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ABSTRACT

Understanding the inner workings of large-scale deep neural networks is chal-
lenging yet crucial in several high-stakes applications. Mechanistic interpretabil-
ity is an emergent field that tackles this challenge, often by identifying human-
understandable subgraphs in deep neural networks known as circuits. In vision-
pretrained models, these subgraphs are typically interpreted by visualizing their
node features through a popular technique called feature visualization. Recent
works have analyzed the stability of different feature visualization types under the
adversarial model manipulation framework. This paper addresses limitations in
existing works by proposing a novel attack called ProxPulse that simultaneously
manipulates two types of feature visualizations. Surprisingly, when analyzing these
attacks within the context of visual circuits, we find that visual circuits exhibit
some robustness to ProxPulse. Consequently, we introduce a new attack based
on ProxPulse that reveals the manipulability of visual circuits, highlighting their
lack of robustness. The effectiveness of these attacks is validated across a range
of pre-trained models, from smaller architectures like AlexNet to medium-scale
models like ResNet-50, and larger ones such as ResNet-152 and DenseNet-201 on
the ImageNet dataset.

1 INTRODUCTION

Large Deep Neural Networks (DNNs) trained on vast amounts of data are becoming increasingly
important and deployed in the real world. In several high-stakes applications such as autonomous
driving, understanding the inner workings of these trained DNNs is crucial for assuring the safety
and reliance of these systems (Rudner & Toner, 2021; Wäschle et al., 2022). Inspired by neu-
roscience (Hubel & Wiesel, 1962; Olah et al., 2017), one classical approach relies on activation
maximization methods (Zeiler & Fergus, 2014; Olah et al., 2017), where the top images (real or
synthetic) that most activate a neuron are used to interpret the neuron’s behavior. A recently popular
direction for interpretability that often builds on activation maximization is mechanistic interpretabil-
ity. Mechanistic interpretability is an emergent field, which seeks to discover human-understandable
algorithms stored in model weights (Wang et al., 2022). The discovery of these meaningful algo-
rithms makes it possible to reverse-engineer the behavior of neural networks (Conmy et al., 2023)
and can also permit to edit factual knowledge in large-scale models (Meng et al., 2022). Most of the
research in mechanistic interpretability analyzes the functionality of DNNs by considering them as
computational graphs that can be decomposed into interpretable subgraphs known as circuits. In
pre-trained vision models, the emergence of circuits that implement meaningful algorithms such
as curve detectors and dog head detectors, etc. (Olah et al., 2020) has been demonstrated. These
circuits can be built by manually inspecting neurons, and hierarchically grouping them according
to feature visualization, which consists in finding, through activation maximization, either images
from the training set or synthetical optimization-based images (Olah et al., 2017). Circuits can also
be discovered using structured pruning (Hamblin et al., 2022).

Although activation maximization purports to provide the interpreter with a description of the behavior
of the neuron, recent work has cast some doubt on the reliability of these interpretations (Nanfack
et al., 2024; Geirhos et al., 2023; Bareeva et al., 2024). Notably, in these works, it has been shown
that models can be subtly perturbed (or “attacked”) to change completely the interpretation of either
synthetic or natural (i.e. from training set) images. This suggests that these interpretations might not
be completely reliable. The existing works on model manipulations however have two limitations that
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Manipulates

Method Synth. Vis. Nat. Vis. Circuit

Geirhos et al. (2023) ✓ × ×
Nanfack et al. (2024) × ✓ ×
Bareeva et al. (2024) ✓ × ×
ProxPulse (ours) ✓ ✓ ×
CircuitBreaker (ours) ✓ ✓ ✓

Table 1: Existing attacks on feature visualization. Our methods are able to manipulate synthetic and
natural visualizations as well as visual circuits. The ✓ symbol indicates that the row approach has
been demonstrated to effectively deceive the interpretation derived from the column technique.

we focus on. (1) None of the existing attacks have been shown to be able to manipulate both synthetic
and natural visualizations simultaneously, as illustrated in Tab. 1. Indeed, Nanfack et al. (2024) has
shown “attacks” in the context of natural images, while (Geirhos et al., 2023; Bareeva et al., 2024)
only attack synthetic images, each attack only showing a difference in its target domain. (2) The effect
on circuits and their interpretation has not been studied; the reliability of circuit-based interpretations
has not been studied in the literature. In this paper, we analyze the robustness and stability of
visual circuits through the same setting of adversarial model manipulation. As a key component
in visual circuits, we begin our analysis on feature visualization and summarize our contributions
as follows. We first (i) propose a novel attack on activation maximization that can simultaneously
change interpretations of both synthetic and natural image visualizations. We subsequently turn to
analyzing the effect of our attack on the circuit-based interpretation, surprisingly (ii) finding that a
class of circuits derived from structured pruning can be highly robust to our proposed attack when it
is made on the output of the circuit. We then turn our attention to directly manipulating the circuit
proposing the first model manipulation attack on entire circuits. We find that (iii) visual circuits
discovered by structured pruning can also be manipulated through our novel attack, shedding light on
the lack of stability of these interpretability techniques.

