KVCACHE-CENTRIC MEMORY FOR LLM AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

LLM agents in complex, long-horizon workflows are constrained by the model's context window. Current plaintext-based memory systems suffer from unstable retrieval accuracy and disrupt prefix caching, harming both performance and efficiency. We propose MemArt, a novel memory paradigm that operates directly within the LLM-native format: the key-value (KV) cache. Instead of using plaintext, MemArt stores conversational turns as reusable KV cache blocks and retrieves relevant memories by computing attention scores in latent space. To enable accurate and efficient retrieval, we develop a multi-token aggregation retrieval strategy that uses compressed keys for efficient KV selection and a decoupled position encoding mechanism to ensure retrieved blocks are safely and coherently reused. On the LoCoMo benchmark, MemArt improves accuracy by over 11% (up to 39.4%) compared to state-of-the-art plaintext-based memory methods, nearly matching full-context performance. Critically, it achieves this while reducing prefill tokens by over two orders of magnitude (91-135×), representing a significant leap forward for building powerful and efficient long-context agents.

1 Introduction

"The true art of memory is the art of attention." — Samuel Johnson, English writer

Large language model (LLM) agents are emerging as a new paradigm for applying foundation models in complex, real-world workflows, including scientific exploration (e.g., deep research (Xu & Peng, 2025)), coding assistants (Liu et al., 2024), and autonomous task planning systems (Wang et al., 2024). Unlike single-turn prompting or short-lived chatbots, these agents are designed to operate over extended horizons, often spanning hours or days of execution and involving tens to hundreds of iterative LLM calls. During such long-running sessions, agents continuously accumulate rich context that quickly grows beyond the context window of even frontier models with million-token capacities (Google DeepMind, 2025). To address this scalability bottleneck, recent work has introduced external memory systems that store and selectively retrieve historical context (Chhikara et al., 2025; Rasmussen et al., 2025; Amazon Web Services, 2025). Such memory mechanisms are essential for sustaining reasoning efficiency, accuracy, and robustness in long-horizon agent workflows.

Most deployed memory systems, including Mem0 (Chhikara et al., 2025), Zep (Rasmussen et al., 2025), and AWS AgentCore memory (Amazon Web Services, 2025), adopt plaintext-based memory. They segment or summarize historical context into sentence-level memory entries, which are then indexed and retrieved using vector databases or graph structures. While straightforward, this approach exhibits two fundamental limitations. First, context summarization and retrieval based on vector similarity or graph traversal often fail to preserve the full semantic dependencies of long, multi-turn interactions. As a result, the retrieved memory may omit critical context or include irrelevant information, leading to degraded LLM inference performance compared to full-context inference. Second, the segmentation and summarization of historical context into discrete memory entries disrupts the natural sequential structure of prompt prefixes. Modern LLM engines

Figure 1: Paradigm comparison between plaintext-based memory and KVCache-centric memory. In the plaintext paradigm (a), the agent must explicitly retrieve and insert memory into the prompt, which often leads to inaccurate retrieval and breaks prefix caching. In the KVCache-centric paradigm (b), the LLM natively stores and reuses KV blocks, so the agent only issues the new query, enabling more accurate retrieval in latent space and efficient prefill reuse.

accelerate inference using prefix caching (Qin et al., 2025; Gao et al., 2024; Zheng et al., 2024)—reusing the key-value (KV) cache of shared prefixes across calls—but segmented and summarized memory introduces prefix discontinuities, undermining these efficiency gains.

We propose MemArt, a new memory paradigm that shifts from plaintext-based memory to KVCache-centric memory to enhance both performance and efficiency. As illustrated in Figure 1, instead of managing plaintext, MemArt stores historical context directly as reusable KV blocks and retrieves relevant memory by computing attention scores between the current prompt and the stored KV blocks in latent space. This approach offers three key advantages: (1) High-Fidelity Retrieval: Operating in latent space allows retrieval to align directly with the model's attention mechanism, offering superior semantic accuracy compared to methods relying on plaintext similarity. (2) Maximal Inference Efficiency: Retrieved KV blocks are directly reused during prefill, eliminating redundant token processing and significantly reducing computational overhead and latency. (3) Seamless Integration: The entire framework is model-agnostic and functions as a plug-and-play component, requiring no modifications to model weights or architecture.

