
Under review as a conference paper at ICLR 2024

DIRECTIONALITY IN GRAPH TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how one can capture directionality in graph transformers, for learning
over directed graphs. Most existing graph transformers do not take edge direction
into account. We therefore introduce a novel graph transformer architecture that
explicitly takes into account the edge directionality. To achieve this, we make use
of dual encodings to represent both potential roles, i.e., source or target, of each
pair of vertices linked by a directed edge. These dual encodings are learned by
leveraging the latent adjacency information extracted from a novel directional at-
tention module, localized with k-hop neighborhood information. We also study
alternative approaches to incorporating directionality into other graph transform-
ers to enhance their performance on directed graph learning tasks. To evaluate
the importance of edge direction, we empirically characterize via randomization
whether direction really matters for the downstream task. We propose two new
directional graph datasets where direction is intrinsically related to learning. Via
experiments on directional graph datasets, we show that our approach yields state-
of-the-art results.

1 INTRODUCTION

Graphs are one of the most general and versatile data structures that are encountered in diverse
application domains, ranging from biology and social networks to transportation and finance. Ana-
lyzing the graphs that arise from such applications and discovering patterns in them is of paramount
importance in the associated domains. An important property of a graph is whether its edges are di-
rected or not. Directed graphs are natural representations of relations including social connections,
human communications, paper citations, financial transactions, web links, and causes and effects.
The state-of-the-art methods for analyzing directed graphs use Graph Neural Networks (GNNs) to
learn node and directed edge encodings for tasks like link prediction (Kollias et al., 2022; Salha
et al., 2019), node classification (Zhang et al., 2021) and graph-level tasks (Beaini et al., 2021).

In this paper, we address the relatively unexplored problem of analyzing directed graphs using graph
transformers (GTs). Transformers hold the promise of enhanced performance over GNNs due to
their ability to represent entities without enforcing the inductive adjacency bias (Vaswani et al.,
2017), and due to their dynamic multi-head attention mechanism, in contrast to GNNs where the
attention is hardwired in static edge weights. This flexibility of GTs comes, however, with the
challenge of modeling directed graph structures. Most existing GT works focus on integrating only
the graph connectivity structure into the Transformer. They do not prioritize how to reflect the
directionality of graph edges in their proposed architecture. This is either due to the fact that one
of their key techniques is not applicable to directed graphs (e.g., Laplacian eigenvectors (Dwivedi
& Bresson, 2021)) or the edge-direction information is encoded as static, fixed scalars (either local
in/out degrees in (Ying et al., 2021) or pairwise shortest path distances in (Hussain et al., 2022; Ying
et al., 2021)).

We introduce Directed Graph Transformer (DiGT), a novel GT architecture that explicitly takes into
account graph directionality. The crux of this architecture is that it incorporates both edge direction
and graph connectivity structure into the standard Transformer architecture (Vaswani et al., 2017) as
first-class citizens. Edge direction is represented by dual encodings for each graph node capturing
its potential role as either a source or target of a directed edge. A node encoding in DiGT thus
consists of a pair of source and target vectors. Edge direction information is preserved in node
representations: the attention between a query node i and a key node j will yield different values
depending on whether i points to j, or j points to i. Thus, the node encodings produced by DiGT
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embed edge direction semantics in them. These source and target encodings are then learned using
a multi-head directional attention module that incorporates edge channels as bias. By interpreting
attention matrices as latent adjacency matrices, our technique updates a node’s source vector by
aggregating the target vectors of the neighbors it points to, after incorporating suitable learnable
parameters; similarly, a node’s target vector update is the aggregation of the source vectors of those
neighbors pointing to it. It is important to note that in DiGT dual node encodings are dynamically
learned without using the explicit directed graph structure, whereas previous approaches exploited
the static connectivity information only.