2 RELATED WORK

Mechanistic Interpretability. Mechanistic interpretability is an emergent area in the interpretability
of large-scale DNNs, which tackles the problem of discovering meaningful algorithms stored in model
weights (Wang et al., 2022). Works in mechanistic interpretability either focus on individual neurons
or on sparse connections of neurons called circuits. Individual neurons are often interpreted through
techniques such as feature visualization (Zimmermann et al., 2021; Olah et al., 2017; Bau et al., 2020;
Zimmermann et al., 2023), which is designed to interpret individual neurons by visualizing their top
activating inputs. This can be applied to several modalities such as image (Olah et al., 2017) and
text (Dai et al., 2022) using top-activating prompts. Works that build mechanistic interpretations
using circuits have become popular due to the discovery of several meaningful subgraphs such as
those for curve detectors (Olah et al., 2020) in vision models and indirect object identification in
large language models (Conmy et al., 2023). While most of the studies manually build circuits, there
have been recent proposals to automate the discovery of circuits for language models (Conmy et al.,
2023) using edge attribution scores, and for vision models (Hamblin et al., 2022) using structured
pruning. This paper focuses on feature visualization and circuits for vision models and we adopt this
latter work to build visual circuits.
Manipulating Interpretability. Evaluating interpretability is difficult due to the absence of ground
truth. There is a recent trend in assessing the reliability of interpretability techniques through the lens
of stability, which aims to evaluate how the interpretability results change under reasonable input
and model manipulation (Heo et al., 2019; Yu, 2013). The motivation for examining the robustness
of interpretability methods within the context of model manipulation stems from the “universality”
assumption (Olah et al., 2020; Chughtai et al., 2023), which suggests that model interpretations are
similar for similarly performing networks of the same architecture. Some works study the lack of
robustness of feature attribution methods under input and adversarial model manipulations (Heo
et al., 2019; Adebayo et al., 2018; Dombrowski et al., 2019) and other works use these instabilities
to fool the model fairness (Aïvodji et al., 2021; Anders et al., 2020). This paper does not focus on
feature attribution methods. Instead, it examines the manipulability of feature visualization and visual
circuits for which two recent studies are very related. The first one Geirhos et al. (2023) shows that
synthetic (formally defined in Section 3) feature visualization can be fooled under adversarial model
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manipulation. The key idea of their method is to add orthogonal weights to the original ones such
that activations of natural inputs (training data) remain the same, thus preserving model accuracy
while orthogonal weights allow fooling synthetic feature visualization. The second work Nanfack
et al. (2024) introduces an optimization framework that manipulates the result of natural feature
visualization (i.e., top activating inputs from the training set), and further observes the potential
decorrelation between natural and synthetic feature visualization. In this paper, we go beyond
these two works and propose a more complete manipulation, which we call ProxPulse. ProxPulse
simultaneously fools both natural and synthetic feature visualization. However, when analyzing
ProxPulse from the circuit perspective, we observe that ProxPulse also fails to fool circuits, leading
us to propose a new manipulation for visual circuits, which has not been studied before.

3 NOTATIONS AND BACKGROUND

We consider a classification problem with a dataset denoted by D = {(xi, yi)}Ni=1, where xi ∈ Rd

is the input and yi ∈ {1, ...,K} is its class label. Let f(.;θ) denote a DNN, f (l)(x;θ) defines
activation maps of x on the l-th layer, which can be decomposed into J single activation maps
f (l,j)(x;θ). In particular, if the l-th layer is a 2D-convolutional layer, f (l,j)(x;θ) will be a matrix.
Feature visualization is a method designed to interpret the inner workings of individual units. It is the
result of the activation maximization (Mahendran & Vedaldi, 2015; Yosinski et al., 2015) defined by,

x∗ ∈ argmax
x∈X

f (l,j)(x;θ), (1)

where X can be the training set X = D or a continuous space X ⊂ Rd, and (l, j) is the pair of layer
l and neuron j. When X ⊂ Rd, following Zimmermann et al. (2021), we call x∗, synthetic feature
visualization. On the other hand, when X is D, x∗ are top-activating images from the training set,
and we denote this result as natural (or top-k) feature visualization as opposed to the synthetic one.
While feature visualization methods may reveal understandable features such as edge detectors in
early layers (Olah et al., 2020), they are not directly equipped with tools to know how individual
neurons are connected to form more complex features.

Mechanistic interpretability is purposely designed to find potentially human-understandable sub-
algorithms by decomposing the computational graph into subgraphs known as circuits. Hamblin et al.
(2022) automated the discovery of visual circuits. They find visual circuits through structured pruning.
Formally, given a feature map index j from a conv layer of index l (we call the pair (l, j) circuit
head), a sparsity level τ , its corresponding τ -circuit is the computational graph, with parameters θ̂,
which approximates f (l,j)(.;θ) through

argmin
θ̂

1

N

N∑
i=1

||f (l,j)(xi; θ̂) − f (l,j)(xi;θ)|| s.t. ||θ̂||0 ≤ τ, and θ̂l ∈ {θl, 0}. (2)

In practice, Hamblin et al. (2022) adopts structured pruning (i.e., pruning per group of parameters)
with convolutional kernels. This is done by computing kernel attribution scores, e.g., using SNIP
(Lee et al., 2018; Hamblin et al., 2022),

Attr
(
θ(l′,k); f

(l,j),x
)
=

1

KwKh

Kw∑
p=1

Kh∑
q=1

∣∣∣∣wp,q
∂f (l,j)(x;θ)

∂wp,q

∣∣∣∣ , (3)

where Kw,Kh are spatial dimensions of the kernel index k and a preceding layer index l′ ≤ l, and
wp,q are weight parameters of kernels. Once these attribution scores are computed, they are sorted,
and top kernels are retained according to the sparsity level τ to compute the circuit. Following
Hamblin et al. (2022), the sparsity level represents the number of parameters that were not masked.

4 METHODS

We analyze the manipulability of feature visualization and visual circuits under adversarial model
manipulation, which consists in fine-tuning a pre-trained model with specifically designed loss
functions. To do so, we adopt the similar framework used by Heo et al. (2019); Nanfack et al. (2024),
which is framed as the following optimization framework

min
θ

(αLF(Dfool ;θ) + (1− α)LM(D;θ,θinitial)), (4)

where Dfool is the data used to manipulate the interpretation technique, where θ are parameters of
the updated model f(.;θ), LM is the loss that aims to maintain the initial performance of the model
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f(.;θinitial), and LF is the fooling loss. In practice, LM(D;θ,θinitial) = LCE(f(.;θinitial)||f(.;θ))
(Hinton et al., 2015) is the cross entropy loss between the original model outputs and the finetuned
model outputs on training data D, and the fooling loss LF is provided in the following sections.

