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Abstract001

We introduce LM-LEXICON, an innova-002
tive definition modeling approach that incor-003
porates data clustering, semantic expert learn-004
ing, and model merging using a sparse mixture-005
of-experts architecture. By decomposing the006
definition modeling task into specialized se-007
mantic domains, where small language mod-008
els are trained as domain experts, LM-009
LEXICON achieves substantial improvements010
(+7% BLEU score compared with the prior011
state-of-the-art model) over existing methods012
on five widely used benchmarks. Empirically,013
we demonstrate that 1) the clustering strategy014
enables fine-grained expert specialization with015
nearly 10% improvement in definition qual-016
ity; 2) the semantic-aware domain-level rout-017
ing mechanism achieves higher expert efficacy018
(+1%) than conventional token-level routing;019
and 3) further performance gains can be ob-020
tained through test-time compute and seman-021
tic expert scaling. Our work advances defi-022
nition modeling while providing insights into023
the development of efficient language models024
for semantic-intensive applications. The code,025
data, and models will be made publicly avail-026
able upon completion of the review process.027

1 Introduction028

Defining terms (Fig. 1) is the first step toward build-029

ing a lexicon for a language (Pustejovsky and Bogu-030

raev, 1993). Precise definitions should be formed031

as summarized and human-readable sentences that032

capture the main sense of a term. Modern language033

use demands continuous updates to include new034

terms, novel senses, meaning shifts, and domain035

knowledge (Hogeweg and Vicente, 2020), yet tradi-036

tional lexicon construction remains labor-intensive037

(Ahlswede, 1985). To address this challenge, def-038

inition modeling (DM) has emerged as a promis-039

ing approach, where definitions are automatically040

generated based on the target term and its context041

(Giulianelli et al., 2023, inter alia).042

Space Needle

A prominent Seattle landmark, 
an iconic observation tower.

The Space Needle is not used 
for broadcasting purposes.

Stratosphere

A Stable, clear atmospheric 
layer ideal for aircraft.

The stratosphere is composed 
of stratified temperature zones.

Genderqueer

Anyone whose gender identity 
isn't strictly male or female.

“Genderqueer”, along with 
being an umbrella term, …

Julie Delpy

French-American actress,
known for “Before” trilogy.

Julie Delpy Explains Before 
Midnight, Feminism, …

Figure 1: Four examples of the term, context (input),
and definition (output) for definition modeling task.

While existing DM approaches yield reasonable 043

results, they face several key limitations. First, cur- 044

rent methods struggle to capture subtle and rare 045

word senses, resulting in incomplete semantic cov- 046

erage (Huang et al., 2021; Giulianelli et al., 2023; 047

Periti et al., 2024). Second, even frontier large 048

language models (LLMs), despite their strong lan- 049

guage understanding capabilities, tend to generate 050

definitions that are either overly generic or exces- 051

sively specific (Jhirad et al., 2023; Yin and Skiena, 052

2023; Almeman et al., 2024). Third, existing meth- 053

ods often fail to handle terms that exhibit different 054

meanings across domains (e.g., technical vs. gen- 055

eral usage), a phenomenon known as semantic het- 056

erogeneity (Huang et al., 2021). Recent attempts 057

to address this limitation through domain adap- 058

tation (Zhang et al., 2022) or multi-task learning 059
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(Kong et al., 2022) have shown limited success.060

These challenges point to a fundamental limita-061

tion in current dense language models: their ar-062

chitecture forces much semantic representation to063

share the same neurons (i.e., superposition) (El-064

hage et al., 2022), making it difficult to maintain065

precise, domain-specific meaning representations066

(Bricken et al., 2023). This architectural constraint067

affects their ability to generate accurate definitions068

when words have distinct meanings across different069

domains.070

To mitigate these issues, we propose LM-071

LEXICON (Language Model as Lexicon), which072

learns to perform DM covering multiple domains,073

adapting diverse definition genres with a scalable074

mixture-of-experts (MoE) architecture. Unlike075

prior work, such as BTX (Sukhbaatar et al., 2024)076

and LLaMA-MoE (Zhu et al., 2024), our method077

incorporates data clustering, semantic expert-078

specialized MoE, and domain-level sequence079

routing, obtaining significant performance gains080

in DM benchmarks. As depicted in Figure 2, in-081

stead of training directly on raw definition corpora,082

our method trains multiple semantic experts paral-083

lely, merges them by composing their specialized084

weights, and routes test samples with the intro-085

duced semantic-aware router for inference.086

Our contributions can be summarized as follows:087

• We propose LM-LEXICON, a novel MoE088

framework for definition modeling by harmo-089

nizing inherent heterogeneity in lexical seman-090

tics. It allows specialized semantic experts to091

be integrated for domain updates, enabling092

generalization to new domains, or collapsing093

back to a single expert for efficient inference.094

• We design a domain-level sequence routing095

policy in LM-LEXICON. This policy routes096

input representation of samples informed by097

fine-grained information via semantic do-098

mains identified with pre-hoc auto clustering.099

• Extensive experiments across five bench-100

marks validate the effectiveness of LM-101

LEXICON. Notably, in automatic evaluation,102

LM-LEXICON shows up to 10% improve-103

ment over strong baselines. Furthermore, LM-104

LEXICON excels across most criteria in hu-105

man evaluation, particularly outperforming106

frontier LLMs in semantic-intensive scenarios,107

where even many-shot setups fail to produce108

appropriate definitions.109

2 Related Work 110

Upcycling to Mixture-of-Experts. On the aspect 111

of model efficiency and expressiveness, Fedus et al. 112

(2022); Jiang et al. (2024); Shao et al. (2024) focus 113

on designing efficient MoE architecture with token- 114

level router. From the expert specialization aspect, 115

Li et al. (2022) introduced Branch-Train-Merge 116

(BTM) that learns expert LMs specialized to differ- 117

ent domains and Sukhbaatar et al. (2024) developed 118

Branch-Train-MiX (BTX), which composes a set 119

of specialized LMs by their feed-forward networks. 120

In addition, Zoph et al. (2022); Jiang et al. (2024); 121

Petridis et al. (2024) revealed the efficacy of expert 122

specialization at the lexicon, structured syntactic, 123

and semantic domain level, respectively. However, 124

these works adopt conventional routing schemes, 125

such as TopK routing, rather than exploring those 126

better suited for semantic-intensive tasks. 127

Definition Modeling. Several early studies on 128

DM (Noraset et al., 2017; Ni and Wang, 2017; 129

Gadetsky et al., 2018; Ishiwatari et al., 2019, inter 130

alia) leveraged pre-trained word embeddings as 131

global or local contexts of a term, to generate defi- 132

nitions of the given target word. Then Huang et al. 133

(2021); Kong et al. (2022); Zhang et al. (2022); 134

Giulianelli et al. (2023); Periti et al. (2024) propose 135

methods for DM using Transformer-based Seq2Seq 136

LMs (e.g., T5) and Causal LMs. In the era of LLM, 137

Jhirad et al. (2023) and Yin and Skiena (2023) used 138

large language models such as GPT-3.5 and GPT-4 139

to perform DM with in-context learning tailored 140

to diverse domains. Periti et al. (2024) explored 141

training causal LMs to generate with instruction 142

tuning; however, they still lack a detailed quality 143

evaluation and comphrehensive comparison with 144

baselines. 145

3 Methodology 146

In this section, we present the details of our pro- 147

posed LM-LEXICON framework. §3.1 introduces 148

the basic formulation to illustrate our main idea. In 149

§3.2, we illustrate the design of semantic expert 150

specialization, followed by model merging in §3.3. 151

3.1 Overview of LM-LEXICON 152

Given a seed modelM that has been pre-trained, 153

our goal is to improve its multi-domain perfor- 154

mance in lexical semantics. As shown in Fig. 2, the 155

framework of LM-LEXICON consists of two com- 156

ponents: (1) semantic expert specialization and 157
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Figure 2: Diagram of LM-LEXICON (i.e., Split-then-Merge) pipeline.