Our main contributions are as follows: i) We propose a new directed graph Transformer archi-
tecture (DiGT) that uses dual node encoding approach with source and target encodings, and a
novel directional attention mechanism, ii) We propose several alternative strategies for incorpo-
rating direction into graph transformers, in terms of exploiting single or dual attention matri-
ces, and we show that these approaches can be incorporated into different GT architectures like
(vanilla) Transformers (Vaswani et al., 2017), EGT (Hussain et al., 2022), and Exphormer (Shirzad
et al., 2023), to improve their performance on directed graphs, iii) We characterize the “direc-
tionality” of a graph dataset, showing that some of the popular directed graph benchmarks like
MNIST/CIFAR10 (Dwivedi et al., 2020), Ogbg-Code2 (Hu et al., 2020) are not truly directional.
Therefore, we introduce the FlowGraph and Twitter family of directed graph datasets that ex-
plicitly relate the edge direction pattern in graphs to their classification labels. iv) We compare our
proposed DiGT model against other GNN and GT variants for directed graph classification tasks.
Our experiments reveal that when edge directionality is an inherent, rather than derivative, charac-
teristic of the instances to be classified, DiGT can beat the best state-of-the-art (SOTA) GT and GNN
alternatives by a large margin.

2 RELATED WORK

Methods for Directed Graph Learning. Earlier works on analyzing directed graphs are based
on matrix factorization techniques to learn node encodings, such as Singular Value Decomposition
(SVD) of higher-order adjacency matrices exploring the directed k-hop neighborhood of a node (Ou
et al., 2016), or Non-negative Matrix Factorization (NMF) (Sun et al., 2019). Another line of work
focuses on analyzing special matrix forms of adjacency information such as the Hermitian adjacency
matrix of the directed graph (Cucuringu et al., 2020) or learning linear combinations of powers of
the directed graph adjacency matrix and its transpose (He et al., 2021). APP (Zhou et al., 2017) uses
random walks with restart as a tool to scale to large graphs and harvests asymmetric and high-order
similarities between node pairs. More recently, GNNs have been used (Kollias et al., 2022; Tong
et al., 2020a;b; Zhang et al., 2021). Compared to the above techniques, GNNs operate based on a
message-passing architecture and provide higher learning flexibility due to the usage of learnable
weight matrices that multiply the node encodings. Graph Attention Network (GAT) (Veličković
et al., 2017) is a GNN that incorporates local self-attention resembling a transformer.

A limitation of all the aforementioned approaches is that they critically rely on the explicit directed
graph structure (adjacency matrix): (a) The k-hop neighborhood learning techniques (He et al.,
2021; Ou et al., 2016; Sun et al., 2019; Zhou et al., 2017) involve matrix factorization or composition
of powers of known adjacency matrices, or random walks over the graph structure. (b) Special
matrix forms of adjacency information used in (Cucuringu et al., 2020; Tong et al., 2020a) require
the directed graph as input. (c) GNNs in (Kollias et al., 2022; Salha et al., 2019; Tong et al., 2020b;
Veličković et al., 2017; Zhang et al., 2021) are message-passing models, and single or dual-node
encoding messages can flow only through existing edges. Reliance on the directed graph structure
introduces inductive bias during learning: latent edges that could positively contribute to the learning
problem at hand can be missed as a result. In contrast, DiGT does not rely on the directed graph
structure (in effect it assumes full graph connectivity) and learns the edge weights by exchanging
the dual node encodings between the nodes.

We note here that the general idea of dual node encodings has also been used in several of the above
works. However, such encodings are typically computed by exploiting the directed graph structure.
Applying this idea in GTs is challenging because there are no assumptions on graph structure (i.e.
assuming full connectivity) and they need to be learned in a dynamic manner.
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Graph Transformers GTs were introduced in (Dwivedi & Bresson, 2021), which proposed two
inspiring GT architecture variants. The first variant produces only node encodings, while the second
variant is augmented to also produce edge encodings. Node encodings follow the standard Trans-
former architecture (Vaswani et al., 2017), while edge encodings are updated by scaling the attention
matrix. They attend only to existing neighbors (local self-attention), so a strong inductive bias is en-
forced. SAN (Kreuzer et al., 2021) uses learned positional encodings (LPE) to enhance the learning
of graph structure. SAT Chen et al. (2022) enhances the learning by extracting k-hop subgraphs. In
Graphormer (Ying et al., 2021), the attention aperture critically expands to all nodes (global self-
attention). They propose adding and learning node encodings that are functions of input and output
degree centralities (centrality encoding), and arbitrary node pairs are represented by two bias terms
to the attention matrix (spatial and edge encodings). In Edge-Augmented Transformer (EGT) (Hus-
sain et al., 2022), they combine ideas from (Dwivedi & Bresson, 2021) (separate channels for nodes
and edges, scaling and gating the attention matrix) and from (Ying et al., 2021) (global self-attention,
bias terms from spatial encoding, however, learned from the edge channels) to yield an effective GT
approach. Recently, the models that combine graph neural networks with graph transformers, such
as GraphGPS (Rampášek et al., 2022) and Exphormer (Shirzad et al., 2023), attained competitive
performance results, while aiming at scalability. GraphGPS is a framework for combining pluggable
encoding, local message passing, and global attention modules; Exphormer introduces a sparse at-
tention mechanism based on global virtual nodes and expander graphs. In (Geisler et al., 2023),
they learn directed graphs using Transformers which leverage special positional encodings based on
Magnetic Laplacian eigenvectors and random walks.