4.1 MANIPULATION OF FEATURE VISUALIZATION

This section introduces a fooling loss that aims to manipulate both natural and synthetic feature
visualizations, focussing on all the channels indexed by j of a particular layer of index l. For brevity,
we omit l in the fooling loss Lfool. We start by observing that fooling the result of feature visualization
involves the creation of a local region in the input space, reachable by gradient ascent, and with high
values of activations. To ensure the creation of such a region, we use the ρ-ball B(x∗, ρ) (using
the l2 norm) centered on the image target x∗ ∈ Dfool, which excludes initial synthetic images when
manipulating feature visualization results. This ρ-ball B(x∗, ρ) is used to contain the new feature
visualization results. We therefore propose a fooling objective that aims to push up the smallest
activations of images in B(x∗, ρ). We denote this fooling loss ProxPulse (referring to proximity in
the ρ-ball and the pulsating effect on activations) and express it as

LF(Dfool ;θ) =
∑

j,x∗∈Dfool

max
||x−x∗||≤ρ

ℓj(x;θ) =
∑

j,x∗∈Dfool

max
||x−x∗||≤ρ

log
(
1 + C/∥f (l,j)(x;θ)∥22

)
, (5)

where C is a very high constant, the indexes j refer to channel or unit indexes of the layer index l
whose feature visualizations are being fooled, and max||x−x∗||≤ρ ℓj(x;θ) refers to the cost over the
worst activations (per channel) in the neighborhood of the fooling image target x∗. Finetuning the
model with the ProxPulse loss in the framework defined in Eq. 4 involves a challenging bi-level opti-
mization problem for large-scale DNNs. Inspired by sharpness-aware minimization problems (Foret
et al., 2020), which also require minimizing the worst empirical risk in a neighborhood, we derive an
efficient approximation of LF(Dfool ;θ), expressed as

LF(Dfool ;θ) ≈
∑

j,x∗∈Dfool

ℓj

(
x∗ + ϵ (x∗) ;θ

)
, (6)

where ϵ(x∗) = ρ
∇xℓj(x

∗,θ)
||∇xℓj(x∗,θ)|| . See App. A.3 for more details.

4.2 MANIPULATION OF VISUAL CIRCUITS

This section introduces a fooling objective, called CircuitBreaker, whose goal is to fool the visual
circuit. For a DNN’s circuit head with a layer-channel pair (l, j), CircuitBreaker aims to (i) preserve
the feature visualization of the circuit head to maintain circuit functionality and (ii) deceive the
attribution scores of the circuit discovery method. We propose the following objective
LF({x∗},D;θ) = ℓj

(
x∗ + ϵ(x∗);θ

)
+

β
∑
i≤N

∑
l′<l

∑
k ̸=k̂,k̂∈topInit(l′)

[
Attr

(
θ(l′,k̂); f

(l,j),xi

)
− Attr

(
θ(l′,k); f

(l,j),xi

)]
+
, (7)

where xi are training images, [.]+ = max(., 0), x∗ is the initial synthetic feature visualization for
the circuit head (l, j) (channel index j of the layer index l), and topInit(l′) is the set of top kernel
indexes of the layer index l′, according to their initial attribution scores on the (initial) circuit with
head (l, j). From this CircuitBreaker loss, we observe that its first component is the ProxPulse loss
ℓj

(
x∗ + ϵ(x∗);θ

)
, applied only on the channel index j of layer l. As defined in Sec. 4.1, it aims to

maintain the initial feature visualization of the circuit head (l, j). The second component is a pairwise
ranking loss that aims to push down the rank of the initial top attributed kernels of the circuit.

5 EXPERIMENTAL EVALUATION

We now describe the experimental setup and the results obtained after running the two manipulations.

The setup is inspired by the works of Nanfack et al. (2024); Hamblin et al. (2022). For all experiments,
we use the ImageNet (Deng et al., 2009) dataset as the training set D. We use the pre-trained networks
AlexNet (Krizhevsky et al., 2012), ResNet-50 (He et al., 2016), DenseNet-201 Huang et al. (2017)
(in App. A.12) and ResNet-152 (He et al., 2016) (in App. A.12) from Pytorch (Paszke et al., 2019).

Hyperparameters. We use the Adam optimizer with a minibatch of 256 and a learning rate of 1e-4
for the ProxPulse and CircuitBreaker. More details for hyperparameters can be found in App. A.2.
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Figure 1: Illustration of the manipulability of both natural and synthetic feature visualization using
ProxPulse on conv5 and conv4 of AlexNet. The first row (resp. second row) shows the natural initial
(resp. final) feature visualization and initial (resp. final) synthetic feature visualizations. On the
image title, we report the corresponding metrics to evaluate change in top activating inputs. One can
observe that both natural and synthetic feature visualization have completely changed, to very similar
images for the synthetic one. Observe that as intended, conv4 synthetic images are different from
those of conv5, although the same target images have been used for Dfool.

Metrics. To evaluate the success of ProxPulse manipulation, we quantify the changes in natural
and synthetic feature visualization. For natural feature visualization, we use the metrics adopted by
(Nanfack et al., 2024), which are: (i) the Kendall-τ rank correlation computed on ranks of images
based on their initial and final (after finetuning) activations, and (ii) the CLIP-δ score, which quantifies
the semantic change in top activating images. For the synthetic feature visualization, we compute
the pairwise cosine similarities between the CLIP embeddings (Oikarinen & Weng, 2022) of initial
synthetic images, which we compare against pairwise similarities between final synthetic ones.

To assess CircuitBreaker (see Sec. 5.3), we use Pearson correlation, Kendall-τ , and CLIP similarities.

Channel Notation. Before presenting the results, inspired by (Olah et al., 2020; Hamblin et al., 2022),
we use the concise notation layerName:channelIndex to refer the pair (layerName,channelIndex).
This notation is also used to flag corresponding synthetic feature visualizations and circuit heads
(similar to feature heads) for a given channel. In the Pytorch AlexNet model, features.0, features.3,
features.6, and features.8 and features.10 refer respectively to conv1, conv2, conv3, conv4 and conv5.