Despite its promise, achieving KVCache-centric memory introduces two key challenges. First, how can we perform high-fidelity retrieval without a full memory scan? As the memory grows, exhaustively scanning every KV block to find the most relevant ones becomes computationally prohibitive. The challenge lies in designing a mechanism that can quickly identify the most salient memories from a large repository without sacrificing accuracy. Second, how to ensure the safe reuse of retrieved KV blocks? A standard KV cache that can reuse corresponds to a single, contiguous prefix. Retrieved blocks, however, are non-contiguous and carry their original positional information. Simply concatenating them creates a positionally incoherent sequence that disrupts the model's attention, ultimately harming output quality.

For efficient and accurate retrieval, MemArt first computes a compressed representative key for each KV block to enable a fast search that avoids a full memory scan. It then employs a multi-token aggregation retrieval strategy that synthesizes attention scores from all prompt tokens to ensure the final selection is highly relevant. For safe reuse, MemArt uses a decoupled position encoding mechanism. This component validates and adjusts the positional information of retrieved blocks, guaranteeing they can be integrated into the current context without creating positional conflicts.

We evaluate MemArt on the widely used LoCoMo benchmark (Maharana et al., 2024). Experimental results show that MemArt improves inference accuracy by 11.8–39.4% over state-of-the-art plaintext-based memory approaches, approaching the performance of full-context inference. Critically, it reduces 91–135× prefill tokens over plaintext-based memory approaches. These results highlight KVCache-centric memory as a promising foundation for accurate and efficient long-context LLM agents.

- (a) Accuracy loss of plaintext-based memory retrieval on Qwen-2.5-7B-Instruct.
- (b) Prefix cache reuse failure due to prefix context mismatch.

Figure 2: Limitations of plaintext-based memory: accuracy degradation and prefix cache reuse failure.

2 BACKGROUND AND RELATED WORK

Prefix Caching in LLM Inference LLMs based on the Transformer architecture generate tokens autoregressively, with each token attending to all preceding tokens. To avoid redundant computation, the key (K) and value (V) tensors of previous tokens are stored as KVCache, enabling the prefill phase to cache K and V for the input prompt and the decode phase to generate new tokens by computing K and V only for the latest token. Building on this mechanism, prefix caching accelerates inference by sharing the KVCache of identical prefixes across requests, and has been widely adopted in recent systems to reduce computation and latency (Kwon et al., 2023; Zheng et al., 2024; Qin et al., 2025; Yao et al., 2025; Gao et al., 2024).

Plaintext-Based Memory for LLM Agents Plaintext-based methods explicitly store and manipulate information in human-readable form. Early systems such as MemoryBank (Zhong et al., 2024) and MemGPT (Packer et al., 2023) rely on predefined policies for storage, integration, and retrieval. Recent efforts shift toward structured representations, such as temporal knowledge graphs in Zep (Rasmussen et al., 2025), atomic notes in A-MEM (Xu et al., 2025), and hierarchical graph memories in Mem0 (Chhikara et al., 2025), which capture relational, temporal, and hierarchical dependencies but remain rule-based. Recent efforts also conceptualize memory as an operating system. MemoryOS (Kang et al., 2025) defines dynamic updates from short- to mid- to long-term memories, while MemOS (Li et al., 2025) defines unified representation, scheduling, and evolution across different memory types. However, MemOS does not provide detailed mechanisms for how these memory types coordinate or transform among each other. In parallel, Memory-R1 (Yan et al., 2025) employs a reinforcement learning based manager to learn memory operations, though at the cost of significant training overhead.

Limitations of Plaintext-Based Memory Plaintext-based memory suffers from two inherent limitations:

- 1) Accuracy Degradation: As shown in Figure 2(a), we evaluate the plaintext-based memory retrieval baseline Mem0 (Chhikara et al., 2025) and Zep (Rasmussen et al., 2025) on the LoCoMo benchmark with the Qwen-2.5-7B-Instruct model, which exhibit F1 gaps of 20.8% and 17.0%, respectively, compared to full-context inference. This highlights the difficulty of plaintext-based summarization and similarity retrieval in capturing long-range semantic dependencies. Critical information is frequently omitted, while irrelevant segments are introduced, both of which harm downstream reasoning.
- 2) Prefix Caching Invalidation: Prefix caching reuses the KV cache only when exact prompt prefixes match. However, plaintext memory systems typically segment, summarize, or alter historical context, breaking textual continuity. As illustrated in Figure 2(b), this textual mismatch prevents cache reuse and forces costly recomputation of the KV cache, undermining one of the most important efficiency gains in modern LLM inference.

