
SDE-SQL: Enhancing Text-to-SQL Generation in Large Language Models
via Self-Driven Exploration with SQL Probes

Anonymous ACL submission

Abstract001

Recent advances in large language models002
(LLMs) have led to substantial progress on003
the Text-to-SQL task. However, existing004
approaches typically depend on static, pre-005
processed database information supplied at in-006
ference time, which restricts the model’s ca-007
pacity to deeply comprehend the underlying008
database content. In the absence of dynamic009
interaction, LLMs are limited to fixed, human-010
curated context and lack the ability to au-011
tonomously query or explore the data. To over-012
come this limitation, we introduce SDE-SQL,013
a novel framework that empowers LLMs to per-014
form Self-Driven Exploration of databases015
during inference. This is achieved through016
the generation and execution of SQL probes,017
enabling the model to actively retrieve infor-018
mation and iteratively refine its understanding019
of the database. Unlike prior methods, SDE-020
SQL operates in a zero-shot setting, requir-021
ing no in-context demonstrations or question-022
SQL pairs. Evaluated on the BIRD bench-023
mark with Qwen2.5-72B-Instruct, SDE-024
SQL achieves an 8.02% relative improve-025
ment in execution accuracy over the vanilla026
Qwen2.5-72B-Instruct baseline, establish-027
ing a new state-of-the-art among open-source028
methods without supervised fine-tuning (SFT)029
or model ensembling. Furthermore, when com-030
bined with SFT, SDE-SQL delivers an addi-031
tional 0.52% performance gain.032

1 Introduction033

Text-to-SQL is a long-standing task in natural lan-034

guage processing that focuses on translating natural035

language questions into executable SQL queries.036

This capability not only empowers non-expert users037

to interact with structured databases seamlessly,038

but also mitigates hallucination issues in question-039

answering systems by grounding responses in fac-040

tual, database-stored information.041

Recent advances in large language models042

(LLMs) have led to significant improvements in043

the performance and accuracy of Text-to-SQL sys- 044

tems. LLM-based approaches have surpassed 90% 045

execution accuracy on the original Spider dataset 046

(Yu et al., 2019), and have demonstrated promis- 047

ing results on more complex and diverse bench- 048

marks such as BIRD(Li et al., 2023). Despite 049

these advances, a noticeable gap remains between 050

current model performance and human-level ca- 051

pabilities—particularly on the recently introduced 052

Spider 2.0 benchmark (Lei et al., 2025), which 053

poses more realistic and challenging scenarios for 054

semantic parsing. Contemporary large language 055

model (LLM)-based approaches to Text-to-SQL 056

typically comprise three core components: schema 057

linking, SQL generation, and SQL refinement. In 058

the schema linking stage, prior work has primar- 059

ily focused on aligning natural language questions 060

with relevant database schema elements, improving 061

precision and contextual relevance. During SQL 062

generation, various methods have been proposed 063

to decompose complex questions and incorporate 064

reasoning strategies. In the refinement stage, the 065

categorization of SQL error types has become more 066

systematic, enabling the development of targeted 067

correction mechanisms. 068

Despite these advances, one crucial aspect of 069

SQL remains largely underexplored: its inherent 070

interactivity as a database interface that supports 071

fast and informative execution. This underutilized 072

property may partially account for the performance 073

gap between LLM-based systems and human ex- 074

perts. 075

To address this, we propose SDE-SQL, a novel 076

framework that incorporates Self-Driven Explo- 077

ration into both the generation and refinement 078

stages, as illustrated in Figure 1. In addition to 079

generating the final SQL query that directly an- 080

swers the natural language question, the model au- 081

tonomously generates and executes a sequence of 082

auxiliary queries—termed SQL Probes—designed 083

specifically to explore and extract informative sig- 084

1

Schema Linking SQL Generation SQL Refinement

Question

Database

LLM

Database Schema

Entity-based Schema
Linking

Database SchemaQuestion

LLM

SQL Probes 1

Database

Exploration Results 1

LLM

SQL Probes 2
Question

Database Schema

Database

Exploration Results 2

LLM
Predicted SQL

Self-Driven Exploration Before Generation

Zero-shot Generation Based on Exploration Result

The Entity-based Schema
Linking process includes
steps such as entity
extraction, value retrieval,
and so on.

Predicted SQL

Database

Classification

Sqlite error Empty Result

Target
Checking
Module

Refinement
Module with
Exploration

Refined SQL

Final SQL

LLM

Executable
and returns
a non-empty
result.

Otherwise

Figure 1: The Workflow of SDE-SQL, which consists of three parts: 1) Schema Linking: which retrieves and selects
useful database schema; 2)SQL Generation: performing zero-shot SQL generation based on two-phase self-driven
exploration; 3)SQL Refinement: which refines the SQL with the execution results of the Sub-SQLs and SQL Probes.