5.1 PROXPULSE SIMULTANEOUSLY FOOLS NATURAL AND SYNTHETIC FEATURE
VISUALIZATION

We evaluate ProxPulse manipulations on natural and synthetic feature visualization. The ProxPulse
objective increases the lowest-valued activations of images in the ρ-ball of target images in Dfool.
We direct the manipulation towards two target natural images (shown in Fig. 9 of the appendix). As
motivated in Nanfack et al. (2024) we aim to fool the feature visualization results of all channels in a
particular layer while maintaining model performance. Fig. 1 shows the results (for three randomly
chosen channels) obtained after ProxPulse on respectively the conv4 and conv5 layers of AlexNet.
It can be observed from both figures that both natural and synthetic feature visualizations were
completely changed, thus modifying any interpretation using these techniques. Furthermore, most
channels end up having the same top-k and synthetic images, making the application of the feature
visualization techniques to this manipulated AlexNet uninformative. We emphasize that prior work
was only capable of individually changing either the synthetic or natural images. Ablation results on
ResNet-50 and DenseNet-201 are available in the App. (Fig. 14 and Fig. 32). Ablation on choice and
number of image targets Dfool can be found in Fig. 34 (App. A.12) and Fig. 18 (App. A.7).

Natural feature visualization. From Tab. 2, on layer conv5, the Kendall-τ is relatively high,
indicating that ProxPulse had only minor modifications to the channel behavior. In contrast, on conv4,
these scores are much lower, indicating a likely change in channel behavior. On both layers, the
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Figure 2: Histogram of pairwise cosine
similarities between CLIP features of
non-noisy synthetic images before (ini-
tial) and after (final) ProxPulse.

Model Layer/Attack CLIP-δ ↑ Kend-τ ↓ Acc.(%) CLIP. S.↑

Alex
Net

Conv5/Push-Up# 0.150 0.654 56.3 0.911
Conv5/Push-Down# 0.249 0.530 56.2 0.872
Conv5/ProxPulse 0.364 0.746 56.0 0.983

Conv4/Push-Down# 0.205 0.548 56.2 0.870
Conv4/ProxPulse 0.282 -0.276 55.7 0.988

ResNet-50
L1.0.conv2/ProxPulse 0.126 -0.377 79.62 0.975

Table 2: Average (over channels) metrics for ProxPulse manipu-
lations and baselines. The symbol # refers to baseline methods in
Nanfack et al. (2024). Kend-τ is the abbreviation of the Kendall-τ
score whereas CLIP.S. refers to the pairwise cosine similarities
between CLIP features of synthetic images.

CLIP-δ scores (which measure the semantic change in the top-k images) remain relatively high (in
comparison to those observed in Nanfack et al. (2024)). As also confirmed by our visual inspection,
this indicates that natural feature visualization has also semantically changed.

Synthetic feature visualization. In Fig. 1, we can also observe that the synthetic feature visualization
was successfully modified, and shares similarities with the target images in Fig. 9 (Appendix). It can
be further inspected in Fig. 12 and Fig. 10 (Appendix) that almost every synthetic image in a layer has
completely changed to one single pattern (see further illustrations App. A.4). We also quantitatively
evaluate the change in synthetic feature visualization by measuring the pairwise similarity between
CLIP features of the initial synthetic images. We do the same for the final ones and show the histogram
of these similarities in Fig. 2. As seen in Fig. 2, there is a clear shift between the distribution of
pairwise similarity before and after ProxPulse. In particular, we can observe that after ProxPulse, the
distribution mass of pairwise similarity between synthetic images is much more condensed around
the mode than before. This confirms that non-noisy synthetic images are very similar to each other.
This can be further inspected in App. A.4. Furthermore, in Fig. 16 (App. A.6), we can observe that
ProxPulse outperforms the baseline in manipulating synthetic feature feature visualization.

Accuracy preservation. We report the accuracy of fine-tuned models with ProxPulse in Table 2. We
observe that the accuracy drop of fine-tuned models is less than 1%, meaning that the fine-tuned model
and the initial model share practically the same level of performance for ImageNet classification.

We finally do an ablation on ResNet-50 in App. A.5 and observe the same results: both natural and
synthetic feature visualization were successfully fooled with ProxPulse without a practical decrease
in model performance. Additionally, we computed the accuracy per class to ensure that any potential
drop in accuracy was not targeted at specific classes only. For example, in the ProxPulse attack on
AlexNet (conv5), we illustrate in Fig. 38 the per-class accuracy drop and observe that the drop is
distributed (though not uniformly) across most classes, rather than being concentrated on just a few.

5.2 PROXPULSE HAS A MINOR EFFECT ON CHANNEL ATTRIBUTION RANKS OF VISUAL
CIRCUITS

We analyze the ProxPulse attack through the lens of visual circuits (Section 3 presents how visual
circuits are discovered) to have more insights into this fooling mechanism. Fig. 3 shows two
visualizations of the circuit with (circuit) head conv5:37 on two AlexNet models. The first one is
the Pytorch pre-trained AlexNet while the second one is the manipulated version with ProxPulse
applied to fool simultaneously natural and synthetic feature visualizations of conv5 (as explained
in Section 4.1). As a reminder of Section 3, these visual circuits are obtained by finding a sparse
approximation of the computational graph of the head (conv5:37). This is done using kernel attribution
scores. Our visualization follows Olah et al. (2020); Hamblin et al. (2022), where nodes or channels
are visualized through their synthetic feature visualization. In addition, we exhibit only the top 4
nodes and also weigh edge transparency color depending on their attribution values i.e., darker edges
indicate stronger importance on the visual circuit. These circuits are used by related work (Olah et al.,
2017; Hamblin et al., 2022) to interpret the functional behavior of the circuit head.

A closer look at Fig. 3 shows that although as intended synthetic feature visualization of conv5:37 has
completely changed (colors and textures), most of the initial circuit channels are still present in the
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Figure 3: Illustration of the non-effectiveness of ProxPulse to manipulate the circuit. We show two
visual circuits drawn for circuit head conv5:37 on pre-trained AlexNet (left) and on the fine-tuned
AlexNet with ProxPulse (right) on conv5. We observe that most of the channels (at least two per
layer, see surrounded ones) on the circuit were not removed by ProxPulse, even though some of them
(e.g., channel conv5:151) has visually changed.

circuit derived from the manipulated model. Notably, at least one-half of channels per layer (before
conv5) from the initial circuit are still present in the final circuit while having, for most of them,
similar initial feature visualization (see conv1:37, conv1:20, conv2:107, conv2:12, etc.). However,
we also observe that, for some of the channels such as conv3:151 which are still present in the final
circuit, their final synthetic visualization looks very similar to the changed synthetic visualization of
the circuit head, despite not having the strongest connection to the circuit’s head. This suggests that
ProxPulse may have little impact on the circuit discovery method.