(2) MoE model merging. The proposed method158

contains three stages, training data partitioning, par-159

allel expert training, and separate experts merging,160

i.e., a Split-then-Merge pipeline. Considering the161

heterogeneity of glosses, we split the training data162

into semantically distinctive clusters to facilitate163

expert learning. To model various domains, we use164

separate models to learn domain-specific knowl-165

edge asynchronously. To perform the DM task166

generally, we merge these domain experts into a167

single MoE model for further fine-tuning.168

3.2 Learning Domain-specific Semantic169

Experts170

Dataset Construction. Training data D consists171

of triplets ⟨c, t, d⟩, where c represents the context in172

which the term is used (either a sentence or phrase),173

t denotes the term itself, and d is its reference defi-174

nition. A concatenated sequence is then formatted175

using the prompt template p(·, ·) as input. Specif-176

ically, we follow Giulianelli et al. (2023) to use177

p := <BOS>“{{c}}” WHAT IS THE DEFINITION178

OF “{{t}}”<EOS> as the prompt template.179

Clustering. LM-LEXICON begins with the train-180

ing data partitioning since merging without it could181

lead to a group of homogeneous experts. To clus-182

ter training data, we calculate the embeddings of183

p(c, t) in each training sample with nvidia-embed-184

v2 (Lee et al., 2025), and then cluster with bal-185

anced k-means (Malinen and Fränti, 2014). This 186

process results in N clusters in terms of lexical 187

semantics, each related to a semantic domain such 188

as adjectives and proper nouns (see Fig. 3), cor- 189

responding to partitioned training datasets D := 190

{D1, . . . ,DN}. It also produces N cluster cen- 191

troids {v1, v2, . . . , vn}. In the present study, we 192

perform pre-experiments to determine the number 193

of clusters and select N = 4 as the best cluster 194

numbers by the cluster cohesion and separation in 195

the DM scenario (See Appendix §C.1), as well as 196

considering the training and inference efficiency. 197

Experts Training. Initializing from a seed model 198

M, we train N × LMs: {M1, . . . ,MN} as ex- 199

perts, with each model Mi being trained on the 200

corresponding dataset Di, using the negative log- 201

likelihood (NLL) loss in Eq. 1: 202

LNLL =− E(c,t,d)∼D

[
logP(d̂ | p(c, t))

]
. (1) 203

Here, d̂ denotes the definition predicted by the 204

model, given the prompt p(·, ·). We employ a loss- 205

masking strategy to omit the tokens of prompt dur- 206

ing loss computation, ensuring that gradients are 207

only propagated through tokens in the part of pre- 208

dicted definition. When expert training finished, 209

we end up with N different LMs, with each spe- 210

cialized in a domain Di. 211
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3.3 Merging Experts into a Unified MoE212

After all domain experts are obtained, previous213

works either average the final output distributions214

of experts to generate next token (Gururangan et al.,215

2023) or select experts by determining which do-216

main the input belongs to at the test time (Li et al.,217

2022). Differently, we perform MoE Upcycling by218

merging the weights of experts, aiming at mixing219

and harmonizing model capabilities across diverse220

domains.221

Model Merging. We combine semantic experts222

into a unified MoE to exploit the parametric domain223

capability (Sukhbaatar et al., 2024; Zhou et al.,224

2025). In the composition, LM-LEXICON brings225

together the feed-forward networks (FFNs) of the226

expert models as expert layers in MoE and averages227

the remaining parameters. Specifically, if FFNℓ
i(x)228

is the FFNs at the ℓ-th layer of the i-th domain229

expertMi, then the combined MoE layer for input230

representation x at layer ℓ will be computed as:231

FFNℓ
MoE(x) =

N∑
i=1

G(x) · FFNℓ
i(x). (2)232

where G(·) is a semantic domain-level router. Dur-233

ing both training and inference, the input repre-234

sentation x will be routed to the nearest centroid235

by computing its pairwise cosine similarity with236

each semantic label (i.e., the centroid of a domain237

cluster), as illustrated in §3.2. G(·) usually has a238

sparse output and hence switches on only some239

experts. In LM-LEXICON, we start from top-240

k (k = 2) routing (Shazeer et al., 2017), where241

G(x) = Softmax(TopK(W ℓx)), where W ℓ is a242

linear transformation in router. For multihead self-243

attention (MHA) sublayers and the remaining pa-244

rameters (e.g., embedding layer), we average the245

weights of domains. The merging process of MoE246

model is provided in Algorithm 1.247

The above merging model into a MoE introduces248

router G with new parameters W ℓ, which requires249

further learning to make optimal choices. To en-250

hance semantic-aware experts after merging, we251

continue to slightly fine-tune the router G and ex-252

pert layers to coordinate them in the semantic rep-253

resentation space.254

4 Experiments255

4.1 Implementation Details256

Datasets. We use the benchmarks introduced in257

Ishiwatari et al. (2019)(see Table 1), which consist258

Algorithm 1 Compose MHA and MLP modules
for each decoder layer ℓ in LM-LEXICON.

Input: Domain Experts E := {e1, e2, . . . , en}.
Output: LM-LEXICON-MOE (M)

1: procedure MODULES-COMPOSER(E)
2: M← ∅ ▷ INIT STATE DICT

3: for ei ∈ E do ▷ ITERATE EACH EXPERT

4: i← GetExpertIdx(ei)
5: /* Retrieve MHA and MLP weights */
6: θmha, θmlp ← HookWeights(ei)
7: for θ ∈ {θmha, θmlp} do
8: if IsRouterLayer(θ) then
9: /* Get formatted layer name */

10: n← FormatName(θ, i)
11: M[n]← θ
12: else ▷ AVERAGE θ OF MODULE

13: M[n]←M.get(n,0)+ θ/|E|
14: returnM

of four small datasets and 3D-EX from Almeman 259

et al. (2023) (see details in §A). 260

• WordNet (Noraset et al., 2017) is an online 261

dataset1 of terms, definitions, and examples. 262

• Oxford (Gadetsky et al., 2018) is built on the 263

widely used online oxford dictionary2. 264

• Wikipedia3 (Ishiwatari et al., 2019) is intro- 265

duced to test the model capacity on the de- 266

scription of phrases, rather than words. 267

• Urban (Ni and Wang, 2017)4 contains terms 268

of internet slang and urban words. 269

• 3D-EX (Almeman et al., 2023) is the largest 270

English definition modeling dataset5 which 271

comprises many well-known DM resources, 272

including the four mentioned datasets. 273

Note that we perform clustering only on 3D-EX 274

and use the resulting four clusters for finetuning 275

and merging semantic experts. 276

Compared Baselines. Llama-3-8B (Dubey et al., 277

2024) is used as the seed model for asynchronous 278

expert training. We select three types of strong 279

baseline methods for comparison purposes. 280

1https://wordnet.princeton.edu
2https://en.oxforddictionaries.com
3https://www.wikidata.org
4https://www.urbandictionary.com
5https://github.com/F-Almeman/3D-EX
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WordNet Oxford Wikipedia Urban 3D-EX

genre formal formal web idiom misc.
domain synset lexicon encyclopedia slang multi
publish year 2017 2018 2018 2017 2023