Our DiGT approach is a global self-attention transformer, learning both dual node encodings and
edge encodings (dual-channel architecture). A node encoding in DiGT consists of a pair of source
and target vectors that capture the edge direction semantics. Therefore, in downstream tasks that
require directionality and take node encodings as input, DiGT provides embeddings of high dis-
criminative power. In comparison, Graphormer (Ying et al., 2021), EGT (Hussain et al., 2022), and
the other graph transformers (Dwivedi & Bresson, 2021; Zhang et al., 2020) produce only single-
vector node embeddings that cannot differentiate the direction of an edge; and, as already mentioned,
directed GNNs (Kollias et al., 2022; Salha et al., 2019; Tong et al., 2020b; Veličković et al., 2017;
Zhang et al., 2021) produce dual node embeddings that suffer from convolutional inductive bias,
that is restricted to only the given neighborhood structure.

3 DIGT: DIRECTED GRAPH TRANSFORMER

We now describe our DiGT directed graph transformer that uses three main ideas: dual node embed-
dings for source and target representations; which are combined with learnable implicit adjacency
information via directed attention; as well as using k-hop neighborhood information. We will detail
these ideas below. Our model typically contains multiple DiGT layers, as well as multiple heads for
the attention. However, in the description below, we omit the layer and head notations for ease of
presentation.

3.1 INPUT LAYER

We represent a directed graph as G(V,E); V is the set of n = |V | graph nodes, E = {(i, j) ∈
V × V : i 7→ j} is the set of its m = |E| directed edges. Each node i is equipped with a pair of
vectors in Rd, 1 ≤ i ≤ n: (i) vector si encodes i’s role as a source, which is the same for any of the
directed edges it participates in as a source, and (ii) vector ti encodes i’s role as a target.

Given the n × n adjacency matrix A of the input (directed) graph G, consider its truncated SVD,
A ∼ UrΣrV⊤

r , where we keep the r largest singular value triplets, and let us set Sr = UrΣ
1
2
r

and Tr = VrΣ
1
2
r for the source and target positional encodings. When input node features Xf are

available (set Xf = 0 otherwise), the input/initial node embeddings for the DiGT model are given
as

S = Ls(Sr) + Lf (Xf ) T = Lt(Tr) + Lf (Xf ) (1)

where Ls, Lt and Lf are learnable linear transformations (subscripted as s for the sources, t for
targets, and f for input features), and S,T ∈ Rn×d.
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For encoding the edges, if input edge features Ef are available (set Ef = 0 otherwise) the in-
put/initial edge embeddings for the DiGT model are given as

EST = Le([δst]s,t=1,...,n) + Lef (Ef ) (2)
where Le is an embedding layer, Lef is a learnable linear transformation, and δst is the shortest
directed path distance from source s to target t, clipped at maximum k-hops (if t is not reachable
from s we set δst = k + 1). The result, EST ∈ Rn×n×de , is the matrix of de dimensional edge
embeddings, and we set ETS as the transpose of EST along the first two dimensions.

3.2 DIGT ATTENTION LAYER

Given the dual node encodings, we need to determine the relationship between the source and target
encoding vectors of different nodes, which will be used for updates in our GT architecture. For this,
we draw high-level inspiration from the HITS centrality algorithm (Kleinberg, 1999) that computes
two scalar-valued hub and authority scores for each node in a directed graph – a source node with a
high hub score refers to (or points to) target nodes that contribute relevant information (in our case,
for learning), and thus gain elevated authority scores. Consider for the moment one-dimensional or
scalar source and target node embeddings, si and ti, which serve as the hub and authority score,
respectively; we can express their relationship as si =

∑
i 7→j tj (i.e., good hubs point to good

authorities) and ti =
∑

j 7→i sj (i.e., good authorities are pointed to by good hubs).

