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Abstract001

Recent advances in large language models002
(LLMs) have led to substantial progress on003
the Text-to-SQL task. However, existing004
approaches typically depend on static, pre-005
processed database information supplied at in-006
ference time, which restricts the model’s ca-007
pacity to deeply comprehend the underlying008
database content. In the absence of dynamic009
interaction, LLMs are limited to fixed, human-010
curated context and lack the ability to au-011
tonomously query or explore the data. To over-012
come this limitation, we introduce SDE-SQL,013
a novel framework that empowers LLMs to per-014
form Self-Driven Exploration of databases015
during inference. This is achieved through016
the generation and execution of SQL probes,017
enabling the model to actively retrieve infor-018
mation and iteratively refine its understanding019
of the database. Unlike prior methods, SDE-020
SQL operates in a zero-shot setting, requir-021
ing no in-context demonstrations or question-022
SQL pairs. Evaluated on the BIRD bench-023
mark with Qwen2.5-72B-Instruct, SDE-024
SQL achieves an 8.02% relative improve-025
ment in execution accuracy over the vanilla026
Qwen2.5-72B-Instruct baseline, establish-027
ing a new state-of-the-art among open-source028
methods without supervised fine-tuning (SFT)029
or model ensembling. Furthermore, when com-030
bined with SFT, SDE-SQL delivers an addi-031
tional 0.52% performance gain.032

1 Introduction033

Text-to-SQL is a long-standing task in natural lan-034

guage processing that focuses on translating natural035

language questions into executable SQL queries.036

This capability not only empowers non-expert users037

to interact with structured databases seamlessly,038

but also mitigates hallucination issues in question-039

answering systems by grounding responses in fac-040

tual, database-stored information.041

Recent advances in large language models042

(LLMs) have led to significant improvements in043

the performance and accuracy of Text-to-SQL sys- 044

tems. LLM-based approaches have surpassed 90% 045

execution accuracy on the original Spider dataset 046

(Yu et al., 2019), and have demonstrated promis- 047

ing results on more complex and diverse bench- 048

marks such as BIRD(Li et al., 2023). Despite 049

these advances, a noticeable gap remains between 050

current model performance and human-level ca- 051

pabilities—particularly on the recently introduced 052

Spider 2.0 benchmark (Lei et al., 2025), which 053

poses more realistic and challenging scenarios for 054

semantic parsing. Contemporary large language 055

model (LLM)-based approaches to Text-to-SQL 056

typically comprise three core components: schema 057

linking, SQL generation, and SQL refinement. In 058

the schema linking stage, prior work has primar- 059

ily focused on aligning natural language questions 060

with relevant database schema elements, improving 061

precision and contextual relevance. During SQL 062

generation, various methods have been proposed 063

to decompose complex questions and incorporate 064

reasoning strategies. In the refinement stage, the 065

categorization of SQL error types has become more 066

systematic, enabling the development of targeted 067

correction mechanisms. 068

Despite these advances, one crucial aspect of 069

SQL remains largely underexplored: its inherent 070

interactivity as a database interface that supports 071

fast and informative execution. This underutilized 072

property may partially account for the performance 073

gap between LLM-based systems and human ex- 074

perts. 075

To address this, we propose SDE-SQL, a novel 076

framework that incorporates Self-Driven Explo- 077

ration into both the generation and refinement 078

stages, as illustrated in Figure 1. In addition to 079

generating the final SQL query that directly an- 080

swers the natural language question, the model au- 081

tonomously generates and executes a sequence of 082

auxiliary queries—termed SQL Probes—designed 083

specifically to explore and extract informative sig- 084
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Figure 1: The Workflow of SDE-SQL, which consists of three parts: 1) Schema Linking: which retrieves and selects
useful database schema; 2)SQL Generation: performing zero-shot SQL generation based on two-phase self-driven
exploration; 3)SQL Refinement: which refines the SQL with the execution results of the Sub-SQLs and SQL Probes.

nals from the database.085

For schema linking, we leverage entity-based086

techniques including value retrieval and soft link-087

ing. During the generation phase, the model en-088

gages in a two-stage exploration process based on089

the question and schema, enabling it to iteratively090

refine its understanding of the database content091

and perform zero-shot reasoning grounded in the092

retrieved information.093

Following generation, we incorporate a two-094

stage exploration process into the refinement phase.095

For SQL queries that return explicit execution er-096

rors, the model directly revises them based on the097

error feedback. For queries that execute success-098

fully but return empty results, the first stage of ex-099

ploration uses the execution results of decomposed100

sub-queries (Sub-SQLs) to help the model diagnose101

the underlying issue. In the second stage, the model102

generates targeted SQL Probes to explore possible103

solutions, and selects the most promising one to104

produce the final refined query.105

Empirically, SDE-SQL achieves an execution106

accuracy of 67.67% on the BIRD benchmark us-107

ing Qwen2.5-72B-Instruct (Qwen et al., 2025)108

in a zero-shot setting. With supervised fine-109

tuning (SFT), the performance further improves110

to 68.19%.111

Our main contributions are as follows:112

• We propose SDE-SQL, a novel framework113

that leverages Self-Driven Exploration to en-114

hance the reasoning and interaction capabili-115

ties of LLMs in the Text-to-SQL task, signifi- 116

cantly narrowing the gap with human experts. 117

• We introduce a unified exploration mechanism 118

across both SQL generation and refinement 119

stages, enabling LLMs to actively query the 120

database, diagnose potential errors, and itera- 121

tively improve query quality. 122

• We conduct extensive experiments on the 123

BIRD and Spider benchmarks, along with ab- 124

lation studies, validating the effectiveness of 125

Self-Driven Exploration. 126

• We build a small-scale dataset for supervised 127

fine-tuning (SFT) on exploration and gener- 128

ation tasks, and show that targeted module- 129

level fine-tuning further improves the perfor- 130

mance of SDE-SQL. 131

2 Related Work 132

Transforming natural language questions into 133

database queries is a classic task, the earliest works 134

used inductive logic programming and human- 135

designed templates to accomplish this task(Zelle 136

and Mooney, 1996). In recent years, the advance- 137

ment of Text-to-SQL technologies can be broadly 138

categorized into two stages, driven by progress in 139

natural language processing. 140
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2.1 Traditional Seq2Seq Model-Based141