nals from the database.085

For schema linking, we leverage entity-based086

techniques including value retrieval and soft link-087

ing. During the generation phase, the model en-088

gages in a two-stage exploration process based on089

the question and schema, enabling it to iteratively090

refine its understanding of the database content091

and perform zero-shot reasoning grounded in the092

retrieved information.093

Following generation, we incorporate a two-094

stage exploration process into the refinement phase.095

For SQL queries that return explicit execution er-096

rors, the model directly revises them based on the097

error feedback. For queries that execute success-098

fully but return empty results, the first stage of ex-099

ploration uses the execution results of decomposed100

sub-queries (Sub-SQLs) to help the model diagnose101

the underlying issue. In the second stage, the model102

generates targeted SQL Probes to explore possible103

solutions, and selects the most promising one to104

produce the final refined query.105

Empirically, SDE-SQL achieves an execution106

accuracy of 67.67% on the BIRD benchmark us-107

ing Qwen2.5-72B-Instruct (Qwen et al., 2025)108

in a zero-shot setting. With supervised fine-109

tuning (SFT), the performance further improves110

to 68.19%.111

Our main contributions are as follows:112

• We propose SDE-SQL, a novel framework113

that leverages Self-Driven Exploration to en-114

hance the reasoning and interaction capabili-115

ties of LLMs in the Text-to-SQL task, signifi- 116

cantly narrowing the gap with human experts. 117

• We introduce a unified exploration mechanism 118

across both SQL generation and refinement 119

stages, enabling LLMs to actively query the 120

database, diagnose potential errors, and itera- 121

tively improve query quality. 122

• We conduct extensive experiments on the 123

BIRD and Spider benchmarks, along with ab- 124

lation studies, validating the effectiveness of 125

Self-Driven Exploration. 126

• We build a small-scale dataset for supervised 127

fine-tuning (SFT) on exploration and gener- 128

ation tasks, and show that targeted module- 129

level fine-tuning further improves the perfor- 130

mance of SDE-SQL. 131

2 Related Work 132

Transforming natural language questions into 133

database queries is a classic task, the earliest works 134

used inductive logic programming and human- 135

designed templates to accomplish this task(Zelle 136

and Mooney, 1996). In recent years, the advance- 137

ment of Text-to-SQL technologies can be broadly 138

categorized into two stages, driven by progress in 139

natural language processing. 140

2

2.1 Traditional Seq2Seq Model-Based141

Methods142

Previous work primarily focused on improving143

encoding or decoding methods, as the seq2seq144

model framework consists of two main compo-145

nents, the encoder and the decoder. IRNet em-146

ployed a bidirectional LSTM to encode the ques-147

tion and a self-attention mechanism to encode the148

database schema, ultimately using an LSTM as a149

grammar-based decoder(Guo et al., 2019). In order150

to effectively capture the relationship between the151

database schema and the question, RAT-SQL devel-152

ops an encoder with a relation-aware self-attention153

mechanism(Wang et al., 2020). After that, Cai et al.154

(2022) and Cao et al. (2021) utilized graph neural155

networks to encode the relationships between the156

schema and the query. Leveraging the exceptional157

capabilities of pre-trained language models (PLMs)158

across various NLP tasks, Hwang et al. (2019) was159

the first to incorporate BERT as its encoder. For160

improvements in the decoder, Xu et al. (2017) and161

Choi et al. (2020) focused on sketch- based de-162

coding method. To reduce time consumption dur-163

ing inference, SDSQL presented the Schema De-164

pendency Learning and removed execution-guided165

(EG) decoding strategy(Hui et al., 2021).166

2.2 LLM-Based Methods167

With the advent of LLMs, the Text-to-SQL field has168

experienced a groundbreaking innovation, bringing169

about significant changes in the approach to the170

task.171

Methods Based on Prompt Engineering Ra-172

jkumar et al. (2022) evaluated the potential of173

LLMs in the Text-to-SQL task, demonstrating174

the remarkable capability of LLMs in this task.175

Building on in-context learning, DAIL-SQL (Gao176

et al., 2023) introduced a novel prompt engineering177

approach that improves the Text-to-SQL perfor-178

mance of LLMs through question representation,179

demonstration selection, and demonstration orga-180

nization. Based on Chain-of-Thought(CoT) rea-181

soning style(Wei et al., 2023), DIN-SQL(Pourreza182

and Rafiei, 2023), Divide-and-Prompt(Liu and183

Tan, 2023), CoE-SQL(Zhang et al., 2024a) and184

SQLfuse(Zhang et al., 2024b) designed CoT tem-185

plates with reasoning steps in the prompt to elicit186

chain thinking. To enhance the ability of LLMs187

in handling complex problems, QDecomp(Tai188

et al., 2023), DIN-SQL(Pourreza and Rafiei, 2023),189

MAC-SQL(Wang et al., 2025) and MAG-SQL(Xie190

et al., 2024) decomposed complex natural lan- 191

guage questions and solve them step by step. 192

Besides, MCS-SQL(Lee et al., 2024), CHASE- 193

SQL(Pourreza et al., 2024a) and CHESS(Talaei 194

et al., 2024) enhanced performance by generating 195

a large set of candidate SQL queries during the in- 196

ference stage and selecting the most suitable ones. 197

Methods Based on Fine-tuning Although 198

prompt engineering methods based on closed- 199

source models, like GPT-4o(OpenAI et al., 2024), 200

perform well in the Text-to-SQL task, they face 201

issues such as high costs, inability to guarantee 202

privacy, and limited flexibility. Therefore, fine- 203

tuning open-source models for the Text-to-SQL 204

task holds significant practical value and appli- 205

cation potential. DTS-SQL(Pourreza and Rafiei, 206

2024) and SQLfuse(Zhang et al., 2024b) explored 207

fine-tuning LLMs for both schema linking and 208

SQL generation. SQL-PaLM(Sun et al., 2024), 209

Open-SQL(Chen et al., 2024), XiYan-SQL(Gao 210

et al., 2025) and CodeS(Li et al., 2024) fine- 211

tuned open-source LLMs on carefully selected data, 212

while CodeS specifically adopted an incremental 213

pre-training approach using a specially curated 214

SQL-centric corpus. In addition, there are some 215

novel perspectives. DELLMHong et al. (2024) 216

specifically fine-tuned a Data Expert Language 217

Model that provides domain knowledge, while 218

SQL-GENPourreza et al. (2024b) proposed a novel 219

Mixture-of-Experts (MoE) architecture to handle 220

multiple SQL dialects. 221

3 Methodology 222

3.1 Entity-based Schema Linking 223

In the Text-to-SQL task, schema linking refers to 224

the process of identifying and selecting the rele- 225

vant tables, columns, and values from the database 226

based on the input natural language question. To 227

improve the accuracy of linking, we use an entity- 228

based linking approach, including Value Retrieval 229

and Soft Schema Linking. 230

3.1.1 Entity-based Value Retrieval 231

Similar to the retrieval module in Talaei et al. 232

(2024), we first employ an LLM to extract enti- 233

ties from the natural language question through 234

few-shot learning. And then the value retriever 235

identifies similar values in the database based on 236

Locality Sensitive Hashing (LSH) and semantic 237

similarity. 238

3

3.1.2 Entity-based Soft Schema Linking239

To improve the tolerance in the schema linking240

stage, we chose the soft schema linking method,241

like the approach in Xie et al. (2024). We employ a242

one-shot manner to prompt LLM to select the rele-243

vant columns based on each entity. For the selected244

columns, we provide as much detailed information245

as possible during the subsequent SQL generation,246

including the column name, type, column descrip-247

tion, value examples, and value descriptions. For248

the unselected columns, we only retain the column249

name and type. This approach not only signifi-250

cantly reduces the input length, allowing the lan-251

guage model to focus on the most relevant database252

schema during generation, but also enhances toler-253

ance by preventing the removal of useful columns254

that were not chosen.255

3.2 Generation Based on Self-Driven256

Exploration257

In previous Text-to-SQL research, SQL has often258

been viewed primarily as an intermediate result or259

final output, with its inherent functionality mostly260

overlooked. Therefore, we introduce the concept261

of SQL Probes. SQL Probes, literally meaning262

SQL queries that function as probes, are specif-263

ically designed for exploring the database based264

on current natural language question. Formally,265

we define the task as a mapping from a natural266

language query Q and a database schema D to a267

corresponding SQL query S. The natural language268

query Q is composed of two parts: the target and269

the conditions (Xie et al., 2024). Typically, the270

target corresponds to the main SELECT clause in271

the SQL query S, while the conditions correspond272

to the other clauses in S, such as the WHERE clause.273

Figure 2 is an example.274

Question

Database

Find the names of employees
who work in the IT department
and earn more than $50000.

Target: the names of employees

Condition 1: The employees must
work in the IT department

Condition 2: The employees
must earn more than $50000

SELECT `name` FROM employees

WHERE `department` = 'IT'

WHERE `salary` > 50000

SELECT `name` FROM employees
WHERE `department` = 'IT’ AND
`salary` > 50000

SQL

Figure 2: An example of Text-to-SQL.

To obtain a specific SQL representation, entities275

must first be mapped to the corresponding columns276

and values in the database. Whether this step can277

be executed accurately depends on how well the 278

language model understands the database. 279

However, the information provided by the previ- 280

ously processed database schema is far from suffi- 281

cient. Real-world databases are often highly com- 282

plex and messy. Different tables may contain many 283

columns with the same meaning (representing the 284

same item), and the values in these columns might 285

have different formats, with some values even exist- 286

ing only in specific tables. In the absence of suffi- 287

cient information, LLM can only randomly identify 288

combinations from these similar columns and val- 289

ues. This is also one of the key reasons behind 290

the LLM’s especially unstable performance in this 291

task. During evaluation, it is frequently observed 292

that the model can correctly predict some exam- 293

ples at times, while failing on the same examples 294

at other times. In prior work, some methods have 295

involved generating multiple SQL-candidates with 296

the language model, followed by selecting the most 297

appropriate one. Nevertheless, this approach fails 298

to address the underlying problem. We propose 299

that the most fundamental solution is to empower 300

LLM with the ability to dynamically interact with 301

the database. In SDE-SQL, LLM performs a two- 302

stage self-driven exploration within the database 303

before generation. 304

3.2.1 Candidates Exploration 305

The goal of this stage of exploration is to enable 306

the large language model to query the database for 307

information regarding both the Targets and a single 308

Condition, and then select appropriate candidates 309

for each target and condition. Since an entity in a 310

natural language question is mapped to either a col- 311

umn or a value (or both a column and a value) in the 312

database, LLM needs to determine the candidate 313

columns and candidate values for each entity. Ini- 314

tially, the language model generates several Base 315

SQL Probes, which enumerate candidate columns 316

for the Targets. These SQLs focus solely on query- 317

ing the Targets without any additional conditions. 318

Following this, Condition SQL Probes are created, 319

where each Probe typically extends a Base SQL 320

Probe by adding a column candidate and maybe a 321

value candidate corresponding to a specific condi- 322

tion. Assuming each set of candidates contains two 323

options, the generation of Condition SQL Probes is 324

illustrated in Figure 3, where each root-to-leaf path 325

corresponds to a specific Condition SQL Probe. We 326

refer to the condition description of each Condition 327

SQL Probe as a Condition Description Candi- 328

4

Column Candidates of Targets: Column Candidates of Condition 1: Column Candidates of Condition 2:

Value Candidates of Condition 1: Value Candidates of Condition 2:

Find the phone number of the user whose name is John Charlie Hinton and who is from the United Kingdom.

