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ABSTRACT

We propose Re-parameterized Refocusing Convolution (RefConv) as a replace-
ment for regular convolutional layers, which is a plug-and-play module to im-
prove the performance without any inference costs. Specifically, given a pre-
trained model, RefConv applies a trainable Refocusing Transformation to the basis
kernels inherited from the pre-trained model to establish connections among the
parameters. For example, a depth-wise RefConv can relate the parameters of a
specific channel of convolution kernel to the parameters of the other kernel, i.e.,
make them refocus on the other parts of the model they have never attended to,
rather than focus on the input features only. From another perspective, RefConv
augments the priors of existing model structures by utilizing the representations
encoded in the pre-trained parameters as the priors and refocusing on them to learn
novel representations, thus further enhancing the representational capacity of the
pre-trained model. Experimental results validated that RefConv can improve mul-
tiple CNN-based models by a clear margin on image classification (up to 1.47%
higher top-1 accuracy on ImageNet), object detection and semantic segmentation
without introducing any extra inference costs or altering the original model struc-
ture. Further studies demonstrated that RefConv can reduce the redundancy of
channels and smooth the loss landscape, which explains its effectiveness.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have indeed been the dominant tool for a wide range of
computer vision tasks. One of the mainstream approaches to improving the performance of CNNs
is to elaborately design the model structures, including macro model architectures (He et al.| 2016;
Huang et al., 2017aj [Liu et al., 2022)) and micro plug-and-play components (Hu et al.l |2018; |Woo
et al.l 2018} [Li et al., |2019b). The success of CNN can be partly attributed to the locality of opera-
tions. For the spatial dimensions, a typical example is the sliding-window mechanism of convolution
which utilizes the local priors of images. For the channel dimension, a depth-wise convolution (re-
ferred to as DW conv for brevity) operates on each input channel with an independent 2D convolution
kernel, significantly reducing the parameters and computations, compared to a regular dense conv
(which means each output channel attends to every input channel, i.e., the number of groups is 1).

In this paper, we propose to improve the performance of CNNs from another perspective - augment-
ing the priors of existing structures. For example, a DW conv can be regarded as a concatenation
of multiple mutually independent 2D conv kernels (referred to as kernel channels), and the only
input to a specific kernel channel is its corresponding channel of the feature map (referred to as
feature channel), which may limit the model’s representational capacity. We seek to add more priors
without changing the model’s definition or introducing any inference costs (e.g., letting the kernel
channel operate with the other feature channels will make the operation no longer a DW conv), so
we propose a re-parameterization technique to augment the priors of model structures by making
their parameters attend to the parameters of other structures.

Specifically, we propose a technique named Re-parameterized Refocusing, which establishes con-
nections among the parameters of existing structures. Given a pre-trained CNN, we replace its
conv layers with our proposed Re-parameterized Refocusing Convolution (RefConv), as shown in
Fig.[I] Taking DW conv again as an example, a DW conv of a pre-trained CNN will be replaced
by a RefConv which freezes its pre-trained conv kernel as the basis weights W, and apply a train-
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(a) Depth-wise RefConv with two input channels  (b) Two-stage pipeline to improve CNN with RefConv

Figure 1: (a) We showcase a depth-wise RefConv with two input channels, whose kernel size is
3x3. We apply a trainable Refocusing Transformation to the basis weights W;, (which are inherited
from the pre-trained model and frozen) to generate Wy, which then operates on the input features.
A specific channel of the original model’s conv kernel (i.e., a 3x3 matrix in this case) only attends
to a single channel of the input feature map, by the definition of DW conv. In contrast, RefConv
can establish connections between each channel of the conv kernel and every other channel of W,
through the Refocusing Transformation. (b) We adopt a two-stage pipeline to improve CNN with
RefConv. After a regular pre-training stage (which can be skipped if an off-the-shelf model is
available), we construct a RefConv Model by replacing the regular conv layers by the corresponding
RefConv layers which are built with the basis weights inherited from the pre-trained model. During
Refocusing Learning, the basis weights are frozen and the Refocusing Transformations are learnable.
Finally, we save the transformed weights W, only and use them for inference.

able operation, which is referred to as Refocusing Transformation T(-), to W, to generate a new
DW conv kernel, which is referred to as transformed weights W;. We use refocusing weights W,
to denote the trainable parameters additionally introduced by Refocusing Transformation, so that
W; = T(W,, W,.). We then use Wy, instead of the original parameters, to operate on the input
features. In other words, we use a different parameterization of the conv kernel. With a properly
designed Refocusing Transformation, we can relate the parameters of a specific kernel channel to
the parameters of the other kernel channels, i.e., make them refocus on the other parts of the model
(rather than the input features only) to learn new representations. As the latter are trained with the
other feature channels, they encode the representations condensed from the other feature channels,
so that we can indirectly establish connections among the feature channels, which cannot be realized
directly (by the definition of DW conv). After a training process (referred to as Refocusing Learning)
of the constructed model (RefConv Model), we use the trained refocusing weights and the frozen ba-
sis weights to generate the final transformed weights, which are saved and used for inference only.
Eventually, the resultant model (Re-parameterized RefConv Model) will deliver higher performance
with identical inference costs to the original model. In addition, since the Refocusing Transforma-
tion in RefConv is conducted on the basis weights instead of the batches of training examples, the
Refocusing Learning process is computational efficiency and memory saving.

Except for DW conv, RefConv can easily generalize to other forms such as group-wise and dense
conv. As a generic design element, RefConv can be applied to any off-the-shelf CNN models with
different structures. Our experimental results show that RefConv can improve the performance of
multiple ConvNets on image classification, object detection and semantic segmentation by a clear
margin. For example, RefConv improves MobileNetv3 (Howard et al.,|2019) and ShuffleNetv2 (Ma
et al.,|[2018)) by up to 1.47% and 1.26% higher top-1 accuracy on ImageNet. To be emphasized, such
performance improvements are realized with no extra inference costs or alterations to the original
model structure. We further seek to explain the effectiveness of RefConv and discover that RefConv
can enlarge the KL divergence between the pairs of kernel channels, which validates that RefConv
can reduce the channel similarity and redundancy (Zhou et al.,2019; Wang & Stella, |2021)) through
attending to other channels. This enables RefConv to learn more diversified representations and en-
hance the model’s representational capacity. In addition, it is observed that the model with RefConv
has a smoother loss landscape, suggesting a better generalization ability (Li et al., [2018]).
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Our contributions are summarized as follows.