Methods142

Previous work primarily focused on improving143

encoding or decoding methods, as the seq2seq144

model framework consists of two main compo-145

nents, the encoder and the decoder. IRNet em-146

ployed a bidirectional LSTM to encode the ques-147

tion and a self-attention mechanism to encode the148

database schema, ultimately using an LSTM as a149

grammar-based decoder(Guo et al., 2019). In order150

to effectively capture the relationship between the151

database schema and the question, RAT-SQL devel-152

ops an encoder with a relation-aware self-attention153

mechanism(Wang et al., 2020). After that, Cai et al.154

(2022) and Cao et al. (2021) utilized graph neural155

networks to encode the relationships between the156

schema and the query. Leveraging the exceptional157

capabilities of pre-trained language models (PLMs)158

across various NLP tasks, Hwang et al. (2019) was159

the first to incorporate BERT as its encoder. For160

improvements in the decoder, Xu et al. (2017) and161

Choi et al. (2020) focused on sketch- based de-162

coding method. To reduce time consumption dur-163

ing inference, SDSQL presented the Schema De-164

pendency Learning and removed execution-guided165

(EG) decoding strategy(Hui et al., 2021).166

2.2 LLM-Based Methods167

With the advent of LLMs, the Text-to-SQL field has168

experienced a groundbreaking innovation, bringing169

about significant changes in the approach to the170

task.171

Methods Based on Prompt Engineering Ra-172

jkumar et al. (2022) evaluated the potential of173

LLMs in the Text-to-SQL task, demonstrating174

the remarkable capability of LLMs in this task.175

Building on in-context learning, DAIL-SQL (Gao176

et al., 2023) introduced a novel prompt engineering177

approach that improves the Text-to-SQL perfor-178

mance of LLMs through question representation,179

demonstration selection, and demonstration orga-180

nization. Based on Chain-of-Thought(CoT) rea-181

soning style(Wei et al., 2023), DIN-SQL(Pourreza182

and Rafiei, 2023), Divide-and-Prompt(Liu and183

Tan, 2023), CoE-SQL(Zhang et al., 2024a) and184

SQLfuse(Zhang et al., 2024b) designed CoT tem-185

plates with reasoning steps in the prompt to elicit186

chain thinking. To enhance the ability of LLMs187

in handling complex problems, QDecomp(Tai188

et al., 2023), DIN-SQL(Pourreza and Rafiei, 2023),189

MAC-SQL(Wang et al., 2025) and MAG-SQL(Xie190

et al., 2024) decomposed complex natural lan- 191

guage questions and solve them step by step. 192

Besides, MCS-SQL(Lee et al., 2024), CHASE- 193

SQL(Pourreza et al., 2024a) and CHESS(Talaei 194

et al., 2024) enhanced performance by generating 195

a large set of candidate SQL queries during the in- 196

ference stage and selecting the most suitable ones. 197

Methods Based on Fine-tuning Although 198

prompt engineering methods based on closed- 199

source models, like GPT-4o(OpenAI et al., 2024), 200

perform well in the Text-to-SQL task, they face 201

issues such as high costs, inability to guarantee 202

privacy, and limited flexibility. Therefore, fine- 203

tuning open-source models for the Text-to-SQL 204

task holds significant practical value and appli- 205

cation potential. DTS-SQL(Pourreza and Rafiei, 206

2024) and SQLfuse(Zhang et al., 2024b) explored 207

fine-tuning LLMs for both schema linking and 208

SQL generation. SQL-PaLM(Sun et al., 2024), 209

Open-SQL(Chen et al., 2024), XiYan-SQL(Gao 210

et al., 2025) and CodeS(Li et al., 2024) fine- 211

tuned open-source LLMs on carefully selected data, 212

while CodeS specifically adopted an incremental 213

pre-training approach using a specially curated 214

SQL-centric corpus. In addition, there are some 215

novel perspectives. DELLMHong et al. (2024) 216

specifically fine-tuned a Data Expert Language 217

Model that provides domain knowledge, while 218

SQL-GENPourreza et al. (2024b) proposed a novel 219

Mixture-of-Experts (MoE) architecture to handle 220

multiple SQL dialects. 221

3 Methodology 222

3.1 Entity-based Schema Linking 223

In the Text-to-SQL task, schema linking refers to 224

the process of identifying and selecting the rele- 225

vant tables, columns, and values from the database 226

based on the input natural language question. To 227

improve the accuracy of linking, we use an entity- 228

based linking approach, including Value Retrieval 229

and Soft Schema Linking. 230

3.1.1 Entity-based Value Retrieval 231

Similar to the retrieval module in Talaei et al. 232

(2024), we first employ an LLM to extract enti- 233

ties from the natural language question through 234

few-shot learning. And then the value retriever 235

identifies similar values in the database based on 236

Locality Sensitive Hashing (LSH) and semantic 237

similarity. 238

3



3.1.2 Entity-based Soft Schema Linking239

To improve the tolerance in the schema linking240

stage, we chose the soft schema linking method,241

like the approach in Xie et al. (2024). We employ a242

one-shot manner to prompt LLM to select the rele-243

vant columns based on each entity. For the selected244

columns, we provide as much detailed information245

as possible during the subsequent SQL generation,246

including the column name, type, column descrip-247

