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Abstract001

In the past year, Generative Recommendations002
(GRs) have undergone substantial advance-003
ments, especially in leveraging the powerful004
sequence modeling and reasoning capabilities005
of Large Language Models (LLMs) to enhance006
overall recommendation performance. LLM-007
based GRs are forming a new paradigm that is008
distinctly different from discriminative recom-009
mendations, showing strong potential to replace010
traditional recommendation systems that are011
heavily dependent on complex, hand-crafted012
features. In this paper, we provide a compre-013
hensive survey designed to facilitate further014
research on LLM-based GRs. Initially, we out-015
line the general preliminaries and application016
cases of LLM-based GRs. Subsequently, we017
introduce the main considerations during the018
industrial applications of GRs. Finally, we ex-019
plore promising directions for LLM-based GRs.020
We hope that this survey contributes to the on-021
going advancement of the GR domain.022

1 Introduction023

Recommendation systems (Adomavicius and024

Tuzhilin, 2005; Li et al., 2024b), which aim to025

recommend the items (e.g., e-commerce products,026

micro-videos, news, and point-of-interests) by im-027

plicitly inferring user interest from the user’s pro-028

file and historical interactions, are ubiquitous in029

the modern digital landscape, serving as critical in-030

terfaces for navigating the vast sea of information031

and choices available online. The effectiveness of032

recommendation systems has been a driving force033

behind the success of numerous online platforms,034

from e-commerce giants and social networks to035

content streaming services and news aggregators.036

With the advancement of recommendation sys-037

tems, modeling algorithms have roughly un-038

dergone three different technological paradigms,039

namely machine learning-based recommenda-040

tion (MLR), deep learning-based recommen-041

dation (DLR), and generative recommendation042

(GR). The MLR primarily relies on traditional ma- 043

chine learning algorithms, often built upon explicit 044

feature engineering. Key techniques include col- 045

laborative filtering (Breese et al., 2013; He et al., 046

2017; Sarwar et al., 2001; Linden et al., 2003), 047

which predicts user preferences based on similarity 048

with other users or items, and content-based filter- 049

ing, which recommends items similar to those a 050

user has liked based on item attributes. Matrix fac- 051

torization techniques (Koren et al., 2009; Rendle 052

et al., 2012), such as singular value decomposi- 053

tion or alternating least squares, are also central to 054

this era, aiming to learn latent factors that repre- 055

sent user and item preferences to predict missing 056

entries in a user-item interaction matrix. While 057

MLR focuses on capturing statistical patterns in 058

historical data, it frequently faces challenges in ad- 059

dressing data sparsity and the cold-start problem 060

(where new users or items lack sufficient interac- 061

tion data). Feature engineering remains essential 062

for providing meaningful input features. The DLR 063

leverages the power of deep neural networks to 064

automatically learn complex, non-linear representa- 065

tions directly from raw or sparse features (Tang and 066

Wang, 2018; Xue et al., 2017; Zhang et al., 2017; 067

Chen et al., 2019; Xue et al., 2025). In industrial 068

recommendation systems, DLR has been used for 069

nearly a decade, typically with inputs that include 070

many well-designed handcrafted features to im- 071

prove model performance. The primary challenge 072

with DLR models lies in the trade-off between ef- 073

fectiveness and efficiency. Their relatively small 074

parameter size often makes scaling more difficult, 075

hindering convenient increases in model capacity 076

to enhance recommendation quality. 077

Traditional recommendation paradigms, i.e., the 078

MLR and DLR, focus on predicting a similarity 079

or rank score based on hand-crafted feature engi- 080

neering and intricate cascaded modeling structure, 081

making them brittle, difficult to interpret, and re- 082

quiring significant manual effort for maintenance 083
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and adaptation to new data or domains. In recent084