* We propose Re-parameterized Refocusing, which augments the priors to existing structures
by establishing connections to the learned kernels. Consequently, the re-parameterized
kernels can learn more diverse representations, thus further improving the representational
capacity of the trained CNNss.

* We propose RefConv to replace the original conv layers and experimentally validate that
RefConv can improve the performance of various backbone models on ImageNet by a clear
margin without extra inference costs or altering model structure. Moreover, RefConv can
also improve the ConvNets on object detection and semantic segmentation.

* We demonstrate that RefConv can reduce the channel redundancy and smooth the loss
landscape, which explains the effectiveness.

2 RELATED WORK

2.1 STRUCTURE DESIGNS FOR BETTER PERFORMANCE

The designs of CNN structures for better performance include specific macro architecture and
generic micro components. Representatives of macro architectures include VGGNet (Simonyan
& Zisserman, 2014), ResNet (He et al., 2016)), etc. (Huang et al., 2017a; [Liu et al., 2022} [Howard
et al., 2017; Sandler et al., [2018}; Howard et al., 2019) Micro components, such as SE block (Hu
et al.,[2018)), CBAM block (Woo et al.| 2018)), etc. (Li et al.,2019b; |Chen et al., 2019} Zhang, |2019),
are usually architecture-agnostic (Ding et al., 2019), which can be incorporated into various mod-
els and bring generic benefits. However, all of these model designs change the predefined model
structure. In contrast, RefConv focuses on the parameters of convolution kernels and intends to
augment the priors of existing structures. As RefConv does not change the model structure, it is
complementary to the advancements in the designs of architectures or components.

2.2 STRUCTURAL RE-PARAMETERIZATION

Structural Re-parameterization (Ding et al.l [2019; [2021azbfc; 2022azb)) is a representative re-
parameterization methodology to parameterize a structure with the parameters transformed from
another structure. Typically, it adds extra branches to the model in training to improve the perfor-
mance, then equivalently simplifies the training structure into the same as the original model for
inference. For example, ACNet (Ding et al., | 2019) constructs two extra vertical and horizontal con-
volution branches in training and converts them into the original branch in inference. RepVGG (Ding
et al., 2021c) constructs identity mappings parallel to the 3 x 3 convolution during training and con-
verts the shortcuts into the 3 x 3 branch. Similar to the aforementioned designs in the structure
space, Structural Re-parameterization builds extra branches to process the feature maps, which in-
curs considerable extra computational and memory costs during training. In contrast, the extra
transformations in RefConv are applied to the basis weights only, which is computationally efficient
and memory saving, compared to Structural Re-parameterization.

2.3  WEIGHT RE-PARAMETERIZATION METHODS

As a representative weight re-parameterization method, DiracNet (Zagoruyko & Komodakis, [2017)
encodes the convolution kernel as the linear combination of the normalized kernel and the identity
tensor. Weight normalization includes standard normalization (Salimans & Kingma, 2016), centered
normalization (Huang et al.,|2017b), and orthogonal normalization (Huang et al., 2018), which nor-
malizes the weights in order to accelerate and stabilize training. These weight re-parameterization
methods are independent from the data. Dynamic convolution (Zhang et al., 2020b; |Chen et al.,
2020)), such as CondConv (Yang et al.,[2019) and ODConv (Li et al.,|2022), can be viewed as data-
dependent weight re-parameterization, as it uses specifically-designed over-parameterized hyper-
networks (Ma et al. 2020; Ha et al. 2016) which take data as the input and generate specific
weights for the certain data. However, due to the dependency on the input data, such additional
hyper-networks can not be removed in inference, thus introducing significant extra parameters and
computational costs in both training and inference.

Refocusing Learning derives new weights with some meta weights (instead of the data), then uti-
lizes the new weights for computations, so it can be categorized as a data-independent weight re-
parameterization method.
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Figure 2: The general form of Refocusing Transformation.

3 RE-PARAMETERIZED REFOCUSING CONVOLUTION

In this section, we first elaborate on the design of a RefConv as a replacement for a regular depth-
wise conv, then describe how to generalize it to group-wise or dense cases.

3.1 DEPTH-WISE REFCONV

Denote the number of input channels by Cj,,, output channels by C,,;, and groups by g. A depth-
wise convolution is configured by C' = C;,, = C,yu¢ = g. Assume the kernel size is K, so that the
basis weights and transformed weights can be formulated as W, W, € REX1XEXK Note that we
desire not to change the model’s inference structure, so that W, should be of the same shape as Wj,.

We desire a proper design of the Refocusing Transformation T, which transforms the frozen Wy, into
W;. For a specific channel of Wy, such a function T is expected to establish connections between it
and every single channel of W;,. In this paper, we propose to use a dense convolution as T, so that
the Refocusing Transformation is parameterized by the kernel tensor of such a dense convolution
W, € REXCXEXE We use k = 3 by default so that it should have padding = 1 to ensure W, has
the same shape as W;. Intuitively, such an operation can be seen as scanning the basis weights
with a 3 x 3 sliding window parameterized by W, to extract representations to construct the desired
kernel, just like we scan the feature maps with a regular conv kernel to extract patterns. As such
a convolution is dense, the inter-channel connections are established, so that each channel of W,
relates to all the channels of Wy, as shown in Fig. Eka). Just as the metaphor indicates, W}, can be
regarded as the input “feature map” to the Refocusing Transformation, which may be designed more
carefully, borrowing novel ideas from the model structure design literature. For example, we may
employ non-linearity or more advanced operations, which may perform better. In this paper, we use
a single convolution because it is simple, intuitive, and effective enough. Better implementations of
Refocusing Transformations are scheduled as our future work.

Moreover, as inspired by residual learning (He et al.| [2016)), we desire the Refocusing Transforma-
tion to learn the increments over the basis weights, rather than the original mapping, just like we use
the residual blocks to learn the increments over the base feature maps in ResNets. Therefore, we
add a similar “identity mapping”, so that

Wi =Wy x W, + Wy, (D

where * denotes convolution operator.