tion, value examples, and value descriptions. For248

the unselected columns, we only retain the column249

name and type. This approach not only signifi-250

cantly reduces the input length, allowing the lan-251

guage model to focus on the most relevant database252

schema during generation, but also enhances toler-253

ance by preventing the removal of useful columns254

that were not chosen.255

3.2 Generation Based on Self-Driven256

Exploration257

In previous Text-to-SQL research, SQL has often258

been viewed primarily as an intermediate result or259

final output, with its inherent functionality mostly260

overlooked. Therefore, we introduce the concept261

of SQL Probes. SQL Probes, literally meaning262

SQL queries that function as probes, are specif-263

ically designed for exploring the database based264

on current natural language question. Formally,265

we define the task as a mapping from a natural266

language query Q and a database schema D to a267

corresponding SQL query S. The natural language268

query Q is composed of two parts: the target and269

the conditions (Xie et al., 2024). Typically, the270

target corresponds to the main SELECT clause in271

the SQL query S, while the conditions correspond272

to the other clauses in S, such as the WHERE clause.273

Figure 2 is an example.274

Question

Database

Find the names of employees
who work in the IT department 
and earn more than $50000.

Target: the names of employees

Condition 1: The employees must 
work in the IT department

Condition 2: The employees
must earn more than $50000

SELECT `name` FROM employees

WHERE `department` = 'IT'

WHERE `salary` > 50000

SELECT `name` FROM employees
WHERE `department` = 'IT’ AND 
`salary` > 50000

SQL

Figure 2: An example of Text-to-SQL.

To obtain a specific SQL representation, entities275

must first be mapped to the corresponding columns276

and values in the database. Whether this step can277

be executed accurately depends on how well the 278

language model understands the database. 279

However, the information provided by the previ- 280

ously processed database schema is far from suffi- 281

cient. Real-world databases are often highly com- 282

plex and messy. Different tables may contain many 283

columns with the same meaning (representing the 284

same item), and the values in these columns might 285

have different formats, with some values even exist- 286

ing only in specific tables. In the absence of suffi- 287

cient information, LLM can only randomly identify 288

combinations from these similar columns and val- 289

ues. This is also one of the key reasons behind 290

the LLM’s especially unstable performance in this 291

task. During evaluation, it is frequently observed 292

that the model can correctly predict some exam- 293

ples at times, while failing on the same examples 294

at other times. In prior work, some methods have 295

involved generating multiple SQL-candidates with 296

the language model, followed by selecting the most 297

appropriate one. Nevertheless, this approach fails 298

to address the underlying problem. We propose 299

that the most fundamental solution is to empower 300

LLM with the ability to dynamically interact with 301

the database. In SDE-SQL, LLM performs a two- 302

stage self-driven exploration within the database 303

before generation. 304

3.2.1 Candidates Exploration 305

The goal of this stage of exploration is to enable 306

the large language model to query the database for 307

information regarding both the Targets and a single 308

Condition, and then select appropriate candidates 309

for each target and condition. Since an entity in a 310

natural language question is mapped to either a col- 311

umn or a value (or both a column and a value) in the 312

database, LLM needs to determine the candidate 313

columns and candidate values for each entity. Ini- 314

tially, the language model generates several Base 315

SQL Probes, which enumerate candidate columns 316

for the Targets. These SQLs focus solely on query- 317

ing the Targets without any additional conditions. 318

Following this, Condition SQL Probes are created, 319

where each Probe typically extends a Base SQL 320

Probe by adding a column candidate and maybe a 321

value candidate corresponding to a specific condi- 322

tion. Assuming each set of candidates contains two 323

options, the generation of Condition SQL Probes is 324

illustrated in Figure 3, where each root-to-leaf path 325

corresponds to a specific Condition SQL Probe. We 326

refer to the condition description of each Condition 327

SQL Probe as a Condition Description Candi- 328
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Column Candidates of Targets: Column Candidates of Condition 1: Column Candidates of Condition 2: 

Value Candidates of Condition 1: Value Candidates of Condition 2:

Find the phone number of the user whose name is John Charlie Hinton and who is from the United Kingdom.

Users.`Phone`

Contact_info.
`Phone_Number`

Users.`name`

Contact_info.
`full_name`

Users.`location`

Contact_info.
`country`

“John Charlie
Hinton”

“United Kingdom”

“the United
Kingdom”

Figure 3: Condition SQL Probes Generation Process Illustrated Using a Tree Structure.