years, a paradigm shift has been catalyzed by the085

emergence and rapid development of large lan-086

guage models (LLMs). These models, exemplified087

by architectures like GPT, BERT, encoder-decoder088

Transformer, and others, trained on vast amounts089

of text data, demonstrate remarkable capabilities090

in understanding and generating human language091

(Floridi and Chiriatti, 2020; Liu et al., 2019; Guo092

et al., 2025a). They excel at capturing complex093

statistical dependencies in sequential data, perform-094

ing sophisticated reasoning tasks, and exhibiting a095

deep understanding of context and semantics. This096

unprecedented power in sequence modeling and097

general-purpose reasoning has naturally led to the098

emergence and rapid advancement of GRs. In par-099

ticular, the GR systems have seen great progress in100

the past year. SASRec (Kang and McAuley, 2018)101

first proposes to predict the next user-interacted102

item through an autoregressive approach based103

on a transformer model. Zhai et al. (2024) pro-104

pose HSTU, a new transformer framework for bet-105

ter modeling sequences and inference efficiency,106

which is followed by Huang et al. (2025) on rank-107

ing tasks. To deal with a large number of items108

in industrial-scale recommendation, TIGER (Ra-109

jput et al., 2023) incorporates the idea of RQ-VAE110

(Zeghidour et al., 2021) to learn to transform items111

into multiple semantic IDs, largely reducing the112

vocabulary size. Building upon similar semantic113

ID encoding, OneRec (Deng et al., 2025) employs114

a Mixture of Experts (MoE) architecture (Dai et al.,115

2024) and a Direct Preference Optimization (DPO)116

strategy (Rafailov et al., 2023) to further improve117

the recommendation ability. For industrial-scale118

generative recommendation, MTGR (Han et al.,119

2025) proposes incorporating the cross features120

used in DLR and finds that excluding cross fea-121

tures severely damages the model’s performance.122

Qiu et al. (2025) and Zheng et al. (2025) further123

propose an end-to-end generative architecture that124

unifies online advertising ranking as one model.125

Moreover, Jiang et al. (2025) points out that the126

LLM can be used as a universal recommendation127

learner, and they propose URM, which can perform128

well on versatile recommendation tasks.129

Works mentioned above show that LLM-based130

GRs represent a fundamental departure from tradi-131

tional discriminative methods. This generative as-132

pect offers several compelling advantages. Firstly,133

it allows for greater explainability, enabling sys-134

tems to communicate why a particular item is rec-135

ommended, thereby building user trust and facili- 136

tating feedback loops. Secondly, it inherently sup- 137

ports creativity and novelty, as LLMs can suggest 138

items beyond the most predictable ones based on 139

past behavior, potentially helping users discover 140

new interests. Thirdly, the unified language model 141

approach potentially simplifies system design by 142

reducing the need for complex, hand-crafted fea- 143

ture engineering and separate modules for different 144

tasks. Furthermore, the scaling laws in LLMs have 145

great potential to raise the performance ceiling of 146

generative recommendation systems. 147

Recognizing the transformative potential and the 148

rapid pace of development in this area, there is 149

a growing need for a comprehensive survey that 150

synthesizes the current knowledge on GRs. While 151

initial explorations into this space have been con- 152

ducted, the field is evolving rapidly, and a system- 153

atic survey is crucial to help researchers and practi- 154

tioners navigate the landscape, understand the core 155

concepts and techniques, learn from existing appli- 156

cations, and identify promising avenues for future 157

work. In this paper, we provide a comprehensive 158

survey aimed at facilitating further research and 159

development in LLM-based GRs. We structure our 160

survey to first outline the general preliminaries and 161

foundational concepts of LLM-based GRs. Sub- 162

sequently, we delve into the diverse application 163

cases and real-world deployments of these systems. 164

Finally, we critically analyze the main considera- 165

tions and challenges encountered when applying 166

LLM-based GRs in demanding industrial scenar- 167

ios. We conclude by exploring promising future 168

research directions. We hope that this survey con- 169

tributes significantly to the ongoing advancement 170

and maturation of the GR domain. 171

2 Preliminaries 172

2.1 Large language models 173

Large language models, which are trained on vast 174

amounts of text data, have demonstrated signif- 175

icant capabilities in natural language processing 176

(Bubeck et al., 2023; Yang et al., 2025a; Grattafiori 177

et al., 2024). Given an input sequence X = 178

{x1, x2, . . . , xn}, LLMs are trained to optimize the 179

probability P (xt|x<t; θ) with the next-token pre- 180

diction format, where θ represents the parameters 181

of the model and x<t indicates the tokens before 182

xt. Initially, LLMs were primarily text-based, but 183

they have evolved to handle multi-modal data, inte- 184

grating text with images, audio, and video (Team 185
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et al., 2023; Liu et al., 2023b,a; Yang et al., 2023).186