# St
train 13, 883 97, 855 887, 455 411, 384 1, 309, 312

# St
valid 1, 752 12, 232 44, 003 57, 883 513, 789

# St
test 1, 775 12, 232 57, 232 36, 450 450, 078

# glo. per term 1.75± 1.19 2.99± 4.41 5.86± 78.25 2.11± 2.92 6.00± 53.78
# tok. per term 1.00± 0.00 1.00± 0.00 1.85± 0.93 1.44± 0.72 1.45± 0.78
# tok. per ctx. 5.79± 3.44 19.02± 9.18 19.68± 6.31 11.36± 6.02 18.82± 9.99
# tok. per glo. 6.64± 3.78 11.41± 7.13 5.97± 4.51 11.02± 6.86 8.97± 6.76

% overlap rate 0.00 / 0.00 80.72 / 0.09 0.00 / 0.00 20.62 / 20.56 0.00 / 0.00

Table 1: For datasets used in this paper, we report the mean and standard deviation of per-term, per-context, and
per-gloss statistics. We report the number of terms of samples denoted St∗ for train, valid, and test splits in each
dataset. The lexical overlap of each dataset is computed with |Sttrain∩ Sttest| / |Sttest|. Specifically, the % is computed
by intersection rate of term occurrence and the % is computed by intersection rate of pair-wise “term ⊕ gloss”.

• Supervised Seq2seq LM: We reproduce281

Rerank-T5 (Huang et al., 2021), Contrast-T5282

(Zhang et al., 2022), SimpDefiner (Kong et al.,283

2022), MDM-T5 (Zhang et al., 2023), and284

Flan-T5-Def (Giulianelli et al., 2023).285

• Supervised Causal LM: We report the in-286

distribution results of LlamaDictionary (Periti287

et al., 2024), which is finetuned on Llama-3-288

8B-Instruct, and assess its out-of-distribution289

performance for the unseen domains.290

• Frontier Causal LM: We test GPT-4-291

Turbo (Achiam et al., 2023), Gemini-1.5-Pro292

(Reid et al., 2024), and Claude-3-Opus (An-293

thropic, 2024) with random exemplar selec-294

tion (Random-ICL) and retrieval-based ex-295

emplar ranking (Retrieval-ICL) based on Wu296

et al. (2023) in many-shot settings.297

Training and Evaluation Details. We run in-298

struction tuning on four clusters obtained from299

3D-EX respectively. The models trained on four300

clusters of 3D-EX are merged through §3.3. After301

merging, we proceed to fine-tune the MoE model302

to learn the router using the full 3D-EX dataset.303

In addition, we perform instruction tuning on the304

four real-world datasets. The training hyperpa-305

rameters can be found in Tab. 11. We run three306

times for each setup to report the mean results307

and the standard deviation of metrics, with seed308

si ∈ {21, 42, 84}. All experiments are conducted309

on 8 × NVIDIA H100. Model sizes and training310

FLOPs are reported in Table 6.311

[Scientific]

marrow,
stratosphere,
continental shelf,
…

[Person Name]

ben roberts,
hugh o'bryant,
jack richardson,
…

[Adjective]

short,
brave,
friendly,
…

[Proper Noun]

emi records,
combtooth blenny,
hong kong island,
…

Visualized Sharded 3D-EX 
(Four-centroid Clusters)

Figure 3: Four-cluster UMAP plot of 10K random defi-
nitions of terms in 3D-EX (§4). Each cluster is assigned
manually with a [label] by their major constituents.

We employ metrics including (1) lexical n-gram- 312

based: BLEU (Papineni et al., 2002), ROUGE-L 313

(Lin, 2004), and METEOR (Lavie and Agarwal, 314

2007); (2) semantic-based: BERTSCORE (Zhang 315

et al., 2019), MOVERSCORE (Zhao et al., 2019), 316

and MAUVE (Pillutla et al., 2021). We reuse the 317

implementation of BLEU in Huang et al. (2021), 318

ROUGE and BERTSCORE used in Giulianelli et al. 319

(2023), as well as the rest of metrics for evaluation. 320

To further evaluate the effectiveness of our method, 321

we also conduct a human evaluation described in 322

§4.2. 323

5



WordNet Oxford Wiki Urban 3D-EX

BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE
Avg.

Results

Rerank-T5 (2021)♣ 30.91 30.99 25.56 28.00 55.61 57.25 17.77 18.25 34.43 38.57 32.85 / 34.61
Contrast-T5 (2022)♣ 30.81 26.27 22.51 28.18 55.26 42.27 17.53 16.34 34.27 37.62 32.07 / 30.13
SimpDefiner (2022)♣ 28.91 20.47 23.48 29.59 44.03 49.26 13.54 15.37 32.08 31.57 28.40 / 29.25
MDM-T5 (2023)♣ 31.18 32.55 24.16 27.68 54.33 55.83 17.53 17.18 32.67 32.38 31.97 / 33.12
Flan-T5-Def (2023)♣ 31.96 40.45 21.34 32.39 13.82 23.97 5.33 10.61 26.43 25.12 19.77 / 26.50
LlamaDict (2024)♣ 33.86 43.50 22.77 36.46 14.38 25.29 15.70 14.51 24.56 26.11 22.50 / 29.17

GPT-4-TURBO

↪→ + Random-ICL 30.95 32.61 21.93 30.82 31.63 45.89 11.08 12.19 25.93 34.48 24.30 / 31.19
↪→ + Retrieval-ICL 27.46 29.74 20.44 34.35 35.40 40.68 22.53 26.53 29.73 37.66 27.11 / 33.79
CLAUDE-3-OPUS

↪→ + Random-ICL 28.63 27.84 19.99 34.21 23.30 35.22 1.59 3.08 18.57 28.49 18.41 / 25.76
↪→ + Retrieval-ICL 18.57 21.76 15.51 25.99 14.59 15.83 5.93 7.19 17.46 24.67 14.41 / 19.08
GEMINI-1.5-PRO

↪→ + Random-ICL 23.42 26.27 25.51 35.97 36.87 48.13 8.44 9.59 29.4 38.02 24.72 / 31.59
↪→ + Retrieval-ICL 25.24 27.88 28.10 36.98 35.59 43.71 8.85 9.18 32.99 39.14 26.15 / 31.37

LM-LEXICON-DENSE (8B)
↪→ + Zero-shot 36.99∗0.59 37.83∗0.45 26.09 0.60 34.55∗0.57 57.9∗2.44 59.56∗1.50 26.09∗0.27 28.35∗0.28 35.01∗0.22 43.32∗0.27 34.63∗ / 38.79∗

↪→ + BoN-Oracle† 47.90 0.30 44.19 0.80 30.07 0.06 42.78 0.11 62.07 0.11 68.62 0.19 36.16 0.69 38.87 0.47 48.78 0.89 49.71 2.21 44.99 / 48.83
↪→ + BoN-ORM 37.73∗0.26 37.94∗0.38 26.74∗0.18 35.18∗0.59 59.33∗0.12 59.46∗0.37 26.73∗0.29 28.54∗0.46 34.83∗0.20 42.68∗0.13 37.07∗ / 40.76∗