3.2 GENERAL REFCONV

For a general dense or group-wise RefConv, where the basis weights and transformed weights are
Cin . . . .
denoted by Wy, W, € ROoutX =" *KxK "we generalize the Refocusing Transformation designed
for the depth-wise case. Just like the depth-wise case transforms the C,,,,; basis kernel channels into
C,ut transformed kernel channels, in the general case we transform the C,,; basis kernel slices (each
with % channels) into C,,; transformed kernel slices. We still use convolution as the Refocusing

Transformation, so that it should be configured with output channels = input channels = C,,; X

%, which may be large if W, is dense (g=1). To reduce the parameters of such a Refocusing

Transformation, we make it group-wise, introducing its number of groups G as a hyper-parameter,
. . C2 C2 k‘2

so that its number of parameters is e
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We propose a formula to determine G as

G = Ooutcin )

- )

Such a design makes the Refocusing Transformation complementary to the original convolution: a
larger g means a sparser original convolution, which needs more cross-channel connections estab-
lished by Refocusing Transformation; according to Eq. [2] a larger g results in a smaller G, which
exactly meets such a demand.

For example, if Wy, is dense, we have G = C\,;:C;, and W,. € R(CoutCin)x1xkxk \whichisa depth-
wise convolution with C,,;C},, kernel channels, so it only aggregates the learned representations
across the spatial dimensions but performs no cross-channel re-combinations (which are not desired
since W, can operate across the feature channels by itself). On the contrary, if Wy, is a depth-wise
kernel, we will have G = 1 and W,. € RCutXCinxKXK "which is exactly the dense convolution
kernel discussed in Sec. which fully establishes the required cross-channel connections.

We would like to note that RefConv adds only minor extra computations during training. Assume the
feature map is of B x Cj,, x H x W, the FLOPs of the original convolution will be ZZWCinCou K= Wci; Cour K* ,
while the FLOPs of Refocusing Transformation is only % = K?k2C;,,Cyus, Which is
irrelevant to the batch size B. For example, assume B = 256, H=W=28, C;,=C,,:=g=512, K=3
(common case of a DW layer in a regular CNN trained on ImageNet), the FLOPs is 925M for
the original conv while only 21M for the Refocusing Transformation. The detailed computation,
including the identity mapping and necessary reshaping operations, is depicted in Fig. [2]

3.3 REFOCUSING LEARNING

Refocusing Learning begins with a given pre-trained CNN, which can be obtained through a regular
pre-training stage if we have no available off-the-shelf model. We construct a RefConv Model by
replacing the regular conv layers with the corresponding RefConv layers. We do not replace the
1x1 conv layers because they are dense in channel and encode no spatial patterns, hence there is no
need to establish cross-channel connections nor extract spatial representations from it. The RefConv
layers are built with the W}, inherited from the pre-trained model and W,. initialized with Xavier
random initialization. Moreover, W, can be initialized as zeros to make the initial model equivalent
to the pre-trained model (since W; = W, for every RefConv), which is tested in Sec.

During Refocusing Learning, a RefConv layer computes the transformed weights W, = T(W;, W,.),
where W, is fixed and W.,. is learnable, and uses W; to operate on the input features. Therefore, the
gradients will back-propagate through W; to W,., so that W, will be updated by the optimizer just
like the routines of training a regularly parameterized model.

After Refocusing Learning, we compute the final transformed weights with W, and the trained W,..
We save the final transformed weights only and use them as the parameters of the original CNN for
inference. In this way, the inference-time model will have exactly the same structure as the original.

4 EXPERIMENTS
4.1 PERFORMANCE EVALUATION ON IMAGENET

Dataset and models. We first conduct abundant experiments to validate the effectiveness of Ref-
Conv in enhancing the representational capacity and improving the performance of CNNs on Ima-
geNet (Russakovsky et al, [2015)), which is one of the most widely used but challenging real-world
benchmark datasets for computer vision. ImageNet comprises 1.28M images for training and 50K
images for validation from 1,000 classes. We experiment with multiple representative CNN archi-
tectures, covering different types of convolution layers (namely, DW conv, group-wise conv and
dense conv). The tested CNNs include MobileNetv1,v2,v3 (Howard et al., 2017; [Sandler et al.,
2018} Howard et al.| 2019), MobileNeXt (Zhou et al., [2020), HBONet (Li et al., 2019al)), Efficient-
Net (Tan & Lel 2019), ShuffleNetv1,v2 (Zhang et al., 2018} Ma et al., |2018), ResNet (He et al.,
2016), DenseNet (Huang et al., 2017a), FasterNet (Chen et al., 2023) and ConvNeXt (Liu et al.,
2022).

Configurations. For training the baseline models, we adopt an SGD optimizer with momentum of
0.9, batch size of 256, and weight decay of 4 x 1075, as the common practice (Ding et al.,[2022b). We
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Table 1: Results of RefConv models (RefC.) and the normally trained baselines (Base.) on Ima-
geNet. We also report the number of training-time parameters, FLOPs and memory costs of base-
lines and RefConv models. To emphasize that the inference-time parameters and FLOPs of the final
Re-parameterized RefConv model are identical to those of the corresponding baseline.

Index | Top-1 Accuracy | Params (M) | FLOPs (G) | Memory (G)
Model | Base. RefC. | Base. RefC. | Base. RefC. | Base. RefC.

