8 (b) LIaMA, Block 16 (c) Qwen, Block 8 (d) Qwen, Block 16

Figure 7: Ablation study of retrieval strategies on LLaMA and Qwen models with block sizes 8 and 16,
evaluated across F1, B1, BERT, and Sim metrics.

Coupled Positional Encoding Decoupled Positional Encoding

Context Context

Prior conversation of about 1M tokens. Prior conversation of about 1M tokens.
Question Question

What did Caroline research? What did Caroline research?

Please answer the last question in few words Please7 answer the last question in few
and do not repeat the answer above: words and do not repeat the answer above:
Answer Answer

the the the the the the the the the the Adoption agencies.

Figure 8: Case study on the importance of positional encoding decoupling for long-term memory.

to the retrieved KV block and (2) A layer-wise rank trajectory plot, showing how the relevance rank of this
segment evolves across transformer layers.

15

Under review as a conference paper at ICLR 2026

Retrieved Text Span

0

Query and Gold Answer

Q: What did Caroline research? v 201

A: Adoption agencies. S 40

o

Crucial Context Excerpt 601

Caroline: Researching adoption agencies 80

— it’s been ... 5 10 15 20 25 30
. J Layer Index
(a) KV-to-text-span mapping for the retrieved block. (b) Layer-wise rank trajectory of the retrieved block.

Figure 9: Interpretability case study for the query “What did Caroline research?”. (a) textual span corre-
sponding to a retrieved KV block. (b) layer-wise rank trajectory of the block.

Figure 0] presents a qualitative analysis designed to improve interpretability of MemArt’s retrieval behavior.
For the example query “What did Caroline research?”, the retrieved block contains the phrase “Caroline:
Researching adoption agencies — ...” shown in the left panel. The right panel plots the layer-wise rank
trajectory of this KV block across the Llama’s 32 transformer layers. The block begins with moderate
relevance (e.g., ranks 35, 64, 51 of 920) but rapidly rises into the top ranks after Layer 10 and remains
consistently within the top-5 most relevant blocks in deeper layers.

Together, the text-span visualization and rank trajectory show not only which block MemAurt retrieves, but
also how strongly and consistently the model relies on it across layers. This combined evidence demonstrates
that MemAurt retrieves semantically correct and persistent information rather than relying on incidental cor-
relations.

A.5 ROBUSTNESS OF MEMART UNDER ADVERSARIAL QUERIES

To evaluate the robustness of MemArt under adversarial, we conducted an additional experiment on the
LoCoMo adversarial request subset using a strict factuality probing prompt: “If the answer is not explicitly

39

stated or directly inferable, respond only with: ‘I don’t know’.

This setup tests whether the MemAurt retrieval essential blocks required to avoid hallucination. On 100
adversarial queries, the full-context baseline produced 61 correct “T don’t know” responses, while MemArt
produced 57. The near-identical behavior indicates that our design preserves the relevant blocks even under
adversarial queries and maintains generation correctness.

A.6 MULTI-AGENT MEMORY COMPATIBILITY

MemArt can cleanly integrates into multi-agent environments, even when agents run heterogeneous models.
The key idea is to preserve a model-agnostic communication channel across agents, while allowing each
agent to maintain its own model-specific internal memory.

Inter-agent sharing: When heterogeneous agents need to communicate, they can exchange information
through plaintext such as raw text, summaries, or structured memory, which remains model-agnostic.

Intra-agent memory: Once an agent consumes this information even once, it is encoded into its own KV
cache and stored as MemArt blocks. Any future reuse of that information is purely an internal process.
Subsequent retrieval relies solely on the agent’s own representational space, enabling high-fidelity recall and
compute efficiency without affecting cross-agent communication.

16

Under review as a conference paper at ICLR 2026

Thus, MemAurt naturally coexists with multi-agent: plaintext memory remains the system-level lingua franca,
while MemArt functions as a private, high-performance retrieval layer for each agent. This makes MemArt
fully compatible with heterogeneous multi-agent systems: agents communicate externally in text, but inter-
nally obtain the benefits of KV-native long-term memory.

A.7 ADDITIONAL EVALUATION ON PERSONAMEM

PersonaMem is a challenging long-horizon, multi-session dialogue benchmark specif-
ically designed to assess an agent’s ability to recall personalized, non-contiguous, and session-spanning
information. Each instance features multi-turn conversations across several sessions, totaling an average
context length of approximately 32K tokens. The task is evaluated using accuracy (correct answer rate)
based on multiple-choice questions provided per instance.

Table 5: Accuracy comparison between MemArt and baselines on the PersonaMem benchmark. Best scores
are in bold and second-best are underlined.

Model FullContext Zep MemO H20 MemArt

L3 46.52 40.57 3837 37.18 44.82
Q2 54.50 4720 4737 48.73 52.97
Q3 59.93 50.59 53.48 51.27 58.91

We evaluate MemArt against FullContext, Zep, Mem0O, and H2O across Llama3.1-8B-Instruct(L3),
Qwen2.5-7B-Instruct(Q2) and Qwen3-30B-A3B-Instruct(Q3) using the standard accuracy metric. Across all
models, MemArt provides consistent and substantial gains over plaintext memory systems and KV-pruning
baselines. Relative to Zep and Mem(, MemArt improves accuracy by 10.4%/16.8% on L3, 12.2%/11.8% on
Q2, and 16.4%/10.1% on Q3, respectively. Compare to H20, MemArt improves accuracy by 20.5% on L3,
8.7% on Q2, and 14.9% on Q3, respectively. Overall, these gains confirm that MemArt generalizes beyond
LoCoMo and provides robust long-horizon recall for multi-session agent trace.

A.8 SYSTEM-LEVEL CONSIDERATIONS: MEMORY I/O AND STORAGE

MemArt introduces a memory pool of historical KV blocks, which raises two system-level considerations:
access latency and long-term storage growth. These concerns are inherent to all KV-centric serving archi-
tectures—not unique to our approach—as modern systems such as vLLM, SGLang, and Mooncake already
persist and retrieve KV caches to enable prefix caching and reduce recomputation. MemAr t follows the same
principle but generalizes it to non-contiguous historical segments for long-horizon recall. Memory-pool I/O
(HBM-DRAM transfers, prefetching, overlap with compute) is largely orthogonal to our algorithmic contri-
butions; standard system optimizations such as asynchronous I/O, hierarchical caching, and double-buffering
can be directly adopted. Similarly, MemAurt is fully compatible with existing KV cache compression tech-
niques (Devoto et al.,[2024; [Wang et al,[2024b)), which can be layered on top to reduce storage footprint and
further mitigate memory growth.

17

	Introduction
	Background and Related Work
	MemArt: KVCache-Centric Agent Memory
	Overall Framework
	Algorithm Design
	AABB-Based Key Compression
	Multi-token Aggregation Based Memory Retrieval
	Decoupled Positional Encoding

	Evaluation
	experimental setup
	Main Results
	Performance Comparison
	Efficiency Analysis
	Ablation Study

	Discussions
	Conclusion
	Appendix
	Statement on the Use of LLMs
	Strategy Ablation Across Multiple Metrics
	The Importance of Decoupled Positional Encoding
	Interpretability Case Studies
	Robustness of MemArt under adversarial queries
	Multi-Agent Memory Compatibility
	Additional Evaluation on PersonaMem
	System-Level Considerations: Memory I/O and Storage