LM-LEXICON-MOE (4×8B)
↪→ + Zero-shot 40.09∗0.12 40.51∗0.28 23.35 0.25 32.94∗0.49 60.31∗0.55 55.52 0.33 31.26∗0.85 33.81∗2.26 45.69∗1.25 46.07∗1.06 40.14∗ / 41.77∗

↪→ + BoN-Oracle† 47.39 0.16 40.31 0.23 30.87 0.24 43.24 0.25 51.62 1.14 61.88 0.30 35.23 0.42 35.69 0.26 54.84 0.12 50.50 0.11 43.99 / 46.32
↪→ + BoN-ORM 40.33∗0.18 40.69∗0.26 24.18 0.37 33.79∗0.64 60.88∗0.55 57.66 0.73 31.08∗0.17 33.26∗0.22 45.86∗0.38 46.38∗0.26 40.46∗ / 42.35∗

Table 2: Main results on five benchmarks6. We highlight the highest scores among LM-LEXICON and compared
methods; * denotes the significance test, where p < 0.005 between our method and Rerank-T5 (prior SoTA). ♣
denotes that we reproduce the in-distribution results with supervised training, and † indicates that the lines of results
are not directly comparable with other settings. All *-ICL settings employ the best setting with a 32-shot in practice.

4.2 Main Results324

Competitive Performance of LM-LEXICON.325

Table 2 presents the performance comparisons326

among baselines and existing SoTA methods327

for DM, including LM-LEXICON-DENSE mod-328

els (trained on four real-world datasets) and LM-329

LEXICON-MOE, the proposed MoE model. LM-330

LEXICON outperforms strong supervised meth-331

ods and frontier models with a distinct advantage.332

Specifically, (1) LM-LEXICON obtains nearly 10%333

extra BLEU and ROUGE improvements on 3D-334

EX over the prior SoTA. (2) It performs excep-335

tionally on smaller datasets as well, for exam-336

ple, LM-LEXICON achieves the highest scores337

({31.26%, 33.81%} on {BLEU, ROUGE}) among338

all compared methods on Urban dataset, indicat-339

ing the efficacy of our method to model rare word340

senses and usages. (3) The comparison between the341

many-shot learning of best perfomant frontier LMs342

and LM-LEXICON demonstrates that our method343

surpasses significantly larger dense models, by344

{23.44%, 9.14%} on {Wiki, WordNet} in BLEU345

for instance. (4) It is also observed that the Oxford346

dataset has lower performance with our method.347

A possible reason is that a short term and rela-348

tively long context in Oxford makes it harder for349

the model to predict accurate definitions. Further-350

6We develop ad-hoc heuristic parser for proprietary models
& LM-LEXICON to extract our focused part of the generation.

more, compared to other benchmarks, the Oxford 351

dataset exhibits a significantly high term overlap 352

rate of around 80% along with a near-zero term- 353

definition overlap rate. This stark contrast under- 354

scores the strong polysemy inherent in Oxford’s 355

terms. Consequently, models trained on Oxford 356

struggle to generalize effectively when encounter- 357

ing previously seen terms used in different contexts. 358

Overall, LM-LEXICON shows a clear advantage 359

that confirms the effectiveness of introduced se- 360

mantic expert specialization and semantic-focused 361

sparsifying upcycling into LM-LEXICON. 362

Human Evaluation. The human evaluation was 363

conducted using a random subset of 300 samples 364

from the 3D-EX, comparing definitions generated 365

by our model (LM-LEXICON-MOE) and the base- 366

lines (LM-LEXICON-DENSE and three proprietary 367

models). We focus on comparing with proprietary 368

models as they represent the current state-of-the- 369

art in practical deployment and are the primary 370

competitors in real-world lexicon construction sce- 371

narios. To obtain a fine-grained understanding of 372

model-specific characteristics, we further propose 373

five criteria: (1) accuracy measures how correctly 374

the definition captures the core semantic meaning 375

of the word; (2) clarity evaluates the definition’s 376

comprehensibility and transparency in conveying 377

meaning, focusing on how easily readers can under- 378
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Figure 4: Best-of-N repeated sampling results (BLEU)
on five benchmarks evaluated by oracle verifier.

stand the concept; (3) conciseness assesses whether379

the definition achieves optimal length without re-380

dundancy or omission; (4) context appropriateness381

measures how well the definition reflects associ-382

ated contexts, situations, and pragmatic constraints383

of the words; (5) grammar and fluency evaluates384

the grammatical correctness and naturalness of the385

definition. We employ three graduate students ma-386

joring in linguistics and lexicography, who were387

instructed to assess each of the above criteria on a388

5-point scale, where 1 indicates the poorest quality389

and 5 represents the highest quality (Figure 12).390

The model names were kept anonymous from hu-391

man evaluators to avoid possible bias, whereas the392

reference definitions remained accessible to them.393

Figure 5 (right) presents the human evaluation re-394

sults across five criteria, showing the average scores395

for each model. LM-LEXICON-MOE consistently396

outperforms other models in most dimensions, with397

particularly strong performance of accuracy (4.6).398

While all models demonstrate competent perfor-399

mance with scores above 3.8, LM-LEXICON-MOE400

shows notable advantages in capturing contextual401

nuances and maintaining clarity and conciseness in402

definitions. The proprietary models perform simi-403

larly well but show slightly lower scores in terms404

of context appropriateness and conciseness than405

other criteria. We provide detailed analysis of a406

representative example “coon” in Appendix D.407

4.3 Ablation Study and Extra Investigation408

In this section, we further conduct an in-depth anal-409

ysis of LM-LEXICON, regarding: (1) data parti-410

tion method, (2) routing policy, and (3) number411

of experts. In addition, we explore the impact of412

test-time scaling.413

Ablation on Different Data Partition Designs. 414

Since LM-LEXICON integrates the knowledge ac- 415

quired by experts from various data partitions, our 416

first focus is on the impact of data partition meth- 417

ods. To this end, we considered three settings: (1) 418

no split; (2) random split; and (3) lexical split. For 419

random split, we follow Li et al. (2022) to slice 420

the data into four balanced subsets and specialise 421

an expert for each of them. For lexical split, we 422

perform partition by TF-IDF (Sparck Jones, 1972). 423

As shown in Table 3, we observed that the origi- 424

nal setting with semantic embedding clustering out- 425

performs lexical-based partition with about +7% 426

gains in BLEU and +1% gains in ROUGE on 3D- 427

EX. The results imply that learning from semantic- 428

targeted data clusters may help capture more pre- 429

cise senses and use more appropriate words to com- 430

pose definitions. Lastly, it enables LM-LEXICON 431

to develop more robust experts for various domains. 432

Model BLEU ROUGE p-value

LM-LEXICON 45.69±0.3 46.07±0.1 −

+ w/ no split 35.13±0.2 43.46±0.3 2.9e−5

+ w/ random split 36.24±1.4 43.58±0.8 1.6e−5

+ w/ lexical split 38.13±0.5 44.12±0.6 1.3e−4

Table 3: Ablation on data partition method.