MobileNetv1 72.18% 72.96% (+0.82%) | 3.22  28.29 150.76  150.96 | 19.83 20.21
MobileNetv2 71.68% 72.35% (+0.67%) | 3.56  44.11 | 90.37 90.72 2421 2498
MobileNetv3-S | 61.95% 63.42% (+1.47%) | 2.94  11.15 17.12 17.20 14.49 14.68
MobileNetv3-L | 71.73% 72.91% (+1.18%) | 548  34.06 | 61.15 61.41 2433  24.85
MobileNeXt 71.57% 72.81% (+1.24%) | 3.31 109.35 | 79.37 80.92 30.29 3221
HBONet 71.61% 72.59% (+0.98%) | 4.56 4449 | 83.71 84.10 2526 25.66
EfficientNet-BO | 75.78% 76.74% (+0.96%) | 4.98  72.67 103.53 104.20 | 31.02 31.78
ShuffleNetv1 63.17% 64.30% (+1.13%) | 1.81  4.56 35.52 35.55 14.61 14.82
ShuffleNetv2 67.66% 68.92% (+1.26%) | 2.28  5.94 39.65 39.69 13.17 13.30

ResNet-18 70.69% 71.63% (+0.94%) | 11.72 22.74 | 472.08 47220 | 1552 15.76
ResNet-50 76.16% 76.96% (+0.80%) | 25.61 36.97 1063.35 1063.55 | 32.14 3254
ResNet-101 77.14% 77.72% (+0.68%) | 44.63 66.01 | 2018.72 2018.96 | 42.97 43.92
DenseNet-169 | 76.17% 76.90% (+0.73%) | 14.18 17.24 | 884.81 884.95 | 49.10 49.96
FasterNet-S 78.76% 79.91% (+1.15%) | 28.44 34.65 1091.28 1091.85 | 24.24 24.62

ConvNeXt-T 80.82% 81.68% (+0.96%) | 28.59 57.37 1139.10 1139.97 | 38.53 38.62

use a learning rate schedule with a 5-epoch warmup, initial value of 0.1, and cosine annealing for 100
epochs. The data augmentation uses random cropping and horizontal flipping. The input resolution
is 224 x 224. For Refocusing Learning, we initialize the weights of Refocusing Transformations with
Xavier random initialization (Glorot & Bengio, [2010) and freeze the basis weights inherited from
the corresponding pre-trained models. Refocusing Learning uses the same optimization strategy as
the baselines. Besides, we make no difference to the final model architectures.

Performance improvements. Table [I| shows the experimental results. It can be observed that
RefConv can significantly boost the performance of various baseline models with a clear margin.
For example, RefConv improves the top-1 accuracy of MobileNetv3-S (DW Conv), ShuffleNetv2
(group-wise conv) and FasterNet-S (DW and dense conv) by 1.47%, 1.26% and 1.15%, respectively.

Number of parameters. Table[T]also exhibits the total number of parameters in training. The base-
line models have the same training parameters as the inference stage, while the RefConv models
have an extra amount of parameters during training only. However, as we only utilize the trans-
formed weights for inference, the inference parameter number of Re-parameterized RefConv model
is identical to the baseline, introducing completely no extra inference costs.

Training-time FLOPs and memory costs. To measure the extra training cost brought by the extra
computations of RefConv during training, we present in Table [I| the total fraining-time FLOPs and
memory costs of baselines and RefConv models, which are tested on four RTX 3090 GPUs with a
total batch size of 256 and full precision (fp32). As exhibited, the additional FLOPs and memory
that RefConv introduces is negligible compared to the baseline, complying with the discussion in
Section[3.2] that the computational cost of Refocusing Transformation is minor since it is conducted
on the kernels instead of the feature maps. It is worth noting that only the training-time RefConv
needs minor extra computations to generate W;, and the Re-parameterized RefConv model will be
structurally identical to the baseline after converting the weights (as there will be no Refocusing
Transformation during inference at all), introducing completely no additional memory or computa-
tional cost in inference.

4.2 COMPARISON WITH OTHER RE-PARAMETERIZATIONS

We compare RefConv with other data-independent re-parameterization methods on ImageNet, i.e.
structural re-parameterization (SR, including ACB (Ding et al., 2019), RepVGGB (Ding et al.
2021c), and DBB (Ding et al., 2021b)) and weight re-parameterization (WR, including WN (Sali-
mans & Kingmal 2016), CWN (Huang et al.,[2017b), and OWN (Huang et al.| [2018))). The baseline
models are ResNet-18 and MobileNetv2. Note that all the inference models of these methods are
the same as the baselines. As Table 2] shows, WR brings negligible improvement for that WR is
intended to accelerate and stablize the training. While SR improves the performance more signifi-
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Table 2: Comparison with other re-parameterization methods on ImageNet.

Model \ ResNet-18 \ MobileNetv2
Method \ Topl-Accuracy FLOPs (G) Memory (G) \ Topl-Accuracy FLOPs (G) Memory (G)
Baseline \ 70.69% (+0.00%) 472.08 15.52 \ 71.68% (+0.00%) 90.37 24.21
ACB 71.47% (+0.78%) 761.25 18.76 71.99% (+0.31%) 98.62 32.02
RepVGGB | 71.21% (+0.52%) 522.85 17.02 72.11% (+0.33%) 94.39 28.38
DBB 71.25% (+0.56%) 1097.40 26.18 72.25% (+0.48%) 125.61 43.52
WN 70.81% (+0.12%)  472.10 15.53 71.76% (+0.08%) 90.37 2421
CWN 70.85% (+0.16%) 472.10 15.53 71.78% (+0.10%) 90.37 24.21
OWN 70.83% (+0.14%) 472.10 15.53 71.75% (+0.07%) 90.37 24.21
RefConv \ 71.63% (+0.94%) 472.20 15.76 \ 72.35% (+0.67 %) 90.72 24.98
Table 3: Pascal VOC detection and Cityscapes segmentation.
Task \ Pascal VOC (mAP) \ Cityscapes (mIOU)
Model | Baseline RefConv | Baseline RefConyv
ResNet-18 68.76%  69.48% (+0.72%) | 70.18% 71.01% (+0.83%)
MobileNetv2 70.40%  70.88% (+0.48%) | 72.31% 72.93% (+0.62%)

MobileNetv3-L | 70.31% 71.12% (+0.81%) | 72.04% 72.86% (+0.82%)

cant than WR, it introduces tremendous extra training costs since the extra branches are conducted
on the feature maps. Furthermore, RefConv brings the highest improvements with little extra costs,
demonstrating the superiority over other data-independent re-parameterization methods.

4.3 OBIJECT DETECTION AND SEMANTIC SEGMENTATION

We further transfer the ImageNet-trained backbones to Pascal VOC detection task with SSD (Liu
et al., 2016), following the configuration in |Zhou et al|(2020), and Cityscapes segmentation with
DeepLabv3+ (Chen et al.| [2017)), following the configuration in |Ding et al.| (2022b). Table E] shows
that RefConv can enhance the performance of various ConvNets by a clear margin, validating the
transfer capability of RefConv.