Users.`Phone`

Contact_info.
`Phone_Number`

Users.`name`

Contact_info.
`full_name`

Users.`location`

Contact_info.
`country`

“John Charlie
Hinton”

“United Kingdom”

“the United
Kingdom”

Figure 3: Condition SQL Probes Generation Process Illustrated Using a Tree Structure.

date. For example, in Figure 3, one Condition329

Description Candidate is:330

SELECT Phone FROM users WHERE name =331

'John␣Charlie␣Hinton'AND location = '332

United␣Kingdom';333

3.2.2 Combinations Exploration334

Based on the results of the previous stage’s explo-335

ration, the scope of candidates has been narrowed336

down. Now, it is necessary to combine all the con-337

ditions to find the most suitable candidate combi-338

nation. For SQL queries that return no results, the339

corresponding candidate combination is definitely340

unsuitable.341

3.2.3 Zero-shot Generation with Exploration342

Results343

In our experiments, we found that existing methods344

do not fully leverage the large language model’s po-345

tential for SQL generation. For example, strategies346

such as designing new decomposition approaches347

to allow the model to progressively solve com-348

plex problems, using various prompt techniques349

to generate multiple candidates for selection, or350

employing search strategies like Monte Carlo tree351

search(MCTS) to enhance the inference capability352

of language models, can lead to modest improve-353

ments in model performance. However, these gains354

are still significantly smaller than those achieved355

by providing the model with sufficient information.356

Therefore, in SDE-SQL, the LLM generator gen-357

erates SQL based on the database schema and the358

results from the previous two exploration stages, 359

without relying on any question-SQL pairs as few- 360

shot examples or using any question decomposition 361

strategies. To improve the accuracy and robustness 362

of SQL generation, we adopt a self-consistency 363

strategy that selects the most consistent answer by 364

comparing the execution results of multiple gener- 365

ated SQL queries. 366

3.3 Refinement Based on Self-Driven 367

Exploration 368

In the past, existing techniques based on In-Context 369

Learning have introduced detection and repair so- 370

lutions for Text-to-SQL errors, with each solution 371

differing in its approach to error identification al- 372

gorithms and the supplementary data provided to 373

assist LLM in comprehending and rectifying these 374

errors.(Shen et al., 2025) 375

For Syntax errors and Schema errors, the error 376

feedback after execution already contains sufficient 377

information, allowing LLMs to effectively com- 378

plete the correction of SQL. However, for some 379

other more complex errors, they typically result in 380

empty query results without any error messages. 381

Even when humans attempt to correct these errors, 382

they cannot do so in one go; instead, they need to 383

write some SQL statements for debugging and di- 384

agnose the problem based on the execution results 385

of these queries. The current approach involves 386

continuously regenerating until the repairs is suc- 387

cessful or the attempt limit is reached. Throughout 388

this repair process, LLM does not receive any use- 389

5

Error SQL Database
Schema

SQL Probes
For Diagnosis

Probe
Results 1

SQL Probes
For Solution

Probe
Results 2

Error Cause Identification Stage Solution Exploration Stage

Error SQL Database
Schema

Rule-based
Decomposer

Refined SQL

Modification Stage

Error SQL Database
Schema

Refinement Module with Exploration

LLM LLM

Figure 4: An illustration of the proposed refinement process with exploration in SDE-SQL.