date. For example, in Figure 3, one Condition329

Description Candidate is:330

SELECT Phone FROM users WHERE name =331

'John␣Charlie␣Hinton'AND location = '332

United␣Kingdom';333

3.2.2 Combinations Exploration334

Based on the results of the previous stage’s explo-335

ration, the scope of candidates has been narrowed336

down. Now, it is necessary to combine all the con-337

ditions to find the most suitable candidate combi-338

nation. For SQL queries that return no results, the339

corresponding candidate combination is definitely340

unsuitable.341

3.2.3 Zero-shot Generation with Exploration342

Results343

In our experiments, we found that existing methods344

do not fully leverage the large language model’s po-345

tential for SQL generation. For example, strategies346

such as designing new decomposition approaches347

to allow the model to progressively solve com-348

plex problems, using various prompt techniques349

to generate multiple candidates for selection, or350

employing search strategies like Monte Carlo tree351

search(MCTS) to enhance the inference capability352

of language models, can lead to modest improve-353

ments in model performance. However, these gains354

are still significantly smaller than those achieved355

by providing the model with sufficient information.356

Therefore, in SDE-SQL, the LLM generator gen-357

erates SQL based on the database schema and the358

results from the previous two exploration stages, 359

without relying on any question-SQL pairs as few- 360

shot examples or using any question decomposition 361

strategies. To improve the accuracy and robustness 362

of SQL generation, we adopt a self-consistency 363

strategy that selects the most consistent answer by 364

comparing the execution results of multiple gener- 365

ated SQL queries. 366

3.3 Refinement Based on Self-Driven 367

Exploration 368

In the past, existing techniques based on In-Context 369

Learning have introduced detection and repair so- 370

lutions for Text-to-SQL errors, with each solution 371

differing in its approach to error identification al- 372

gorithms and the supplementary data provided to 373

assist LLM in comprehending and rectifying these 374

errors.(Shen et al., 2025) 375

For Syntax errors and Schema errors, the error 376

feedback after execution already contains sufficient 377

information, allowing LLMs to effectively com- 378

plete the correction of SQL. However, for some 379

other more complex errors, they typically result in 380

empty query results without any error messages. 381

Even when humans attempt to correct these errors, 382

they cannot do so in one go; instead, they need to 383

write some SQL statements for debugging and di- 384

agnose the problem based on the execution results 385

of these queries. The current approach involves 386

continuously regenerating until the repairs is suc- 387

cessful or the attempt limit is reached. Throughout 388

this repair process, LLM does not receive any use- 389
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Figure 4: An illustration of the proposed refinement process with exploration in SDE-SQL.

ful information, and its reasoning abilities are not390

fully utilized. In other words, the reason for the391

error is never identified.392

Therefore, in SDE-SQL, we introduce a com-393

prehensive Self-Driven Exploration phase prior to394

SQL revision. For queries that yield empty results,395

the refinement process is divided into three distinct396

stages: the Error Cause Identification Stage, the397

Solution Exploration Stage, and the Modification398

Stage, as illustrated in Figure 4.399

3.3.1 Error Cause Identification Stage400

In a complex SQL statement, multiple tables may401

be involved and multiple conditions may be applied402

simultaneously, making it difficult to pinpoint the403

issue by directly analyzing the entire SQL. There-404

fore, we need to conduct a fine-grained diagnosis.405

To generate a series of Sub-SQLs as SQL Probes406

for diagnostic purposes, we developed a decom-407

poser based on SQLGlot. The decomposer first408

converts complex SQL queries into Abstract Syn-409

tax Trees (ASTs) and then identifies indivisible410

condition units by analyzing node types and their411

relationships. These identified subtrees within the412

AST serve as the foundation for generating seman-413

tically valid Sub-SQLs, and the execution results414

of these Sub-SQLs will be provided to LLM to415

assist it in accurately diagnosing and pinpointing416

issues in the original query. An example of the417

decomposition result is shown in Figure 8.418

3.3.2 Solution Exploration Stage419

We have summarized five possible reasons that420

may lead to an empty query result. At this stage,421

LLM need to analyze the probe results in the previ-422

ous stage to derive hypotheses about possible error423

causes, and then generate a series of SQL probes 424

to assist in exploring potential solutions to these 425

errors. 426

Conditions conflict or condition duplication 427

This error refers to situations where data can be 428

found when executed under a single condition, but 429

when multiple conditions are combined, no data 430

that meets the requirements can be found (resulting 431

in an empty query result). There are two possible 432

reasons for this error: conflicting combinations of 433

multiple different conditions or redundant descrip- 434

tions of a single condition using different columns. 435

(i) Conditions conflict typically arises when an en- 436

tity in a condition corresponds to multiple possible 437

candidate columns, and only a specific candidate 438

column combined with other conditions can yield 439

the corresponding data item. An example is shown 440

in Figure 5. (ii) Condition duplication occurs when 441

an entity in a condition maps to multiple candidate 442

columns, causing the SQL generated by the large 443

language model to inadvertently employ these vari- 444

ous candidate columns in describing the same con- 445

dition, ultimately resulting in the failure to retrieve 446

data that fulfills the intended condition. 447

Unnecessary Table Joins The SQL may include 448

unnecessary table joins, resulting in no records 449

satisfying the conditions in the final intersection. 450

Mismatch between column and value This er- 451

ror arises when either the value format does not 452

match the selected (but correct) column, or when 453

a similar-looking column is chosen that does not 454

contain the intended value. 455

Sub-query Scope Inconsistency Sometimes, the 456

scope of the sub-query may be inconsistent with 457
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that of the main query, especially when using the458