4.4 ABLATION STUDY

Refocusing Learning outperforms simply retraining the baseline model. To show the superiority
of Refocusing Learning over the most naive approach, which is simply training the model for more
epochs, we train the already pre-trained baseline models for the second time on ImageNet with
the same training configurations. Table 4] shows that retraining the models another time can barely
improve the performance, which is expected as a specific kernel parameter during retraining still
cannot attend to the other parameters at the other channels (for the case of DW conv in MobileNet) or
spatial locations (for the case of regular conv in ResNet-18), thus failing to learn new representations.

Refocusing Learning outperforms simply finetuning the baselines. We also finetune the already
pre-trained baseline models with a smaller learning rate of 10~* for another 100 epochs on Ima-
geNet as a common practice. Table |4 shows finetuning still brings negligible benefits, compared to
RefConv. Once again, simply finetuning the converged models fail to learn any new representations.

Pre-trained basis weights are important prior knowledge. W, is the learned weights of the
baseline models and fixed during Refocusing Learning. For validation, we randomly initialize the
W,, and freeze it in Refocusing Learning (Column R W in Table ). Doing so brings only minor
improvements to MobileNetv2 and even results in significant degradation of ResNet-18, which is
expected as the pre-trained basis weights can be regarded as prior knowledge brought into the Ref-
Conv models, which provides a good basis for learning new representations. The phenomenon that
ResNet-18 is degraded much worse can be explained that its Refocusing Transformation is a DW
conv (as discussed in Section [3.2)) that operates on the randomly initialized basis weights. Since the
basis weights contain no priors at all, it is expected that the DW conv extracts no useful representa-
tions with only spatial aggregations. In contrast, the Refocusing Transformation of a DW RefConv
in MobileNetv2 is a dense conv, which has a large parameter space to learn the representations all
by itself, even if it begins with no priors.

Then we attempt to make the pre-trained W, trainable so that both W, and W,. are updated in
Refocusing Learning. Column 7' W, in Table ff] shows no improvements over the standard RefConv,
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Table 4: Results of re-training and fine-tuning the baselines, and different configurations of the basis
weights.

Model Baseline RefConv Retrain  Finetune R W, T W, R&T W,
ResNet-18 70.69% 71.63% 70.85% 70.75%  53.04% T71.54% 71.24%
T +0.00% +094% +0.16% +0.06% -17.65% +0.85% +0.55%
MobileNetv2  71.68% 7235% 71.83% 71.79%  71.90% 72.11% 72.15%
1T +0.00% +0.67% +0.15% +0.11% +0.22% +0.43% +0.47%

Table 5: Results of different initialization of the trainable weights and the RefConv with/without the
identity mapping.

Model Baseline RefConv-RI RefConv-ZI RefConv w/o shortcut

MobileNetv1 72.18%  72.96% (+0.78%) 72.89% (+0.71%) 72.39% (+0.21%)
MobileNetv2 71.68%  72.35% (+0.67%) 72.25% (+0.57%) 71.89% (+0.21%)
MobileNetv3-S  61.95% 63.42% (+1.47%) 63.39%(+1.44%) 62.95% (+1.00%)
MobileNetv3-L  71.73%  72.91% (+1.18%) 72.72% (+0.99%) 72.27% (+0.54%)

 Layer2 Layer 4 Layer 6 Layer 8 Layer 10  Layerl2
Figure 3: The connection degree matrix of the first 64 channels of W; and W,, in different layers.
The backbone model is MobileNetv1 trained on ImageNet. Darker colors represent larger values
and closer connections.

suggesting that it is favorable to maintain the prior knowledge of the Refocusing Transformation.
Last, we make W} both randomly initialized and trainable. Column R & T W, in Table E] shows
performance lower than the standard RefConv. In summary, we conclude that the pre-trained basis
weights Wy, are prior knowledge important to the learning process.

Different initialization for refocusing weights. The weights of CNNs are usually randomly initial-
ized when training the models from scratch. However, for RefConv, W,. can be initialized as zeros
so that the initial value of W, will be identical to W;, (by Eq.[I), making the initial RefConv Model
equivalent to the pre-trained. Column RefConv-ZI in Table [5|shows the results of such zero initial-
ization, demonstrating improvements over the baselines, which are slightly worse than the regular
random initialization labeled as RefConv-RI.

Validation of the identity mapping in RefConv. We also discover that the identity mapping in
RefConv is critical. Column RefConv w/o shortcut in Table[5]shows the results of RefConv without
the shortcut, which are observably better than the baselines but worse than the standard RefConv.

RefConv connects the independent kernels. To validate that a DW RefConv makes each indepen-
dent kernel channel of W, attend to the other channels of W, we calculate the degree of connection
between the i-th channel W, and the j-th channel in Wy, for all the (4, j) pairs, which forms a corre-

lation matrix. Naturally, as such inter-channel connections are established through the filter Wf’j ),
which is a £ x k matrix corresponding to the j-th input channel and ¢-th output channel of the W,.,
we use the magnitude (i.e., the sum of the absolute values) of ng’j ) as the numerical metric for
the degree of the connection, as a common practice (Han et al., 2015b; Ding et al., 2018} |L1 et al.}
2016; |Guo et al., [2016; Ding et al., [2019). Briefly, a larger magnitude value indicates a stronger
connection. We use the first 64 channels of W, and W} and calculated the connection degree be-
tween each pair of channels to obtain the 64 x 64 connection degree matrix. As visualized in Fig.
the ¢-th channel in W, attends to not only the corresponding i-th channel in W;, but also multiple
other channels in W;, with different magnitude, suggesting that a DW RefConv can attend to all the
channels to learn diverse combinations of existing representations.

4.5 REFCONV REDUCES CHANNEL REDUNDANCY

To explore the difference between the basis weights W, and the transformed weights W, we com-
pare the channel redundancy of W, and W;. As a common practice, we utilize the Kullback-Leibler
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Figure 4: The similarity matrix of the first 64 channels of W, and W, in different layers. The
backbone model is MobileNetv1 trained on ImageNet. To improve the readability, the original value
of KL divergence is added with 1 and then taken 10-base logarithm. A point with a darker color
represents a larger value, hence a lower similarity.

MobileNetv1 RefConv-MobileNetv1 MobileNetv2 RefConv-MobileNetv2
Figure 5: Visualization of the loss landscapes.