ful information, and its reasoning abilities are not390

fully utilized. In other words, the reason for the391

error is never identified.392

Therefore, in SDE-SQL, we introduce a com-393

prehensive Self-Driven Exploration phase prior to394

SQL revision. For queries that yield empty results,395

the refinement process is divided into three distinct396

stages: the Error Cause Identification Stage, the397

Solution Exploration Stage, and the Modification398

Stage, as illustrated in Figure 4.399

3.3.1 Error Cause Identification Stage400

In a complex SQL statement, multiple tables may401

be involved and multiple conditions may be applied402

simultaneously, making it difficult to pinpoint the403

issue by directly analyzing the entire SQL. There-404

fore, we need to conduct a fine-grained diagnosis.405

To generate a series of Sub-SQLs as SQL Probes406

for diagnostic purposes, we developed a decom-407

poser based on SQLGlot. The decomposer first408

converts complex SQL queries into Abstract Syn-409

tax Trees (ASTs) and then identifies indivisible410

condition units by analyzing node types and their411

relationships. These identified subtrees within the412

AST serve as the foundation for generating seman-413

tically valid Sub-SQLs, and the execution results414

of these Sub-SQLs will be provided to LLM to415

assist it in accurately diagnosing and pinpointing416

issues in the original query. An example of the417

decomposition result is shown in Figure 8.418

3.3.2 Solution Exploration Stage419

We have summarized five possible reasons that420

may lead to an empty query result. At this stage,421

LLM need to analyze the probe results in the previ-422

ous stage to derive hypotheses about possible error423

causes, and then generate a series of SQL probes 424

to assist in exploring potential solutions to these 425

errors. 426

Conditions conflict or condition duplication 427

This error refers to situations where data can be 428

found when executed under a single condition, but 429

when multiple conditions are combined, no data 430

that meets the requirements can be found (resulting 431

in an empty query result). There are two possible 432

reasons for this error: conflicting combinations of 433

multiple different conditions or redundant descrip- 434

tions of a single condition using different columns. 435

(i) Conditions conflict typically arises when an en- 436

tity in a condition corresponds to multiple possible 437

candidate columns, and only a specific candidate 438

column combined with other conditions can yield 439

the corresponding data item. An example is shown 440

in Figure 5. (ii) Condition duplication occurs when 441

an entity in a condition maps to multiple candidate 442

columns, causing the SQL generated by the large 443

language model to inadvertently employ these vari- 444

ous candidate columns in describing the same con- 445

dition, ultimately resulting in the failure to retrieve 446

data that fulfills the intended condition. 447

Unnecessary Table Joins The SQL may include 448

unnecessary table joins, resulting in no records 449

satisfying the conditions in the final intersection. 450

Mismatch between column and value This er- 451

ror arises when either the value format does not 452

match the selected (but correct) column, or when 453

a similar-looking column is chosen that does not 454

contain the intended value. 455

Sub-query Scope Inconsistency Sometimes, the 456

scope of the sub-query may be inconsistent with 457

6

that of the main query, especially when using the458

MIN/MAX functions in the sub-query, which often459

leads to an empty query result. Figure 6 shows an460

example that the row of data retrieved in the sub-461

query does not exist in the result after the JOIN of462

these two tables.463

3.3.3 Target Checking After Refinement464

For an SQL query, the most important part is ac-465

tually the target of the query, which refers to the466

columns being selected in the SELECT clause. If the467

query target in SQL does not align with the original468

query target in the natural language question, then469

the transformation is undoubtedly a failure. How-470

ever, when LLMs generate SQL, they sometimes471

include columns that are not part of the query target472

in the SELECT clause, such as columns used in the473

conditions. Therefore, after refining the SQL based474

on the execution results, it is necessary to check475

whether the query target in the SQL matches the476

query target in the natural language question. To477

avoid introducing new errors at this stage, we allow478

the large language model to only determine if un-479

necessary target columns are selected in the SQL.480

If such columns are found, they will be removed481

without affecting the execution. The procedure is482

illustrated in Figure 7.483

3.4 Supervised Fine-Tuning (SFT)484

To further enhance the model’s ability to au-485

tonomously explore the database and utilize ex-486

ploration results to generate more accurate SQL,487

we also perform supervised fine-tuning (SFT) on488

the model. The training data is sampled from the489

training set of BIRD with Qwen2.5-72B-Insturct.490

We employed a prompt-based pipeline to roll out491

data, and the examples that eventually produced492

correct SQL were regarded as valid data for fine-493

tuning the model.494

Among the 9,428 data points, 5,231 valid sam-495

ples were obtained through sampling. From the rea-496

soning trajectory of each example, we extract two497

components: (i) the exploration phase, where SQL498

probes are generated; and (ii) the prediction phase,499

where the final SQL query is generated based on500

the exploration results.501

4 Experiments502

In this section, we first introduce the experimental503

setup, and then report and analyze the results.504

4.1 Experimental Setup 505

4.1.1 Dataset and Metrics 506

Spider (Yu et al., 2019) is a widely adopted bench- 507

mark dataset for the Text-to-SQL task. It is 508

large-scale, cross-domain, and complex, contain- 509

ing 10,181 natural language questions and 5,693 510

corresponding SQL queries across 200 different 511

databases. As a challenging benchmark of Text-to- 512

SQL task, the recently proposed BIRD dataset (Li 513

et al., 2023) includes 95 large-scale real databases 514

with dirty values, featuring 12,751 unique question- 515

SQL pairs. The databases within the BIRD dataset, 516

similar to those in real-world scenarios, exhibit in- 517

herent ambiguities. Accordingly, detailed descrip- 518

tions are provided for each column, along with 519

external knowledge. In this work, we choose Exe- 520

cution Accuracy (EX) as the metric, since it reflects 521

the accuracy of the results returned by the executed 522

SQL queries. This metric considers various SQL 523

formulations for the same question, providing a 524

more precise and fair evaluation of the outcomes. 525

4.1.2 SFT Settings 526

For both exploration task and generation task, we 527

conducted 24-hour training on 8 NVIDIA A800 528

GPUs with Qwen2.5-72B-Instruct. The detailed 529

training hyperparameters are provided in Table 4. 530

4.1.3 Baselines 531

To enable a comprehensive comparison, we se- 532

lected representative methods based on closed- 533

source models and representative methods based 534

on open-source models without model ensemble 535

as baselines. 536

4.2 Main Results 537

4.2.1 BIRD Results 538

When evaluated on the BIRD dev dataset, SDE- 539

SQL based on Qwen2.5-72B-Instruct outperforms 540

most GPT-4-based methods and the majority of 541

open-source models, achieving an execution accu- 542

racy of 68.19% after fine-tuning, as shown in Ta- 543

ble 2. Even in the training-free setting, it achieves 544

a strong performance of 67.67%, further highlight- 545

ing the effectiveness of our approach. 546

4.2.2 Spider Results 547

As shown in Table 3, SDE-SQL fine-tuned solely 548

on the BIRD training set achieves competitive 549

results on Spider benchmark, surpassing GPT- 550

4-based methods and most open-source models, 551

7

Method Simple Moderate Challenging All
SDE-SQL + Qwen2.5-72B-Instruct 74.92 57.76 53.10 67.67

w/o Soft Schema Linker 73.51 58.84 50.34 66.88↓0.79
w/o Exploration Before Generation 72.97 56.46 48.97 65.71↓1.96
w/o Refinement Module 72.97 55.60 48.97 65.45↓2.22

w/o Exploration in Refinement 72.86 56.68 51.72 65.97↓1.70
w/o Target Checking 73.19 57.76 49.66 66.30 ↓1.37

w/o Exploration in Generation & Refinement 72.11 54.31 48.28 64.47↓3.20

SDE-SQL + Fine-tuned Explorer 74.16 59.26 55.17 67.86↑0.19
SDE-SQL + Fine-tuned Generator 74.49 58.19 55.86 67.80↑0.13
SDE-SQL + Fine-tuned Explorer & Generator 74.70 58.84 56.55 68.19↑0.52

Table 1: Execution accuracy of SDE-SQL on BIRD dev set in the ablation study.

Method dev(EX)
AskData + GPT-4o 75.36
CHASE-SQL + Gemini 74.46
XiYan-SQL 73.34
OpenSearch-SQL, v2 + GPT-4o 69.30
CHESS 68.31
Distillery + GPT-4o 67.21
MCS-SQL 63.36
MAC-SQL + GPT-4 59.39
DAIL-SQL + GPT-4 54.76
DIN-SQL + GPT-4 50.72
GPT-4 46.35
DTS-SQL + DeepSeek-7B 55.80
SFT CodeS-15B 58.47
SQL-o1 + Llama3-8B 63.4
OneSQL-v0.1-Qwen-32B 64.60
XiYanSQL-QwenCoder-32B 67.01
Qwen2.5-72B-Instruct 60.17
SDE-SQL + Qwen2.5-72B-Instruct 67.67
SDE-SQL (SFT) 68.19

Table 2: The experimental results of competing model
on the BIRD dataset.

which underscores its strong generalization abil-552

ity. Nevertheless, the performance gain is relatively553

modest, as a large portion of SQL queries in the554

Spider dataset produce empty execution results,555

thereby limiting the effectiveness of feedback from556

database exploration.557

4.3 Ablation Study558

For each module in SDE-SQL, we conduct ablation559

studies on the development set of BIRD benchmark,560

which is shown in Table 1. In addition, we evaluate561

the effect of incorporating the fine-tuned explorer562

and generator into the pipeline. The results demon-563

strate that each component plays an important role,564

with the introduction of the two exploration phases565

leading to particularly significant performance im-566

provements. Besides, modules fine-tuned on their567

Method dev(EX) test(EX)
SDE-SQL (SFT) 87.5 88.5
SDE-SQL + Qwen2.5-72B-Instruct 87.3 88.3
MAC-SQL + GPT-4 86.8 82.8
SENSE-13B 84.1 83.5
SQL-o1 + Llama3-8B 87.4 85.4
DAIL-SQL + GPT-4 84.4 86.6
ROUTE + Qwen2.5-14B 87.3 87.1
DIN-SQL + GPT-4 82.8 85.3
GPT-4 (zero-shot) 73.4 -
Qwen2.5-72B-Instruct 73.9 84.0

Table 3: The experimental results of competing model
on the Spider dataset.

