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Figure 1: Comparison of light interactions with opaque Lambertian objects and refractive/reflective
objects. (a) Opaque Lambertian objects allow modeling of light paths as linear. (b) Refractive
and reflective objects lead to the curving and branching of light paths. (c—d) Novel view synthesis
results on synthetic and real data. Our oracle performs best, while our R3F method loses some high-
frequency detail and TNSR (Deng et al., 2024a) sacrifices geometric quality for visual crispness.

ABSTRACT

Modern 3D reconstruction and novel view synthesis approaches have demon-
strated strong performance on scenes with opaque, non-refractive objects. How-
ever, most assume straight light paths and therefore cannot properly handle re-
fractive and reflective materials. Moreover, datasets specialized for these effects
are limited, stymieing efforts to evaluate performance and develop suitable tech-
niques. In this work, we introduce the RefRef dataset for reconstructing scenes
with refractive and reflective objects from posed images. Our dataset has 50 syn-
thetic objects of varying complexity, from single-material convex shapes to multi-
material non-convex shapes, each placed in three different background types, re-
sulting in 150 scenes. A real scene that mirrors the synthetic setup is also provided
for comparison. We propose an oracle method that, given the object geometry and
refractive indices, calculates accurate light paths for neural rendering, and an ap-
proach based on this that avoids these assumptions. We benchmark these against
several state-of-the-art methods and show that all methods lag significantly behind
the oracle, highlighting the challenges of the task and dataset.

1 INTRODUCTION

Refractive and reflective objects, such as glass and water, pose significant challenges for 3D re-
construction and novel view synthesis due to the complex behavior of light as it passes through or
reflects off these materials. Accurate modeling of these optical phenomena is essential for precise
3D reconstruction and photorealistic rendering. However, most existing neural radiance approaches
(Mildenhall et al., 2021; Barron et al., 2022; Chen et al., 2022; Miiller et al., 2022), while excelling
at handling opaque Lambertian objects, struggle with refractive or reflective surfaces (Deng et al.,
2024b). These methods typically assume that light travels in a straight path, which is valid for Lam-
bertian objects, as illustrated in Figure 1a, but fails in scenarios with complex optical behavior. This
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limitation is further compounded by the lack of suitable datasets focused on refractive and reflective
properties, hindering the development and evaluation of more sophisticated methods.

To address these challenges, we introduce RefRef, a dataset and benchmark designed for the task of
reconstructing scenes with complex refractive and reflective objects, as shown in Figure 1d. RefRef
consists of 50 objects categorized based on their geometric and material complexity: single-material
convex objects, single-material non-convex objects, and multi-material non-convex objects, where
the materials have different colors, opacities, and refractive indices. Each object is rendered in
three background settings: two bounded and one unbounded, resulting in 150 unique scenes with
diverse geometries, material properties, and backgrounds. This provides a controlled environment
for evaluating and developing 3D reconstruction methods that handle complex optical effects.

We also propose an oracle method that has access to the ground-truth geometry and refractive indices
of refractive objects in the scene, allowing it to compute accurate light paths, as shown in Figure 1b.
This approach provides a performance target for NeRF-based methods, showing how well they can
perform if light paths are properly modeled. We then propose a relaxation of the oracle method—
R3F—that circumvents its ground-truth requirements. Finally, we conduct an extensive evaluation
of existing state-of-the-art methods, some of which are shown in Figure 1c, highlighting their short-
comings in handling scenes with refractive and reflective properties. Our contributions are:

a dataset for 3D reconstruction of scenes with refractive and reflective objects;

an oracle method that models light paths using ground-truth geometry and refractive indices;

a method that relaxes these requirements by estimating and smoothing the object geometry; and
a benchmark evaluating state-of-the-art methods on this dataset, revealing the limits of existing
approaches at handling complex optical phenomena.