(KL) divergence to measure the similarity between different pairs of channels (Zhou et al.l 2019;
Wang & Stella, |2021)), so that a larger KL divergence indicates lower similarity, hence a lower
degree of channel redundancy. Specifically, we sample a DW RefConv layer from the trained Mo-
bileNetvl and apply softmax to every K x K kernel channel, then sample the first 64 channels
to calculate the KL divergence between every pair of channels. In this way, we obtain a 64 x 64
similarity matrix for the sampled layer. Fig. [ shows the similarity matrices of multiple layers.
As can be observed, there exists high redundancy among channels in W;, as the KL divergence is
low between most of the channels. In contrast, the KL divergence between channels of Wy is sig-
nificantly higher, which means the kernel channels become significantly different from the others.
Based on such observations, we conclude that RefConv can reduce redundancy consistently and
effectively. We explain such phenomena that RefConv can explicitly make every channel able to
attend to the other channels of the pretrained kernel, which refocus on the learned representations
encoded in the pretrained kernel channels to learn diverse novel representations. Consequently, the
channel redundancy is reduced and the representation diversity is enhanced, which results in a higher
representational capacity.

4.6 REFCONV SMOOTHS LOSS LANDSCAPE

To explore how Refocusing Learning influences the training dynamics, we visualize the loss land-
scapes of the baseline and the RefConv counterpart with the filter-wise normalization visualiza-
tion (L1 et al.,[2018)). We use MobileNetv1 and MobileNetv2 trained on CIFAR-10 as the backbone
models. Fig.[5]shows that the loss landscapes of RefConv have wider and sparser contours compared
to that of the baselines, which indicates that the loss curvature of RefConv is much flatter (Li et al.,
2018)), suggesting a better generalization ability. This phenomenon demonstrates that Refocusing
Learning possesses better training properties which partly explains the performance improvements.

5 CONCLUSION

This paper proposes Re-parameterized Refocusing Convolution (RefConv), which is the first re-
parameterization method that augments the priors of existing model structures by establishing extra
connections among kernel parameters. As a plug-and-play module to replace the regular convolu-
tional layers, RefConv can significantly improve the performance of various CNNs on multiple tasks
without altering the original model structures or introducing extra costs in inference. Moreover, we
explain the effectiveness of RefConv by showing its capability of reducing channel redundancy and
smoothing the loss landscape, which may inspire further theoretical research on training dynamics.
In our future work, we will explore more effective designs of Refocusing Transformations, e.g., by
introducing non-linearity and more advanced operations.
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APPENDIX A: REFCONV STRENGTHENS THE KERNEL SKELETONS

To explore the other differences between the basis kernels and transformed kernels, we visualize
the Wy, W, and the increments over the basis weights AW = W, — W, of the last convolution
layer of RefConv-MobileNetv2 trained on ImageNet, as exhibits in the left column of Fig.[6] We
find that most of the AW exhibits stronger skeleton patterns (Ding et al., 2019), indicating that
the major difference lies in the center rows and columns of the kernels. Consequently, it can be
obviously observed that W, exhibits stronger skeleton patterns than Wy, especially in the central
pomt Further more, we calculate and visualize the average kernel magnitude matrices
2018} [Guo et all, 2016} [Han et all 2015bfa)of these three weights, as exhibits in the right
column of Fig. Once again, the magmtude of AW shows strong skeleton patterns and small
impact factors in corners, suggesting the skeleton patterns of W are strengthened and the corners
are weakened, compared to W;,. Moreover, it is noteworthy that for W, the central point has a value
of 1.000, which means that location has a dominant importance consistently in every 3 x 3 layers.
According to[Ding et al.| (2019), enhancing the skeletons results in performance improvement, which
explains the effectiveness of RefConv from another perspective.
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Figure 6: Visualizations of the magnitude (i.e., the absolute value of weights) of individual kernel
channels and the average magnitude matrices (which are averaged across channels). The weights
are sampled from the last RefConv layer of the RefConv-MobileNetv2 trained on ImageNet. For
the visualization, we normalize each matrix by the maximal value of its entries to facilitate the
comparison and improve the readability. A darker color indicates a larger magnitude.

APPENDIX B: PERFORMANCE EVALUATION ON OTHER DATASETS

Evaluation of RefConv on Other Datasets. We also test the effectiveness of RefConv on CIFAR-
10, CIFAR-100, and Tiny-ImageNet-200. We resize the images to 224 x 224, and the training strat-
egy is in accordance with the experiments on ImageNet. A set of representative CNN architectures

are tested, including Cifar-quick (Krizhevsky et all[2012), SqueezeNet (Tandola et al., 2016)), VG-
GNet (Simonyan & Zisserman,2014), ResNet (He et al.|[2016), ShuffleNetv1,v2 (Zhang et al., 2018}
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Table 6: Results of RefConv and the normally trained baselines on CIFAR-10, CIFAR-100 and
Tiny-ImageNet-200.