MIN/MAX functions in the sub-query, which often459

leads to an empty query result. Figure 6 shows an460

example that the row of data retrieved in the sub-461

query does not exist in the result after the JOIN of462

these two tables.463

3.3.3 Target Checking After Refinement464

For an SQL query, the most important part is ac-465

tually the target of the query, which refers to the466

columns being selected in the SELECT clause. If the467

query target in SQL does not align with the original468

query target in the natural language question, then469

the transformation is undoubtedly a failure. How-470

ever, when LLMs generate SQL, they sometimes471

include columns that are not part of the query target472

in the SELECT clause, such as columns used in the473

conditions. Therefore, after refining the SQL based474

on the execution results, it is necessary to check475

whether the query target in the SQL matches the476

query target in the natural language question. To477

avoid introducing new errors at this stage, we allow478

the large language model to only determine if un-479

necessary target columns are selected in the SQL.480

If such columns are found, they will be removed481

without affecting the execution. The procedure is482

illustrated in Figure 7.483

3.4 Supervised Fine-Tuning (SFT)484

To further enhance the model’s ability to au-485

tonomously explore the database and utilize ex-486

ploration results to generate more accurate SQL,487

we also perform supervised fine-tuning (SFT) on488

the model. The training data is sampled from the489

training set of BIRD with Qwen2.5-72B-Insturct.490

We employed a prompt-based pipeline to roll out491

data, and the examples that eventually produced492

correct SQL were regarded as valid data for fine-493

tuning the model.494

Among the 9,428 data points, 5,231 valid sam-495

ples were obtained through sampling. From the rea-496

soning trajectory of each example, we extract two497

components: (i) the exploration phase, where SQL498

probes are generated; and (ii) the prediction phase,499

where the final SQL query is generated based on500

the exploration results.501

4 Experiments502

In this section, we first introduce the experimental503

setup, and then report and analyze the results.504

4.1 Experimental Setup 505

4.1.1 Dataset and Metrics 506

Spider (Yu et al., 2019) is a widely adopted bench- 507

mark dataset for the Text-to-SQL task. It is 508

large-scale, cross-domain, and complex, contain- 509

ing 10,181 natural language questions and 5,693 510

corresponding SQL queries across 200 different 511

databases. As a challenging benchmark of Text-to- 512

SQL task, the recently proposed BIRD dataset (Li 513

et al., 2023) includes 95 large-scale real databases 514

with dirty values, featuring 12,751 unique question- 515

SQL pairs. The databases within the BIRD dataset, 516

similar to those in real-world scenarios, exhibit in- 517

herent ambiguities. Accordingly, detailed descrip- 518

tions are provided for each column, along with 519

external knowledge. In this work, we choose Exe- 520

cution Accuracy (EX) as the metric, since it reflects 521

the accuracy of the results returned by the executed 522

SQL queries. This metric considers various SQL 523

formulations for the same question, providing a 524

more precise and fair evaluation of the outcomes. 525

4.1.2 SFT Settings 526

For both exploration task and generation task, we 527

conducted 24-hour training on 8 NVIDIA A800 528

GPUs with Qwen2.5-72B-Instruct. The detailed 529

training hyperparameters are provided in Table 4. 530

4.1.3 Baselines 531

To enable a comprehensive comparison, we se- 532

lected representative methods based on closed- 533

source models and representative methods based 534

on open-source models without model ensemble 535

as baselines. 536

4.2 Main Results 537

4.2.1 BIRD Results 538

When evaluated on the BIRD dev dataset, SDE- 539

SQL based on Qwen2.5-72B-Instruct outperforms 540

most GPT-4-based methods and the majority of 541

open-source models, achieving an execution accu- 542

racy of 68.19% after fine-tuning, as shown in Ta- 543

ble 2. Even in the training-free setting, it achieves 544

a strong performance of 67.67%, further highlight- 545

ing the effectiveness of our approach. 546

4.2.2 Spider Results 547

As shown in Table 3, SDE-SQL fine-tuned solely 548

on the BIRD training set achieves competitive 549

results on Spider benchmark, surpassing GPT- 550

4-based methods and most open-source models, 551
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Method Simple Moderate Challenging All
SDE-SQL + Qwen2.5-72B-Instruct 74.92 57.76 53.10 67.67

w/o Soft Schema Linker 73.51 58.84 50.34 66.88↓0.79
w/o Exploration Before Generation 72.97 56.46 48.97 65.71↓1.96
w/o Refinement Module 72.97 55.60 48.97 65.45↓2.22

w/o Exploration in Refinement 72.86 56.68 51.72 65.97↓1.70
w/o Target Checking 73.19 57.76 49.66 66.30 ↓1.37

w/o Exploration in Generation & Refinement 72.11 54.31 48.28 64.47↓3.20

SDE-SQL + Fine-tuned Explorer 74.16 59.26 55.17 67.86↑0.19
SDE-SQL + Fine-tuned Generator 74.49 58.19 55.86 67.80↑0.13
SDE-SQL + Fine-tuned Explorer & Generator 74.70 58.84 56.55 68.19↑0.52

Table 1: Execution accuracy of SDE-SQL on BIRD dev set in the ablation study.

Method dev(EX)
AskData + GPT-4o 75.36
CHASE-SQL + Gemini 74.46
XiYan-SQL 73.34
OpenSearch-SQL, v2 + GPT-4o 69.30
CHESS 68.31
Distillery + GPT-4o 67.21
MCS-SQL 63.36
MAC-SQL + GPT-4 59.39
DAIL-SQL + GPT-4 54.76
DIN-SQL + GPT-4 50.72
GPT-4 46.35
DTS-SQL + DeepSeek-7B 55.80
SFT CodeS-15B 58.47
SQL-o1 + Llama3-8B 63.4
OneSQL-v0.1-Qwen-32B 64.60
XiYanSQL-QwenCoder-32B 67.01
Qwen2.5-72B-Instruct 60.17
SDE-SQL + Qwen2.5-72B-Instruct 67.67
SDE-SQL (SFT) 68.19

Table 2: The experimental results of competing model
on the BIRD dataset.

which underscores its strong generalization abil-552

ity. Nevertheless, the performance gain is relatively553

modest, as a large portion of SQL queries in the554

Spider dataset produce empty execution results,555

thereby limiting the effectiveness of feedback from556

database exploration.557

4.3 Ablation Study558

For each module in SDE-SQL, we conduct ablation559

studies on the development set of BIRD benchmark,560

which is shown in Table 1. In addition, we evaluate561

the effect of incorporating the fine-tuned explorer562

and generator into the pipeline. The results demon-563

strate that each component plays an important role,564

with the introduction of the two exploration phases565

leading to particularly significant performance im-566

provements. Besides, modules fine-tuned on their567

Method dev(EX) test(EX)
SDE-SQL (SFT) 87.5 88.5
SDE-SQL + Qwen2.5-72B-Instruct 87.3 88.3
MAC-SQL + GPT-4 86.8 82.8
SENSE-13B 84.1 83.5
SQL-o1 + Llama3-8B 87.4 85.4
DAIL-SQL + GPT-4 84.4 86.6
ROUTE + Qwen2.5-14B 87.3 87.1
DIN-SQL + GPT-4 82.8 85.3
GPT-4 (zero-shot) 73.4 -
Qwen2.5-72B-Instruct 73.9 84.0

Table 3: The experimental results of competing model
on the Spider dataset.