L=

2 RELATED WORK

Neural 3D reconstruction. Neural Radiance Field (NeRF) (Mildenhall et al., 2021) optimizes the
parameters of a coordinate network to map from spatial position and viewpoint to color and density.
To improve efficiency and accuracy, Zip-NeRF (Barron et al., 2023) combines a feature grid with
anti-aliasing. Other approaches fit implicit geometry representations through volume rendering, in-
cluding UNISUREF (Oechsle et al., 2021), VoISDF (Yariv et al., 2021), and NeuS (Wang et al., 2021),
which model 3D surfaces using occupancy or signed distance fields. Another line of approaches ras-
terizes 3D Gaussians (Kerbl et al., 2023; Szymanowicz et al., 2025), allowing for real-time rendering
with high visual quality. However, while some methods have explored single reflections, including
general NeRF-based approaches (Verbin et al., 2022b; Ma et al., 2024; Tiwary et al., 2023; Qiu
et al., 2023; Han et al., 2024), as well as recent Gaussian splatting techniques (Jiang et al., 2024;
Yang et al., 2024; Ye et al., 2024; Yao et al., 2024), none explicitly handle the curved light paths
necessary for modeling refraction.

Transparent object modeling. Modeling refractive and reflective materials is a significant chal-
lenge due to the complexity of the light paths (Zhang et al., 2024; Li et al., 2020; Yin et al., 2023;
Deng et al., 2024b; Wang et al., 2023; Gao et al., 2023; Qiu et al., 2023; Huang et al., 2025). Some
approaches focus on light transport in dynamic water surfaces and underwater scenes (Xiong &
Heidrich, 2021), while others reconstruct opaque objects in a single refractive medium (Tong et al.,
2023; Zhan et al., 2023; Sun et al., 2024; Cassidy et al., 2020). Moenne-Loccoz et al. (2024) and
Wu et al. (2025) perform ray tracing on volumetric Gaussian particles, enabling efficient simulation
of secondary rays required for rendering phenomena such as reflection, refraction, and shadows. Li
et al. (2020) assume known environment illumination and refractive indices, integrating rendering
and cost volume layers to model reflection and refraction for precise point cloud reconstruction.
Controlled experimental setups, such as using gray-coded patterns to determine ray—position corre-
spondences, have improved surface reconstruction accuracy (Lyu et al., 2020; Wu et al., 2018; Li
et al., 2023), but cannot be assumed in general. MS-NeRF (Yin et al., 2023) introduces multi-space
feature fields to jointly model multiple subspaces, such as the real world and the world reflected in a
mirror, giving it some capacity to model refraction. NEMTO (Wang et al., 2023) directly predicts the
exiting light direction by treating the internal refraction and reflection processes as a black box and
assuming an infinitely-distant background. As a result, it cannot handle the general reconstruction
of posed images. Yoon & Lee (2024) use a visual hull method to approximate the object’s shape
and then consider two-bounce light paths. While this improves view synthesis results, it suffers
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Table 1: Comparison of datasets by scenes |S|, images |Z|, presence of refractive/reflective objects,
ground-truth geometry, multi-material composition, bounded scenes, and tinted refractive materials.

Datasets |S| |Z|  Refr/Refl. Geometry Multi-mat. Bounded Tinted
DTU (Jensen et al., 2014) 124 4.2k X v v v X
T & T (Knapitsch et al., 2017) 7 88k X v v X X
ShapeNet (Chang et al., 2015) 51k 0 X v v X X
Omniobject3D (Wu et al., 2023) 6k 0 X v v X X
ObjaverseXL (Deitke et al., 2024) 10M 0 X v v X X
Shiny (Wizadwongsa et al., 2021) 8 879 v X X X X
OpenMaterial (Dang et al., 2024) 1k 90k v v X X X
RefRef (Ours) 150 45k v v v v v

from voxelization artifacts. Ray Deformation Networks (Deng et al., 2024b) propose a deformation
field to predict light bending in refractive objects, which works well for small levels of refraction
and low-frequency shapes. TNSR (Deng et al., 2024a) builds on NeuS by integrating ray tracing
and sphere tracing, improving view synthesis and geometry refinement; a similar strategy is taken
by Gao et al. (2023). Overall, most methods assume only two refractions and one reflection, lim-
iting their ability to model complex light interactions such as total internal reflection and multiple
successive refractions, which frequently occur in real-world transparent and reflective objects.