With the ability to support multi-modal inputs and187

outputs, large models can perform a variety of se-188

quence generation tasks.189

2.2 Traditional cascaded recommendations190

Traditional recommendation systems widely adopt191

multi-stage cascaded architectures to balance192

computational efficiency and prediction accuracy193

(Burges, 2010; Chang et al., 2023; Wang et al.,194

2011). As illustrated in Figure 1, a typical cas-195

caded recommendation system includes three se-196

quential stages: recall, pre-ranking, and ranking.197

Although efficient in practice, existing methods198

typically treat each stage independently, where the199

effectiveness of each isolated stage serves as the200

upper bound for the subsequent stage, thereby limit-201

ing the performance of the overall recommendation202

system. Many previous works (Fei et al., 2021; Gal-203

lagher et al., 2019; Huang et al., 2023b; Wang et al.,204

2024b) have been proposed to enhance overall rec-205

ommendation performance by enabling interaction206

among different stages, but they still maintain the207

traditional cascade paradigm. Recently, the GRs208

have emerged as a promising paradigm to serve209

as a unified architecture for end-to-end generation210

(Qiu et al., 2025; Deng et al., 2025).211

3 Application Settings of GR212

In the past year, various GR systems have achieved213

significant business benefits in practical industrial214

settings. There are two different branches of ap-215

proaches applying GRs in online recommendation:216

the first branch is cooperating with the correspond-217

ing modules of traditional cascaded systems; the218

other is to apply generative models directly for end-219

to-end recommendations. This section will system-220

atically summarize and analyze recent works based221

on their specific application settings.222

3.1 Recall223

Recall is a foundational step that narrows the can-224

didate item pool to a subset potentially relevant225

to a user. This stage is critical for supporting the226

subsequent ranking stage and prioritizes efficient227

implementation over massive datasets (McAuley,228

2022). LLMs can be leveraged in the recall phase229

in three approaches: prompt-based, token-based,230

and embedding-based recall methods.231

Prompt-based methods generate recall results by232

providing user information to pre-trained LLMs233

Item Corpus

Recall

Pre-ranking

Ranking

~10!

~10"

~10#

Item list

Figure 1: A typical cascade ranking system, which in-
cludes three stages from the top to the bottom: Recall,
Pre-ranking, and Ranking.

through customized queries. Pre-trained LLMs, 234

such as Qwen3 (Yang et al., 2025a), are equipped 235

with extensive world knowledge, which enables 236

the recall of items even when user information 237

is implicit or sparse. Specifically, LLMTreeRec 238

(Zhang et al., 2024b) constructs prompts to guide 239

LLMs in summarizing user interests, inferring re- 240

lated item categories, and recalling specific items 241

through item trees. Note that the parameters in 242

LLMs remain frozen and are not fine-tuned in this 243

method. Besides, SyNeg (Li et al., 2024a) utilizes 244

LLMs to synthesize negative samples that are dif- 245

ficult to classify. These generated hard negative 246

samples are then fused with the retrieved negatives 247

for model fine-tuning. 248

Token-based methods map user behavior se- 249

quences to token sequences, formulating the re- 250

call problem as the next token prediction task. 251

These methods offer strong flexibility in token se- 252

quence construction, model architecture design, 253

and information encoding and decoding, support- 254

ing various industrial deployment scenarios. No- 255

tably, HSTU (Zhai et al., 2024) reformulates the 256

recall task within a generative framework. Sim- 257

ilarly, KuaiFormer (Liu et al., 2024) defines the 258

recall process as next token prediction, incorpo- 259

rating hierarchical user behavior summarization 260

across early, middle, and recent action sequences. 261

The model has been deployed to industrial-scale 262

platforms serving 400 million daily active users 263

with a significant lift in both offline and online eval- 264

uation metrics. To unify diverse recall objectives 265

(e.g., items users will click on), Universal Retrieval 266

Model (URM) (Jiang et al., 2025) encodes these 267

objectives as components within token sequences 268

to provide objective-aware recall outcomes. 269
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Embedding-based methods leverage LLMs as270