Dataset \ CIFAR-10 \ CIFAR-100 \ Tiny-ImageNet-200
Model | Baseline RefConv | Baseline RefConv | Baseline RefConv
Cifar-quick 83.02% 89.13% (+6.11%) | 55.21% 61.06% (+5.85%) | 56.90% 60.24% (+3.34%)
SqueezeNet 85.83% 86.64% (+0.81%) | 61.14% 61.94% (+0.80%) | 51.60% 53.04% (+1.44%)
VGGNet-16 92.50%  93.13% (+0.63%) | 73.75% 74.88% (+1.13%) | 61.88% 63.52% (+1.64%)
ResNet-18 93.10% 94.15% (+1.05%) | 73.65% 74.51% (+0.86%) | 61.12% 62.44% (+1.32%)
ResNet-34 93.95% 94.97% (+1.02%) | 74.82%  95.74% (+0.92%) | 65.21% 66.45% (+1.24%)
ShuffleNetv1 91.35% 92.69% (+1.34%) | 68.51% 69.78% (+1.27%) | 56.86% 58.62% (+1.76%)
ShuffleNetv2 92.31% 93.56% (+1.25%) | 70.08%  71.52% (+1.44%) | 60.38% 61.90% (+1.52%)
ResNeXt-18 93.00%  93.68% (+0.68%) | 72.02% 72.84% (+0.82%) | 62.02% 62.84% (+0.82%)
RegNetX_200MF 91.11% 91.93% (+0.82%) | 68.08% 69.73% (+1.65%) | 59.84% 61.23% (+1.39%)
ResNeSt-50 93.52%  95.22% (+1.70%) | 69.18%  70.82% (+1.64%) | 65.18%  65.82% (+0.64%)
FasterNet-TO 92.94%  94.08% (+1.14%) | 68.02% 69.24% (+1.22%) | 58.32% 60.14% (+1.82%)
MobileNetv1 92.45%  93.01% (+0.56%) | 72.43% 73.41% (+0.98%) | 62.52% 63.89% (+1.37%)
MobileNetv2 92.58% 93.71% (+1.13%) | 73.04% 74.35% (+1.31%) | 61.94% 63.96% (+2.02%)
MobileNetv3-S 9091% 92.23% (+1.32%) | 68.20% 70.76% (+2.56%) | 60.66% 62.71% (+2.05%)
MobileNetv3-L 9295%  93.89% (+0.94%) | 73.89% 75.27% (+1.38%) | 62.21% 64.28% (+2.07%)
MobileNeXt 93.01% 94.45%(+1.44%) | 67.42%  69.07%(+1.65%) | 58.12%  60.44%(+2.32%)
HBONet 92.32%  93.59%(+1.27%) | 72.39%  73.91%(+1.52%) | 64.20%  66.44%(+2.24%)
EfficientNetvl-BO | 94.21%  95.38%(+1.17%) | 75.68%  76.90%(+1.22%) | 66.62%  68.57%(+1.95%)
EfficientNetv2-S 93.85%  95.13%(+1.28%) | 75.42%  76.76%(+1.34%) | 67.18%  69.32%(+2.15%)

Table 7: Comparison with other re-parameterization methods on ImageNet, CIFAR-10, CIFAR-100
and Tiny-Image-200.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet-200

Baseline Model \ ResNet-18 93.10% (+0.00%)  73.65% (+0.00%) 61.12% (+0.00%)
ACB 94.03% (+0.93%)  74.45% (+0.80%) 61.98% (+0.86%)

Structural Rep RepVGGB 93.59% (+0.49%)  73.98% (+0.33%) 61.78% (+0.66%)
DBB 93.81% (+0.71%)  73.96% (+0.31%) 62.12% (+1.00%)

WN 93.49% (+0.39% ) 74.21% (+0.56%) 61.58% (+0.46%)

Weight Rep CWN 93.79% (+0.69%)  74.19% (+0.54%) 61.74% (+0.62%)
OWN 93.85% (+0.75%)  74.27% (+0.62%) 61.64% (+0.52%)

Rep Refocusing \ RefConv 94.15% (+1.05%) 74.51% (+0.86%) 62.44% (+1.32%)
Baseline Model \ MobileNetv 92.58% (+0.00%)  73.04% (+0.00%) 61.94% (+0.00%)
ACB 93.39% (+0.81%)  73.68% (+0.64%) 62.82% (+1.08%)

Structural Rep RepVGGB 93.21% (+0.63%)  73.82% (+0.78%) 62.66% (+0.72%)
DBB 93.46% (+0.88%)  74.02% (+0.98%) 63.44% (+1.50%)

WN 92.83% (+0.25%)  73.33% (+0.29%) 62.04% (+0.10%)

Weight Rep CWN 92.81% (+0.23%)  73.31% (+0.27%) 62.07% (+0.13%)
OWN 92.85% (+0.27%)  73.37% (+0.23%) 62.12% (+0.18%)

Rep Refocusing \ RefConv 93.71% (+1.13%) 74.35% (+1.31%) 63.96% (+2.02%)

Ma et al| [2018), ResNeXt (Xie et al.,|2017), RegNet (Radosavovic et al., 2020), ResNeSt (Zhang
et al., 2020a)), FasterNet (Chen et al., 2023)), MobileNetv1,v2,v3 (Howard et al.,2017;/Sandler et al.,
2018} \Howard et al.l 2019), MobileNeXt (Zhou et al., |2020), HBONet (Li et al., [2019a), and Effi-
cientNetv1,v2 (Tan & Le, 2019} [2021). The results are shown in Table[f] As can be observed, the
performance of all models is consistently improved by a clear margin. For example, RefConv sig-
nificantly enhances the performance of Cifar-quick (with dense conv) by 6.11%, 5.85% and 3.34%
on CIFAR-10, CIFAR-100 and Tiny-ImageNet-200 respectively. Besides, RefConv improves the
performance of ShuffleNetvl (with group-wise conv) by 1.34%, 1.27% and 1.76% on CIFAR-10,
CIFAR-100 and Tiny-ImageNet-200 respectively. As for the DW Conv, RefConv improves the
top-1 accuracy of MobileNetv3-S by 1.32% 2.56% and 2.05% on CIFAR-10, CIFAR-100 and Tiny-
ImageNet-200 respectively. In summary, the results validate that RefConv can enhance the repre-
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Figure 7: Training and validation of Top-1 accuracy and loss curves on ImageNet classification of
MobileNetv2, MobileNetv2-retrain, and RefConv-MobileNetv2.

sentational capacity of various models with different types of convolution layers, including dense
conv, group-wise conv and DW conv.

Comparison with Other Re-parameterizations on Other Datasets. We further compare Re-
fConv with other data-independent re-parameterization methods on CIFAR-10, CIFAR-100, and
Tiny-ImageNet-200. We also resize the images to 224 x 224, and follow the training strategy on Im-
ageNet. The base models are ResNet-18 and MobileNetv2. The tested structural re-parameterization
methods are ACB (Ding et al., [2019) , RepVGG Block (Ding et al., |2021¢c) and DBB (Ding et al.,
2021b). The tested data-independent weight re-parameterizations methods are Weight Normaliza-
tion (WN) (Salimans & Kingmal |2016), Centered Weight Normalization (CWN) (Huang et al.,
2017b) and OWN (Huang et al., 2018)). As Table [/| shows that Refocusing Learning brings the
highest improvements, demonstrating the superiority of RefConv over the other re-parameterization
methods.

