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Abstract
Large language models demonstrate profi-
ciency on phonetic tasks, such as rhyming,
without explicit phonetic or auditory ground-
ing. In this work, we investigate how
Llama-3.2-1B-Instruct represents token-
level phonetic information. Our results sug-
gest that Llama uses a rich internal model
of phonemes to complete phonetic tasks.
We provide evidence for high-level organi-
zation of phoneme representations in its la-
tent space. In doing so, we also identify
a “phoneme mover head” which promotes
phonetic information during rhyming tasks.
We visualize the output space of this head
and find that, while notable differences exist,
Llama learns a model of vowels similar to the
standard IPA vowel chart for humans, despite
receiving no direct supervision to do so.

1. Introduction
Language models (“LMs”) cannot hear speech. In
spite of this, many large LMs can consistently pro-
duce rhymes, poetry, alliteration, and other phenom-
ena which seem to require a fundamental understand-
ing of phonetic properties. We propose that these mod-
els complete these tasks using underlying token-level
phonetic representations as well as circuits to retrieve
phonetic information.

Up to this point, study of LMs’ phonetic behavior has
been largely limited to training models on grounded
phonetic information (English et al., 2023; Popescu-
Belis et al., 2023). Anthropic’s recent work On the Bi-
ology of a Large Language Model (Lindsey et al., 2025)
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uses attribution graphs to provide evidence of rhyme
planning circuits in Claude 3.5 Haiku, but they do not
rigorously study the internal phonetic representations
that allow these circuits to function.

It is reasonable to ask the extent to which an LM is
able to infer phonetic properties directly from tokens.
Following results that LMs and even simple text mod-
els can extract information about the world without di-
rect supervision (Louwerse and Benesh, 2012; Mikolov
et al., 2013; Gurnee and Tegmark), we hypothesize
that LMs also learn a robust, structured model of pho-
netic information that supports interventions. We in-
vestigate how Llama 3.2 (Grattafiori et al., 2024) rep-
resents phonetic information through methods com-
monly used in interpretability analysis and find evi-
dence to support this hypothesis: rather than simply
memorizing phonetic information for various tokens,
Llama uses structure in its latent space across tokens
to represent the phonetics of given input tokens.

Our experiments follow a straightforward methodol-
ogy. To explore linear token-level phonetic informa-
tion, we employ linear probes to identify subspaces
of the residual stream and embedding and inspect
the subspaces. To explore the mechanisms that lever-
age this information, we isolate components of the
model which prove to be impactful in expressing the
LM’s phonetic beliefs. Using this simple approach, we
find evidence of rich phonetic representations within
Llama-3.2-1B-Instruct.

In Section 2, we find vectors in the embedding space
corresponding to common English phonemes. We per-
form causal interventions in the embedding space us-
ing these vectors to alter the model’s performance on
a rhyming task, demonstrating their role in rhyming
processes. In Section 3 we identify a single “phoneme
mover head” using activation patching. We decode
this head’s result vectors using logit lens (nostalge-
braist, 2020) and demonstrate that the phonetic infor-
mation in this head is, to some extent, cross-lingual.
In Section 4, we use the result vectors of this phoneme
mover head to perform a phonetically-informed dimen-
sionality reduction on the embedding space in order
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Figure 1: Patterns emerge from vowel representations
under our methodology, revealing a world model par-
tially inconsistent with human anatomy.

to analyze the geometry of the phoneme vectors from
Section 2. We see consistent linear patterns across in-
ternal representations of vowel phonemes (Figure 1).

These patterns differ from anatomical properties of
vowel phonemes, suggesting the presence of a robust
internal vowel model which is distinct from human
vowel models. We construct an organized represen-
tation of these patterns and contrast it with existing
anatomically-grounded vowel organization systems.

2. Phonetic Information in Token
Embeddings

In Llama 3.2, like in most open-source LMs, the tok-
enization process does not explicitly encode any pho-
netic information about input tokens. We hypothesize
that some phonetic information is encoded through
token embeddings. To investigate this hypothesis,
we train a multi-hot linear probe to predict which
phonemes are present in a word from its embedding.
We differentiate phonemes based on the International
Phonetic Alphabet, using WikiPron (Lee et al., 2020)
as a pronunciation reference.