Datasets. As shown in Table 1, several datasets have been widely adopted for 3D reconstruction
tasks, each offering unique strengths for general scene understanding. The DTU dataset (Jensen
et al., 2014) provides images across multiview setups. Tanks and Temples (Knapitsch et al., 2017)
provides a benchmark for 3D reconstruction with complex scenes captured using high-precision
scanners, suitable for evaluating methods in real-world settings. Additionally, the Objaverse-XL
(Deitke et al., 2024), ShapeNet (Chang et al., 2015), and OmniObject3D (Wu et al., 2023) datasets
extend the scale of the data but restrict the scope to object-centric reconstruction. These datasets
contain too few refractive and reflective objects and so are not suitable for evaluating in this domain.
Several datasets address the unique challenges posed by refractive and reflective objects. The Shiny
dataset (Wizadwongsa et al., 2021) introduces complex view-dependent effects, such as rainbow
reflections and refractions through glassware, designed to evaluate view synthesis under challenging
conditions, however, it only includes 8 scenes, mostly with opaque objects. OpenMaterial (Dang
et al., 2024) is a synthetic dataset that offers 295 distinct materials, but only 14% of its materials
exhibit refractive properties with high transmittance, and it lacks multi-material or tinted objects,
limiting its realism for scenes involving complex object interactions. Unlike the above datasets,
our RefRef dataset is designed to benchmark 3D reconstruction methods for handling refractive and
reflective objects. It contains 50 objects with varying materials, including single-material and multi-
material objects with different refractive indices and tints, providing a wide range of challenges.

3 A REFRACTIVE—-REFLECTIVE OBJECT DATASET

Dataset structure. The dataset contains 50 synthetic objects, each placed in three different back-
grounds, resulting in 150 scenes, as well as one similar real scene to test generalization. The objects
are categorized into three categories based on their geometry (convex or non-convex) and refractive
material count (single or multiple) to evaluate reconstruction methods at different difficulty levels.

1. Single-material convex (27 scenes). Objects with convex geometries, each composed of a single
refractive material, such as transparent cubes, balls, cylinders, and pyramids.

2. Single-material non-convex (60 scenes). Objects with non-convex geometries, each composed
of a single refractive material, such as animal sculptures, glass jars, light bulbs, and magnifiers.

3. Multiple-materials non-convex (63 scenes). Objects with non-convex geometries, each com-
posed of multiple refractive materials, such as reed diffusers, a glass of wine, a cup of tea, and
flasks filled with liquid chemicals.

Scene backgrounds and cameras. For each object, we generate three background environments to
enhance variability in the rendered scenes: a cube background, a sphere background, and an HDR
environment map. Each cube background scene is constructed by randomly selecting 6 images from
a pool of 24 highly textured images; each sphere background is created by choosing 1 image from
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Figure 2: Overview of the oracle method. Starting with a straight ray (blue arrow), sample points
are generated along its path. The scene’s geometry and refractive index update the ray trajectory,
as shown in the red dashed box. Refracted and reflected rays are processed separately, producing
updated sample positions and directions. The Zip-NeRF field then predicts color c; and density o;
for each sample. Using Eq. (1), the final color along each ray is rendered and combined via Eq. (6).
Note: Zip-NeRF samples points in a conical spiral; we show only the centerline for clarity.

a set of 13; and the HDR environment map features an outdoor scene to provide realistic lighting
conditions. This yields a total of 150 unique scenes. The images for each scene are subdivided into
training, validation, and test sets. Each set consists of 100 images at a resolution of 800 x 800 pixels,
accompanied by metadata, including camera positions, depth maps, 3D object models, and object
masks. The camera viewpoints for the training and validation sets are randomly selected on a sphere
centered around the object, ensuring diverse perspectives. For the test set, we employ a helical path,
capturing 100 viewpoints by gradually ascending the camera position around the object.