APPENDIX C: TRAINING DYNAMICS OF REFCONV

Fig.|/|shows the curves of loss and accuracy on the training and validation datasets of the baseline,
retrained (as defined in the paper), and the RefConv counterpart of MobileNetv2, which are trained
on ImageNet in 100 epochs with a 5-epoch warmup. Comparing RefConv with the baseline, we ob-
serve that the training of the RefConv model converges faster than the baseline. Moreover, the model
with RefConv consistently has a higher training/validation accuracy and a lower training/validation
loss than the baseline during the optimization process. As reported in the paper, MobileNetv2 with
RefConv finally converges to a better state than the baseline as revealed by the higher validation ac-
curacy. In addition, we find that the baseline starts from low accuracy and ascends rapidly in the first
about 15 epochs, and then ascends relatively smoothly. In contrast, the RefConv model starts with
a relatively high accuracy (this is because RefConv conducts on the basis of the pre-trained model),
and its accuracy declines slightly in the beginning and then smoothly ascends. For the loss curves,
we find that the loss curve of the baseline starts from a high value and declines rapidly in the first
about 15 epochs, and then declines relatively smoothly. In contrast, the loss of the RefConv model
starts from a relatively low value and ascends slightly in the beginning, then consistently declines
smoothly. Such observations suggest that the RefConv model has totally different training dynamics
from the baseline.

We use the retrained model (labeled as Retrain) for another set of comparisons since it also be-
gins with weights inherited from the baseline model. Comparing the RefConv and retrained models
with the retrain, we observe that their accuracy/loss curves have similar appearances. However, we
find that the accuracy of the RefConv model starts from a lower value, and the loss starts higher.
This is expected since RefConv introduces an extra set of randomly initialized learnable parameters,
learning to establish new connections among the basis parameters and generating new kernels. In
contrast, the optimization of the retrained model starts precisely from the ending point of the opti-
mization of the baseline model. Therefore, the retrained model has a higher starting accuracy and a
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Table 8: Results of baselines, RefConv, RefConv with half training data on CIFAR-10 and Tiny-
ImageNet-200.

Dataset \ CIFAR-10 \ Tiny-ImageNet-200

Model \ Baseline RefConv Half-RefConv \ Baseline RefConv Half-RefConv
ResNet-18 93.10% 94.15%  94.11% (-0.04%) | 61.12% 62.44%  62.39% (-0.05%)
ResNet-34 93.95% 9497%  94.95% (-0.02%) | 65.21% 66.45%  66.41% (-0.04%)

ShuffleNetv1 91.35%  92.69%  92.66% (-0.03%) | 56.86%  58.62%  58.56% (-0.06%)
ShuffleNetv2 92.31%  93.56%  93.51% (-0.04%) | 60.38%  61.90% 61.86% (-0.04%)
MobileNetvl 9245%  93.01%  93.03% (+0.02%) | 62.52%  63.89%  63.85% (-0.04%)
MobileNetv2 92.58%  93.771%  93.70% (-0.01%) | 61.94%  63.96%  63.94% (-0.02%)
MobileNetv3-S | 9091%  92.23%  92.12% (-0.11%) | 60.66%  62.71%  62.67% (-0.04%)
MobileNetv3-L | 92.95%  93.89%  93.91% (-0.02%) | 62.21%  64.28%  64.22% (-0.06%)

lower loss but the resultant performance is inferior to the RefConv model since no novel connections
are established.

APPENDIX D: REFOCUSING LEARNING WITH PART OF THE TRAINING DATA

We wonder whether Refocusing Learning still works when it only has access to part of the training
data instead of the whole training set. Thus we train RefConv with half training set of CIFAR-10
and Tiny-ImageNet-200, and evaluation on the whole test set. We follow the optimization strategy
on ImageNet as stated above except for that we maintain the number of iterations through halving
the batch-size from 256 to 128. Since Refocusing Learning only accesses to half of the training data,
the total training costs are also halved. As column Half-RefConv in Table[§|shows, RefConv can still
achieve satisfying performance under this setting.

APPENDIX E: CODE IN PYTORCH

RefConv is simple to implement on the mainstream CNN frameworks like PyTorch. We provide the
PyTorch-like code of RefConv in Algorithm[I] When implementing on CNN models, we only need
to replace the non-pointwise Conv layers in the model with RefConv. The implementation code of
RefConv on CNNs in PyTorch is available in the Supplemental Materials.
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Algorithm 1 RefConv, PyTorch-like code.

import torch.nn as nn
from torch.nn import functional as F

class RefConv (nn.Module) :

nnn

Implementation of RefConv.

——in_channels: number of input channels in the basis kernel
——-out_channels: number of output channels in the basis kernel
——kernel_size: size of the basis kernel

—--stride: stride of the original convolution

—--padding: padding added to all four sides of the basis kernel
——groups: groups of the original convolution

—--map_k: size of the learnable kernel

def _ _init_ (self, in_channels, out_channels, kernel_size, stride,
padding=None, groups=1, map_k=3):
super (RefConv, self).__init__ ()

assert map_k <= kernel_size

self.origin_kernel_shape = (out_channels, in_channels // groups,

kernel_size, kernel_size)

self.register_buffer ("weight’, torch.zeros(xself.origin_kernel_shape))

G = in_channels % out_channels // (groups x* 2)

self.num_2d_kernels = out_channels * in_channels // groups

self.kernel_size = kernel_size

self.convmap = nn.Conv2d(in_channels=self.num_2d_kernels,
out_channels=self.num_2d_kernels,
kernel_size=map_k, stride=1, padding=map_k // 2,
groups=G, bias=False)

#nn.init.zeros_(self.convmap.weight)

#zero initialization the trainable weights

self.bias = None

#nn.Parameter (torch.zeros (out_channels), requires_grad=True)
self.stride = stride
self.groups = groups

if padding is None:
padding = kernel_size // 2
self.padding = padding

def forward(self, inputs):

origin_weight = self.weight.view(l, self.num_ 2d_kernels, self.kernel_size,
self.kernel_size)
kernel = self.weight + self.convmap(origin_weight) .view (*xself.

origin_kernel_shape)
return F.conv2d(inputs, kernel, stride=self.stride, padding=self.padding,
dilation=1, groups=self.groups, bias=self.bias)
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