respective sub-tasks can further enhance the overall 568

performance of the workflow. 569

5 Conclusion 570

In this work, we propose SDE-SQL, a novel Text- 571

to-SQL framework that integrates Self-Driven Ex- 572

ploration into both the SQL generation and refine- 573

ment stages. By enabling LLMs to proactively 574

interact with databases through SQL probes, SDE- 575

SQL bridges the gap between static query genera- 576

tion and dynamic, execution-based reasoning. This 577

exploration mechanism allows LLMs to uncover 578

latent schema semantics and execution patterns, 579

significantly improving their ability to produce ex- 580

ecutable and semantically accurate SQL queries. 581

Extensive experiments on the BIRD and Spi- 582

der datasets demonstrate the effectiveness of SDE- 583

SQL, with the model achieving an execution ac- 584

curacy of 68.19% on BIRD after supervised fine- 585

tuning. Ablation studies confirm the contributions 586

of key components—especially the exploration 587

pipeline and the fine-tuning strategies. As future 588

work, we plan to explore tighter integration of 589

exploration signals into model training to further 590

strengthen the model’s reasoning capabilities. 591

8

6 Limitation592

Although self-driven exploration significantly en-593

hances the potential of large language models in594

Text-to-SQL tasks, our current approach has sev-595

eral limitations. In SDE-SQL, database exploration596

is entirely prompt-driven—meaning that the ef-597

fectiveness of the exploration process heavily de-598

pends on the design and quality of manually crafted599

prompts. Poorly constructed prompts may lead the600

model to generate uninformative or redundant SQL601

probes, thereby limiting its ability to acquire mean-602

ingful schema knowledge or execution insights.603

Moreover, relying solely on prompt engineering604

can restrict the model’s capacity for deeper reason-605

ing, as it lacks mechanisms for adaptive learning606

based on feedback from the environment.607

Another limitation is the model’s inability to au-608

tonomously refine its exploration strategy over time.609

Since each SQL probe is generated statically from610

prompts, the model cannot dynamically adjust its611

behavior based on prior successes or failures dur-612

ing the exploration process. This constraint reduces613

the overall flexibility and learning efficiency of the614

system.615

To address these issues, future work will focus616

on making database exploration more intrinsic to617

the model itself. One promising direction is to in-618

corporate reinforcement learning or other feedback-619

driven learning paradigms, allowing the model to620

iteratively refine its probing strategies based on ex-621

ecution outcomes. By enabling the model to learn622

from its own interactions with the database, we623

hope to develop a more robust, adaptive framework624

capable of deeper, context-aware reasoning in com-625

plex database environments.626

References627

Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng628
Hao. 2022. Sadga: Structure-aware dual graph629
aggregation network for text-to-sql. Preprint,630
arXiv:2111.00653.631

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,632
Su Zhu, and Kai Yu. 2021. Lgesql: Line graph en-633
hanced text-to-sql model with mixed local and non-634
local relations. Preprint, arXiv:2106.01093.635

Xiaojun Chen, Tianle Wang, Tianhao Qiu, Jianbin Qin,636
and Min Yang. 2024. Open-sql framework: Enhanc-637
ing text-to-sql on open-source large language models.638
Preprint, arXiv:2405.06674.639

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,640
and Dong Ryeol Shin. 2020. Ryansql: Recur-641

sively applying sketch-based slot fillings for com- 642
plex text-to-sql in cross-domain databases. Preprint, 643
arXiv:2004.03125. 644

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 645
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. 646
Text-to-sql empowered by large language models: A 647
benchmark evaluation. Preprint, arXiv:2308.15363. 648

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, 649
Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yun- 650
tao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, 651
and Yu Li. 2025. A preview of xiyan-sql: A 652
multi-generator ensemble framework for text-to-sql. 653
Preprint, arXiv:2411.08599. 654

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, 655
Jian-Guang Lou, Ting Liu, and Dongmei Zhang. 656
2019. Towards complex text-to-sql in cross-domain 657
database with intermediate representation. Preprint, 658
arXiv:1905.08205. 659

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, 660
Feiran Huang, and Xiao Huang. 2024. Knowledge- 661
to-sql: Enhancing sql generation with data expert llm. 662
Preprint, arXiv:2402.11517. 663

Binyuan Hui, Xiang Shi, Ruiying Geng, Binhua Li, 664
Yongbin Li, Jian Sun, and Xiaodan Zhu. 2021. Im- 665
proving text-to-sql with schema dependency learning. 666
Preprint, arXiv:2103.04399. 667

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and 668
Minjoon Seo. 2019. A comprehensive exploration 669
on wikisql with table-aware word contextualization. 670
Preprint, arXiv:1902.01069. 671

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and 672
Heesoo Park. 2024. Mcs-sql: Leveraging multiple 673
prompts and multiple-choice selection for text-to-sql 674
generation. Preprint, arXiv:2405.07467. 675

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng 676
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo, 677
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor 678
Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida 679
Wang, and Tao Yu. 2025. Spider 2.0: Evaluating 680
language models on real-world enterprise text-to-sql 681
workflows. Preprint, arXiv:2411.07763. 682

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi- 683
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, 684
Cuiping Li, and Hong Chen. 2024. Codes: Towards 685
building open-source language models for text-to-sql. 686
Preprint, arXiv:2402.16347. 687

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, 688
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao, 689
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao 690
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang, 691
Reynold Cheng, and Yongbin Li. 2023. Can llm 692
already serve as a database interface? a big bench for 693
large-scale database grounded text-to-sqls. Preprint, 694
arXiv:2305.03111. 695

9

https://arxiv.org/abs/2111.00653
https://arxiv.org/abs/2111.00653
https://arxiv.org/abs/2111.00653
https://arxiv.org/abs/2106.01093
https://arxiv.org/abs/2106.01093
https://arxiv.org/abs/2106.01093
https://arxiv.org/abs/2106.01093
https://arxiv.org/abs/2106.01093
https://arxiv.org/abs/2405.06674
https://arxiv.org/abs/2405.06674
https://arxiv.org/abs/2405.06674
https://arxiv.org/abs/2004.03125
https://arxiv.org/abs/2004.03125
https://arxiv.org/abs/2004.03125
https://arxiv.org/abs/2004.03125
https://arxiv.org/abs/2004.03125
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/2402.11517
https://arxiv.org/abs/2402.11517
https://arxiv.org/abs/2402.11517
https://arxiv.org/abs/2103.04399
https://arxiv.org/abs/2103.04399
https://arxiv.org/abs/2103.04399
https://arxiv.org/abs/1902.01069
https://arxiv.org/abs/1902.01069
https://arxiv.org/abs/1902.01069
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111

Xiping Liu and Zhao Tan. 2023. Divide and prompt:696
Chain of thought prompting for text-to-sql. Preprint,697
arXiv:2304.11556.698

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,699
Adam Perelman, Aditya Ramesh, Aidan Clark,700
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec701
Radford, Aleksander Madry, Alex Baker-Whitcomb,702
Alex Beutel, Alex Borzunov, Alex Carney, Alex703
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex704
Renzin, Alex Tachard Passos, Alexander Kirillov,705
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan706
Jabri, Allison Moyer, Allison Tam, Amadou Crookes,707
Amin Tootoochian, Amin Tootoonchian, Ananya708
Kumar, Andrea Vallone, Andrej Karpathy, Andrew709
Braunstein, Andrew Cann, Andrew Codispoti, An-710
drew Galu, Andrew Kondrich, Andrew Tulloch, An-711
drey Mishchenko, Angela Baek, Angela Jiang, An-712
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka713
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,714
Barret Zoph, Behrooz Ghorbani, Ben Leimberger,715
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin716
Zweig, Beth Hoover, Blake Samic, Bob McGrew,717
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad718
Lightcap, Brandon Walkin, Brendan Quinn, Brian719
Guarraci, Brian Hsu, Bright Kellogg, Brydon East-720
man, Camillo Lugaresi, Carroll Wainwright, Cary721
Bassin, Cary Hudson, Casey Chu, Chad Nelson,722
Chak Li, Chan Jun Shern, Channing Conger, Char-723
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,724
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris725
Koch, Christian Gibson, Christina Kim, Christine726
Choi, Christine McLeavey, Christopher Hesse, Clau-727
dia Fischer, Clemens Winter, Coley Czarnecki, Colin728
Jarvis, Colin Wei, Constantin Koumouzelis, Dane729
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,730
David Carr, David Farhi, David Mely, David Robin-731
son, David Sasaki, Denny Jin, Dev Valladares, Dim-732
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan733
Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-734
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,735
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-736
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,737
Felipe Petroski Such, Filippo Raso, Francis Zhang,738
Fred von Lohmann, Freddie Sulit, Gabriel Goh,739
Gene Oden, Geoff Salmon, Giulio Starace, Greg740
Brockman, Hadi Salman, Haiming Bao, Haitang741
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,742
Heather Whitney, Heewoo Jun, Hendrik Kirchner,743
Henrique Ponde de Oliveira Pinto, Hongyu Ren,744
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,745
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-746
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya747
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,748
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub749
Pachocki, James Aung, James Betker, James Crooks,750
James Lennon, Jamie Kiros, Jan Leike, Jane Park,751
Jason Kwon, Jason Phang, Jason Teplitz, Jason752
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-753
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui754
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,755
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-756
ders, Joel Parish, Johannes Heidecke, John Schul-757
man, Jonathan Lachman, Jonathan McKay, Jonathan758