Generalizing to our d-dimensional source and target encoding vectors si and ti, we could analo-
gously write:

si =
∑
j

Aijtj and ti =
∑
j

Ajisj . (3)

We can write the above equations more compactly as S = AT and T = A⊤S. Conceptually, si and
ti play the role of multi-dimensional hub and authority scores.

Implicit and Directed Adjacency via Attention: The key insight in DiGT is that we should not
rely on the fixed adjacency matrix A; rather, we should construct an implicit adjacency matrix,
denoted Ā, by exploiting the attention mechanism. A straightforward approach to compute Ā could
be Ā = ST⊤. However, we need to make this learnable. To allow the flexibility of learning weight
matrices for computing the implicit adjacency we use dual attention mechanisms. For the source
nodes S, let

QS = S WQS KS = S WKS VS = S WV S (4)
and similarly for the target nodes T, let

QT = T WQT KT = T WKT VT = T WV T (5)

where all W ∈ Rd×dp are learnable weight matrices, and dp is the projection dimensionality (suit-
ably scaled down, based on the number of heads). We obtain a pair of attention matrices

ĀST =
(
QSKT

⊤) /√dp ĀTS =
(
QT KS

⊤) /√dp (6)

That is, the attention matrix ĀST treats the source nodes as queries and the target as keys to compute
their similarity, and vice-versa for ĀTS .

Edge Bias and Neighborhood Attention: We now allow for the edge channels to directly in-
fluence the attention by introducing a per head bias matrix, BST ∈ Rn×n, and gate matrix,
GST ∈ Rn×n, both of which are linear transformations from the edge encodings EST (with added
layer norms). Further, BTS and GTS are their transpose matrices, respectively.

Next, we localize the attention from node channels to the k-hop neighborhood around each node.
This is implemented by masking the attention matrix along with the edge bias via an element-wise
product with the binary k-hop matrix D(k) which is defined by setting D(k)

i,j = 1 iff δij ≤ k for
the shortest path distance from node i to node j, and zero otherwise. Thus, the attention matrices,
denoted Ã, for this layer are given as:

ÃST =
(
ĀST + BST

)
⊙ D(k)

ST ÃTS =
(
ĀTS + BTS

)
⊙ D(k)

TS (7)
This way the attention considers all node pairs within k-hops.
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Directional Attention: Finally, unlike traditional transformers that compute node importance via
a softmax along each row of the attention matrix, we stack both ÃST and ÃTS and compute the
softmax along the stacking direction, given as

ÃST , ÃTS = softmax(ÃST , ÃTS). (8)

By doing this, we weigh the importance of directionality for the attention/adjacency information.

Lastly, we enable the flow of information between nodes by gating their value representations prior
to aggregation; this is realized as multiplication by the sigmoid function, σ(), of the entries in gate
matrices, GST and GTS , resulting in

Y =
(
(ÃST ⊙ σ(GST )) VT

)
+

(
(ÃTS ⊙ σ(GTS)) VS

)
(9)

where Y ∈ Rn×dp is the value representation for one head. So, when we have h = d/dp heads, we
concatenate all of them (and add layer norm) to obtain the final value representation Y ∈ Rn×d, for
the next step. Also, the different DiGT layers do not share edge embeddings and this is also true for
bias and gate matrices.

3.3 OUTPUT LAYERS AND PREDICTION

One point to note is that, after each DiGT layer, we take the combined value encoding Y, and we
use layer normalization and feed-forward network modules with residual connections, to produce
the node and edge encoding outputs for a DiGT layer. These outputs become inputs for the next
layer. Thus, the updated dual encodings S, T for the next layer are given as:

S = f(LV S(Y)) T = f(LV T (Y)) (10)

where, LV S and LV T are two linear transformations followed by a non-linear activation f (with
layer norms and residual connections). To obtain the updated edge embeddings EST ∈ Rn×n×de

for the next layer, we add together ĀST and BST from all the h heads, and apply a learnable linear
transformation and non-linearity, as follows: EST = f(LE(ĀST + BST )).