Rendering Process. The dataset was rendered using Blender’s Cycles path tracer (Blender, 2024).
The renderer accounts for refraction, reflection, total internal reflection, and absorption, which are
modeled using the Principled BSDF shader. More detailed settings are provided in Appendix A.3.

4 A VOLUME RENDERING ORACLE METHOD

Given a set of posed RGB images of a scene, NeRF-based (Mildenhall et al., 2021) methods typi-
cally estimate the geometry and appearance by learning a volumetric representation that can render
images from novel views. However, most NeRF-based methods struggle with scenes involving re-
fractive and reflective objects due to their assumption of straight light paths (Deng et al., 2024b).
To evaluate how well a NeRF-based model can perform in reconstructing scenes with refractive
and reflective objects, we present an oracle method that has access to the ground-truth geometry
and refractive indices, as shown in Figure 2. The method assumes piecewise linear light paths (i.e.,
piecewise constant refractive indices), a single explicit reflection occurring at the first surface in-
tersection, and a maximum of 10 refractions or total internal reflections. Note that NeRF-based
view-dependent color prediction can allow for additional implicit reflections. For real refractive
objects, these assumptions are not very restrictive.

4.1 NERF PRELIMINARIES

The Neural Radiance Field (NeRF) method (Mildenhall et al., 2021) parametrizes a 3D scene as a
radiance field coordinate network ¢y, which maps a 5 DoF position and view direction (x;,d) to
volume density o; and view-dependent color c¢;. The parameters 6 of ¢y are optimized with respect
to a photometric loss that compares renders of the neural field to the ground-truth images. To render
an image, NeRF integrates the predicted colors c;(x;,d) and densities o;(x;) along each camera
ray r(t) = o + td, where o and d denote the camera origin and direction, and ¢ ranges from the
near plane ¢,, to the far plane ¢¢. The rendered color c(r) of each pixel is approximated as the
w;-weighted sum of the colors c; at /N sample points along the ray,

N

c(r) = ZTZ(I — exp(—0;At;)) ¢, (1)

i=1

w;
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where T; = exp (7 Z;;ll JjAt]) denotes the accumulated transmittance up to sample ¢, and At;
denotes the distance between consecutive samples.

4.2 MODELING REFRACTIONS AND REFLECTIONS

This section outlines how the piecewise linear refracted and reflected light trajectories are computed,
sampled, integrated along, and combined in our oracle method. It extends the robust Zip-NeRF
(Barron et al., 2023) model to handle refraction and explicit reflection, as shown in Figure 2.

The oracle method represents light paths as piecewise linear functions parametrized by K + 1 points
{pi} £, and unit direction vectors {d; } X,

K
r(t) =Y It € [r o)1 (i + (t —7:)ds), 2)
1=0

where [ - ] is an Iverson bracket, pg = o, dg = d and the cumulative distance is given by

0 fori =0
Ti = © fori=K+1 (3)
Z;zl llp; — pj—1]| otherwise.

The method considers two paths: a (multiple) refraction path r® and a (single) reflection path r”.
We next show how to compute the parameters for each.

Refraction and reflection parameters. For the refraction ray r®, given a position p; and direction
d;, the next intersection p;4; with the refractive object is computed using ground-truth geometry.
Let a; = vi/vit1, Bi = —d]n(pit1), 72 = 1 — a?(1 — B?), v; be the refractive index of the i
medium, and n(x) be the ground-truth unit normal vector at location x. Then if %-2 > 0, refraction
will occur and the next direction d; 1 is computed using Snell’s Law (Born & Wolf, 2013),

dit1 = oud; + (08 — Vi) n(pit1). 4

Otherwise, total internal reflection will occur and the direction is given by the Law of Reflection,
dit1 = di — 2(d{n(pit1))n(Pit1)- o)

For the reflection ray r”, only the reflection at the first surface intersection is considered. The first
reflected direction, df, is given by Eq. (5). The proposed method does not explicitly model any
other reflections (except for total internal reflections), because they are computationally expensive
and have negligible impact in most situations.