Uesato, Jonathan Ward, Jong Wook Kim, Joost 759
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, 760
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, 761
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai 762
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin 763
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, 764
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, 765
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle 766
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau- 767
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia 768
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil- 769
ian Weng, Lindsay McCallum, Lindsey Held, Long 770
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon- 771
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, 772
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine 773
Boyd, Madeleine Thompson, Marat Dukhan, Mark 774
Chen, Mark Gray, Mark Hudnall, Marvin Zhang, 775
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, 776
Max Johnson, Maya Shetty, Mayank Gupta, Meghan 777
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao 778
Zhong, Mia Glaese, Mianna Chen, Michael Jan- 779
ner, Michael Lampe, Michael Petrov, Michael Wu, 780
Michele Wang, Michelle Fradin, Michelle Pokrass, 781
Miguel Castro, Miguel Oom Temudo de Castro, 782
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi- 783
nal Khan, Mira Murati, Mo Bavarian, Molly Lin, 784
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na- 785
talie Cone, Natalie Staudacher, Natalie Summers, 786
Natan LaFontaine, Neil Chowdhury, Nick Ryder, 787
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, 788
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel 789
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, 790
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, 791
Olivier Godement, Owen Campbell-Moore, Patrick 792
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe- 793
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan, 794
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip 795
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming 796
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra- 797
jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul 798
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, 799
Reza Zamani, Ricky Wang, Rob Donnelly, Rob 800
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan- 801
dani, Romain Huet, Rory Carmichael, Rowan Zellers, 802
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan 803
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, 804
Sam Toizer, Samuel Miserendino, Sandhini Agar- 805
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean 806
Grove, Sean Metzger, Shamez Hermani, Shantanu 807
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi- 808
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, 809
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew- 810
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao 811
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, 812
Tejal Patwardhan, Thomas Cunninghman, Thomas 813
Degry, Thomas Dimson, Thomas Raoux, Thomas 814
Shadwell, Tianhao Zheng, Todd Underwood, Todor 815
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, 816
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce 817
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, 818
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne 819
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, 820
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, 821
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen 822

10

https://arxiv.org/abs/2304.11556
https://arxiv.org/abs/2304.11556
https://arxiv.org/abs/2304.11556

He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and823
Yury Malkov. 2024. Gpt-4o system card. Preprint,824
arXiv:2410.21276.825

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,826
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok827
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and828
Sercan O. Arik. 2024a. Chase-sql: Multi-path rea-829
soning and preference optimized candidate selection830
in text-to-sql. Preprint, arXiv:2410.01943.831

Mohammadreza Pourreza and Davood Rafiei. 2023.832
Din-sql: Decomposed in-context learning of text-to-833
sql with self-correction. Preprint, arXiv:2304.11015.834

Mohammadreza Pourreza and Davood Rafiei. 2024.835
Dts-sql: Decomposed text-to-sql with small large836
language models. arXiv preprint arXiv:2402.01117.837

Mohammadreza Pourreza, Ruoxi Sun, Hailong Li, Lesly838
Miculicich, Tomas Pfister, and Sercan O. Arik. 2024b.839
Sql-gen: Bridging the dialect gap for text-to-sql840
via synthetic data and model merging. Preprint,841
arXiv:2408.12733.842

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,843
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,844
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,845
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,846
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,847
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,848
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji849
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang850
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang851
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru852
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical853
report. Preprint, arXiv:2412.15115.854

Nitarshan Rajkumar, Raymond Li, and Dzmitry855
Bahdanau. 2022. Evaluating the text-to-sql ca-856
pabilities of large language models. Preprint,857
arXiv:2204.00498.858

Jiawei Shen, Chengcheng Wan, Ruoyi Qiao, Jiazhen859
Zou, Hang Xu, Yuchen Shao, Yueling Zhang, Weikai860
Miao, and Geguang Pu. 2025. A study of in-861
context-learning-based text-to-sql errors. Preprint,862
arXiv:2501.09310.863

Ruoxi Sun, Sercan Ö. Arik, Alex Muzio, Lesly Miculi-864
cich, Satya Gundabathula, Pengcheng Yin, Hanjun865
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,866
and Tomas Pfister. 2024. Sql-palm: Improved large867
language model adaptation for text-to-sql (extended).868
Preprint, arXiv:2306.00739.869

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang870
Deng, and Huan Sun. 2023. Exploring chain-of-871
thought style prompting for text-to-sql. Preprint,872
arXiv:2305.14215.873

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen874
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.875
Chess: Contextual harnessing for efficient sql synthe-876
sis. Preprint, arXiv:2405.16755.877

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr 878
Polozov, and Matthew Richardson. 2020. RAT-SQL: 879
Relation-aware schema encoding and linking for text- 880
to-SQL parsers. In Proceedings of the 58th Annual 881
Meeting of the Association for Computational Lin- 882
guistics, pages 7567–7578, Online. Association for 883
Computational Linguistics. 884

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji- 885
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang, 886
Di Yin, Xing Sun, and Zhoujun Li. 2025. Mac-sql: A 887
multi-agent collaborative framework for text-to-sql. 888
Preprint, arXiv:2312.11242. 889

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 890
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and 891
Denny Zhou. 2023. Chain-of-thought prompting elic- 892
its reasoning in large language models. Preprint, 893
arXiv:2201.11903. 894

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. 2024. 895
Mag-sql: Multi-agent generative approach with soft 896
schema linking and iterative sub-sql refinement for 897
text-to-sql. Preprint, arXiv:2408.07930. 898

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql- 899
net: Generating structured queries from natural lan- 900
guage without reinforcement learning. Preprint, 901
arXiv:1711.04436. 902

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 903
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 904
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir 905
Radev. 2019. Spider: A large-scale human-labeled 906
dataset for complex and cross-domain semantic pars- 907
ing and text-to-sql task. Preprint, arXiv:1809.08887. 908

John M. Zelle and Raymond J. Mooney. 1996. Learn- 909
ing to parse database queries using inductive logic 910
programming. In Proceedings of the Thirteenth Na- 911
tional Conference on Artificial Intelligence - Volume 912
2, AAAI’96, page 1050–1055. AAAI Press. 913

Hanchong Zhang, Ruisheng Cao, Hongshen Xu, 914
Lu Chen, and Kai Yu. 2024a. Coe-sql: In-context 915
learning for multi-turn text-to-sql with chain-of- 916
editions. Preprint, arXiv:2405.02712. 917

Tingkai Zhang, Chaoyu Chen, Cong Liao, Jun Wang, 918
Xudong Zhao, Hang Yu, Jianchao Wang, Jianguo Li, 919
and Wenhui Shi. 2024b. Sqlfuse: Enhancing text-to- 920
sql performance through comprehensive llm synergy. 921
Preprint, arXiv:2407.14568. 922

11

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2501.09310
https://arxiv.org/abs/2501.09310
https://arxiv.org/abs/2501.09310
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2408.07930
https://arxiv.org/abs/2408.07930
https://arxiv.org/abs/2408.07930
https://arxiv.org/abs/2408.07930
https://arxiv.org/abs/2408.07930
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2407.14568
https://arxiv.org/abs/2407.14568
https://arxiv.org/abs/2407.14568

A Examples of Error Cause923

SELECT `SchoolName`
FROM EducationalInstitutions
WHERE `DistrictName` = 'Mountain View';

SELECT `SchoolName`

FROM EducationalInstitutions

WHERE `Enrollment` > 500;

SELECT `SchoolName`

FROM EducationalInstitutions

WHERE `DistrictName` = 'Mountain View’