Lastly, to obtain the final output node embeddings, we concatenate both the source and target em-
beddings, as follows: X = concat(S,T). After the last DiGT layer is processed, the encodings X
are driven through some final learning task-specific modules. These are typically multilayer percep-
tron layers (MLP) for tasks related to node and edge learning (node classification, link prediction),
or pooling layers for graph-level learning (graph classification, graph regression). For the directed
graph classification task, we use global average pooling as our main method for producing a rep-
resentation/encoding of the whole graph; this is essentially the average of the final node encodings.
We also experiment with the method of virtual nodes based pooling (Hussain et al., 2022): a clique
of artificial nodes (virtual nodes) are added to each graph and connected to all its nodes. We add
bidirectional edges between each virtual node and all the rest of the graph nodes. After training, we
average the concatenated source and target node embeddings of the virtual nodes and leverage the
same final MLP layers for the downstream task.

3.4 ALTERNATIVE APPROACHES FOR DIRECTIONALITY

We now propose some other alternatives to model directionality directly in Transformer architec-
tures.

Exploiting Asymmetric Attention Matrix One simple approach to incorporating direction into
the Transformer architecture is to leverage the inherent asymmetric nature of the attention matrix.
Given node features X ∈ Rn×d, the key, query, and value matrices are given as

Q = X WQ K = X WK V = X WV (11)

Consider the attention matrix before the softmax, given as

Â = (QK⊤)/
√

dp
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This matrix is inherently asymmetric; we can thus exploit the attention that queries pay to keys and
that keys pay to queries, to obtain the attention matrices by taking the softmax along the rows (same
as regular attention) or softmax along the columns, as follows

ĀST = softmax(Â) ĀTS = softmaxcols(Â) = softmax(Â⊤) (12)

where we use the subscript cols to denote that softmax is applied along the columns.

To obtain the new value matrix several different strategies can be used to aggregate the two attention
matrices together, which we discuss in the ablation studies. An effective approach is to do a weighted
(learnable) sum of the two value representations:

Y = WST ĀST V + WTS ĀTS V (13)

where WST ,WTS ∈ Rd×d are learnable weight matrices. Note that we can also leverage directional
attention (see Eq. (8)) in the equation above.

Exploiting Dual Attention Matrices Another strategy to incorporate direction is by leveraging
two key, query and value representations for each node, given as:

QS = X WQS KS = X WKS VS = X WV S (14)
QT = X WQT KT = X WKT VT = X WV T (15)

We can then obtain dual attention matrices:

ĀST = softmax
(
(QSKT

⊤)/
√

dp

)
ĀTS = softmax(

(
QT KS

⊤) /√dp) (16)

which can then be aggregated to obtain the new value representation via the weighted sum approach
in Eq. (13).

This is similar to DiGT, but the key difference is that the dual representations are used only within
the attention layer, whereas DiGT uses dual node embeddings in all layers.

4 EXPERIMENTS

We conduct our experiments mainly on NVIDIA V100 GPUs, with 32GB memory, using PyTorch.
An anonymous link to our implementation is provided in the Appendix, which also contains addi-
tional experimental details and ablation studies.

4.1 DIRECTED GRAPH DATASETS

There are several well-known directed datasets to assess the performance of graph models, such as
MNIST (Achanta et al., 2012)and CIFAR10 (Krizhevsky et al., 2009), Ogbg-Code2 (Hu et al.,
2020), and Malnet-tiny (Freitas et al., 2020). To evaluate the directionality in these datasets, we
design a random flip test. In essence, for a given edge flip probability, say θ (e.g., θ ∈ {0.25, 0.5}),
given edge (u, v) we flip it with probability θ during each training, validation and testing step. If
a model consistently achieves accuracy comparable to the original dataset, it suggests that direc-
tionality is not a crucial factor. Table 1 shows the results with θ = 0.5 (i.e, 50% of the edges
are flipped); see Appendix for full results. We use EGT (Hussain et al., 2022) on the MNIST
and CIFAR10 graphs, Exphormer (Shirzad et al., 2023), which is the SOTA on Malnet-tiny,
and DAGformer (Luo, 2022), which is the top-performer on the Ogbg-Code2 leaderboard (Hu
et al., 2020). We observe that despite altering the direction of edges on MNIST, CIFAR10 and
Ogbg-Code2, the results remain largely unaffected, which indicates that directionality is not im-
portant. On the other hand, there is a performance loss on Malnet-tiny.