Sampling and rendering. For neural rendering, our model samples points along the refraction and
reflection paths using the proposal sampler from Mip-NeRF 360 (Barron et al., 2022), which first
uniformly samples along the path and then uses the computed probability density function to con-
centrate samples in higher density regions. The neural field is queried at each sample location x;,
using the corresponding direction vector d; at that location (unlike standard NeRF that uses a con-
stant direction d). That is, we obtain (ci, o)) = ¢(xF,dY) and (cf,07) = ¢(x,d?) for all

K2

sample points on both paths. We then apply Eq. (1) to obtain the colors ¢® and c¢”. The refractive
and reflective color contributions are combined using the Fresnel equations (Hecht, 2012),

1
¢ =R(c*—c%)+c%, where R= §(Rp + Ry), (6a)
2 2
v1Bo — Vo’Yo) <V050 - V170>
Ry=|\———|, Ri=—7—"7"—]| , (6b)
P (mﬁo + voYo ? voBo + V170

where R, and %, are the reflection coefficients for parallel and perpendicular polarized light; the
color ¢’ is converted to a non-linear SRGB space to obtain the predicted color ¢ (Verbin et al., 2022a).
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Figure 3: Comparison of the original (Barron et al., 2022) distortion loss £§ir;’f and the translucency-

corrected distortion loss L. (a)—(b) Distribution of sample points. (c)—(d) Distribution of weights.

4.3  OPTIMIZATION

The parameters ¢ of the coordinate network ¢y are optimized with respect to a photometric loss Lgp,
an anti-aliased interlevel loss Ly, and a modified distortion loss Lgis. The per-pixel photometric
loss is given by the mean squared color error,

N
Lup(&,¢) = gl —c[3, ™)

where c is the ground-truth pixel color. The interlevel loss L, (Barron et al., 2023) encourages
consistency between the proposal network, which is used for quickly identifying important sampling
regions, and the main network.

The distortion loss £g;* introduced in Mip-NeRF 360 (Barron et al., 2022) encourages the weight
distribution along a ray to coalesce and otherwise tend to zero. This leads to a preference for a single
high-weight peak, that is, a single opaque surface. This is desirable for standard NeRF settings, since
it reduces ‘floaters’ and background collapse. However, it is not applicable for translucent objects,
where color contributions along a ray arise from both the translucent and opaque media. As shown
in Figure 3 (left), the unmodified loss tends to reduce the density of translucent objects to zero,
which has the side-effect of reducing samples within the object, due to proposal sampling. Thus, we
propose a modified distortion loss that excludes samples within the refractive object, given by

S+ 84 S5+ 85 1
Lise(s, W) = Z WiW; - 5 e 5 = +§ z w$(5i+1 — Si), ®)
4,5 €ZLout 4,5 €Lout

where s; denotes the normalized ray distance (Barron et al., 2022) to the ¢t sample point, and Zy,
is the set of indices outside the refractive object. As shown in Figure 3 (right), after applying the
corrected distortion loss, the model allocates more samples with higher weights within the refractive
object, leading to more accurate reconstruction. The overall loss is then

L = Ligp + M Line + A2 Laists )

where hyperparameters Ay and A, weight the relative loss contributions and each loss term averages
the per-pixel losses across the dataset.

5 R3F: A RELAXATION OF THE ORACLE METHOD

Given the previously described oracle method, the requirements of ground-truth object geometry
and refractive index can be relaxed in a relatively straightforward manner. We name the resulting 3D
reconstruction method R3F (Refractive—Reflective Radiance Field). The geometry of the refractive
object is estimated using a modern variant of the visual hull algorithm (Laurentini, 1994), where
posed object masks are given as inputs to the UNISURF implicit surface model (Oechsle et al.,
2021). The object masks, if unavailable, may be accurately estimated using foreground—background
segmentation (Kirillov et al., 2023). However, the resulting surfaces are insufficiently smooth for
computing refracted light paths, since slight aberrations in the normal directions can cause large
visual differences. To address this, we apply automatic post-processing to smooth and refine the
surface, detailed in Appendix A.2. This provides the object geometry required by our oracle method.
The refractive index, if unavailable, may be very precisely estimated using the approach outlined in
TNSR (Deng et al., 2024a). While effective, R3F is limited to reconstructing the visual hull of the
object, and so is not suitable for the multi-material category and objects with holes in the RefRef
dataset, where internal structures need to be considered.
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Table 2: Quantitative results on the RefRef test set. Metrics include view synthesis (PSNR, masked
PSNR, SSIM, LPIPS) and geometry accuracy using distance mean absolute error (DMAE). DMAE
is masked for natural backgrounds. Methods compared include NeuS (Wang et al., 2021), Splatfacto
(Kerbl et al., 2023), Zip-NeRF (Barron et al., 2023), MS-NeRF (Yin et al., 2023), Ray Deformation
Networks (Deng et al., 2024b), and RoseNeRF (Liang et al., 2024), along with our oracle and R3F.