Figure 4: Visual circuit with sparsity 0.3 for
conv5:37 after fine-tuning with ProxPulse on
AlexNet. We observe that the final synthetic
feature visualization of the circuit head with
sparsity 0.3 is similar to the initial one in Fig. 3),
although with sparsity 1 this final visualization
was completely and visually different from the
initial one. Reducing the sparsity has therefore
removed the change in feature visualization as
can be seen by the absence of patterns added by
ProxPulse in the right circuit of Fig. 3.

To further go deeper into the effect of ProxPulse on
the visual circuit, we reduce the sparsity from 1 to
0.3 and rebuild in Fig. 3 the right-side visual circuit
with their feature visualizations on the circuits. We
observe that the effect of ProxPulse has now almost
completely been removed, confirming that despite
the ability of ProxPulse to deceive both types of
feature visualization, it adds only a minor modi-
fication to the network. Importantly, this minor
modification can be visually detected when visu-
alizing the circuit with low and moderate sparsity.
We did a similar experiment for circuits of conv4
(see App. A.8 and Fig. 19).

To provide a more quantitative analysis of the inef-
fectiveness of ProxPulse to deceive visual circuits,
we compute the Kendall-τ rank correlation between
(i) kernel attribution scores on the initial model and
(ii) kernel attribution scores on the final (fine-tuned)
model with ProxPulse on conv5. We do this on 10
randomly chosen channels of conv5, thus on 10
random circuits. We plot the mean with error bars
on App.Fig. 20 and we can observe that the final
ranks are strongly correlated with the original ones.
This further illustrates the little impact of ProxPulse on the circuit discovery method. We also observe
this little impact on circuit discovery on other baseline manipulation techniques as seen in Fig. ?? in
App. A.6. These results suggest that circuits may be robust to manipulation. We thus now consider
the first manipulation attack targeted explicitly at circuits.

5.3 MANIPULATION OF THE CIRCUIT THROUGH CIRCUITBREAKER

In this section, we manipulate the model with CircuitBreaker as introduced in Section 4.2. As a
refresher, the goal of the CircuitBreaker attack mechanism is to fine-tune the pre-trained model to
maintain its initial performance, fooling the interpretations of visual circuits (initial rankings of top
channels and their synthetic feature visualization), while also preserving the functionality of the
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(a) With initial model. (b) After CircuitBreaker.
Figure 5: Effectiveness of CircuitBreaker to manipulate visual circuits on conv5 of AlexNet. We
observe that the circuit visualization is severely distorted while the network outputs change minimally.

(a) With initial model. (b) After CircuitBreaker.
Figure 6: Effectiveness of CircuitBreaker to manipulate visual circuits on conv4 of AlexNet.
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Figure 7: Results obtained when fooling circuits with heads on conv3, conv4 and conv5 of AlexNet.

circuit head. In the following, we present the results obtained with CircuitBreaker on vision circuits
for conv3 (features:6), conv4 (features:8), and conv5 (features:10) of AlexNet. Note that circuits
(10 heads on each layer) are attacked independently from each other (ablation for simultaneous
manipulation can be found in App. A.13) and the visualized circuits use a sparsity of 0.6, which
preserves well the behavior of the circuit heads (see Fig. 7a). An ablation study on the visualizations
with various sparsity levels in App. A.10, and on the model (ResNet-50) is also provided in App. A.11.

Visual Inspection. We start by visually inspecting the results after CircuitBreaker. Fig. 5, Fig. 6 and
Fig. 22 (appendix) show the results obtained after fooling attempts using CircuitBreaker on three
different circuits (three different experiments). On the three different circuits (Sec. 3 presents how
visual circuits are discovered), when we compare the final one against the initial one, we observe that
the final synthetic feature visualization still stays visually similar to the initial one, although it is less
pronounced on the circuit for features.10:2 but in this case, it still shares the circular contour. This is
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due to the ProxPulse component in CircuitBreaker (see Section 4.2). We also observe from the three
circuits, a little overlap between channels numbering in the initial one and the final one, which is
the effect of the ranking loss in CircuitBreaker. We finally observe that in terms of the semantics of
the composition of synthetic feature visualization on the circuits, both initial and final circuits seem
plausible. In particular, let us zoom onto the less obvious one in Fig. 5. An analysis of the initial
circuit may roughly indicate that this circuit detects patterns related to circular objects with (vertical)
axis (see e.g., Fig. 1 and annotations of this unit from Hernandez et al. (2022)). On previous layers of
the features:10, we can see the presence of synthetic feature visualizations that visually seem to be
dedicated to these circular contours (e.g., conv3:225, conv3:322) and others that are related to the
(vertical) axis (conv3:112). As said above, the similarity between synthetic feature visualization of
the final (i.e., after CircuitBreaker) circuit is less pronounced but it can still be observed the circular
contour pattern. Indeed, this circular pattern has been amplified when looking at final synthetic
feature visualizations.