respective sub-tasks can further enhance the overall 568

performance of the workflow. 569

5 Conclusion 570

In this work, we propose SDE-SQL, a novel Text- 571

to-SQL framework that integrates Self-Driven Ex- 572

ploration into both the SQL generation and refine- 573

ment stages. By enabling LLMs to proactively 574

interact with databases through SQL probes, SDE- 575

SQL bridges the gap between static query genera- 576

tion and dynamic, execution-based reasoning. This 577

exploration mechanism allows LLMs to uncover 578

latent schema semantics and execution patterns, 579

significantly improving their ability to produce ex- 580

ecutable and semantically accurate SQL queries. 581

Extensive experiments on the BIRD and Spi- 582

der datasets demonstrate the effectiveness of SDE- 583

SQL, with the model achieving an execution ac- 584

curacy of 68.19% on BIRD after supervised fine- 585

tuning. Ablation studies confirm the contributions 586

of key components—especially the exploration 587

pipeline and the fine-tuning strategies. As future 588

work, we plan to explore tighter integration of 589

exploration signals into model training to further 590

strengthen the model’s reasoning capabilities. 591
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6 Limitation592

Although self-driven exploration significantly en-593

hances the potential of large language models in594

Text-to-SQL tasks, our current approach has sev-595

eral limitations. In SDE-SQL, database exploration596

is entirely prompt-driven—meaning that the ef-597

fectiveness of the exploration process heavily de-598

pends on the design and quality of manually crafted599

prompts. Poorly constructed prompts may lead the600

model to generate uninformative or redundant SQL601

probes, thereby limiting its ability to acquire mean-602

ingful schema knowledge or execution insights.603

Moreover, relying solely on prompt engineering604

can restrict the model’s capacity for deeper reason-605

ing, as it lacks mechanisms for adaptive learning606

based on feedback from the environment.607

Another limitation is the model’s inability to au-608

tonomously refine its exploration strategy over time.609

Since each SQL probe is generated statically from610

prompts, the model cannot dynamically adjust its611

behavior based on prior successes or failures dur-612

ing the exploration process. This constraint reduces613

the overall flexibility and learning efficiency of the614

system.615

To address these issues, future work will focus616

on making database exploration more intrinsic to617

the model itself. One promising direction is to in-618

corporate reinforcement learning or other feedback-619

driven learning paradigms, allowing the model to620

iteratively refine its probing strategies based on ex-621

ecution outcomes. By enabling the model to learn622

from its own interactions with the database, we623

hope to develop a more robust, adaptive framework624

capable of deeper, context-aware reasoning in com-625

plex database environments.626
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A Examples of Error Cause923

SELECT `SchoolName` 
FROM EducationalInstitutions
WHERE `DistrictName` = 'Mountain View';

SELECT `SchoolName` 

FROM EducationalInstitutions

WHERE `Enrollment` > 500;

SELECT `SchoolName` 

FROM EducationalInstitutions

WHERE `DistrictName` = 'Mountain View’ 

AND `Enrollment` > 500;

SELECT T2.`SchoolName` 

FROM EducationFinance AS T1 

JOIN EducationalInstitutions AS T2 

ON T1.`InstitutionID` = T2.`InstitutionID`

WHERE T1.`DistrictName` = 'Mountain View';

SELECT T2.`SchoolName` 

FROM EducationFinance AS T1 

JOIN EducationalInstitutions AS T2 

ON T1.`InstitutionID` = T2.`InstitutionID` 

WHERE T1.`DistrictName` = 'Mountain View’ 

AND T2.`Enrollment` > 500;

Conflict

SELECT `SchoolName` 

FROM EducationalInstitutions

WHERE `Enrollment` > 500;

Compatible

Figure 5: An Example of Condition Conflict

satscoresfrpm

AvgScrReadcdsCDSCodeFRPM Count 
(Ages 5-17) 

6424369641433290443696414332904136

6391964212193188019642121931880192

639436946843344214369468433442183

6531611760135244

Rows not in the JOIN result 64243696414332904

63919642121931880

SELECT T1.`FRPM Count (Ages 5-17)`

FROM from AS T1 

JOIN satscores AS T2

ON T1.`CDSCode` = T2.cds

WHERE T2.`AvgScrRead` = (

SELECT MAX(`AvgScrRead`)

FROM satscores

)

SELECT T1.`FRPM Count (Ages 5-17)`

FROM from AS T1

JOIN satscores AS T2 

ON T1.`CDSCode` = T2.cds

ORDER BY T2.`AvgScrRead` DESC

LIMIT 1;

Figure 6: An example of Sub-query Scope Inconsis-
tency

B Target Checking Module924

Question

Evidence

SQL

Result Columns

```json
{

“Modification”: “True/False”,
“Final SQL”: “<SQL>”

}
```

LLM

Target Checking Module

Figure 7: Target Checking Module

C Training Settings925

Parameter Value

per_device_train_batch_size 1
gradient_accumulation_steps 8
learning_rate 1.0e-4
num_train_epochs 2.0
lr_scheduler_type cosine
lora_rank 16

Table 4: Training hyperparameter configurations.

D Figures 926

Wrong SQL:  SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON 
T1.id = T2.id WHERE T2.customer_id = 100 AND T1.order_date > '2023-01-01';

Sub-SQLs As SQL Probes for Diagnosis: 

• SELECT T2.name FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id
• SELECT T2.name FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id WHERE 

T1.order_date > '2023-01-01'
• SELECT T2.name FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id WHERE 

T2.customer_id = 100
• SELECT T2.name FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id WHERE 

T2.customer_id = 100 AND T1.order_date > '2023-01-01’

• SELECT SUM(T1.amount) FROM orders AS T1
• SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id
• SELECT SUM(T1.amount) FROM orders AS T1 WHERE T1.order_date > '2023-01-01'
• SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id

WHERE T1.order_date > '2023-01-01'
• SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id 

WHERE T2.customer_id = 100
• SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id

WHERE T2.customer_id = 100 AND T1.order_date > '2023-01-01’

• SELECT SUM(T1.amount), T2.name FROM orders AS T1 JOIN customers AS T2 ON
T1.id = T2.id;

• SELECT SUM(T1.amount), T2.name FROM orders AS T1 JOIN customers AS T2 ON 
T1.id = T2.id WHERE T1.order_date > '2023-01-01';