Method Cube Background Sphere Background Natural Background All Backgrounds

PSNR PSNR,SSIM LPIPS DMAE PSNR PSNR, SSIM LPIPS DMAE PSNR PSNR,SSIM LPIPS DMAE,; PSNR PSNR,SSIM LPIPS DMAE
L et et e ey M AN

NeuS 18.4814.94 0.66 0.19 120 20.7714880.60 0.16 1.81 - - - — -  19.6214.910.63 0.18 1.50
Splatfacto  22.3214.90 0.87 0.11 14.56 21.6715.00 0.88 0.16 33.41 11.8813.050.62 0.71 1.17 18.8814.36 0.80 0.31 16.96
ZipNeRF  22.1614.88 0.86 0.13 0.10 22.9515.70 0.91 0.13 022 33.0426.52 0.94 0.10 0.08 25.7818.75 0.90 0.12 0.17
TNSR 193011.92 0.84 0.12 090 18.6211.66 0.85 0.17 1.62 - - - — - 189611.79 0.85 0.14 126
MS-NeRF ~ 21.6014.00 0.85 0.12 0.07 21.4214.58 0.85 0.18 144 26.5621.03 0.81 037 1.93 23.0616.36 0.84 0.22 1.12
RayDef  21.851437 0.84 0.15 0.15 21.1614.68 0.84 022 1.08 26.9624.72 0.77 037 0.08 23.1917.66 0.82 0.24 0.45
RoseNeRF  20.1814.02 0.82 032 - 22331522088 0.14 - 23542635077 051 -  22.6717.94 081 031 -

R3F (Ours)  23.5516.49 0.86 0.12 0.08 25.0818.10 0.90 0.12 0.18 30.9124.17 0.93 0.13 0.01 26.5119.58 0.90 0.12 0.09

Oracle (Ours) 31.6425.37 0.96 0.03 0.04 32.8726.14 0.96 0.03 0.19 33.4826.85 0.96 0.08 0.00 32.6726.12 0.96 0.05 0.08

NeuS 19.1114.86 0.67 0.13 1.17 20.7213.21 0.62 0.13 1.97 - - - - - 19.9214.03 0.64 0.13 1.57
Splatfacto  24.4016.02 0.88 0.07 9.42 22.0715.30 0.85 0.17 26.30 10.7111.64 0.51 0.76 0.97 19.1714.36 0.75 0.33 12.73

ZipNeRF  24.1515.87 0.88 0.08 0.09 24.3715.91 0.89 0.09 020 27.1719.10 0.89 0.14 0.15 25.2316.96 0.89 0.10 0.18
TNSR 18921125 0.83 0.14 131 19381185083 0.16 162 - - - — - 19221157083 0.15 1.47
MS-NeRF ~ 23.8315.74 0.87 0.10 026 22.6815.27 0.85 0.15 128 24.0616.82 0.75 042 1.92 23.5615.96 0.82 0.22 0.94
RayDef  22.6914.98 0.83 0.18 048 21.7714.82 0.82 020 123 24.2919.43 0.70 043 0.08 22.9416.46 0.78 0.26 0.59
RoseNeRF  22.8314.97 0.81 0.15 - 22491512085 0.13 - 237617.15072 058 - 23021621079 024 -
R3F (Ours)  23.1715.12 0.87 0.10 0.11 23.2715.03 0.88 0.11 025 26.5418.66 0.87 020 0.03 24.3316.27 0.87 0.14 0.13