encoders to generate item embeddings, which are271

subsequently integrated into classical DLR meth-272

ods. For example, MoRec employs pre-trained273

vision and text encoders to obtain item embed-274

dings (Yuan et al., 2023) for downstream prediction275

modules such as DSSM (Huang et al., 2013) and276

SASRec (Kang and McAuley, 2018).277

3.2 Rank278

The ranking stage plays a pivotal role in deter-279

mining the final relevance and diversity of can-280

didate items presented to users. Compared to281

DLR, LLMs can accurately model user prefer-282

ences mainly through chronological user behavior283

sequences, which eliminates the need for exten-284

sive feature engineering. Furthermore, LLMs pos-285

sess a theoretical foundation in scaling laws, which286

allows LLM-based ranking systems to overcome287

the performance bottlenecks inherent in DLR ap-288

proaches by leveraging increased model scale (Zhai289

et al., 2024).290

Current approaches to integrating LLMs into291

the ranking stage can be categorized into two292

paradigms: generative architectures and hybrid293

integration architectures, depending on whether294

they retain the traditional DLR framework. Gener-295

ative architectures abandon DLR frameworks, em-296

ploying LLMs to directly process user behavior297

sequences and generate candidate scores through298

explicitly supervised tasks such as CTR prediction.299

As mentioned above, GR (Zhai et al., 2024) con-300

structs chronological sequences by integrating user-301

related behaviors and features, reformulating the302

ranking task as a sequential transduction task. No-303

tably, GR marks the first observation of the scaling304

laws inherent in LLMs within large-scale recom-305

mendation systems. GenRank (Huang et al., 2025)306

proposes an action-oriented sequence organization307

that treats items as positional context and focuses308

on predicting user actions associated with each can-309

didate item. DFGR (Guo et al., 2025b) introduces310

a dual-flow generative architecture that decouples311

user behavior sequences into parallel real and fake312

flows to address computational inefficiencies in GR.313

It merges real and fake action-type tokens to model314

heterogeneous user behaviors while maintaining315

end-to-end efficiency.316

Hybrid integration architectures, in contrast,317

leverage LLMs to generate highly informative rep-318

resentations that are integrated as supplementary319

features to DLR, thereby enhancing the perfor-320

mance of existing systems. As the representative 321

approach, LEARN (Jia et al., 2025) adapts a fixed 322

LLM as the Content-Embedding Generation (CEG) 323

module to preserve open-world knowledge while 324

bridging the gap between general and collaborative 325

domains via a twin-tower structure comprising a 326

user tower and an item tower. LEARN deploys 327

its LLM-derived representations as complemen- 328

tary features within existing ranking models in in- 329

dustrial scenarios, achieving substantial improve- 330

ments in practical applications. HLLM (Chen et al., 331

2024a) employs a hierarchical LLM architecture 332

that sequentially employs a trainable ITEM LLM 333

and USER LLM to extract item-specific and user- 334

specific representations, respectively. In online sce- 335

narios, HLLM integrates the high-level item and 336

user representations through a late fusion approach. 337

SRP4CTR (Han et al., 2024) enhances CTR pre- 338

diction by integrating self-supervised sequential 339

recommendation pre-training with CTR models 340

through a fine-tuned architecture that employs FG- 341

BERT for multi-attribute side information encoding 342

and a uni cross-attention block to transfer knowl- 343

edge from pre-trained sequences to item-specific 344

predictions efficiently. To integrate the strengths 345

of both paradigms, MTGR (Han et al., 2025) em- 346

ploys a generative architecture based on HSTU to 347

model user-level data while retaining raw features, 348

including cross features designed for DLR. 349

3.3 End-to-end recommendation 350

The goal of end-to-end recommendation is to di- 351

rectly output the recommendation results based on 352

users’ historical behaviors. A key distinction from 353

the recall task lies in whether the output inherently 354

possesses ranking capability and whether it can 355

fully replace the conventional cascaded recommen- 356

dation pipeline. The main advantage of end-to- 357

end recommendation is that it could avoid error 358

propagation and objective misalignment caused by 359

pipeline-based methods. 360

Most recall-focused methods (e.g., TIGER (Ra- 361

jput et al., 2023), COBRA(Yang et al., 2025b) and 362

URM (Jiang et al., 2025)) are trained with the objec- 363

tive of next item prediction, emphasizing top-k hit 364

rate during evaluation. In contrast, end-to-end ap- 365

proaches often enhance the model’s ranking ability 366

through additional post-training stages built upon 367

generative models. OneRec (Deng et al., 2025) 368

first deploys the end-to-end recommendation model 369

to the industrial scenario, targeting the generation 370

of session-wise recommendation lists as its core 371
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task. It employs an iterative reward-model-based372