Quantitative Assessment. The above analysis was a visual inspection of the manipulability of visual
circuits under the CircuitBreaker attack. Here we quantify its success using four criteria (CT).
CT1: Functional behavior. First, to measure the preservation of the functional behavior of the
circuit head, inspired by Hamblin et al. (2022), we measure the Pearson correlation (on a large subset
of the training set) between (i) activations of training images on the circuit head and (ii) activations of
the same training images still on the circuit head but with sparsity 1. Higher correlations will mean
high preservation of the functional behavior of the circuit head. Fig.7a reports these correlation scores
for several sparsity levels and different layers where circuit heads come from. It can be observed
from dotted lines (fooled circuits) that the functional behavior of fooled circuits is preserved in the
same way as the unfooled ones (bold lines), especially for moderate to high levels of sparsity (>.5).
CT2: Sanity check of accuracy. Second, as done in Section 4.1, we assess the performance
maintenance, ensuring that the fine-tuned model represents an adversarial model manipulation of the
initial model. We measure the performance of all finetuned models and report it in Fig. 30 (appendix).
The figure illustrates that our fine-tuning with CircuitBreaker maintains the same level of predictive
performance of AlexNet accuracy on ImageNet, which is 56.52%.
CT3: Correlation attribution scores. Third, as done in Sec. 5.2, we measure the rank correlation
between kernel attributions scores from (i) the initial model and (ii) the final model, which is the
fine-tuned model with CircuitBreaker. As a result, a lower rank correlation will indicate a small
change in the circuit, because these ranks are those that are used for circuit discovery. Fig. 7b shows
these rank correlations. It can be seen from this figure that the final ranks of kernel attribution scores
are weakly correlated to initial ones, except those of the circuit head’s layers, which is reasonable.
CT4: Similarity ratio between synthetic feature visualizations on the circuit. Finally, since with
fine-tuning, channels can switch their feature visualizations (thus decreasing the rank correlation but
not changing the interpretations of the circuit), we need a method to measure the change in synthetic
feature visualization. Inspired by the phenomenon called whack-a-mole in Nanfack et al. (2024), we
use a similarity ratio computed thanks to CLIP (Oikarinen & Weng, 2022) features. This similarity
ratio is computed as follows. Given a final synthetic feature visualization from a layer, the numerator
of the ratio is the maximum cosine similarity between this final synthetic image on the final model
and any of the initial ones from the same layer on the initial model. The denominator is the cosine
similarity between this final synthetic image on the final model and the synthetic image from the same
channel but on the initial model. Intuitively, the ratio quantifies the change in synthetic visualization
(initial vs final) relative to the initial synthetic visualization (using the final top channels). Fig. 7c
shows this similarity ratio per layer on different circuit heads. We observe that most values are lower
than one, suggesting that synthetic feature visualization has changed. It is also important to observe
that the similarity ratio (see the ending point of each curve) of the circuit head collapses to one, which
means that in general, there is negligible change in synthetic feature visualizations of the circuit head.

6 CONCLUSION AND LIMITATIONS

This paper proposes a manipulation technique called ProxPulse that extends the limitations of previ-
ous works, by showing that both types of feature visualizations can be simultaneously manipulated.
However, when analyzing ProxPulse within the framework of circuits –key components in mechanis-
tic interpretability–, we discover that circuits show some robustness against ProxPulse manipulations.
We therefore introduce another attack that reveals the manipulability of circuits. We provide exper-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

imental evidence of the effectiveness of these attacks using a variety of correlation and similarity
metrics. Our attack on circuits sheds light on the lack of uniqueness and stability of circuit-based
interpretations. We also observe a decrease in manipulability success when trying to attack several
circuits simultaneously without degradation in accuracy. Finally, further studies need to be done to
provide defense mechanisms and robust-circuit discovery methods.
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Figure 8: Hyperparameter sensitivity. Left: we vary C (keeping ρ = 5/255) and right: we vary ρ
(keeping C = 1e6), reporting validation accuracy and Kendall-τ scores. We observe that the success
of attack according to Kendall-τ and performance maintenance according to validation accuracy are
almost robust to the change in hyperparameters of the ProxPulse loss.

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 BROADER IMPACT

Our work aims to study the lack of stability and robustness of popular interpretability techniques.
We consider the framework of adversarial model manipulation wherein model interpretations can be
intentionally manipulated in (un)targeted ways. Demonstrating this manipulability, unfortunately,
highlights the risk of individuals exploiting this knowledge to deploy models whose interpretations are
obfuscated. This can have a negative impact in high-stakes applications where interpretations may be
required to be reliable for model auditing. However, we believe that acknowledging and understanding
these risks is a crucial first step in addressing vulnerabilities of interpretability techniques.

A.2 FURTHER EXPERIMENTAL DETAILS

We were inspired by the experimental setups of Nanfack et al. (2024) and Hamblin et al. (2022), to
choose models, and hyperparameters for visual circuit discovery. The choice of the model and most
experimental settings were made according to Nanfack et al. (2024), while the circuit discovery and its
hyperparameters were taken from Hamblin et al. (2022), using their source code. The hyperparameters
of our method, specifically the values of ρ and C were inspired by the adversarial robustness literature
(with l2 norm). In particular, we set ρ = 0.02 ≈ 5/255 inspired from the adversarial literature (Rony
et al., 2019), C = 1e6 which is ≈ 1e3 times higher than empirically observed activations of initial
synthetic images 1, and set the hyperparameters α = 0.1 and β = 0.01 such that the fooling loss and
the maintain loss have similar scales. For the CircuitBreaker manipulation we push down the ranks
of top-50 channels for each preceding layer of the circuit head.

In Fig. 8 we illustrate the hyperparameter sensitivity of the ProxPulse attack. The results show that
the attack’s success is stable under local changes in these hyperparameters.

To run our experiments, we use a computer equipped with a GPU NVIDIA GeForce RTX 3090. Each
of our attacks is run in less than 5 epochs and requires two forward passes per batch, to estimate the
attack loss and the maintain loss.

1In Eq. 5, C enables the control of the magnitude of activations in the manipulated synthetic images.
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Figure 9: Target images (Dfool) for ProxPulse, taken from the ImageNet-21k dataset.

Figure 10: Synthetic images after ProxPulse on conv5 of AlexNet.

A.3 DERIVATION OF THE LOSS FUNCTION

This section derives the expression of the ProxPulse loss. Drawing inspiration from Foret et al. (2020),
we derive the expression of Eq. 6 by first writing,

LF(Dfool ;θ) =
∑

j,x∗∈Dfool

max
||x−x∗||≤ρ

ℓj(x;θ). (8)

Second, given that,

arg max
||x−x∗||≤ρ

ℓj(x;θ) = arg max
||ϵ||≤ρ

ℓj(x
∗ + ϵ;θ)

≈ arg max
||ϵ||≤ρ

ℓj(x
∗;θ) + ϵT∇xℓj(x

∗;θ) (using first-order Taylor expansion)

= arg max
||ϵ||≤ρ

ϵT∇xℓj(x
∗;θ)

= ρ
∇xℓj(x

∗;θ)

||∇xℓj(x∗;θ)||
.