Oracle (Ours) 27.8119.86 0.92 0.06 0.04 28.6920.39 0.93 0.05 0.15 29.4621.24 0.92 0.11 0.00 28.6620.49 0.93 0.07 0.06

NeuS 19.1915.97 0.63 0.20 1.31 19.4914.16 0.61 0.20 1.99 - - - - - 19.3515.11 0.62 0.19 1.62
Splatfacto ~ 24.7017.72 0.86 0.10 11.03 24.5317.95 0.89 0.11 19.93 10.6010.55 0.54 0.76 1.13 20.1015.53 0.76 0.32 10.61
Zip-NeRF  25.6118.05 0.88 0.09 0.11 26.1018.36 0.90 0.09 0.24 29.5522.58 0.91 0.14 0.19 27.0919.66 0.89 0.11 0.21
TNSR 17.6610.06 0.81 0.16 1.19 17.6910.61 0.80 0.21 2.20 - - - - - 17.9410.44 0.82 0.17 1.62
MS-NeRF  24.9317.89 0.85 0.12 0.39 20.9415.27 0.78 0.27 2.56 25.9920.36 0.78 0.40 0.19 23.6416.84 0.82 0.24 1.02
RayDef 23.9416.66 0.84 0.14 0.34 21.1015.56 0.80 0.27 1.60 24.8522.09 0.72 0.43 0.12 23.2918.12 0.78 0.28 0.69
RoseNeRF  23.1615.94 0.80 0.16 -  20.2016.56 0.78 029 -  22.7221910.73 055 -  22.7818.27 0.75 030 -

R3F (Ours)  23.0815.76 0.85 0.13 0.15 23.2615.78 0.87 0.14 0.26 26.9420.02 0.86 0.22 0.05 24.4317.19 0.86 0.16 0.15

Oracle (Ours) 27.4520.02 0.91 0.08 0.04 27.7620.05 0.92 0.08 0.14 30.8223.61 0.92 0.13 0.00 28.6721.23 0.92 0.10 0.06

NeuS 19.151533 0.65 0.17 123 20151397061 0.16 193 - - — — - 19621464 063 0.19 1.62
Splatfacto  24.2616.69 0.87 0.09 10.96 23.0316.36 0.87 0.14 2490 10.8611.39 0.54 0.75 1.08 19.5314.87 0.77 0.32 12.55
ZipNeRF  24.4116.60 0.88 0.09 0.10 24.8416.90 0.90 0.10 0.22 29.1521.80 0.91 0.13 0.16 26.1118.41 0.89 0.11 0.20
TNSR 187811.02 0.83 0.18 1.10 18511128082 0.18 187 - - - — - 186411.14083 0.16 1.49
MSNeRF  23.9816.43 0.86 0.11 022 21.7215.150.82 021 1.84 253219.07 0.77 040 1.93 23.6416.84 0.82 0.24 1.02
RayDef  23.0715.61 0.83 0.15 037 21.3715.11 0.81 0.23 1.36 24.9621.43 072 042 0.10 23.1317.38 0.79 0.27 0.6
RoseNeRF  22.4915.07 0.83 0.18 - 21501574 0.83 020 - 23282081 073 055 -  22.8617.390.78 028 -

R3F (Ours)  23.1915.61 0.86 0.12 0.12 23.5615.85 0.88 0.12 0.25 27.4320.14 0.88 020 0.03 24.7317.20 0.87 0.15 0.13

Oracle (Ours) 28.28 20.82 0.92 0.06 0.04 29.0521.28 0.93 0.06 0.15 30.6923.17 0.93 0.11 0.00 29.3421.75 0.93 0.08 0.07

Convex single-mat.

Nonconvex single-mat.

Nonconvex multi-mat.