• SELECT SUM(T1.amount), T2.name FROM orders AS T1 JOIN customers AS T2 ON
T1.id = T2.id WHERE T2.customer_id = 100;

• SELECT SUM(T1.amount), T2.name FROM orders AS T1 JOIN customers AS T2 ON 
T1.id = T2.id WHERE T2.customer_id = 100 AND T1.order_date > '2023-01-01’；

Decomposer

Figure 8: SQL Probes in Error Cause Identification
Stage

E Prompt used by SDE-SQL in the 927

training-free setting 928

For approaches that do not rely on supervised train- 929

ing, it becomes particularly crucial to carefully 930

craft and design prompt templates that can effec- 931

tively guide the model to carry out Self-Driven 932

Exploration behaviors in a controlled and meaning- 933

ful manner. In this section, we present a compre- 934

hensive set of prompt templates that are utilized 935

across different stages of the SDE-SQL pipeline to 936

support this capability. Due to limitations in avail- 937

able space, certain detailed elements and specific 938

prompt examples have been omitted, but the essen- 939

tial structures and core ideas are fully retained. 940
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[Instruction]
Your task is to generate a series of SQL Probes to explore the database and 
identify the correct columns mentioned the given question. These Probes will 
help determine which columns contain the necessary data and ensure that the 
final SQL query returns non-empty results. Follow these requirements:

[Requirements]
- In this task, you should identify and list all entities mentioned in the 
question, along with their corresponding candidate columns in the database 
schema. For each entity, there is only one candidate column unless the 
database schema contains multiple columns with the same or extremely similar 
meanings that are consistent with the entity. Do not include unnecessary 
columns as candidate columns. For each entity, if it corresponds to multiple 
candidate columns, generate SQL Probes to check the presence of relevant 
values in each candidate column. If a specific value is mentioned for an 
entity (e.g., 'Mountain View' district or enrollment > 500), include SQL
Probes to verify the existence of that value in the candidate columns.
- The entities in the question are divided into two types: target entity and
condition entity. The target entity is the ultimate goal of the query, while
the condition entity corresponds to the conditions that the target entity
needs to satisfy. First, you need to generate the corresponding Base SQL
Probes based on the target entity. Then, for each condition entity, generate 
the corresponding Condition SQL Probes based on the Base SQL Probes.
Base SQL Probes: At first generate the base SQL Probes that search for the 
target entity. All other SQL Probes should be generated based on this base SQL 
Probe.
Condition SQL Probes: Generate SQL Probes for each condition entity based on 
the Base SQL Probe. 

[Attention]
- If the 【Evidence】 specifies a candidate column or candidate value for an 
entity, use that column or value as the mapping for the entity directly if 
【Evidence】 is reasonable, and there is no need to explore other candidates. 
If there is a calculation formula for an entity in the 【Evidence】, 
prioritize using this formula to represent the entity. This is very 
important!!!
- You don't need to consider SQL Probes that combine multiple conditions.
- Base SQL Probes should only select the targets directly without other 
conditions.
- Condition SQL Probes will add new conditions to the Base SQL Probe.

[Note]
...
[SQL Tricks]
...
[Database admin instructions]
...
[Output Format]
...

Figure 9: Prompt Template of Candidates Exploration
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[Instruction]
The question provided to you can be broken down into a target and several 
conditions. Previously, a series of SQL Probes based on the target and 
conditions were generated. Among these, the Base SQL Probes are generated for 
the target, while the other SQL Probes are based on the Base SQL Probes with 
the addition of exploring a specific condition. I will provide you with these 
SQL Probes and their corresponding execution results (whether they return 
empty or not). What you need to do is combine the conditions based on the 
Database schema and the question to generate a new series of SQL Probes. This 
will help conduct a more in-depth exploration of the database and assist me in 
generating the final SQL for the question.

[Requirements]
- The execution results can be one of two outcomes: NULL or Not NULL. !!!NULL 
means that the result of the SQL query is empty (no data matches the 
conditions). Not NULL means that the result of the SQL query is not empty
(there is data that matches the conditions)!!!
- You need to analyze the current execution results, eliminate the obviously
invalid candidate columns, and only combine the ones that are potentially
valid.
- You need to combine all the conditions to ensure a comprehensive exploration.
For example, suppose the current question contains a target and three 
conditions. After analyzing the execution results, the candidate columns are 
as follows: the unique candidate column for the target can be determined from 
the Base SQL Probes, the first condition has two possible candidate columns, 
the second condition has one possible candidate column, and the third 
condition has three possible candidate columns. Therefore, the number of SQL 
Probes to be generated after combining them would be 1 * 2 * 1 * 3 = 6.

[Tips]
...

[Output Format]
...

Figure 10: Prompt Template of Combinations Exploration
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# Task Description
You are an SQLite database expert tasked with generating a SQL query according 
to a input user question. You will be provided:
- An input user question, and potentially an evidence
- The database schema
- The descriptions of columns(column name, data_format, description)
- The value retrieved from database
- The SQL Probe result

Your task is to generate the correct SQL query. The input question consists of 
a query target and the conditions that the target needs to satisfy. You need 
to analyze the semantics of the question and convert it into the corresponding 
SQL. You should imitate human, and solve this task step by step. 

# Note
...

# SQL Tricks
...

# Database admin instructions
...

# Output Format
...

Figure 11: Prompt Template of Zero-shot Generation
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[Instruction]
When executing an SQL statement, there may be instances where the execution 
result is completely empty. 
You need to identify the cause of the error based on the query and database 
information and generate some new probe SQLs to find solution.
To help you to find out the reason, I extracted a batch of probe SQLs from 
this incorrect SQL and executed them, providing you with the execution results 
(NULL or Not NULL). !!!NULL means that the result of the SQL query is empty 
(no data matches the conditions). Not NULL means that the result of the SQL 
query is not empty (there is data that matches the conditions)!!!
You can use these Probe SQL query results to determine where the issue lies 
based on whether they are empty or not.
The revised SQL must be consistent with the Query, and it should not omit any 
necessary conditions described in the Query.