DPO alignment strategy to progressively refine the373

model. It completely replaces the cascaded on-374

line recommendation pipeline with a single model,375

achieving significant improvements on online feed-376

back metrics. OneSug (Guo et al., 2025c) employs377

list-wise preference alignment, leveraging online378

feedback signals for reinforcement training to gen-379

erate more preferable query suggestions. EGA-V2380

(Zheng et al., 2025) is specifically optimized for ad-381

vertising recommendation scenarios, where it trains382

a reward model on top of next item prediction to383

evaluate the expected cumulative reward of an ad384

sequence, thereby improving the overall expected385

return of recommended ads. Although EGA-V1386

(Qiu et al., 2025) is primarily designed as a ranking387

model, it considers the full set of candidate adver-388

tisements as input, which places it within the scope389

of end-to-end recommendation.390

Beyond industrial applications, several academic391

studies have focused on how to learn better ranking392

capabilities within the end-to-end framework. S-393

DPO (Chen et al., 2024b) is the first work to apply394

the DPO algorithm to recommendation models. By395

considering multiple negative samples exposed at396

the same time, S-DPO extends the binary prefer-397

ence optimization of DPO into a multi-preference398

setting, thereby improving the ranking quality of399

recommendations. RosePO (Liao et al., 2024) fur-400

ther enhances the construction of negative samples401

by incorporating factors such as popularity and se-402

mantic similarity, generating harder negatives for403

more effective reinforcement learning. SPRec (Gao404

et al., 2025) introduces a self-replay mechanism,405

using the model’s predicted results as negative sam-406

ples, which increases the difficulty of distinguish-407

ing between positive and negative examples and408

leads to stronger generalization. Combining these409

reinforcement learning strategies with industrial410

applications represents a promising direction for411

the development of end-to-end recommendations.412

4 Main Considerations and Challenges413

As a new paradigm in recommendations, GR faces414

many challenges in industrial applications; this sec-415

tion will detail the key issues that need to be con-416

sidered during the application process.417

4.1 Training pipelines418

A core issue in GR is how to design the training419

methodology and objectives to align with the rec-420

ommendation task. Based on the number of stages 421

involved in the training process, we categorize ex- 422

isting approaches into two main types: single-stage 423

training and multi-stage training. Table 1 summa- 424

rizes these methods by category, training objective, 425

and distinctive strategies. 426

4.1.1 Single-stage training 427

In single-stage training, the model produces the 428

final recommendation output through a single train- 429

ing phase, typically focusing on only one specific 430

task—either recall or ranking. For recall tasks, a 431

common training objective is next item prediction. 432

Methods such as HSTU (Zhai et al., 2024) and 433

URM (Jiang et al., 2025) train models based on this 434

objective, aiming to predict the top-k items as the 435

recall results. Given the large scale of item spaces, 436

these approaches often employ negative sampling 437

during training to reduce the computational cost 438

of the softmax operation. In contrast, KuaiFormer 439

(Liu et al., 2024) adopts in-batch softmax, gener- 440

ating embeddings directly for recall purposes. For 441

ranking tasks, a typical training objective is CTR 442

prediction. MTGR (Han et al., 2025) explicitly 443

models the relationship between user sequences 444

and candidate items, predicting CTR values to re- 445

place traditional ranking models, thereby improv- 446

ing the recommendation performance. 447

4.1.2 Multi-stage training 448

Multi-stage training generally involves two phases: 449

pre-training and fine-tuning. By defining distinct 450

training objectives at each stage, the model can 451

learn different capabilities. This category can be 452

further divided into two subcategories, depending 453

on how the pretrained models are utilized during 454

fine-tuning: representation-based fine-tuning and 455

model-based fine-tuning. 456

Representation-based finetuning Methods in 457

this category (e.g., HLLM (Chen et al., 2024a), 458

LEARN (Jia et al., 2025), and LUM (Yan et al., 459

2025)) primarily target ranking tasks. During the 460

pre-training phase, they use contrastive learning 461

and InfoNCE loss (Oord et al., 2018) to generate 462

user and item embeddings. These embeddings are 463

then used as features during the fine-tuning phase, 464

where a traditional DLR model is trained to en- 465

hance the ranking performance. QARM (Luo et al., 466

2024) further quantizes the embedding into seman- 467

tic IDs for downstream training, making these in- 468

formation learnable. Notably, LUM employs a 469

three-stage pipeline: the first stage focuses solely 470
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Table 1: A summary of learning targets and post-training strategies of recent GR works.

Methods Training Objective Training Strategy & Loss

Single Stage

HSTU (Zhai et al., 2024) next item / action prediction cross entropy
URM (Jiang et al., 2025) next item prediction cross entropy

KuaiFormer (Liu et al., 2024) user-item embedding similarity in-batch contrastive learning
MTGR (Han et al., 2025) ctr prediction binary classification

Multi Stage

OneRec (Deng et al., 2025) next item prediction DPO loss, iterative alignment
OneSug (Guo et al., 2025c) next item prediction DPO loss, list-wise preference alignment

EGA-V2 (Zheng et al., 2025) next item prediction auction-based preference alignment
EGA-V1 (Qiu et al., 2025) ctr prediction auction-based preference alignment
QARM (Luo et al., 2024) item alignment contrastive learning, id as ranking feature