Comparison among Routing Policies. Other 433

than domain-level routing used in LM-LEXICON 434

as default, we experiment on (1) top-1 token-level; 435

(2) top-2 token-level; and (3) sequence-level rout- 436

ing. For token-level routing, we follow the imple- 437

mentation of Fedus et al. (2022) and Jiang et al. 438

(2024). For sequence-level routing, we follow 439

Pham et al. (2023).

Model BLEU ROUGE p-value

LM-LEXICON 45.69±0.3 46.07±0.1 −

+ w/ top-1 token-level 43.12±0.4 43.79±0.5 1.9e−3

+ w/ top-2 token-level 45.38±0.2 45.21±0.1 8.6e−1

+ w/ sequence-level 44.47±0.2 44.82±0.3 2.7e−3

Table 4: Ablation on different routing policies.

440
Table 4 presents that the domain-level routing 441

(LM-LEXICON) is the most effective, even sur- 442

passing one of the popular scheme, the top-2 token- 443

level routing, indicating that semantic routing via 444

specified domain cluster is more beneficial for 445

semantic-intensive tasks. 446
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Different Number of Semantic Experts. Except447

for the above four-experts LM-LEXICON-MOE, to448

investigate the impact of the number of semantic449

experts, we compare varied number of semantic450

experts (N = 1, 2, 4, 8). Notably, when N = 1,451

LM-LEXICON collapses back to a dense model and452

expands to a sparse model with N > 1 experts.453

As shown in Figure 5 (left), we find that across454

all settings of N , the performance of our method455

consistently increases and outperforms the others,456

which are composed of fewer experts. For example,457

the model of N = 1 returns 41.38% while N = 8458

yields 46.86% in BLEU. This tendency implies459

the scalability of our method, using more semantic460

experts. This trend can be potentially extended461

by integrating more fine-grained semantic experts462

(Dai et al., 2024), but we leave this direction for463

future work.464

Impact of Test-time Scaling. In light of Stien-465

non et al. (2020); Cobbe et al. (2021), we are curi-466

ous on how to boost performance further via test-467

time scaling, notably ground truth-based (Oracle)468

verifier and Best-of-N (BoN) sampling with an out-469

come reward model (ORM). For oracle verifier,470

it uses reference as verification to provide binary471

feedbacks. For an ORM, it employs scalar feedback472

to select the optimal generation from candidates.473

As depicted in Table 2 (BoN-ORM), interest-474

ingly, the oracle verifier is able to boost task perfor-475

mance (avg. ∆BLEU > 2%) for LM-LEXICON-476

DENSE. However, it exhibits more limitations477

for LM-LEXICON-MOE; we speculate that this478

is due to the diversity diminishment of models, as479

illustrated in Brown et al. (2024). Intuitively, opti-480

mal results are achieved with oracle verifier (Fig. 481

4) through repeated sampling with 128 comple- 482

tions per test sample. Intergating with the ORM or 483

Oracle verifier, LM-LEXICON’s generation qual- 484

ity shows consistent improvements across the five 485

benchmarks with the increase in the number of gen- 486

erations. This outcome aligns with the findings on 487

mathematical reasoning tasks (Cobbe et al., 2021; 488

Brown et al., 2024). 489

5 Conclusion 490

In this paper, we present LM-LEXICON, an ap- 491

proach that combines domain experts upcycling 492

with a sparse MoE model, which can generate ap- 493

propriate definitions of terms in various domains 494

and genres. We show that LM-LEXICON signifi- 495

cantly outperforms frontier LLMs and strong su- 496

pervised baselines. We hope LM-LEXICON could 497

be extended to more domains and other semantic- 498

intensive tasks in the future. 499

Limitations 500

Extrapolation to More Tasks. While we believe 501

our observations and conclusions are comprehen- 502

sive within our experimental settings, our work 503

only focus on the task of definition modeling in 504

English in this work. Future work could benefit 505

from our findings in extending to other domains 506

and related tasks in semantic-intensive scenarios. 507

Training Efficienty and Cost. Our method per- 508

forms supervised fine-tuning of N × M expert 509

LMs that are initialized from a seed model. The 510

training process can be thoroughly offline and asyn- 511

chronous; however, it still needs an essential and 512

8



sufficient computation budget to some extent. We513

encourage people to further explore parameter-514

efficient training methods based on LM-LEXICON.515

Stronger Verifier. Our results from Section §4.3516

highlight the importance of improving sample veri-517

fication methods tailored for definition modeling,518

and even more general language generation, which519

are currently unavailable. Most existing verifica-520

tion methods have been developed only to solve521

complex reasoning tasks, such as mathematical,522

programming, and logical reasoning problems. We523

believe that equipping models with the ability to524

assess their own generations will allow test-time525

compute methods to be scaled further.526

Ethics Statement527

This research was conducted with careful consid-528

eration of ethical implications. All data used in529

this study was collected from public sources with530

appropriate permissions. We have taken measures531

to ensure privacy protection and prevent misuse of532

our model. The computational resources were used533

responsibly, and we have documented all poten-534

tial biases and limitations. Our annotation process535

followed fair labor practices with appropriate com-536

pensation for annotators.537
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A Additional Experiment Details870

This is a section in the appendix. Introduce dataset871

components, hyperparameter settings, and other872

experimental details.873

Data Processing. Raw 3D-EX (see fig. 6) con-874

sists of ten lexicon sources of <t, c, d> triplets, we875

use the word-level split on each of the sources to876

train, validate and test our models in this paper. We877

developed the following steps to undergo the pre-878

processing procedure for the raw 3D-EX dataset.879

• We filter out all instances from the subsets880

including Hei++, MultiRD, and Webster’s881

Unabridged, since they do not have any us-882

able example context for each term of words.883

• We discard instances that do not meet any of884

the following conditions: ① TERM must be of885

string type, ② DEFINITION must be of string886

type, ③ EXAMPLE must not be empty, and ④887

DATASET_NAME must not be empty.888

• To enhance the model’s ability to interpret889

words in various contexts, we split the sample890

entries with multiple example contexts into891

separate data instances for each context. This892

approach increases the number of samples the893

model sees during training.894

895

Wikipedia
31.32%

CHA
24.6%

MultiRD
20.95%

Hei++ 0.02%

CODWOE 2.14%

WordNet 1.45%
Webster’s Dict.

4.68%Urban 4.76%

Sci-definition 5.44% Wiktionary 4.65%

3D-EX Constituents Dist. (%)

896

Figure 6: 3D-EX constituents distribution.

In addition, we observed many examples in the ex- 897

isting datasets that share the same term-context pair 898

but with different definitions, which may cause neg- 899

ative effects on model learning if there exist many 900

semantics-divergent examples. To summarize and 901

display the potential impacts, we report the salient 902

statistics about this finding of these datasets shown 903

in the following Table 5.