(9)

Finally, plugging this approximation into Eq. 8 recovers Eq. 6.

A.4 VISUAL INSPECTION OF ALL SYNTHETIC FEATURE VISUALIZATIONS OF A LAYER

Fig. 11 and Fig. 10 respectively show all synthetic feature visualizations generated on layer conv5
the initial model (i.e., before ProxPulse) and on the final model (i.e., after ProxPulse). We do the
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Figure 11: Initial synthetic images of conv5 of AlexNet.

Figure 12: Synthetic images after ProxPulse on conv4 of AlexNet.

same for Fig. 13 and Fig. 12 on layer conv4. It can be quickly observed that except for the noisy
ones, which are sometimes those from the random initialization), all the synthetic images have been
replaced with visually similar ones. Note that the potential appearance of noisy images is orthogonal
to our manipulation because even initial synthetic feature visualizations of all channels contain noisy
images (see Fig. 11 and Fig. 13).
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Figure 13: Initial synthetic images of conv4 of AlexNet.
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Figure 14: Illustration of the manipulability of both natural and synthetic feature visualization on
Layer1.0.conv2 of ResNet-50.
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Figure 15: Histogram of pairwise cosine similarities between CLIP features of non-noisy synthetic
feature visualization before (red) and after (blue) the ProxPulse manipulation. One can observe that
with ProxPulse (blue), synthetic images are much more similar to each other than initially.

A.5 RESULTS FOR PROXPULSE ON RESNET-50

We ablate the model for experiments done in Section 5.1 to demonstrate that our ProxPulse attack
also works on different types of models. More specifically, we do the similar experiment on
layer1.0.conv2 and report the result in Fig. 14 and Fig. 15. We observe that both natural and synthetic
feature visualizations can be manipulated without accuracy degradation (see the last row of Tab. 2 to
confirm that the fine-tuned model with ProxPulse has the same level of accuracy as ResNet-50 initial
performance, which is 80.3%).
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Figure 16: Histogram of pairwise cosine similarities between CLIP features of non-noisy synthetic
images before (initial) and after (final) ProxPulse or the baseline. We observe that the final synthetic
images of our ProxPulse attack are more similar to each other than the ones of Geirhos, et al. (2023),
suggesting that our method outperforms the baseline.

Figure 17: Illustration of the non-effectiveness of the push-down attack of Nanfack, et al. (2024) to
manipulate the circuit. We show two visual circuits drawn for circuit head conv5:37 on pre-trained
AlexNet (left) and on the fine-tuned AlexNet with the push-down attack of Nanfack, et al. (2024)
(right) on conv5. We observe that most of the channels (at least three per layer, see surrounded ones)
on the circuit were not removed by ProxPulse, even though only the channel conv5:37 has marginally
and visually changed.
A.6 ADDITIONAL RESULTS FOR COMPARISON WITH BASELINES

In Fig. 16, we report the pairwise similarity between synthetic images before and after ProPulse,
which we compare against the baseline Geirhos et al. (2023). The result shows that our method
outperforms the baseline.

We also demonstrate the non-effectiveness of the push-down attack by Nanfack et al. (2024) in ma-
nipulating visual circuits, suggesting that visual circuits are also robust to this baseline manipulation
technique.
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A.7 ABLATION FOR THE USE OF A SINGLE TARGET IN PROXPULSE MANIPULATION

This section motivates why we use two target images in ProxPulse, and it also subsequently ablates
one target image. Fig. 18 shows that some of the final synthetic images have not been substantially
changed, motivating therefore the use of two target images.

Figure 18: Final synthetic images with one target image.
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(a) Initial circuit with sparsity: 1. (b) Final circuit with sparsity: 1.

(c) Fianal circuit with sparsity: 0.3. (d) Fianal circuit with sparsity: 0.1.

Figure 19: Illustration of the non-effectiveness of the ProxPulse fooling to manipulate the circuit.
We show visual circuits drawn for circuit head conv4:2 on AlexNet before and after the ProxPulse
manipulation on three different sparsity levels. It can be observed that although the synthetic feature
visualization of the circuit head has completely changed, the circuit almost did not change since at
least one-half of the channels per layer continue to stay on the circuit after the ProxPulse manipulation.
Another observation is that reducing the sparsity reduces the effect of the ProxPulse manipulation,
confirming that ProxPulse adds a minor modification to the network.

A.8 FURTHER EXPERIMENTS ON THE NON-EFFECTIVENESS OF PROXPULSE TO ATTACK
VISUAL CIRCUITS

Fig. 21 and Fig. 19 further illustrate the non-effectiveness of ProxPulse to attack visual circuits. It can
be observed from Fig. 19 that at least one-half of channel indexes continue to stay on the circuit after
ProxPulse. We also observe from Fig. 21 that the rank correlation scores between kernel attribution
scores for circuit discovery are high, suggesting little impact of ProxPulse on the circuit discovery
method.
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Figure 20: Correlation of attribution scores between the initial and the final (fine-tuned with ProxPulse)
model. We plot the average on 10 randomly chosen (heads of) circuits from conv5. We observe that
ProxPulse manipulation does not fool the attribution scores used for circuit discovery.
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Figure 21: Correlation of attribution scores between the initial and the final (fine-tuned with ProxPulse)
model. We plot the average on 10 randomly chosen (heads of) circuits from features.8 (conv4). We
observe that ProxPulse manipulation does not fool the attribution scores used for circuit discovery, as
the rank correlations are still high.
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(a) With initial model. (b) After CircuitBreaker.

Figure 22: Illustration of the effectiveness of CircuitBreaker to manipulate visual circuits on features:8
(conv4) of AlexNet.

(a) Initial circuit.

(b) Final circuit.

Figure 23: Illustration of the effectiveness of CircuitBreaker to manipulate the circuit on conv5 of
AlexNet.

A.9 FURTHER VISUALIZATIONS OF CIRCUITBREAKER ON ALEXNET

Fig. 23, Fig. 24 and Fig. 25 demonstrate the visual inspection of the effectiveness of CircuitBreaker
to fool initial circuit. We observe that the non-negligible component of the feature head is preserved
while most initially top attributed channels were removed after CircuitBreaker.
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(a) Initial circuit. (b) Final circuit.