HLLM (Chen et al., 2024a) ctr prediction contrastive learning, embedding as ranking feature
LEARN (Jia et al., 2025) ctr prediction contrastive learning, embedding as ranking feature
LUM (Yan et al., 2025) next item prediction contrastive learning, embedding as ranking feature

on next item prediction; the second stage learns to471

generate user and item embeddings through con-472

trastive learning; the third stage trains DLMs for473

recall and ranking by using user and item embed-474

dings as input features.475

Model-based finetuning This category largely476

falls under the paradigm of end-to-end recommen-477

dation, where the pre-training phase learns the abil-478

ity to predict next items and the finetuning phase479

then enhances the model’s ranking capability in480

specific application scenarios using reinforcement481

learning. Both OneRec (Deng et al., 2025) and482

OneSug (Guo et al., 2025c) follow this framework,483

applied to video recommendation and query sug-484

gestion, respectively. EGA-V2 (Zheng et al., 2025)485

and EGA-V1 (Qiu et al., 2025) are specifically de-486

signed for advertising scenarios, achieving notable487

improvements in end-to-end ad recommendation488

and ad ranking.489

4.2 Inference efficiency490

The increased inference latency accompanied by491

the complex architectures of LLMs presents an-492

other challenge that hinders the deployment of GR493

models in real-world industrial scenarios. Cur-494

rently, substantial efforts have been dedicated to op-495

timizing decoding speed, primarily focusing on se-496

quence compression, model architecture optimiza-497

tion, and specialized modeling and decoding tricks498

tailored for the recall and ranking stages.499

Compressing the sequence length serves as an500

effective strategy to fundamentally reduce compu-501

tational costs. GenRank (Huang et al., 2025) in-502

troduces an action-oriented sequence organization503

framework, which treats items as positional context,504

halving the input sequence length. DFGR (Guo505

et al., 2025b) reduces input sequence length by506

merging user-item interactions into single tokens507

through a real-flow and fake-flow. KuaiFormer (Liu508

et al., 2024) employs an adaptive item compres- 509

sion mechanism to reduce input sequence length 510

by grouping earlier user interactions into coarsely 511

aggregated representations while retaining fine- 512

grained modeling of recent items, thereby decreas- 513

ing sequence length without sacrificing recall per- 514

formance. 515

Some work improves decoding efficiency by 516

making slight adjustments to the model architec- 517

ture. HSTU (Zhai et al., 2024) replaces the stan- 518

dard softmax in attention computation with a point- 519

wise aggregated attention mechanism, reducing 520

the quadratic complexity of self-attention to linear 521

complexity. EGA-V1 (Qiu et al., 2025) proposes 522

RecFormer, which introduces a cluster-attention 523

mechanism in the Global Cluster-Former module 524

to replace standard self-attention, reducing com- 525

putational complexity by dynamically grouping 526

keys/values into semantically coherent clusters via 527

a learnable cluster matrix. 528

Some tailored tricks are proposed to acceler- 529

ate the inference speed during the recall and rank 530

stages. To reduce the vocabulary size during re- 531

call, some approaches (Rajput et al., 2023; Yang 532

et al., 2024a; Yin et al., 2024; Li et al., 2025) at- 533

tempt to replace item IDs with the hierarchical 534

semantic IDs. These semantic IDs are generated 535

via RQ-VAE, which encodes item content into se- 536

mantically meaningful token sequences, enabling 537

efficient knowledge sharing across similar items 538

by leveraging hierarchical semantic structure for 539

autoregressive item prediction. To mitigate con- 540

flicts in ID allocation, LC-Rec (Zheng et al., 2024) 541

introduces a uniform distribution constraint in the 542

final layer of the RQ-VAE. RPG (Hou et al., 2025) 543

generates long, unordered semantic IDs in parallel 544

using optimized product quantization, trains with 545

MTP loss to integrate sub-item semantics. To fur- 546

ther enhance the inference efficiency of semantic 547
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ID-based methods, EGA-V2 (Zheng et al., 2025)548