[Possible Causes]
Cause 1: Conflicting Conditions or Redundant Descriptions Across Different
Columns
--details: Conflicting: The simultaneous existence of two conditions leads to
null, proving that the column for one of the conditions was chosen incorrectly.
Redundant: For a certain condition, multiple different columns are used to
repeat the description, resulting in a conflict between this condition and 
other conditions. 
--fix: For the conflicting case, certainly, it seems that a condition might be 
described by several columns with similar meanings, but the incorrect column 
was selected in the SQL. To resolve this, identify and replace the column name 
accordingly. For the Redundant case, remove duplicate descriptions of the same 
condition and keep the one that fits best.

Cause 2: Incorrect Condition Values or Case Sensitivity Issues
--details: The conditions in the query may use incorrect values or fail to 
account for case sensitivity when comparing strings. 
--fix: Try to use `LIKE` because the LIKE keyword is case-insensitive by 
default.(table.<column> = 'xxx' -> table.<column> LIKE 'xxx')

Cause 3: Unnecessary Table Joins Resulting in No Satisfying Records.
--details: The query may include unnecessary table joins, resulting in no 
records satisfying the conditions in the final intersection.
--fix: Check if every table join is really necessary and discard unnecessary 
tables.

Cause 4: Incorrect Column Selection
--details: Among the several tables involved, there may be multiple candidate
columns for a certain condition, but Old SQL selected the wrong one.
--fix: Determine if there is a more suitable column, or use a similar column
from another table. 

Cause 5: Misuse of the MAX(MIN) function or `ORDER BY`
--details: Using the MAX(MIN) function or `ORDER BY` in a subquery(nested sql), 
the data corresponding to this maximum or minimum value may not be in the 
intersection of the two tables, so it may return a null value.
--fix: First JOIN the tables, and then use MAX(MIN) function or `ORDER BY` on 
the JOIN results.

[Requirements]
After thinking step by step, you may already have some guesses and potential 
solutions about the cause of the error, but you need to validate these guesses 
and solutions. Please generate a set of probe SQLs based on your analysis to 
help your future self arrive at the correct SQL.

Figure 12: Prompt Template of Solution Exploration
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[Instruction]
When executing an SQL statement, there may be instances where the execution 
result is completely empty. 
You need to identify the cause of the error based on the query and database 
information and make the necessary corrections.
To help you to find out the reason, I executed a series of SQLs which is 
related to this question, providing you with the execution results (NULL or 
Not NULL). !!!NULL means that the result of the SQL query is empty (no data 
matches the conditions). Not NULL means that the result of the SQL query is 
not empty (there is data that matches the conditions)!!!
You can use these Probe SQL query results to determine where the issue lies 
based on whether they are empty or not.
Note that your modified SQL still has to correspond one-to-one with the 
targets and conditions in the Query.

[Possible Causes]
Cause 1: Conflicting Conditions or Redundant Descriptions Across Different
Columns
-- details: Conflicting: The simultaneous existence of two conditions leads to
null, proving that the column for one of the conditions was chosen incorrectly.
Redundant: For a certain condition, multiple different columns are used to
repeat the description, resulting in a conflict between this condition and 
other conditions. 
-- fix: For the conflicting case, certainly, it seems that a condition might 
be described by several columns with similar meanings, but the incorrect 
column was selected in the SQL. To resolve this, identify and replace the 
column name accordingly.
For the Redundant case, remove duplicate descriptions of the same condition 
and keep the one that fits best.

Cause 2: Incorrect Condition Values or Case Sensitivity Issues
-- details: The conditions in the query may use incorrect values or fail to 
account for case sensitivity when comparing strings. 
-- fix: Try to use `LIKE` because the LIKE keyword is case-insensitive by 
default.(table.<column> = 'xxx' -> table.<column> LIKE 'xxx')

Cause 3: Unnecessary Table Joins Resulting in No Satisfying Records.
-- details: The query may include unnecessary table joins, resulting in no 
records satisfying the conditions in the final intersection.
-- fix: Check if every table join is really necessary and discard unnecessary
tables.

Cause 4: Incorrect Column Selection, No Matching Values
-- details: The query may select the wrong column or the column may not have
any values that satisfy the condition.
-- fix: Determine if there is a more suitable column, or use a similar column 
from another table.

Cause 5: Misuse of the MAX(MIN) function or `ORDER BY`
-- details: Using the MAX(MIN) function or `ORDER BY` in a subquery(nested 
sql), the data corresponding to this maximum or minimum value may not be in 
the intersection of the two tables, so it may return a null value.
-- fix: First JOIN the tables, and then use MAX(MIN) function ORDER BY on the 
JOIN result, not in a subquery(nested query).

Figure 13: Prompt Template of Final Refinement
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[Instruction]
You are a helpful assistant. Given a question, a SQL statement and probably a 
corresponding evidence, you need to determine whether the query goal of this 
SQL and the question are consistent.

[Requirement]
1. First, you need to identify the actual entity (target column) that the 
question is trying to query.
2. Determine how many columns the question expects to see in the result.
3. Compare the number of columns returned by the SQL query with the expected 
number of columns to determine if extra columns were selected.
4. If extra columns were selected, you need to modify the target after the 
SELECT keyword in the original SQL statement to remove the unnecessary target 
column. If you believe the selected columns are correct or insufficient, no 
modification is needed.
5. Your output should be in JSON format:
```json
{{

"Modification":"<True or False>",
"Final SQL":"<sql>"

}}
```

[Example]
...

[Attention]
Only modify when you are absolutely certain that there are extra target 
columns. If you feel there is no issue or are unsure whether there is an issue, 
do not make any changes.

Figure 14: Prompt Template of Target Checking
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