FlowGraph datasets. Given the limitations of existing benchmarks, we introduce a family of
directed graph datasets that explicitly relate the edge direction pattern in graphs to their classification
labels. In particular, we generate graphs with their nodes organized in successive layers and then
we leverage the notion of a flow between the layers through directed edges: for a predefined subset
of layers, graphs with different aggregate flow between successive layers in the subset are assigned
different labels. Our FlowGraph generator is modeled after the Directed Stochastic Block Model
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Table 1: Randomized directionality via edge flips: Model performance

Model MNIST CIFAR10 Model Ogbg-Code2 Model Malnet-tiny

EGT 98.41 +/- 0.04 68.70 +/- 0.41 DAG 20.2 +/- 0.2 Exphormer 94.02 +/- 0.21
EGT-Flip50 97.99 +/- 0.09 67.28 +/- 0.38 DAG-Flip50 19.0 +/- 0.1 Exphormer-Flip50 87.90 +/- 1.65

Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5

DiGT 97.42 +/- 0.82 74.55 +/- 0.69 46.80 +/- 0.97 91.67 +/- 0.79 85.94 +/- 0.25
DiGT-Flip50 49.67 +/- 1.39 32.33 +/- 1.66 16.78 +/- 0.04 82.96 +/- 1.13 65.44 +/- 0.38

(DSBM) (Malliaros & Vazirgiannis, 2013). Following the notation in (He et al., 2021), we organize
N graph nodes into K clusters and define cluster adjacencies in a meta-graph adjacency matrix F,
with its entries Fkl marking the allowance of directed edges from nodes in cluster k to those of cluster
l. More specifically, we assume that the node clusters are arranged sequentially, l = 0, 1, . . . ,K− 1
(say from left to right) and a subset of its first lS < K consecutive clusters define a subgraph S. In
FlowGraph we allow directed edges between nodes belonging to all clusters with the probability
being a small noise parameter η (typically η = 0.01). Then for directed edges between nodes in
successive clusters, with the source node l being in a cluster in subgraph S, we set Fl,l+1 to a
percentage f%. These percentages are different for different classes and depend on the number of
classes nc. In our experiments, for all generated graphs we set N = 150, K = 10, lS = 4. We
generate 3 graph datasets: one dataset for each of the nc = 2, 3, 6-class cases. We depict three graph
instances from each of the 3 classes of FlowGraph3 in the Appendix.

Twitter datasets. We use 973 directed ego-networks from Twitter1, each corresponding to
some user u (ego): the ego-network is between u’s friends also referred to as alters (Leskovec
& Mcauley, 2012). If nodes vi, vj are in u’s ego-network then u follows them and if vi follows
vj then there is a directed edge vi 7→ vj in the ego-network. We introduce perturbations to each
of these real ego-networks where a perturbation can be either (i) rewiring of an existing edge (an
(a, b) ∈ E(ego(u)), where it is deleted and replaced by an edge (c, d) where nodes c, d are randomly
selected from V (ego(u))), or (ii) reversing of the direction of an existing edge (a, b) ∈ E(ego(u)),
where it is replaced by (b, a). The percentage of the perturbed edges in an ego-network can be
[0, 25, 50, 75, 100]%. Rewiring and reversing the direction of edges takes place with equal probabil-
ities. So, for each of the percentages, 973 new perturbed ego-networks are generated, each labeled
with the corresponding perturbation percentage. We refer to the collection of the 5× 973 perturbed
Twitter datasets as Twitter5 (5 labels/classes). Similarly, if we get 3 × 973 of them corre-
sponding to perturbation percentages [0%, 50%, 100%], then we have the Twitter3 dataset (3
labels/classes).

As we can see from Table 1, there is a significant drop in performance when we randomly flip the
edges for both Flowgraph and Twitter datasets, thus direction is important.

Degree of Directionality To characterize the directionality of a dataset, we defined another mea-
sure, called the degree of directionality for a graph. Let SCC denote a strongly connected compo-
nent in a directed graph (a maximal subset of mutually reachable nodes). Further, given the set of
m SCCs of a directed graph, S = {S1, S2, ..., Sm}, define the SCC entropy of the graph as follows:
E(S) = −

∑m
i=1 pi log pi, where pi = |Si|/n. A low entropy means that most nodes are mutually

reachable, and thus directionality is not expected to play a big role. On the other hand, if the SCC
entropy is log n, like for a directed acyclic graph, then directionality is clearly important.