employs Multi-Token Prediction (MTP) inference549

to enhance scalability and alignment with business550

objectives. Additionally, URM (Jiang et al., 2025)551

introduces matrix decomposition and probabilis-552

tic sampling instead of TopK selection to reduce553

computational complexity. The key to enhancing554

inference efficiency in the ranking stage lies in how555

to efficiently score all candidate items. Zhai et al.556

(2024) introduce M-FALCON that processes mul-557

tiple candidate items in a single forward pass by558

modifying causal attention masks to ensure mu-559

tual invisibility among candidates. Similar to M-560

FALCON, MTGR (Han et al., 2025) introduces561

a customized masking strategy to prevent infor-562

mation leakage while enabling efficient candidate563

scoring.564

4.3 Cold start and world knowledge565

The cold start problem refers to the challenge566

of generating accurate recommendation outcomes567

when there is insufficient data, particularly for568

newly registered users and newly uploaded569

items (Lam et al., 2008; Wei et al., 2020). LLMs570

offer two primary strategies for mitigating the cold571

start problem in recommendation systems. (1) In-572

formation Augmentation. The goal is to enhance573

the input data used in recommendations by incor-574

porating new embeddings and knowledge gener-575

ated by LLMs. For example, SAID (Hu et al.,576

2024), proposed by Ant Group, generates item577

embeddings based on textual information and in-578

tegrates them into downstream recommendation579

tasks. Analogously, CSRec (Yang et al., 2024b)580

fuses metadata-based and common sense-based581

knowledge derived from LLMs as side information582

to enhance recommendations. (2) Model Reason-583

ing. The central idea is that LLMs can directly584

produce recommendation results by leveraging pat-585

terns learned from large-scale training data. A rep-586

resentative approach is LLM-Rec (Lyu et al., 2024),587

which employs carefully designed prompt strate-588

gies to derive effective recommendation solutions.589

For the above information augmentation and590

model reasoning approaches, the underlying ra-591

tionale for the positive impact of LLMs can be592

attributed to world knowledge. Here, world knowl-593

edge refers to the extensive contextual and con-594

ceptual knowledge inherent in LLMs, which stems595

from their training on large-scale datasets spanning596

diverse domains (Zhang et al., 2023). For instance,597

Llama 3 (Grattafiori et al., 2024) and Qwen3 (Yang598

et al., 2025a) were pre-trained using 15 and 36 599

trillion multilingual tokens, respectively, with do- 600

main diversity. The world knowledge embedded 601

in pre-trained LLMs allows recommendation sys- 602

tems to effectively learn user-item interaction pat- 603

terns during the cold start stage. Specifically, LC- 604

Rec (Zheng et al., 2024) integrates language se- 605

mantics from Llama with collaborative signals to 606

attain world knowledge and task-specific charac- 607

teristics in recommendation systems. Notably, re- 608

cent research has revealed that item representations 609

linearly mapped from language representations 610

in LLMs enhance recommendation performance, 611

demonstrating the value of world knowledge in rec- 612

ommendation systems (Sheng et al., 2024). Further- 613

more, the world knowledge within LLMs can be 614

refined by adding external domain-specific knowl- 615

edge using the Retrieval-Augmented Generation 616

technique (Arslan et al., 2024). 617

The world knowledge in LLMs for recommen- 618

dation can be obtained from various data sources 619

on users and items: images (Radford et al., 2021), 620

videos (Covington et al., 2016), and speech (Cui 621

et al., 2024). The integration of diverse data sources 622

can be referred to as multi-modal learning. To 623

better leverage the multi-modal representations, a 624

potential solution is contrastive learning, such as 625

image-text contrastive loss (Li et al., 2021), which 626

is used to align image and text representations be- 627

fore representation fusion. 628

Table 2: Multi-modal LLMs for recommendation.

Data Target
InteraRec (Karra and Tulabandhula, 2024) Image, text Product

I-LLMRec (Kim et al., 2025) Image, text Product
NoteLLM-2 (Zhang et al., 2024a) Image, text Note

TALKPLAY (Doh et al., 2025) Audio, text Music

The increasing feasibility of multi-modal learn- 629

ing in recommendation systems has been driven 630

by the prosperity of multi-modal LLMs such 631

as CLIP (Radford et al., 2021), vision trans- 632

former (Kim et al., 2021), and Qwen2-vl (Wang 633

et al., 2024a). Typical multi-modal LLMs for rec- 634

ommendation are summarized in Table 2. Specifi- 635

cally, NoteLLM-2 (Zhang et al., 2024a), developed 636

by Xiaohongshu, utilizes visual information within 637

LLMs to recommend notes to users, resulting in 638

a 6.4% increase in note exposures. Alternatively, 639

TALKPLAY (Doh et al., 2025) is a multi-modal 640

music recommendation system that encodes audio 641

features, including lyrics and semantic tags, into 642

LLMs to provide music recommendations. TALK- 643
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PLAY demonstrates superior performance on the644