Dataset Split # All # Div. % Div. / All

WordNet
Strain 13,883 2,723 19.61
Svalid 1,752 368 21.00
Stest 1,775 333 18.76

Oxford
Strain 82,479 34 0.04
Svalid 10,285 2 0.02
Stest 10,306 0 0.00

Wikipedia
Strain 887,455 186 0.02
Svalid 44,003 16 0.04
Stest 57,232 14 0.02

Urban
Strain 411,382 1,424 0.35
Svalid 57,883 152 0.26
Stest 38,371 122 0.32

3D-EX
Strain 1,309,312 35,632 2.72
Svalid 513,789 12,551 2.44
Stest 450,078 7,599 1.69

Table 5: Divergent examples statistics of each dataset.
# All: number of all examples; # Div.: number of all
divergent examples; % Div. / All: ratio of divergent
examples in all examples. 904

Clustering Setup. Compared with Gururangan 905

et al. (2023), we consider to mine the intrinsit 906

semantic meaning of term associated with their 907
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context, instead of using lexical statistics clus-908

tering method, like TF-IDF. We argue that the909

method building on dense semantic clustering910

would help upcycling models to learn specialized911

sense interpretation-oriented experts, towards ro-912

bust system for definition modeling. We run k-913

means++ clustering of the Elkan variation method914

with 1, 000 max iteration, 1e−8 tolerance of con-915

vergence, and a fixed seed of 42. Considering the916

computation and memory bounds, we first use 4 as917

the number of clusters to form and the number of918

centroids to generate. We further ablate this factor919

in the section §4.3.920

Training Details. LM-LEXICON was trained for921

3 epochs with a global batch size of 8,192 tokens922

(gradient accumulation 1, batch size per device923

8, max sequence length 128) on 8 × H100-PCIe-924

80GB GPUs and a learning rate of 1e-6, minimum925

learning rate of 3e-7 with a cosine annealing sched-926

uler, as well as the warm-up steps with 6% ratio of927

the total training steps. We used a global dropout of928

0.2 (Srivastava et al., 2014) and a weight decay of929

0.1 with AdamW optimizor (Loshchilov and Hut-930

ter, 2018), and performed early stopping to obtain931

the best model by the highest validation bleu.932

Moreover, We run three times for each training933

setup to report the mean results and their standard934

deviation of metrics, with seed si ∈ {21, 42, 84},935

respectively. We use Hugging Face Transformers936

(Wolf et al., 2020) and Pytorch (Paszke et al., 2019)937

to develop the training pipeline.938

We run the branch training on each cluster of939

data points obtained from the clustering results. As940

depicted in tab. 11, We set up the following hyper-941

parameters to train LM-LEXICON and vanilla fine-942

tuned LLAMA-3-8B models in this paper. We used943

the standard negative log-likelihood (NLL) loss to944

train LM-LEXICON. Contrary to Shi et al. (2024),945

to avoid the loss of the input sequence tokens over-946

shadowing the actual output token loss, the loss947

is only computed over the result tokens (Eq. 1),948

limiting the potential to overfit to the input prompt949

and context. This loss calculation method resulted950

in faster training and robuster results overall.951

Given a definition generation problem p(c, t)952

and its golden reference d, we define a outcome re-953

ward model as the following: ORM (P ×D → R)954

assigns a single value to s to indicate whether pre-955

dicted d̂ is correct. Given a specific dataset D,956

we follow Cobbe et al. (2021) to use a negative957

log-likelihood loss (Eq. 3) to frame the reward958

modeling as a binary classification objective. 959

LORM = − log σ (rϕ(x, yw)− rϕ(x, yl)) (3) 960

Where yw is the preferred generation (i.e., cho- 961

sen response) and yl is the alternate generation 962

(i.e., rejected response) conditioned on the input 963

x := p(c, t). To train a ORM built on training set, 964

we leverage the golden reference d as the preferred 965

definition yw and one of the model generations as 966

the alternate definition yl to express preferences for 967

each x, denoted as yw ≻ yl | x, where yw and yl 968

denotes the preferred and dispreferred completion, 969

respectively. σ is the sigmoid function and rϕ(·, ·) 970

represents the parameterized reward function for 971

the concatenated input x and generation y∗. To 972

enhance computing efficiency, we employ the ratio 973

of 1 : 32 to conduct repeated sampling and rerank 974

the generations by their log-likelihood (aka. confi- 975

dence) to acquire the top-eight items as a candidate 976

set of alternate generations for each input x. 977

Inference Setup. As shown in Table 2, for each 978

setting in “Zero-shot”, “BoN-Oracle”, and “BoN- 979

ORM”, we orchestrate three separate runs for each 980

setting, using the same decoding parameters but 981

with different random seeds to ensure robustness 982

and consistency in the results. Specifically, for the 983

models LM-LEXICON-DENSE and LM-LEXICON- 984

MOE, specifically, we use the temperature of 0.6, 985

top-k of 50, top-p of 0.9, and repetition penalty of 986

1.05, ensuring uniformity across all evaluations. 987

For all benchmarks included in our test, as the 988

number of samples increases, the coverage metric 989

corresponds to the use of an oracle verifier. This 990

verifier checks which fraction of DM problems in 991

the test set can be approximated using any of the 992

samples that were generated to be as similar as pos- 993

sible to the ground truth. The selection of the most 994

similar generation is achieved through an iterative 995

comparison with the golden definition, ensuring a 996

robust matching process. In the case of the ora- 997

cle verification process by the oracle verifier, we 998

validate whether any output chosen prediction is 999

the most similar by comparing it with golden ref- 1000

erences of the sample in the test set. In contrast, 1001

for the verification process of ORM verifier, the 1002

selection of the most similar generation is then per- 1003

formed solely by the ORM verifier itself, without 1004

relying on external feedback, ground-truth compar- 1005

ison, or oracle input. 1006

Miscellaneous. We developed our MoE language 1007

modeling codebase based on Leeroo-AI (2024) and 1008
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implemented several routing policies and proposed1009

MoE architectures. Aiming at more efficent evlau-1010

ation, we follow (Huang et al., 2021) and refactor1011

their implementation with concurrent metrics com-1012

putation to boost the inference procedure in large1013

models, please see the details in our released code.1014

B Carbon Footprint1015

The cost of fine-tuning LLM is lower than that1016

of pre-training them. Nevertheless, we think it is1017

critical to quantify and record the environmental1018

consequences of our research. Table 6 lists the ma-1019

terials required for a single run, which is conducted1020

using our own infrastructure. We calculate the car-1021

bon footprint estimation using a carbon intensity of1022

0.141 kg/kWh and 700W consumption per GPU7.1023

Model Hardware FLOPs Time (h) CO2eq (kg)

LM-LEXICON-DENSE 8×H100 4.2e18 36.4 11.4

LM-LEXICON-MOE 8×H100 5.4e18 32.8 14.6

Table 6: Details about the training required resources.

C Additional Evaluation Results1024

C.1 Data Clustering Results1025

Cluster Ci Distanceintra-cluster ↓

C0 (Adjective) 0.176
C1 (Scientific) 0.168
C2 (Proper Noun) 0.173
C3 (Person Name) 0.185

Average 0.175

Table 7: Intra-cluster Distances (i.e., the cluster cohe-
sion)

.

We show the clustering results including cluster1026

cohesion and cluster separation in the following1027

Table 7 and 8, respectively.1028

C.2 In-Context Learning Evaluation1029

We show the scaling in-context learning experimen-1030

tal results as shown in Figure. 7.1031

C.3 Generation Examples of LM-LEXICON1032

As depicted in Figure 8, 9, 10, and 11, we provide1033

a cherry-picked example for each domain cluster1034

as shown in Figure 3 in definition modeling.1035

7Statistics: https://app.electricitymaps.com/map.