Figure 3: The architectural overview of MemArt.

3 MEMART: KVCACHE-CENTRIC AGENT MEMORY

To improve both performance and efficiency of agent inference, we propose MemArt, a new paradigm we term *KVCache-centric memory*. Instead of using plaintext, MemArt stores the KV cache as LLM-native memory. For each new request, MemArt identifies the most relevant historical KV blocks via latent-space attention and seamlessly reuses them for prefill. This design inherently yields three advantages: superior retrieval accuracy, dramatic gains in inference efficiency, and seamless plug-and-play integration. We now detail the MemArt framework and its core algorithmic components.

3.1 Overall Framework

To enable efficient storage, retrieval, and reuse of KVCache-centric memory, MemArt adopts the framework shown in Figure 3, which comprises four key components:

- a) **Key Compression:** Historical memory is stored as fixed-size KV blocks, each assigned a compressed key derived from its key set, providing a lightweight index that reduces retrieval overhead.
- b) **Memory Retrieval:** For a new query request, attention scores are computed between the Q heads of all query tokens and compressed keys. The top-k most relevant KV blocks are selected via multi-token aggregation retrieval and reused in the prefill phase.
- c) Decoupled Position Encoding: Since historical memory may exceed the context window of LLMs, positional misalignment can weaken attention and degrade inference. To address this, KV blocks are stored without positional encodings and later re-embedded with new encodings after retrieval, ensuring alignment within the current context window and consistency for downstream attention.
- d) Memory Pool: A centralized memory pool manages the collection of KV blocks, each indexed by its compressed key for efficient organization and access.

Building on these components, the inference workflow follows Algorithm 1: (i) retrieve query-relevant memory using compressed keys, (ii) concatenate the retrieved KV blocks with the KV cache of the query request, (iii) re-embed new positional encodings to align within the context window, and (iv) compute memory-augmented attention. Meanwhile, the memory pool is asynchronously updated with newly generated KV cache and its compressed keys. Formally, the process is given by:

$$O = Attn(EmbPE(Q, Concat(K_M, K)), Concat(V_M, V))$$
(1)

where K_M , V_M denotes the KV blocks retrieved from MemArt.

Algorithm 1 Inference Workflow with MemArt

- 1: **Input:** Current Query Q, Current KVCache (K_{curr}, V_{curr}) 2: **Memory:** Compressed Indices CompK, Memory Pool (K_{mem}, V_{mem})
- # Memory Augmented Generation
- 3: $(K_M, V_M) \leftarrow \text{Retrieve}(Q, CompK)$ # Ouery-Aware Memory Retrieval # Memory Integration
- 4: $K_{aug} \leftarrow \text{Concat}(K_M, K_{curr}), V_{aug} \leftarrow \text{Concat}(V_M, V_{curr})$ 5: $Q', K'_{aug} \leftarrow \text{EmbPE}(Q, K_{aug})$ # Align positional encodings 6: $O \leftarrow \text{Attention}(Q', K'_{aug}, V_{aug})$ # Augmented Attention Computation
- # Memory Pool Update (Asynchronous)
- 7: $K_{mem} \leftarrow \text{Append}(K_{mem}, K_{curr}), V_{mem} \leftarrow \text{Append}(V_{mem}, V_{curr})$
- 8: $CompK \leftarrow Append(CompK, Compress(K_{curr}))$

Key Compression

9: **Return:** Output *O*

188

189

190

191

192

193

194

195

198

199 200 201

202 203

204

205 206

207 208

209

210

211

212

213

214 215

216 217 218

219

220

221 222

223 224

225

226

227

228

229

230 231 232

233

234

3.2 ALGORITHM DESIGN

This subsection details the design of the core components of MemArt, including the key compression algorithm, the memory retrieval strategy, and the decoupled positional encoding.