Million Playlist Dataset (Chen et al., 2018), which645

contains cold-start items in its test sets. Further-646

more, InteraRec (Karra and Tulabandhula, 2024) is647

an online e-commerce product recommendation648

method that extracts valuable information from649

high-frequency web page screenshots. Together,650

given the standard representation learning frame-651

works in LLMs, these external multi-modal signals652

can be easily incorporated into existing LLM-based653

GRs to handle the cold start problem.654

5 Future Directions655

In this section, we explore promising directions for656

LLM-based GRs across the following aspects.657

5.1 Model scaling658

Since its observation and proposal, the scaling law659

has become the theoretical foundation for param-660

eter scaling in large language models. When it661

comes to scaling, the traditional DLR has two sig-662

nificant drawbacks: 1) with the scaling of the length663

of the user behavior sequence, the DLR cannot effi-664

ciently process entire user behaviors, which limits665

the model’s performance; 2) scaling incurs approx-666

imately linear costs in training and inference with667

the number of candidates, making the expenses un-668

bearably high (Chen et al., 2021; Pi et al., 2020;669

Han et al., 2025). For GRs, recent studies have670

observed some scaling effects (Han et al., 2025;671

Wang et al., 2025; Huang et al., 2025). However,672

in these works, the model sizes are still limited673

to a relatively small level, such as 0.x B or 1.x674

B, and the performance improvements of models675

at much larger sizes have not been well validated.676

With a larger model size and longer user behav-677

ior sequence, it is an auspicious and challenging678

direction to train a more powerful generative rec-679

ommendation model.680

5.2 Data cleaning681

As we all know, the quality of training data has682

a significant impact on the final performance of683

large language models. Few works in GRs have684

investigated how to perform data cleaning in the685

recommendation domain. Unlike traditional lin-686

guistic text corpora used in textual LLMs, train-687

ing data in recommendation systems comprises688

not only item IDs but also multi-source side in-689

formation with multi-modal characteristics. How690

to handle this heterogeneous side info is still an691

open question. The training corpora in GRs consist692

of user behavior sequences, posing unique chal- 693

lenges for quality assessment, as there exists no 694

equivalent of grammaticality evaluation in natu- 695

ral language processing to discern the validity of 696

behavioral sequences. Developing frameworks to 697

evaluate behavioral sequence validity, implement 698

quality-aware data curation through discriminative 699

filtering, and establish dynamic training protocols 700

conditioned on corpus quality represents a princi- 701

pled methodology for substantially improving rec- 702

ommendation performance (Huang et al., 2024). 703

5.3 One model for all 704

The core aspiration of LLMs is to achieve a uni- 705

versal architecture capable of accomplishing all 706

diverse language tasks through prompt switching 707

with a single model; recently, remarkable advance- 708

ments in multimodal large models have further ig- 709

nited researchers’ enthusiasm for developing uni- 710

fied frameworks that support multiple modalities 711

(Girdhar et al., 2023; Huang et al., 2023a; Yu et al., 712

2023; Yang et al., 2023; Zheng et al., 2024). Zhai 713

et al. (2024) and Deng et al. (2025) unify the re- 714

call and rank in one GR model. Recently, Jiang 715

et al. (2025) stepped further and proposed that GRs 716

(URM in their work) can function as universal rec- 717

ommendation learners, capable of handling multi- 718

ple tasks within a unified input-output framework, 719

eliminating the need for specialized model designs. 720

URM can handle multi-scenario recommendation 721

(search included), multi-objective recommendation, 722

long-tail item recommendation, etc. We posit that 723

unifying the input and output, recommendation 724

and search, through generative large models, which 725

deliver customized recommendations by dynami- 726

cally interpreting user instructions, will emerge as 727

a promising research frontier. 728

6 Conclusions 729

In this paper, we have presented a comprehensive 730

survey of LLM-based GRs with a focus on recent 731

advancements. Initially, we outline the general 732

preliminaries and application cases of LLM-based 733

GRs. Subsequently, we introduce the main consid- 734

erations when LLM-based GRs are applied in real 735

industrial recommendation systems. Our survey 736

also sheds light on their capabilities across diverse 737

scenarios and promising future directions in this 738

rapidly evolving field. We hope this survey can 739

provide insights for researchers and contribute to 740

the ongoing advancements in the GR domain. 741
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Limitations742

In this paper, we embark on a comprehensive ex-743

ploration of the current LLM-based GRs landscape,744

presenting a synthesis from diverse perspectives745

enriched by our insights. Acknowledging the dy-746

namic nature of GRs, it is plausible that certain747

aspects may have eluded our scrutiny, and recent748

advances might not be entirely encapsulated. Given749

the constraints of the page limits, we are unable750

to delve into all technical details and have pro-751

vided concise overviews of the core contributions752

of mainstream GRs.753
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