Cluster (Ci, Cj) Distanceinter-cluster ↑

C0, C1 0.694
C0, C2 0.713
C0, C3 0.765
C1, C2 0.681
C1, C3 0.707
C2, C3 0.720

Average 0.713

Table 8: Inter-cluster Distances (i.e., the cluster separa-
tion): C0 denotes the domain of “Adjective”, C1 denotes
the domain of “Scientific”, C2 denotes the domain of
“Proper Noun”, and C3 denotes the domain of “Person
Name”.

Cluster-1 Example:
[Term] Combtooth Blenny
[Query] “the crested blenny is a species of Combtooth
Blenny found around New South Wales, Australia, ...”

What is the definition of “Combtooth Blenny”?

[Source] Wikipedia

[Reference] Combtooth Blenny: perciform marine fish

of the family blenniidae.

Figure 8: Example of C1 (proper noun) from 3D-EX.

Cluster-2 Example:
[Term] brave
[Query] “familiarity with danger makes a brave man

braver but less daring - herman melville ...” What is the

definition of “brave”?

[Source] WordNet

[Reference] brave: possessing or displaying courage;

able to deal with danger or fear without flinching.

Figure 9: Example of C2 (adjective) from 3D-EX.
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Figure 7: Scaling the in-context learning results of frontier causal LMs on WordNet with k-shot demonstrations,
where k scales logarithmically from 0 to 128. Prior SoTA denotes the Rerank-T5 proposed by Huang et al. (2021).

Cluster-3 Example:
[Term] Michael Maclennan
[Query] “Godiva’s is a Canadian television comedy-

drama series created by Michael Maclennan with Julia

Keatley of Keatley Entertainment ...” What is the defini-

tion of “Michael Maclennan”?

[Source] Wikipedia

[Reference] Michael Maclennan: Canadian playwright,

screenwriter, and producer of television shows.

Figure 10: Example of C3 (person name) from 3D-EX.

Cluster-4 Example:
[Term] Lymphedema-distichiasis Syndrome
[Query] “two patients with Lymphedema-distichiasis
Syndrome illustrate that both Milroy’s ...” What is the

definition of “Lymphedema-distichiasis Syndrome”?

[Source] Sci-definition

[Reference] Lymphedema-distichiasis Syndrome:

lymphedema distichiasis syndrome is a condition that

affects the normal function of the lymphatic system.

Figure 11: Example of C4 (scentific) from 3D-EX.

D Comparison of Different Definitions 1036

The following is a representative case of the gen- 1037

erated definitions from five models including three 1038

proprietary models, LM-Lexicon-Dense and LM- 1039

Lexicon-MoE: 1040

Word: "coon” 1041

Context: "I’ll be a gone coon when the battle 1042

starts” 1043

Reference: "an eccentric or undignified rustic” 1044

(from WordNet) 1045

In the demonstration in Table 9, definition gen- 1046

erated by LM-Lexicon-MoE (our method) is most 1047

closely aligned with the reference definition’s core 1048

meaning, which captures the derogatory connota- 1049

tion and reflects the "undignified" aspect. In con- 1050

trast, definitions produced by the other models fail 1051

to capture fundamental aspects of the reference 1052

definition, for instance, Claude-3-Opus and GPT-4- 1053

Turbo completely deviate from the basic meaning 1054

of the target word in the context. 1055

In general, there are some notable patterns: 1056

• Closed-source models (e.g., GPT-4 and 1057

Claude) generate overly verbose definitions, 1058

including redundant contextual information 1059

and multiple interpretations. 1060
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• These models tend to overemphasize deriva-1061

tive or secondary meanings, resulting in broad,1062

general definitions that deviate from the core1063

semantic meaning.1064

• Models trained on general corpora often strug-1065

gle with uncommon word usages due to lim-1066

ited training examples, leading to inaccurate1067

definitions or contextual misinterpretation.1068

This comparison demonstrates the superiority of1069

LM-Lexicon-MoE’s targeted, controlled approach1070

over general-purpose language models for defini-1071

tion modeling.1072

E Code for LM-LEXICON1073

We use the Alg. 2 and 3 provided below to train1074

LM-LEXICON-MOE on the 3D-EX and the other1075

four legacy datasets used in this paper. We exposed1076

this Pytorch-style code as an implementation to1077

extend our method to any potential domain. Ad-1078

ditionally, to illustrate the differences and novelty1079

of our method, we provide a comparison with the1080

relative methods as shown in Table 10.1081
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Model Generated Definition

Claude-3-Opus The phrase gone coon means someone who is certainly defeated
or about to die.

Gemini-1.5-Pro The word “coon” is a deeply offensive racial slur targeting people
of African descent. It has a long and painful history rooted in
racist caricatures and stereotypes. While it once appeared casually
in entertainment and everyday language, it is now considered
completely unacceptable to use.

GPT-4-Turbo “Coon” is a colloquial abbreviation for “raccoon,” a nocturnal
mammal native to North America. “Coon” was sometimes used to
refer to a person who is in deep trouble or doomed, often in the
phrase “a gone coon,” meaning someone who is as good as dead
or has no chance of survival.

LM-Lexicon-Dense (Ours) A person who is afraid

LM-Lexicon-MoE (Ours) A person who is deemed to be despicable or contemptible

Table 9: Comparison of generated definition by models.

MOE (2017)
(Vanilla)

BTM (2022)
(Merge)

BTX (2024)
(Linear router)

LM-LEXICON
(Ours)

♢ Dense experts are
trained independently (upcycling) ✘ ✔ ✔ ✔

♢ Experts are specialized
in different domains ✘ ✔ ✔ ✔

♢ Experts are chosen by
a learned router per input token ✔ ✘ ✔ ✔

♢ Adaptive router via
domain-wise routing ✘ ✘ ✘ ✔

♢ Semantic experts
adapted to diverse domains ✘ ✘ ✘ ✔

Table 10: A comprehensive comparison of the most relative sparse mixture-of-experts frameworks in recent years,
including MoE (Vanilla), BTM (Merge), BTX (Linear Router), and LM-LEXICON. Our method demonstrates
advancements in semantic-centric specialized expert and adaptability across domains.
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Algorithm 2 Pytorch code for semantic experts merger.

def merge_semantic_experts(experts, router_layers):
"""
Merge expert models into a unified model.

Args:
- experts (ModuleList): Experts to merge.
- router_layers (ModuleList): Router layers.

Returns:
- state_dict (Dict[str, Tensor]): Merged model weights.

"""
state_dict = dict()
expert_nums = len(experts)
count_total_router_layers = 0

for idx, expert in enumerate(experts):
# load each expert model
model_id = expert["model_id"]
model = load_base_model(model_id)

if hasattr(model, "_tied_weights_keys"):
tied_weights_keys.extend(model._tied_weights_keys)
count_router_layers = 0
count_averaged_layers = 0

# iterate over all the layers of the model
for layer_name, param in model.state_dict().items():

is_merge_layer = True
for router_layer in router_layers:

if is_layer_suitable_for_router(router_layer, layer_name):
is_merge_layer = False
wb = layer_name.split(".")[-1]
new_layer_name = layer_name.split(f"{wb}")[0]
new_layer_name = f"{new_layer_name}experts.{ix}.{wb}"
assert new_layer_name not in state_dict
state_dict[new_layer_name] = param
count_total_router_layers += 1
count_router_layers += 1

if is_merge_layer:
# average the rest of layers by mean of weights
prev_weight = state_dict.get(layer_name)

if prev_weight is None:
prev_weight = torch.tensor(0)

else:
if not prev_weight.shape == param.shape:

# adjust the shape of weight
prev_weight, param = shape_adjuster(

prev_weight, param, idx
)

try:
# sometimes data is empty / non weights
state_dict[layer_name] = prev_weight + (param / expert_nums)

except Exception as _:
print(layer_name, param)
state_dict[layer_name] = param

count_averaged_layers += 1

return state_dict
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Algorithm 3 Pytorch code for modeling LM-LEXICON-MOE Layer

class SemanticMoeLayer(nn.Module):
def __init__(

self,
in_features: int,
out_features: int,
bias: bool,
num_experts: int,
num_experts_per_tok: int = 2,
routing_policy: str,

):
"""Semantic Mixture-of-Experts Layer.