3.2.1 AABB-BASED KEY COMPRESSION

The generated KV cache is partitioned into memory blocks of size BS and stored in a memory pool. To enable efficient retrieval, each key block K is compressed into an axis-aligned bounding box (AABB) (Van den Bergen, 1997; Cai et al., 2014; Chen et al., 2024), defined by the maximum and minimum vectors that enclose all key vectors within the block, as shown in Equation 2. This compact representation preserves coarse-grained semantic information while avoiding exhaustive comparisons with individual key vectors, thereby enabling rapid and accurate retrieval.

$$s^{\min}(K) = (\min_{i=1}^{BS} k_{i,1}, \min_{i=1}^{BS} k_{i,2}, \dots, \min_{i=1}^{BS} k_{i,dim}) \in \mathbb{R}^{1 \times dim}$$

$$s^{\max}(K) = (\max_{i=1}^{BS} k_{i,1}, \max_{i=1}^{BS} k_{i,2}, \dots, \max_{i=1}^{BS} k_{i,dim}) \in \mathbb{R}^{1 \times dim}$$
(2)

AABB compression is well-suited for high-dimensional keys because it is lightweight $(2 \times dim \text{ values per})$ block), preserves coordinate-wise extrema without distortions from projections like principal component analysis (PCA) (Hotelling, 1933), and provides a natural coarse-grained filter before fine-grained attention.

MULTI-TOKEN AGGREGATION BASED MEMORY RETRIEVAL 3.2.2

Our retrieval process operates at the block level, building on the principle that neighboring keys in a KV cache often share semantic importance (Jiang et al., 2024). To do this efficiently, we retrieve memory at the block level using the compressed keys introduced earlier. Following Arkvale (Chen et al., 2024), the relevance between a single query token $q \in \mathbb{R}^{1 \times dim}$ and block $K \in \mathbb{R}^{BS \times dim}$ is defined as the maximum dot product:

$$I(q,K) = \sum_{i=1}^{dim} \max\left(q_i s_i^{max}(K), q_i s_i^{min}(K)\right)$$
(3)

This formulation provides an upper-bound estimate of the attention scores between q and all keys within K, without exhaustively comparing each key. Consequently, $I(q, K_1) > I(q, K_2)$ indicates that block K_1 contains at least one key vector whose attention with q exceeds that of every key in K_2 .

Table 1: Formulations of normalization and aggregation strategies for multiple token relevance scoring.

Normalization	Aggregation	Formula for $I(Q,K)$	Notes
Softmax	Sum	$\sum_{q \in Q} \frac{\exp(I(q,K))}{\sum_{K' \in \mathcal{K}} \exp(I(q,K'))}$	Sharp normalization; Balances all tokens.
Softmax	Max	$\max_{q \in Q} \frac{\exp(I(q, K))}{\sum_{K' \in \mathcal{K}} \exp(I(q, K'))}$	Sharp normalization; Selects the strongest token.
Reciprocal Rank	Sum	$\sum_{q \in Q} \frac{1}{\operatorname{rank}_q(K) + c}$	Smooth normalization; Balances all tokens.
Reciprocal Rank	Max	$\max_{q \in Q} \frac{1}{\operatorname{rank}_q(K) + c}$	Smooth normalization; Selects the strongest token.

Nevertheless, unlike the decoding scenario that Arkvale targets (Chen et al., 2024), which uses a single query token, agent memory retrieval occurs during prefill and must account for a multi-token prompt Q. This introduces a key challenge: relevance scores from different query tokens are not directly comparable, and different tokens may prioritize different memory blocks. A naive aggregation (e.g., averaging) would dilute these varied signals.

To create a unified relevance score for the entire prompt, we introduce a two-step aggregation procedure:

$$I(Q, \mathcal{K}) = \operatorname{Agg}_{q \in Q} \left(\operatorname{Norm}_{K \in \mathcal{K}} \left(I(q, K) \right) \right) \tag{4}$$

Here, \mathcal{K} denotes the collection of all compressed keys. The process works as follows: (1) Normalize per Token: For each query token $q \in Q$, we first normalize its relevance scores $\{I(q,K) \mid K \in \mathcal{K}\}$ across all compressed keys. This crucial step makes the scores from different tokens comparable. (2) Aggregate across Tokens: Next, we aggregate these normalized scores across all query tokens to produce a single, final relevance score for each block.

We systematically consider several strategies for these two steps (Table 1). For Normalization, we can use *Softmax* to amplify the strongest signals or *Reciprocal-Rank* to create a smoother distribution that is less sensitive to outliers (Cormack et al., 2009). For Aggregation, we can employ *Sum* to weigh evidence from all tokens and *Max* to prioritize the single strongest token-block interaction.