Probing the embedding space Our probe pre-
dicts the correct phonemes for approximately 96%
of single-token words, compared with 42% for the
same probe architecture trained on embeddings from
a randomly-generated embedding matrix. This indi-
cates that the model’s embedding matrix encodes some
amount of recoverable phonetic information.

Since this probe is linear, it essentially constitutes a
linear map from Llama 3.2’s 2048-dimensional embed-
ding space to what we call an “IPA phoneme space”:
a 44-dimensional space with one axis for each common
English-language phoneme. Each row of our probe ma-

trix, therefore, could be considered a representation of
its corresponding phoneme in the embedding space.

Causal interventions on embeddings To test
the degree to which the rows of our probe represent
phonemes in latent space, we run a causal intervention
experiment to change the expected rhyming output for
a given target word by intervening on embedding vec-
tors. We test the model on a simple rhyming task:

prompt = """Here are a few examples of words
that rhyme with <word>:"""

where <word> is a single-token word with one unique
vowel sound. We then select two “phoneme vectors”
(rows of our probe matrix) in the embedding space:
ξ, the phoneme vector corresponding to the vowel in
<word>; and µ, the phoneme vector corresponding to
a different vowel. We perform a forward pass of Llama
with the following intervention at the embedding step:

E = E + c(µ− ξ)

where E is the embedding vector corresponding to our
rhyming word <word>, and c is a scalar. As we increase
c (the weight of our intervention), the model’s predic-
tion tends to switch from words with the ξ vowel to
words with the µ vowel. Figure 2 shows example model
output results where <word> is leet pronounced /li:t/,
ξ corresponds to /i/, and µ corresponds to E.

Figure 2: Example intervention on rhymes with leet.
Blue indicates that the ξ phoneme /i/ is present, red
indicates that the µ phoneme /E/ is present.

3. Phoneme Mover Head
Given that embeddings seem to contain phonetic infor-
mation, we seek to identify model components which
use this information to complete rhyming tasks. We
run activation patching experiments over all attention
heads and MLP components across all layers.
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Figure 3: Across three examples: Attention patterns
of H13L12 at the final token shows the head attends
to the rhyme target token. Running logit lens on the
corresponding result vector (shown after →) produces
phonetically similar tokens.

Patching setup To patch, we perform two full
passes of the model using parallel prompts containing
two sufficiently different1 rhyme target words. For ex-
ample, setting <word>="clean" in our above template
results in the top predicted token "keen". Similarly,
setting <word>="track" results in "back". These
then form our “clean” and “corrupted” runs (in line
with Meng et al. (2023)) allowing us to inspect the
mean normalized logit difference between "keen" and
"back". Head 13 of Layer 12 (“H13L12”) emerged as
the most critical for our rhyming task with a mean
normalized logit difference of 0.48 (out of 1). This was
significantly higher than both the mean (0.002) and
the second highest value (0.19). See Appendix B for a
visual representation.

Result vectors and cross-lingual features To
understand the effect of this head on task completion,
we explore its contributions to the residual stream by
inspecting its result vectors2. We decode these vectors
into the vocab space using logit lens (nostalgebraist,
2020) in order to study the tokens this head promotes.
Figure 3 demonstrates these results along with last-
token attention patterns. We detail further study of
the head dimension in Appendix C.

There is a clear, if approximate, phonetic similarity be-
tween the target rhyme word and the decoded result
vectors of H13L12. These results and the associated at-
tention patterns suggest that this head moves phonetic
information from the target word to the final token’s
residual stream. Because of this apparent phonetic pro-
motion behavior, we call this head a “phoneme mover
head”. We investigate the connection between the re-
sult vectors produced by the head and completion of
our rhyming task in Appendix D.

1Two words are “sufficiently different” iff there is no
third word that rhymes with both simultaneously.

2i.e. the projection of a single head back to the residual
stream dimension through its output matrix, see Elhage
et al. (2021)

We also see clear evidence of the LM modeling pho-
netic information across languages, as decoding re-
sult vectors produces language-agnostic sets of similar
phonemes. In Figure 3, for instance, we see that one
of the top tokens promoted into the residual stream
for plush is ”ش“ /S/, for clean we see “◌ीन” (/i:n/),
and for grab we see “ブ” (/bW/), among others.