Args:
- in_features (int): Input Features
- out_features (int): Output Features
- bias (bool): Use bias or not.
- num_experts (int): Total numbers of experts that Router Layer would handle
- num_experts_per_tok (int): Number of active experts per token.
- routing_policy (str): Routing Policy.

"""
super().__init__()
self.routing_policy = routing_policy
if routing_policy == "token-level":

# top-k token-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.experts = nn.ModuleList(

[nn.Linear(in_features, out_features, bias) for _ in range(num_experts)]
)
self.num_experts_per_tok = num_experts_per_tok
self.in_features = in_features
self.out_features = out_features

elif routing_policy in ["soft-sequence-level", "hard-sequence-level"]:
# soft/hard sequence-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.num_experts = num_experts
self.experts = nn.ModuleList(

[nn.Linear(in_features, out_features) for _ in range(num_experts)]
)

elif routing_policy == "domain-level":
# domain-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.num_experts = num_experts
self.experts = nn.ModuleList(

[nn.Linear(in_features, out_features) for _ in range(num_experts)]
)

def forward(self, inputs: torch.Tensor, domain_labels: torch.Tensor):
if self.routing_policy == "token-level":

gate_logits = self.gate(inputs)
weights, selected_experts = torch.topk(

gate_logits, self.num_experts_per_tok
)
weights = F.softmax(weights, dim=2, dtype=torch.float).to(inputs.dtype)
results = torch.zeros(

(inputs.shape[0], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

)

# continue this table as below ...
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# continue the above table ...

weights = weights.to(inputs.device)
for ix, expert in enumerate(self.experts):

batch_idx, tok_idx, expert_idx = torch.where(selected_experts == ix)
results[batch_idx, tok_idx] += expert(

inputs[batch_idx, tok_idx]
) * weights[batch_idx, tok_idx, expert_idx].unsqueeze(-1)

elif self.routing_policy == "soft-sequence-level":
# soft sequence-level routing
gate_logits = self.gate(inputs)
gate_logits_mean = gate_logits.mean(dim=1)
weights = F.softmax(gate_logits_mean, dim=-1)
results = torch.zeros(

(inputs.shape[0], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

)
for ix, expert in enumerate(self.experts):

results += expert(inputs) * weights[:, ix].unsqueeze(-1)
elif self.routing_policy == "hard-sequence-level":

# hard sequence-level routing (only one selected expert is responsible for the
entire sequence)

gate_logits = self.gate(inputs)
gate_logits_mean = gate_logits.mean(dim=1)
_, selected_experts = torch.topk(gate_logits_mean, 1)
results = torch.zeros(

(inputs.shape[0], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

)
for ix, expert in enumerate(self.experts):

results += expert(inputs) * (selected_experts == ix).float().unsqueeze(
-1

)
elif self.routing_policy == "domain-level":

# domain-level routing (only one selected expert is responsible for the entire
sequence)

gate_logits = self.gate(inputs)
results = torch.zeros(

(inputs.shape[0], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

)
for ix, expert in enumerate(self.experts):

results += expert(inputs) * (domain_labels == ix).float().unsqueeze(-1)

return results
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Computing Infrastructure
8 × H100-80GB GPU (PCIe)

Hyperparameter Assignment

Base model LM-Lexicon-Dense
(Llama-3-8B)

Training strategy DS ZERO-3
Epochs 3
Global batch size 524,288 tokens
Max sequence length 128
Max learning rate 5e− 6
Optimizer AdamW
Adam beta weights 0.9, 0.95
Learning rate schedule Cosine decay to 0
Weight decay 0.01
Warm-up ratio 10%
Gradient clipping 1.0
Global dropout 0.1
Random seeds {21, 42, 84}

Hyperparameter Assignment

Base model LM-Lexicon-MoE
(4 × Llama-3-8B)

Training strategy NAIVE PP
Epochs 1
Global batch size 131,072 tokens
Max sequence length 128
Max learning rate 1e− 6
Optimizer AdamW
Adam beta weights 0.9, 0.95
Learning rate schedule Cosine decay to 0
Weight decay 0.01
Warm-up ratio 10%
Gradient clipping 1.0
Global dropout 0.1
Random seeds {21, 42, 84}

Table 11: Hyper-parameters of LM-LEXICON-DENSE and LM-LEXICON-MOE training. DS ZERO-3 (left-hand
table) denotes stage-3 ZeRO parallelism implemented by DeepSpeed (Rajbhandari et al., 2020). NAIVE PP (right-
hand table) denotes naive pipeline parallelism implemented by Hugging Face Transformers (Wolf et al., 2020).
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Definition Modeling Evaluation Guideline

Task: Evaluate definitions generated by LMs using the 5 criteria below. Rate each criterion independently on a 1-5 scale.

Evaluation Criteria (1-5 Scale)

1. Accuracy

1

Completely
incorrect

2

Mostly
inaccurate

3

Partially
accurate

4

Mostly
accurate

5

Perfect
accuracy

2. Clarity

1

Incomprehensible

2

Mostly unclear

3

Somewhat
clear

4

Clear, minor
issues

5

Crystal clear

3. Conciseness

1

Extremely
wordy or too
short

2

Too verbose or
brief

3

Somewhat
verbose

4

Mostly concise

5

Optimally
concise

4. Context Appropriateness

1

Ignores
context

2

Minimal
context

3

Basic context

4

Good context

5

Perfect
context

5. Grammar & Fluency

1

Severe errors

2

Multiple errors

3

Some errors

4

Minor issues

5

Perfect
grammar

Examples

Photosynthesis

"The process by which plants convert light energy into energy."

"{{context}}"

Acc
5

Clar
5

Conc
5

Cont
4

Gram
5

Resilient

"Able to quickly recover from difficulties and adapt to change."

"{{context}}"

Acc
5

Clar
5

Conc
5

Cont
4

Gram
5

Process

1. Read the target word carefully

2. Read the generated definition thoroughly

3. Rate each criterion independently (1-5)

4. Provide brief justification (optional)

5. Submit complete evaluation

Figure 12: Human evaluation guideline.

22


	Introduction
	Related Work
	Methodology
	Overview of LM-Lexicon
	Learning Domain-specific Semantic Experts
	Merging Experts into a Unified MoE

	Experiments
	Implementation Details
	Main Results
	Ablation Study and Extra Investigation

	Conclusion
	Additional Experiment Details
	Carbon Footprint
	Additional Evaluation Results
	Data Clustering Results
	In-Context Learning Evaluation
	Generation Examples of LM-Lexicon

	Comparison of Different Definitions
	Code for  LM-Lexicon