Finally, based on the aggregated scores $I(Q, \mathcal{K})$, we select the top-k memory blocks. For efficiency, the same set of k blocks is selected for all attention heads. These blocks are then concatenated in their original chronological order to preserve temporal consistency for the final prefill computation.

3.2.3 DECOUPLED POSITIONAL ENCODING

A major challenge in reusing KV cache as long-term memory is the misalignment of positional embeddings across temporal spans. Cached key-value states with their original positional encodings can cause (i) incoherent attention when historical tokens' positions no longer match their locations in the reconstructed sequence, and (ii) positions exceeding the model's context window, leading to inference failure.

We address this by decoupling positional information from the stored KV cache. During storage, we omit the rotary positional encoding (RoPE) (Su et al., 2024) and preserve only content-dependent KV cache:

$$K_i^{\text{raw}} = W_k x_i, \quad V_i^{\text{raw}} = W_v x_i, \tag{5}$$

where x_i is the hidden state of the *i*-th token, and W_k, W_v are the key and value projection matrices. At inference, after retrieving top-k memory blocks $\{K_{i_1}^{\text{raw}}, \dots, K_{i_K}^{\text{raw}}\}$ based on the current query Q, the memory

tokens are concatenated in historical order and re-encoded with a unified positional scheme:

$$\widetilde{Q}_j = R_{p(j)} Q_j^{\text{raw}}, \quad \widetilde{K}_j = R_{p(j)} K_j^{\text{raw}}, \quad \widetilde{V}_j = V_j^{\text{raw}},$$
(6)

where $p(\cdot)$ is the absolute position in the concatenated sequence and the RoPE rotation matrix R_p . This ensures queries and historical memory share consistent positional information.

For example, if a query Q contains three tokens and one memory block $\{K_{16},K_{17},\ldots,K_{23}\}$ is selected, after concatenation, the Ks in the memory block are reassigned positions $p(K)=[0,1,\ldots,7]$ and the query tokens have p(Q)=[8,9,10]. Applying RoPE re-encodes all tokens into a unified positional space, enabling coherent attention across memory and query.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets and Models We adopt the LoCoMo benchmark (Maharana et al., 2024), a widely used suite for assessing long-term conversational memory in agent systems. It comprises 10 conversations, each containing an average of 589 dialogues and 13,960 words. To enable precise evaluation, each dialogue is paired with approximately 200 questions and their corresponding correct answers, allowing models to be tested on retrieving specific details from the full conversation history. We exclude the adversarial subset, as it does not provide ground-truth answers. We implement MemArt on top of HuggingFace Transformers (Wolf et al., 2020), and all experiments are conducted on LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024) and Qwen-2.5-7B-Instruct (Yang et al., 2025).

Metrics Following prior work (Chhikara et al., 2025; Li et al., 2025), we evaluate inference accuracy using two categories of metrics: lexical similarity and semantic correctness. Lexical similarity is measured with F1 Score (F1) and BLEU-1 (B1), which capture token-level overlap. Semantic correctness is measured with BERTScore-F1 (BERT) and cosine similarity (Sim) over sentence embeddings, reflecting meaning-level alignment. The average of these four metrics provides a more holistic measure of generation quality.

Baselines We compare MemArt against following representative baselines: (1) **Full-Context Inference:** The entire dialogue history is provided as input to the LLMs. (2) **Zep:** A retrieval-oriented agent that implements structured memory access strategies, enabling effective reasoning over temporally extended and multi-turn queries (Rasmussen et al., 2025). (3) **Mem0:** A modular memory architecture featuring explicit in-context memory operations, designed to facilitate scalable deployment while maintaining high retrieval fidelity (Chhikara et al., 2025).

4.2 MAIN RESULTS

We evaluate MemArt against Mem0 and Zep on the LoCoMo benchmark using LLaMA-3.1-8B-Instruct and Qwen-2.5-7B-Instruct. For fairness, we tune the retrieval hyperparameters of all methods to yield comparable KV lengths during decoding. Specifically, MemArt adopts a block size of 16 with top-k=128 (Softmax-Max) for LLaMA and top-k=256 (RR-Max) for Qwen. Mem0 is configured with top-k=100 (LLaMA) and 150 (Qwen), while Zep uses 20 (LLaMA) and 25 (Qwen).