AND `Enrollment` > 500;

SELECT T2.`SchoolName`

FROM EducationFinance AS T1

JOIN EducationalInstitutions AS T2

ON T1.`InstitutionID` = T2.`InstitutionID`

WHERE T1.`DistrictName` = 'Mountain View';

SELECT T2.`SchoolName`

FROM EducationFinance AS T1

JOIN EducationalInstitutions AS T2

ON T1.`InstitutionID` = T2.`InstitutionID`

WHERE T1.`DistrictName` = 'Mountain View’

AND T2.`Enrollment` > 500;

Conflict

SELECT `SchoolName`

FROM EducationalInstitutions

WHERE `Enrollment` > 500;

Compatible

Figure 5: An Example of Condition Conflict

satscoresfrpm

AvgScrReadcdsCDSCodeFRPM Count
(Ages 5-17)

6424369641433290443696414332904136

6391964212193188019642121931880192

639436946843344214369468433442183

6531611760135244

Rows not in the JOIN result 64243696414332904

63919642121931880

SELECT T1.`FRPM Count (Ages 5-17)`

FROM from AS T1

JOIN satscores AS T2

ON T1.`CDSCode` = T2.cds

WHERE T2.`AvgScrRead` = (

SELECT MAX(`AvgScrRead`)

FROM satscores

)

SELECT T1.`FRPM Count (Ages 5-17)`

FROM from AS T1

JOIN satscores AS T2

ON T1.`CDSCode` = T2.cds

ORDER BY T2.`AvgScrRead` DESC

LIMIT 1;

Figure 6: An example of Sub-query Scope Inconsis-
tency

B Target Checking Module924

Question

Evidence

SQL

Result Columns

```json
{

“Modification”: “True/False”,
“Final SQL”: “<SQL>”

}
```

LLM

Target Checking Module

Figure 7: Target Checking Module

C Training Settings925

Parameter Value

per_device_train_batch_size 1
gradient_accumulation_steps 8
learning_rate 1.0e-4
num_train_epochs 2.0
lr_scheduler_type cosine
lora_rank 16

Table 4: Training hyperparameter configurations.

D Figures 926

Wrong SQL: SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON
T1.id = T2.id WHERE T2.customer_id = 100 AND T1.order_date > '2023-01-01';

Sub-SQLs As SQL Probes for Diagnosis:

• SELECT T2.name FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id
• SELECT T2.name FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id WHERE

T1.order_date > '2023-01-01'
• SELECT T2.name FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id WHERE

T2.customer_id = 100
• SELECT T2.name FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id WHERE

T2.customer_id = 100 AND T1.order_date > '2023-01-01’

• SELECT SUM(T1.amount) FROM orders AS T1
• SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id
• SELECT SUM(T1.amount) FROM orders AS T1 WHERE T1.order_date > '2023-01-01'
• SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id

WHERE T1.order_date > '2023-01-01'
• SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id

WHERE T2.customer_id = 100
• SELECT SUM(T1.amount) FROM orders AS T1 JOIN customers AS T2 ON T1.id = T2.id

WHERE T2.customer_id = 100 AND T1.order_date > '2023-01-01’

• SELECT SUM(T1.amount), T2.name FROM orders AS T1 JOIN customers AS T2 ON
T1.id = T2.id;

• SELECT SUM(T1.amount), T2.name FROM orders AS T1 JOIN customers AS T2 ON
T1.id = T2.id WHERE T1.order_date > '2023-01-01';

• SELECT SUM(T1.amount), T2.name FROM orders AS T1 JOIN customers AS T2 ON
T1.id = T2.id WHERE T2.customer_id = 100;

• SELECT SUM(T1.amount), T2.name FROM orders AS T1 JOIN customers AS T2 ON
T1.id = T2.id WHERE T2.customer_id = 100 AND T1.order_date > '2023-01-01’；

Decomposer

Figure 8: SQL Probes in Error Cause Identification
Stage

E Prompt used by SDE-SQL in the 927

training-free setting 928

For approaches that do not rely on supervised train- 929

ing, it becomes particularly crucial to carefully 930

craft and design prompt templates that can effec- 931

tively guide the model to carry out Self-Driven 932

Exploration behaviors in a controlled and meaning- 933

ful manner. In this section, we present a compre- 934

hensive set of prompt templates that are utilized 935

across different stages of the SDE-SQL pipeline to 936

support this capability. Due to limitations in avail- 937

able space, certain detailed elements and specific 938

prompt examples have been omitted, but the essen- 939

tial structures and core ideas are fully retained. 940

12

[Instruction]
Your task is to generate a series of SQL Probes to explore the database and
identify the correct columns mentioned the given question. These Probes will
help determine which columns contain the necessary data and ensure that the
final SQL query returns non-empty results. Follow these requirements:

[Requirements]
- In this task, you should identify and list all entities mentioned in the
question, along with their corresponding candidate columns in the database
schema. For each entity, there is only one candidate column unless the
database schema contains multiple columns with the same or extremely similar
meanings that are consistent with the entity. Do not include unnecessary
columns as candidate columns. For each entity, if it corresponds to multiple
candidate columns, generate SQL Probes to check the presence of relevant
values in each candidate column. If a specific value is mentioned for an
entity (e.g., 'Mountain View' district or enrollment > 500), include SQL
Probes to verify the existence of that value in the candidate columns.
- The entities in the question are divided into two types: target entity and
condition entity. The target entity is the ultimate goal of the query, while
the condition entity corresponds to the conditions that the target entity
needs to satisfy. First, you need to generate the corresponding Base SQL
Probes based on the target entity. Then, for each condition entity, generate
the corresponding Condition SQL Probes based on the Base SQL Probes.
Base SQL Probes: At first generate the base SQL Probes that search for the
target entity. All other SQL Probes should be generated based on this base SQL
Probe.
Condition SQL Probes: Generate SQL Probes for each condition entity based on
the Base SQL Probe.

[Attention]
- If the 【Evidence】 specifies a candidate column or candidate value for an
entity, use that column or value as the mapping for the entity directly if
【Evidence】 is reasonable, and there is no need to explore other candidates.
If there is a calculation formula for an entity in the 【Evidence】,
prioritize using this formula to represent the entity. This is very
important!!!
- You don't need to consider SQL Probes that combine multiple conditions.
- Base SQL Probes should only select the targets directly without other
conditions.
- Condition SQL Probes will add new conditions to the Base SQL Probe.

[Note]
...
[SQL Tricks]
...
[Database admin instructions]
...
[Output Format]
...

Figure 9: Prompt Template of Candidates Exploration

13

[Instruction]
The question provided to you can be broken down into a target and several
conditions. Previously, a series of SQL Probes based on the target and
conditions were generated. Among these, the Base SQL Probes are generated for
the target, while the other SQL Probes are based on the Base SQL Probes with
the addition of exploring a specific condition. I will provide you with these
SQL Probes and their corresponding execution results (whether they return
empty or not). What you need to do is combine the conditions based on the
Database schema and the question to generate a new series of SQL Probes. This
will help conduct a more in-depth exploration of the database and assist me in
generating the final SQL for the question.

[Requirements]
- The execution results can be one of two outcomes: NULL or Not NULL. !!!NULL
means that the result of the SQL query is empty (no data matches the
conditions). Not NULL means that the result of the SQL query is not empty
(there is data that matches the conditions)!!!
- You need to analyze the current execution results, eliminate the obviously
invalid candidate columns, and only combine the ones that are potentially
valid.
- You need to combine all the conditions to ensure a comprehensive exploration.
For example, suppose the current question contains a target and three
conditions. After analyzing the execution results, the candidate columns are
as follows: the unique candidate column for the target can be determined from
the Base SQL Probes, the first condition has two possible candidate columns,
the second condition has one possible candidate column, and the third
condition has three possible candidate columns. Therefore, the number of SQL
Probes to be generated after combining them would be 1 * 2 * 1 * 3 = 6.