Figure 1 plots the SCC entropy for the different benchmark datasets; for each class, we plot the
average and standard deviation. We can see a very clear trend. FlowGraph classes are inherently
directed, with larger entropies, and Twitter captures the inherent directionality of the “follow”
relationship between entities, exhibiting lower entropy values. As we increase perturbation levels,
entropy decreases as expected due to the random modification of the original directed graph struc-
tures. More importantly, the derived MNIST and CIFAR10 have no inherent directedness, and their

1https://snap.stanford.edu/data/ego-Twitter.html
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entropy values are extremely low. These results justify our choice to restrict the directed graphs
benchmarks to only those where direction matters. Furthermore, we will show that DiGT performs
even better when direction matters more.
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Figure 1: SCC Entropy Plot: The entropy for each class (by increasing perturbation or class label)
for each dataset is shown. For Flowgraph the perturbation refers to % of right to left edges, for
Twitter its random edge rewirings.

Table 2: Accuracy for GNN and GT models. Blank denotes no previous reported results.

Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5 Malnet-tiny

GCN (Kipf & Welling, 2016) 87.50 +/- 1.27 58.28 +/- 0.88 30.36 +/- 0.55 76.24 +/- 0.56 61.23 +/- 1.67
GAT (Veličković et al., 2017) 84.92 +/- 1.90 58.83 +/- 1.47 30.31 +/- 0.28 74.59 +/- 1.59 56.79 +/- 0.05 92.1 +/- 0.24
DiGCN (Tong et al., 2020a) 95.67 +/- 0.51 71.22 +/- 1.03 36.78 +/- 0.85 73.51 +/- 0.61 52.85 +/- 1.94
PNA (Corso et al., 2020) 96.17 +/- 0.31 72.94 +/- 0.64 41.42 +/- 1.32 88.26 +/- 1.16 70.94 +/- 2.01

Graph Transformer (Dwivedi & Bresson, 2021) 93.17 +/- 0.82 66.17 +/- 0.60 36.20 +/- 1.12 90.66 +/- 0.35 79.55 +/- 0.68
SAN (Kreuzer et al., 2021) 91.73 +/- 1.84 63.87 +/- 0.66 34.57 +/- 0.45 85.33 +/- 0.78 63.13 +/- 1.65
EGT (Hussain et al., 2022) 95.00 +/- 1.67 72.06 +/- 1.16 42.87 +/- 0.62 86.49 +/- 0.73 73.94 +/- 1.47
Exphormer (Shirzad et al., 2023) 96.72 +/- 0.44 72.81 +/- 0.38 41.70 +/- 0.39 89.76 +/- 0.30 72.72 +/- 1.40 94.02 +/- 0.21

DiGT 97.42 +/- 0.82 74.55 +/- 0.69 46.80 +/- 0.97 91.67 +/- 0.79 85.94 +/- 0.25

4.2 EXPERIMENTAL COMPARISON

4.2.1 DIGT VS. GNNS AND GTS

We now show experimental results on the directed graph datasets where directionality is important.
We select GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), DiGCN (Tong et al., 2020a),
and PNA (Corso et al., 2020), for our comparisons with graph neural networks, and Graph Trans-
former (Dwivedi & Bresson, 2021), SAN (Kreuzer et al., 2021), EGT (Hussain et al., 2022), and
Exphormer (Shirzad et al., 2023) for our comparisons with graph transformers. We take the re-
sults GAT and Exphormer with the Malnet-tiny dataset from (Shirzad et al., 2023). We choose
EGT (Hussain et al., 2022) as the representative of graph transformers with global dense attention,
and Exphormer (Shirzad et al., 2023) as the representative of graph transformers with local sparse
attention. We compare these approaches with our DiGT approach.

The accuracy results are listed in Table 2. The methods are grouped by GNNs, GTs, and finally
DiGT. We can see that our DiGT model clearly outperforms all other GNN and GT models, by
significant margins, especially as the directionality becomes more important, i.e., DiGT has better
margins for FlowGraph6, Twitter3 and Twitter5. DiGT employs global dense attention
(like EGT), making it adept at capturing more complex graph structures, but the explicit directional
attention makes it shine on all the datasets. On the contrary, Exphormer utilizes local attention
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by leveraging message passing to nearby neighbors. Like some of the GNNs, one advantage of
Exphormer is that its use of expander graphs allows it to run on the larger Malnet-tiny dataset
(which has some graphs over 2000 nodes), where other GT methods, including DiGT cannot be
applied (incorporating sparse graph connectivity into DiGT is part of our future work). As such,
these results clearly demonstrate the effectiveness of the directional strategies employed in DiGT,
especially the inherent dual source and target encodings, with directional attention and restricted
k-hop neighborhood.