4.2.1 Performance Comparison

Table 2 shows the performance comparison of MemArt and the baselines on LoCoMo. MemArt achieves 99.9% of the FullContext accuracy on LLaMA and 98.9% on Qwen, indicating that it can nearly match

Table 2: Performance comparison between MemArt and baselines on the LoCoMo benchmark. Models are assessed on F1, B1, BERT, and Sim metrics (higher is better). Aver.S denotes the average score across metrics. Best scores are highlighted in bold, and second-best scores are underlined.

Method	LLaMA-3.1-8B-Instruct			Qwen-2.5-7B-Instruct						
Method	F1	B1	BERT	Sim	Aver.S	F1	B1	BERT	Sim	Aver.S
FullContext	48.12	40.34	64.24	74.10	56.70	42.45	35.79	61.52	70.97	52.68
Zep	30.60	24.67	45.76	64.98	41.50	35.06	28.14	56.60	66.72	46.63
Mem0	26.86	21.60	53.18	60.93	40.64	33.47	28.36	57.68	66.55	46.51
MemArt	<u>47.72</u>	40.29	64.25	74.43	<u>56.67</u>	41.67	33.54	61.92	71.35	<u>52.12</u>

Table 3: Efficiency comparison between MemArt and baselines on the LoCoMo benchmark.

Method	LLaMA-3	3.1-8B-Instruct	Qwen-2.5-7B-Instruct		
Method	# of Prefill Tokens	KV Lengths in Decode	# of Prefill Tokens	KV Lengths in Decode	
FullContext	21,892	21,912	22,125	22,145	
Zep	3,285	3,305	4,160	4,180	
Mem0	2,911	2,931	4,982	5,002	
MemArt	32	2,100	37	4,153	

full-context generation while retrieving only a subset of memory. Compared with Zep and Mem0, MemArt improves the accuracy by 36.5% and 39.4% for LLaMA and 11.8% and 12.1% for Qwen, respectively.

4.2.2 EFFICIENCY ANALYSIS

Table 3 reports the efficiency of MemArt against baselines on LoCoMo. Prefill efficiency is measured by the number of tokens computed per request, while decode efficiency is measured by the effective KV length.

For prefill, MemArt requires only 32 and 37 tokens on average for each request with LLaMA and Qwen, respectively, since it computes only the new query while reusing retrieved KV blocks. In contrast, plaintext-based methods (Zep, Mem0) must recompute all retrieved tokens, leading to $91-135\times$ more prefill tokens. Compared with FullContext inference, MemArt achieves an additional $598-684\times$ reduction.

For decoding, MemArt processes only the KV blocks selected for retrieval plus the current KV cache of query, reducing KV length by 0.6%–36.4% over Zep and Mem0 and by 81.2%–90.4% over FullContext.

End-to-end latency results in Figure 4 confirm these gains: despite KV selection and I/O overhead, MemArt delivers up to $2.26 \times$ and $2.38 \times$ speedup over Zep and Mem0, and $11.6-15.8 \times$ speedup over FullContext.

4.2.3 ABLATION STUDY

Figure 5 evaluates different multi-token aggregation retrieval strategies in MemArt on LLaMA and Qwen. Each memory block is scored by normalizing per-token relevance $I(Q, \mathcal{K})$ (Table 1) and aggregating across query tokens. We compare Softmax vs. Reciprocal Rank (RR) normalization, Sum vs. Max aggregation, and varying block sizes.

Results show that Max aggregation consistently outperforms Sum, especially with fewer retrieved tokens, highlighting the benefit of emphasizing the strongest query-block interaction. Between normalization methods, Softmax and RR perform similarly on LLaMA, while RR-Max is superior on Qwen. Retrieval accuracy is largely insensitive to block size (8 vs. 16). In general, the choice of aggregation dominates the retrieval quality, while normalization and block size play secondary roles.

- (a) Average latency on LLaMA-3.1-8B-Instruct.
- (b) Average latency on Owen-2.5-7B-Instruct.

Figure 4: The average request execution latency of different methods.

Figure 5: Ablation study of multi-token aggregation retrieval strategies.

DISCUSSIONS

Differences from Sparse Attention Methods Dynamic sparse attention methods such as InfLLM (Xiao et al., 2024), Quest (Tang et al., 2024), ArkVale (Chen et al., 2024), and NSA (Yuan et al., 2025) retain the entire active KV cache and dynamically select important blocks at each decoding step. In contrast, MemArt treats historical KV cache as external memory, retrieving relevant blocks once during prefill using all query tokens. Despite this fundamental difference, both approaches share the principle of leveraging attention scores to identify important KV blocks.