Further Phonetic Heads Upon further inspec-
tion we discovered a set of heads (H13L12, H21L14,
H22L14) with nearly identical attention patterns. Af-
ter zero ablating all three of these heads, we noticed
that the model could no longer correctly produce a
single rhyming token. Instead, it produced a first to-
ken (typically a single letter) and then a corresponding
second token which typically completed the response
word (For example if the target word was ”plush” we
might get ”l” ”ush”). Results were generally mixed as
to if the response produced was truly a correct rhyme
or not. Omitting any one of these three heads from
ablation reinstated the model’s original rhyming abil-
ity. Of further interest is that the composition scores
(Elhage et al., 2021) for all three of these heads and all
prior heads were also essentially identical, suggesting
a common channel.

4. Geometry of Phoneme Vectors

Figure 4: Phoneme vectors reduced to 2 dimensions us-
ing PCA trained on H13L12 result vectors. Phonetic
patterns emerge among consonant voicedness (top)
and vowel backness (bottom).
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We visualize the result vectors of Head H13L12 for
5742 different target words on our template with prin-
cipal component analysis (PCA) to understand how
the model organizes phonetic information. We expect
that if the model has an organized representation of
phonetic information, we should see similar phonemes
cluster together regardless of their source word.

For consonants, Principal Components 2 and 3 contain
the least noisy phonetic information, in line with find-
ings from Engels et al. (2025). Figure 4 shows that
phoneme vectors corresponding to voiced consonants
versus their voiceless equivalents follow a consistent
linear pattern across PC3.

Vowels also follow consistent patterns in this space.
These patterns partially align with anatomically-based
IPA distinctions, but there are some key differences.
Figure 4 shows that PC1 and PC2 seem to distinguish
vowel backness: front vowels tend to have positive PCs,
mid vowels center around the origin, and back vowels
tend to have negative PCs. Likewise, vowel openness
order is consistent within backness classes: more closed
vowels have lesser PC2 components than more open
vowels in the same backness class.

The notable exceptions are the extreme vowels. For
instance, /a/, an open front vowel, has a large PC1
and small PC2, placing it at the “close” end of the
front vowels in PCA space. /I/, a near-close near-front
vowel, has an unusually large PC1 value for its back-
ness.

Llama’s vowel chart It is important to remember
that these phonetic representations are not explicitly
grounded in model training. Rather, these patterns
emerge from its architecture and training data. The
patterns partially align with IPA representations based
on the anatomy of a human mouth, which Llama does
not have. We suspect that instances which break these
patterns, such as /u/, /a/, and /I/, emerge from the
usage of these particular phonemes in context3.

As an attempt to show this portion of Llama’s inter-
nal vowel model in a human-readable manner, we con-
struct a variant of the IPA vowel chart which is con-
sistent with our findings, populated with common En-
glish vowel sounds (Figure 5). This chart maintains
the surprising emergent colinearities we find in our
PCA of the vowel vectors, as shown by the overlay
of this chart in Figure 1. H13L12 result vectors also
align with these geometries (see Appendix E).

3These particular phonemes are often present in English
language diphthongs, which could explain the divergence
from anatomical characteristics.

We note that the representations in Figure 5 do
not necessarily constitute a comprehensive account of
Llama’s internal representations of phonetic informa-
tion. However, the fact that we see some degree of
linearity — and the fact that this linearity aligns, to
some degree, with existing anatomical representations
— indicates the presence of some kind of relativistic
world model of vowel phonemes between the embed-
ding space and the result vector of H13L12.

5. Future Work
While our experiments provide evidence of robust pho-
netic representation in Llama-3.2-1B-Instruct’s em-
bedding and residual stream, several important ques-
tions remain. Our findings open up multiple avenues
for further research, especially regarding the mecha-
nisms and structures through which the model prop-
agates and processes phonetic information. In par-
ticular, we are interested in further characterizing
H13L12’s behaviors, better understanding the cross-
lingual features in the model’s phonetic system, and
isolating the propagation of phonetic information.