[Tips]
...

[Output Format]
...

Figure 10: Prompt Template of Combinations Exploration

14

Task Description
You are an SQLite database expert tasked with generating a SQL query according
to a input user question. You will be provided:
- An input user question, and potentially an evidence
- The database schema
- The descriptions of columns(column name, data_format, description)
- The value retrieved from database
- The SQL Probe result

Your task is to generate the correct SQL query. The input question consists of
a query target and the conditions that the target needs to satisfy. You need
to analyze the semantics of the question and convert it into the corresponding
SQL. You should imitate human, and solve this task step by step.

Note
...

SQL Tricks
...

Database admin instructions
...

Output Format
...

Figure 11: Prompt Template of Zero-shot Generation

15

[Instruction]
When executing an SQL statement, there may be instances where the execution
result is completely empty.
You need to identify the cause of the error based on the query and database
information and generate some new probe SQLs to find solution.
To help you to find out the reason, I extracted a batch of probe SQLs from
this incorrect SQL and executed them, providing you with the execution results
(NULL or Not NULL). !!!NULL means that the result of the SQL query is empty
(no data matches the conditions). Not NULL means that the result of the SQL
query is not empty (there is data that matches the conditions)!!!
You can use these Probe SQL query results to determine where the issue lies
based on whether they are empty or not.
The revised SQL must be consistent with the Query, and it should not omit any
necessary conditions described in the Query.

[Possible Causes]
Cause 1: Conflicting Conditions or Redundant Descriptions Across Different
Columns
--details: Conflicting: The simultaneous existence of two conditions leads to
null, proving that the column for one of the conditions was chosen incorrectly.
Redundant: For a certain condition, multiple different columns are used to
repeat the description, resulting in a conflict between this condition and
other conditions.
--fix: For the conflicting case, certainly, it seems that a condition might be
described by several columns with similar meanings, but the incorrect column
was selected in the SQL. To resolve this, identify and replace the column name
accordingly. For the Redundant case, remove duplicate descriptions of the same
condition and keep the one that fits best.

Cause 2: Incorrect Condition Values or Case Sensitivity Issues
--details: The conditions in the query may use incorrect values or fail to
account for case sensitivity when comparing strings.
--fix: Try to use `LIKE` because the LIKE keyword is case-insensitive by
default.(table.<column> = 'xxx' -> table.<column> LIKE 'xxx')

Cause 3: Unnecessary Table Joins Resulting in No Satisfying Records.
--details: The query may include unnecessary table joins, resulting in no
records satisfying the conditions in the final intersection.
--fix: Check if every table join is really necessary and discard unnecessary
tables.

Cause 4: Incorrect Column Selection
--details: Among the several tables involved, there may be multiple candidate
columns for a certain condition, but Old SQL selected the wrong one.
--fix: Determine if there is a more suitable column, or use a similar column
from another table.

Cause 5: Misuse of the MAX(MIN) function or `ORDER BY`
--details: Using the MAX(MIN) function or `ORDER BY` in a subquery(nested sql),
the data corresponding to this maximum or minimum value may not be in the
intersection of the two tables, so it may return a null value.
--fix: First JOIN the tables, and then use MAX(MIN) function or `ORDER BY` on
the JOIN results.

[Requirements]
After thinking step by step, you may already have some guesses and potential
solutions about the cause of the error, but you need to validate these guesses
and solutions. Please generate a set of probe SQLs based on your analysis to
help your future self arrive at the correct SQL.

Figure 12: Prompt Template of Solution Exploration
16

[Instruction]
When executing an SQL statement, there may be instances where the execution
result is completely empty.
You need to identify the cause of the error based on the query and database
information and make the necessary corrections.
To help you to find out the reason, I executed a series of SQLs which is
related to this question, providing you with the execution results (NULL or
Not NULL). !!!NULL means that the result of the SQL query is empty (no data
matches the conditions). Not NULL means that the result of the SQL query is
not empty (there is data that matches the conditions)!!!
You can use these Probe SQL query results to determine where the issue lies
based on whether they are empty or not.
Note that your modified SQL still has to correspond one-to-one with the
targets and conditions in the Query.

[Possible Causes]
Cause 1: Conflicting Conditions or Redundant Descriptions Across Different
Columns
-- details: Conflicting: The simultaneous existence of two conditions leads to
null, proving that the column for one of the conditions was chosen incorrectly.
Redundant: For a certain condition, multiple different columns are used to
repeat the description, resulting in a conflict between this condition and
other conditions.
-- fix: For the conflicting case, certainly, it seems that a condition might
be described by several columns with similar meanings, but the incorrect
column was selected in the SQL. To resolve this, identify and replace the
column name accordingly.
For the Redundant case, remove duplicate descriptions of the same condition
and keep the one that fits best.

Cause 2: Incorrect Condition Values or Case Sensitivity Issues
-- details: The conditions in the query may use incorrect values or fail to
account for case sensitivity when comparing strings.
-- fix: Try to use `LIKE` because the LIKE keyword is case-insensitive by
default.(table.<column> = 'xxx' -> table.<column> LIKE 'xxx')

Cause 3: Unnecessary Table Joins Resulting in No Satisfying Records.
-- details: The query may include unnecessary table joins, resulting in no
records satisfying the conditions in the final intersection.
-- fix: Check if every table join is really necessary and discard unnecessary
tables.

Cause 4: Incorrect Column Selection, No Matching Values
-- details: The query may select the wrong column or the column may not have
any values that satisfy the condition.
-- fix: Determine if there is a more suitable column, or use a similar column
from another table.

Cause 5: Misuse of the MAX(MIN) function or `ORDER BY`
-- details: Using the MAX(MIN) function or `ORDER BY` in a subquery(nested
sql), the data corresponding to this maximum or minimum value may not be in
the intersection of the two tables, so it may return a null value.
-- fix: First JOIN the tables, and then use MAX(MIN) function ORDER BY on the
JOIN result, not in a subquery(nested query).

Figure 13: Prompt Template of Final Refinement

17

[Instruction]
You are a helpful assistant. Given a question, a SQL statement and probably a
corresponding evidence, you need to determine whether the query goal of this
SQL and the question are consistent.

[Requirement]
1. First, you need to identify the actual entity (target column) that the
question is trying to query.
2. Determine how many columns the question expects to see in the result.
3. Compare the number of columns returned by the SQL query with the expected
number of columns to determine if extra columns were selected.
4. If extra columns were selected, you need to modify the target after the
SELECT keyword in the original SQL statement to remove the unnecessary target
column. If you believe the selected columns are correct or insufficient, no
modification is needed.
5. Your output should be in JSON format:
```json
{{

"Modification":"<True or False>",
"Final SQL":"<sql>"

}}
```

[Example]
...

[Attention]
Only modify when you are absolutely certain that there are extra target
columns. If you feel there is no issue or are unsure whether there is an issue,
do not make any changes.

Figure 14: Prompt Template of Target Checking

18

	Introduction
	Related Work
	Traditional Seq2Seq Model-Based Methods
	LLM-Based Methods

	Methodology
	Entity-based Schema Linking
	Entity-based Value Retrieval
	Entity-based Soft Schema Linking

	Generation Based on Self-Driven Exploration
	Candidates Exploration
	Combinations Exploration
	Zero-shot Generation with Exploration Results

	Refinement Based on Self-Driven Exploration
	Error Cause Identification Stage
	Solution Exploration Stage
	Target Checking After Refinement

	Supervised Fine-Tuning (SFT)

	Experiments
	Experimental Setup
	Dataset and Metrics
	SFT Settings
	Baselines

	Main Results
	BIRD Results
	Spider Results

	Ablation Study

	Conclusion
	Limitation
	Examples of Error Cause
	Target Checking Module
	Training Settings
	Figures
	Prompt used by SDE-SQL in the training-free setting