Memory Access Efficiency Accessing the memory pool for reads and writes may introduce non-trivial latency, potentially offsetting the efficiency gains of the proposed paradigm. To fully realize the benefits of KVCache-based memory, effective management strategies—such as asynchronous I/O, pipeline optimization, hierarchical HBM-DRAM management—are required. We leave such system-level optimizations to future work, as they are orthogonal to the algorithmic contributions of this paper.

CONCLUSION

This paper introduced MemArt, a paradigm that shifts agent memory from plaintext to the LLM's native KV cache. Our experiments on the LoCoMo benchmark show that this KVCache-centric approach is not only dramatically more efficient—reducing prefill tokens by over 90×—but also more accurate, improving accuracy by over 11%. Our work demonstrates that operating in the model's latent state is a more powerful and promising foundation for agent memory. Future research could explore learned KV cache compression and more sophisticated retrieval strategies. The code for MemArt will be made publicly available to encourage further exploration in this direction.

REPRODUCIBILITY STATEMENT

We provide the necessary code, datasets, evaluation scripts, and the raw data used to derive our experimental conclusions in the supplementary material to ensure reproducibility.

REFERENCES

- Amazon Web Services. Add memory to your ai agent amazon bedrock agentcore documentation. https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/memory.html, 2025.
- Panpan Cai, Chandrasekaran Indhumathi, Yiyu Cai, Jianmin Zheng, Yi Gong, Teng Sam Lim, and Peng Wong. Collision detection using axis aligned bounding boxes. In *Simulations, Serious Games and Their Applications*, pp. 1–14, 2014.
- Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, Size Zheng, Xiuhong Li, Xuechao Wei, Shengen Yan, Meng Li, and Yun Liang. Arkvale: Efficient generative llm inference with recallable key-value eviction. In *Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems*, pp. 113134–113155, 2024.
- Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building production-ready ai agents with scalable long-term memory. *arXiv* preprint arXiv:2504.19413, 2025.
- Gordon V Cormack, Charles L A Clarke, and Stefan Büttcher. Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In *Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval*, pp. 758–759, 2009.
- Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou Yu, and Pengfei Zuo. Cost-efficient large language model serving for multi-turn conversations with cachedattention. In *Proceedings of the 2024 USENIX Annual Technical Conference*, pp. 111–126, 2024.
- Google DeepMind. Gemini 2.5 pro. https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/, 2025.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, and et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Harold Hotelling. Analysis of a complex of statistical variables into principal components. *Journal of Educational Psychology*, 24(6):417–441, 1933.
- Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference 1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In *Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems*, pp. 52481–52515, 2024.
- Jiazheng Kang, Mingming Ji, Zhe Zhao, and Ting Bai. Memory os of ai agent. arXiv preprint arXiv:2506.06326, 2025.

Woosuk Kwon, Zhuyun Liu, Haiyang Zheng, Xi Li, Ying Zhang, Ziyan Fu, Yuhong Han, Xing Huang, and Zhaonan Zhao. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th ACM Symposium on Operating Systems Principles*, pp. 611–626, 2023.

- Zhiyu Li, Shichao Song, Chenyang Xi, Hanyu Wang, Chen Tang, Simin Niu, Ding Chen, Jiawei Yang, Chunyu Li, Qingchen Yu, Jihao Zhao, Yezhaohui Wang, Peng Liu, Zehao Lin, Pengyuan Wang, Jiahao Huo, Tianyi Chen, Kai Chen, Kehang Li, Zhen Tao, Huayi Lai, Hao Wu, Bo Tang, Zhenren Wang, Zhaoxin Fan, Ningyu Zhang, Linfeng Zhang, Junchi Yan, Mingchuan Yang, Tong Xu, Wei Xu, Huajun Chen, Haofen Wang, Hongkang Yang, Wentao Zhang, Zhi-Qin John Xu, Siheng Chen, and Feiyu Xiong. Memos: A memory os for AI system. *arXiv preprint arXiv:2507.03724*, 2025.
- Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and Yiling Lou. Large language model-based agents for software engineering: A survey. arXiv preprint arXiv:2409.02977, 2024.
- Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei Fang. Evaluating very long-term conversational memory of llm agents. *arXiv preprint arXiv:2402.17753*, 2024.
- Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez. Memgpt: Towards Ilms as operating systems. *arXiv preprint arXiv:2310.08560*, 2023.
- Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran Xu. Mooncake: Trading more storage for less computation—a kvcache-centric architecture for serving llm chatbot. In *Proceedings of the 23rd USENIX Conference on File and Storage Technologies*, pp. 155–170, 2025.
- Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: A temporal knowledge graph architecture for agent memory. *arXiv preprint arXiv:2501.13956*, 2025.
- Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568(C), 2024.
- Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: query-aware sparsity for efficient long-context llm inference. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 47901–47911, 2024.
- Gino Van den Bergen. Efficient collision detection of complex deformable models using AABB trees. *Journal of Graphics Tools*, 2(4):1–13, 1997.
- Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large language model based autonomous agents. *Frontiers of Computer Science*, 18(6), 2024.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 38–45, 2020.
- Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, and Maosong Sun. InfLLM: Training-free long-context extrapolation for LLMs with an efficient context memory. In *Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems*, pp. 119638–119661, 2024.