Table 3: Incorporating directionality into graph transformers. Bold denotes best results, italics the
second best.

Model FlowGraph2 FlowGraph3 FlowGraph6 Twitter3 Twitter5 Malnet-tiny

Vanilla Transformer 95.58 +/- 0.66 68.22 +/- 0.55 39.56 +/- 1.61 89.12 +/- 0.43 77.03 +/- 1.40
Vanilla-asym 95.50 +/- 0.20 69.28 +/- 0.75 41.42 +/- 0.78 91.28 +/- 0.78 79.42 +/- 0.48

EGT (Hussain et al., 2022) 95.00 +/- 1.67 72.06 +/- 1.16 42.87 +/- 0.62 86.49 +/- 0.73 73.94 +/- 1.47
EGT-asym 96.50 +/- 0.89 72.39 +/- 0.55 42.88 +/- 0.20 90.37 +/- 0.29 82.60 +/- 0.35

Exphormer (Shirzad et al., 2023) 96.72 +/- 0.44 72.81 +/- 0.38 41.70 +/- 0.39 89.76 +/- 0.30 72.72 +/- 1.40 94.02 +/- 0.21
Exphormer-asym 98.41 +/- 1.18 74.72 +/- 2.24 42.67 +/- 0.80 90.83 +/- 1.14 80.07 +/- 1.18 93.85 +/- 0.15
Exphormer-dual 97.42 +/- 0.31 73.39 +/- 0.90 42.28 +/- 0.17 90.78 +/- 0.81 79.59 +/- 0.69 94.23 +/- 0.20
DiGT 97.42 +/- 0.82 74.55 +/- 0.69 46.80 +/- 0.97 91.67 +/- 0.79 85.94 +/- 0.25

4.2.2 INCORPORATING DIRECTION INTO GTS

To show the effectiveness of directionality-based strategies outlined in Section 3, we modify the
vanilla Transformer (Vaswani et al., 2017), EGT, and Exphormer models and convert these “undi-
rected” graph transformer models into directed ones. Using the asymmetric attention matrix
(Eq. (12)) is denoted with the suffix ‘-asym’, and using the dual attention matrices (Eq. (16)) is
denoted by suffix ‘-dual’. Table 3 shows the baseline model, and the modification using the best
performing directionality approach.

Interestingly, the directed version always outperforms its corresponding baseline graph transformer
model. This shows the power of incorporating direction on those datasets where it really matters.
In fact, the Exphormer-dual outperforms the baseline Exphormer model, and results in new SOTA
result. When we compate DiGT with these models, we again find that DiGT outperforms all models
(see bold results) on the datasets with more directionality, like FlowGraph6, Twitter3 and
Twitter5. Even on FlowGraph2 and FlowGraph3, DiGT is the second best model, only
slightly behind Exphormer-asym, which is also one of our own direction-based strategies.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present DiGT, a novel architecture for capturing graph directionality using trans-
formers. We empirically evaluate its classification accuracy on directional graph datasets and
demonstrate its superior performance against state-of-the-art Graph Transformers and Graph Neu-
ral Networks. We also propose other strategies that can be used to add “direction” to other graph
transformer models. Doing so yields a new SOTA result on the Malnet-tiny dataset. In fact,
our directed extensions always outpeform their undirected baselines. To our knowledge, we are the
first to point out the limitations of some of the directed graph benchmarks, in that direction does not
seem to matter for the classification task. We therefore propose new directed benchmark datasets,
and show the superior performace on DiGT on those graphs.

One limitation of our DiGT model is that due to the quadratic complexity of attention, like most
Transformers, it does not scale to larger graphs. To scale up the attention mechanism, we plan
to explore techniques like expander graphs used in Exphormer (Shirzad et al., 2023), and other
approaches to expand the context (Bertsch et al., 2023; Tay et al., 2022), and study their effectiveness
for (directed) graph datasets.
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