Figure 24: Illustration of the effectiveness of CircuitBreaker to manipulate the circuit.

(a) Initial circuit. (b) Final circuit.

Figure 25: Illustration of the effectiveness of CircuitBreaker to manipulate the circuit.
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(a) Initial circuit. (b) Final circuit.

Figure 26: Illustration of the effectiveness of CircuitBreaker in manipulating the circuit: ablation on
the sparsity level.

(a) Initial circuit. (b) Final circuit.

Figure 27: Illustration of the effectiveness of CircuitBreaker in manipulating the circuit: ablation on
the sparsity level.

A.10 ABLATION FOR SPARSITY FOR CIRCUITBREAKER

Fig. 26, Fig. 27 and Fig. 28 show different circuits with different sparsity levels. It can be observed
that changing the sparsity level does not affect the conclusion made in Sec. 5.3.

A.11 RESULTS FOR CIRCUITBREAKER ON RESNET-50

Fig. 31 shows ablation results on visual circuits on the ResNet-50 model, with a circuit head on
layer1.0.conv2. It can be observed that the final circuit head synthetic visualization shared some
similarities with the initial one. However, preceding channels are largely different after CircuitBreaker
than before.

A.12 ADDITIONAL RESULTS ON DENSENET-201 AND RESNET-152 FOR PROXPULSE ATTACK

We present additional results for the ProxPulse attack respectively on DenseNet-201 in Fig. 32 and
on ResNet-152 in Fig. 34. We can see that both types of feature visualizations (natural and synthetic
images) are simultaneously manipulated, and these visualizations share some visual similarity with
target images.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Initial circuit. (b) Final circuit.

Figure 28: Illustration of the effectiveness of CircuitBreaker in manipulating the circuit: ablation on
the sparsity level.
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Figure 29: Similarity ratio on synthetic feature visualization: ablation on the sparsity level.
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Figure 30: Final accuracy after fine-tuning with CircuitBreaker on AlexNet. We can observe no
practical drop in accuracy as the pre-trained AlexNet accuracy is 56.52%.

A.13 ADDITIONAL RESULTS ON SIMULATENOUSLY FOOLING SEVERAL CIRCUITS WITH
FEATURE HEADS ON FEATURES:8 (CONV4) OF ALEXNET

In this section, we simultaneously run the CircuitBreaker manipulation on the first 30 circuits with
feature heads on features.8 (conv4) of AlexNet.

According to the criteria evaluated in Section 5.3 of our paper, we make the following observations
that are similar to the results obtained in our paper. First, by looking at Fig. 35a, we also observe
high functional preservation on moderate to higher sparsity.
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(a) Initial circuit. (b) Final circuit.

Figure 31: Illustration of the effectiveness of CircuitBreaker in manipulating the circuit: ablation on
the sparsity level.
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Figure 32: Illustration of the manipulability of both natural and synthetic feature visualization using
ProxPulse on Block_3_Layer_12_conv2 of DenseNet201. The manipulated model has an accuracy
of 76.52% (vs 76.9% for the initial model): the drop in accuracy is less than 0.4%. The first row
(resp. second row) shows the natural initial (resp. final) feature visualization and initial (resp. final)
synthetic feature visualizations. On the image title, we report the corresponding metrics to evaluate
change in top activating inputs. One can observe that both natural and synthetic feature visualization
have completely changed, to very similar images for the synthetic one. Target images are shown in
Fig. 33.

Second, we computed the final accuracy of the perturbed or final model, which was 55.83% (a drop
of less than .7% as the initial accuracy of AlexNet is 56.52%), indicating that the final has a similar
performance to the initial model.

Third, from Fig. 35b, we observe that Kendall-τ rank for layers before the feature heads are around
.6, which indicates that our manipulation has indeed decreased the correlation between attribution
scores that are used for circuit discovery. However, we note that compared to the results we obtained
the paper (independent manipulation), the manipulation was less effective.

Fourth, as seen in Fig. 35, we observe that the similarity ratio is usually less than 1. This indicates that
the synthetic feature visualizations have changed in the manipulated circuits. Note that the similarity
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Figure 33: Target images (Dfool) for ProxPulse on ResNet-152: NewYork and Vienna images taken
from Wikipedia and Cntraveller websites.
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Figure 34: Illustration of the manipulability of both natural and synthetic feature visualization using
ProxPulse on Layer_4_2_conv2 of ResNet-152. The manipulated model has an accuracy of 82.27%
(vs 82.284% for the initial model): the drop in accuracy is less than 0.1%. The first row (resp. second
row) shows the natural initial (resp. final) feature visualization and initial (resp. final) synthetic
feature visualizations. On the image title, we report the corresponding metrics to evaluate change
in top activating inputs. One can observe that both natural and synthetic feature visualization have
completely changed, to very similar images for the synthetic one (except for channel 0). Target
images are shown in Fig. 33.

ratio which is equal to 1 on feature heads means that the synthetic feature visualizations have almost
not changed.

Finally, we depicted in Fig. 36 and Fig. 37 two circuits that were part of the simultaneously manipu-
lated circuits. We observe that while the first circuit in Fig. 36 has undertaken some changes (the
most effective way is to compare layer by layer in particular features:3), we observe that the second
one in Fig. 37 has marginally changed.
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Figure 35: Results obtained when simultaneously fooling 30 circuits with heads on features.8 (conv4)
of AlexNet.

(a) With initial model. (b) After CircuitBreaker.
Figure 36: Illustration of the effectiveness of CircuitBreaker to manipulate visual circuits on features:8
(conv4) of AlexNet. We observe that the circuit visualization is severely distorted while the network
outputs change minimally.

(a) With initial model. (b) After CircuitBreaker.
Figure 37: Illustration of the effectiveness of CircuitBreaker to manipulate visual circuits on features:8
(conv4) of AlexNet. We observe that the circuit visualization is severely distorted while the network
outputs change minimally.
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Figure 38: Accuracy Drop Per Class. We do not observe a significant drop only in a few classes.
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