- Renjun Xu and Jingwen Peng. A comprehensive survey of deep research: Systems, methodologies, and applications. *arXiv preprint arXiv:2506.12594*, 2025.
 - Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.
 - Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen Ma, Hinrich Schütze, Volker Tresp, and Yunpu Ma. Memory-r1: Enhancing large language model agents to manage and utilize memories via reinforcement learning. *arXiv preprint arXiv:2508.19828*, 2025.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2025.
 - Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and Zexi Jiang. Cacheblend: Fast large language model serving for rag with cached knowledge fusion. In *Proceedings of the 20th European Conference on Computer Systems*, pp. 94–109, 2025.
 - Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, Yuxing Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang, and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse attention. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*, pp. 23078–23097, 2025.
 - Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured language model programs. *Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems*, pp. 62557–62583, 2024.
 - Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: enhancing large language models with long-term memory. In *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence*, 2024.

A APPENDIX

A.1 STATEMENT ON THE USE OF LLMS

We used a large language model (ChatGPT) solely as a writing assistant to polish the language of this paper, such as improving grammar and clarity. The model was not involved in research ideation, methodological design, data analysis, or interpretation of results. All scientific content and conclusions were conceived and verified entirely by the authors.

A.2 STRATEGY ABLATION ACROSS MULTIPLE METRICS

Figure 6 provides a granular view of the retrieval strategy ablation study, broken down by evaluation metric. The results reinforce the main findings presented in the body of the paper. We observe several consistent trends across all model and block-size configurations:

 Max aggregation is consistently superior to Sum, especially when retrieving a smaller number of tokens.

RR MAX

Figure 6: Ablation study of retrieval strategies on LLaMA and Qwen models with block sizes 8 and 16, evaluated across F1, B1, BERT, and Sim metrics.

- On LLaMA, Softmax and Reciprocal-Rank (RR) normalization perform comparably, while the RR-Max combination yields the best results on Qwen.
- Retrieval accuracy shows low sensitivity to block size (8 vs. 16), suggesting the approach is robust.

Overall, the aggregation method is the dominant factor in retrieval quality, with normalization and block size playing secondary roles.

A.3 THE IMPORTANCE OF DECOUPLED POSITIONAL ENCODING

The necessity of decoupling positional encodings for reliable long-term memory is illustrated in the case study shown in Figure 7. In this experiment, we load the system with a large historical context (approx. 1M tokens) and compare performance with and without our decoupling mechanism.

As shown, when reusing KV cache with the standard, coupled positional encoding, the model's positional awareness breaks down once the context length exceeds its native window size. This misalignment leads to a catastrophic failure, resulting in degenerative, repetitive text. In contrast, our decoupled positional encoding mechanism completely resolves this issue, enabling the model to correctly utilize information from the

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

Coupled Positional Encoding

Context

Prior conversation of about 1M tokens.

Question

What did Caroline research? Please answer the last question in few words and do not repeat the answer above:

Answer

the the the the the the the the

Decoupled Positional Encoding

Context

Prior conversation of about 1M tokens.

Question

What did Caroline research?
Please answer the last question in few words and do not repeat the answer above:

Answer

Adoption agencies.

Figure 7: Case study on the importance of positional encoding decoupling for long-term memory.

distant past and generate a coherent answer. This demonstrates that decoupling is not just an optimization but an essential component for enabling robust, long-term memory in KVCache-centric systems.