6. Conclusion
Our investigation provides strong evidence that
Llama-3.2-1B-Instruct contains a rich internal pho-
netic model which partially diverges from human
anatomical phonetic models. We demonstrate the re-
coverability of phonetic information from token embed-
dings, which produces directions for each phoneme in
latent space, and we identify a “phoneme mover head”
(H13L12) that moves and promotes phonetic informa-
tion during rhyming tasks. We use the result vectors
of this head to fit a phonetically-informed PCA. Ap-
plying this PCA to our latent space phoneme vectors
yields a geometric arrangement of phonemes. The pat-
tern of vowel phoneme vectors in particular suggests
the use of an internal vowel model which partly aligns
with anatomically-informed vowel taxonomies.
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Figure 5: Standard IPA representation of vowels in humans (left) and a proposed IPA-style representation of
Llama’s internal vowel model (right). The positions of some phonemes, such as /a/ and /I/, notably differ.
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Figure 6: Example intervention on rhymes with store.
When replacing the /o/ sound with /E/ at small
phoneme weight values, the model predicts words con-
taining /i/. This is consistent across multiple starting
words containing /o/.

word, which suggests that the model internally repre-
sents vowel sounds in the embedding space with mean-
ingful relationships to each other. This motivates our
attention to colinearities of phoneme vectors in PCA
space in Section 4. When applying this methodology
to non-phonetic interpretability tasks, we suggest care-
fully studying the presence of third-party characteris-
tics (i.e. attributes of model results which are not
strictly related to the specific intervention) in order
to inform both the choice of dimensionality reduction
technique and the expected emergent geometric pat-
terns in PCA space.

B. Activation patching results

Figure 7: The mean normalized logit differences for our
activation patching experiment described in Section 3.
Head 13 Layer 12 clearly has the highest value at 0.48.

C. Exploring the head dimension
After discovering H13L12, we were interested in un-
derstanding both how the internal head dimension is
organized (e.g. are there phoneme specific neurons in
the output matrix?) and how phonetic information is

pulled from the target word into the head.

The model seems to use complex interference patterns
to approximate different phonetic directions. This
is evidenced by the relative uninterpretability of the
head dimension and the result matrix combined with
the mutual consistency of similar phonemes within the
head dimension with respect to cosine similarity. No-
tably, we were able to recover much of the result vector
(measuring with cosine similarity) with the top and
bottom (In terms of magnitude) eight values from the
head vector, suggesting a kind of sparsity in the head
dimension (See Figure 8). Interestingly, we found that
all sixty four head dimensions were, for at least one
word, present within the top or bottom eight z val-
ues. Future work could investigate the subspaces read
from and written to by this head using more involved
methods, like sparse coding (Kissane et al.) or commu-
nication channels (Elhage et al., 2021; Merullo et al.,
2024).

Figure 8: Sorted Z values with the top and bottom
eight highlighted. Cosine similarity is between the full
result vector and the vector generated by only taking
the top and bottom eight values (setting every other
index to zero) and passing it through the output ma-
trix.

D. Manual inspection of decoded result
vectors

To better understand the role the phoneme mover head
plays in downstream rhyme production, we perform a
manual survey of one hundred different runs of our
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rhyme task (described in Section 2), chosen randomly
after filtering for tokenization from the Oxford 5000
dataset (Güzel, 2025).

We judge result vectors according to the following cri-
teria: we call a result vector (R.V.) “coherent” if and
only if five of the top ten tokens it promotes contain
similar phonemes to the target rhyme. For example,
if the target word was plush then the target rhyme
would be /2S/. We consider the task to be passed if a
correct rhyme is within the top ten tokens the model
predicts as the next token. Although our sample size

Coherent R.V. Incoherent R.V.
Pass 55% 0%
Fail 25% 18%

is quite small, the effect is clear. Rarely occur, if ever,
is the task completed successfully when an incoherent
result vector is produced. In every example we ana-
lyzed, having a coherent R.V. was a prerequisite for
completing the task.

E. Result vectors cluster around the
proposed vowel chart

The vowel chart we propose in Figure 5 aligns with
phoneme vector geometries in PCA space as shown in
Figure 1. Importantly, this geometry is also present
among result vectors. We use the same PCA to trans-
form the H13L12 result vectors from 2000 single-token
single-vowel words. Figure 9 shows that up to lin-
ear transformation4, result vectors cluster around the
phoneme vectors corresponding to their vowels.

4The result vectors tend to have much smaller magni-
tude than our phoneme vectors due to differences in nor-
malization, so we scale up the PCs of the result vectors by
a factor of 25 and shift each component by +8.

Figure 9: (High opacity) phoneme vectors correspond-
ing to common English vowels in PCA space.
(Low opacity) H13L12 result vectors of single-token
single-vowel words in the context of our rhyming task,
scaled and shifted. The relative geometry of these re-
sult vector clusters matches the geometry of the pro-
posed vowel chart in Figure 5.
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