Entire dataset

6 EXPERIMENTS

Baselines and prior work. Alongside the oracle and R3F methods, we evaluate several state-of-
the-art approaches: Neural Surface Reconstruction (NeuS) (Wang et al., 2021), Splatfacto (Kerbl
etal., 2023), Zip-NeRF (Barron et al., 2023), Multi-Space Neural Radiance Fields (MS-NeRF) (Yin
et al., 2023), Ray Deformation Networks (RayDef) (Deng et al., 2024b), Transparent Neural Surface
Refinement (TNSR) (Deng et al., 2024a), and RoseNeRF (Liang et al., 2024). The first three use the
standard straight line light path assumption, while the others model refraction and reflection.

Metrics. To assess novel view quality, we report the peak signal-to-noise ratio (PSNR), the masked
PSNR (PSNRy) that excludes background to focus on refractive objects, the structural similarity
index measure (SSIM), and the learned perceptual image patch similarity (LPIPS), which is more
indicative of differences to the human eye than PSNR, especially with respect to blur. To assess
the geometric fidelity, we report the distance mean absolute error (DMAE) between the estimated
and ground-truth distance maps. Importantly, standard weighted-sum distance rendering techniques
(Mildenhall et al., 2021) cannot be used for translucent objects, since weights are distributed across
translucent and opaque media. Instead, we take the median distance of the weight samples along
each ray, as a robust estimate of the distance to the nearest (potentially translucent) surface.

Implementation details. Oracle and R3F both extend Zip-NeRF (Barron et al., 2023) to allow piece-
wise linear light paths and explicit reflection. For bounded scenes, we set near plane ¢, =0.05, far
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Ground Truth Zip-NeRF MS-NeRF Ray Deform R3F (Ours) Oracle (Ours)
— vy = T & - = o] = = ———

RGB Distance Map RGB Distance Map RGB

Distance Map

(a) Synthetic scene results
Ray Deform

(b) Real scene results

Figure 4: Qualitative results on (a) synthetic and (b) real scenes. Our R3F and Oracle methods out-
perform Zip-NeRF (Barron et al., 2023), MS-NeRF (Yin et al., 2023), Ray Deformation Networks
(Deng et al., 2024b), and TNSR (Deng et al., 2024a), especially in scenes with multiple refractions
and total internal reflection, where other methods often fail.

plane ¢ y=15, and distortion loss weight 0.01. For unbounded scenes, we use ¢ y=1000 and a con-
traction warp function. Models are trained for 25k iterations on a single A6000 GPU with batch
size 4096. Further implementation details are provided in Appendix A.2.

Quantitative and qualitative results. The quantitative results are reported in Table 2 for the three
data subsets. R3F performs strongly in the single-material convex object category, outperforming
all other methods except the oracle, which receives privileged information. However, it struggles
with handling objects with concavities; a consequence of its reliance on a variant of the visual
hull algorithm. The other methods perform reasonably well on simple scenes (e.g., convex ob-
jects, natural environment map backgrounds), but perform significantly worse for harder objects and
background types. The object geometry is particularly poorly estimated, showing that the models
are taking shortcuts either by deforming the geometry to fit the refracted appearance or by placing
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R3F (Ours)  Table 3: Ablation study of the oracle method
on single-material convex objects (cube back-
ground). Ablated components are distortion loss
correction, first surface reflection, total internal re-
flection, and Zip-NeRF (Barron et al., 2023) back-
bone (substituting Nerfacto (Tancik et al., 2023)).

Method PSNR?T PSNRy 1 SSIM1 LPIPS| DMAE]
x1072 x1072 x1072

Figure 5: Failure case of the oracle and R3F

methods. The oracle method, despite access Oracle 31.64 25.37 96.13 2.76 4.38
to ground-truth geometry and refractive indices, Ww/o corrected Lgis 31.59 2531 96.12 278  4.07
struggles to model the vase’s uneven surface. W/o 4 29.65 22.92 94.69 3.67 2.97
Meanwhile, R3F treats the vase as solid, caus- W/° TIR 25.85 19.27 90.84 838 15.86

ing appearance distortions near the top. w/o Zip-NeRF 24.68 21.45 87.79 11.63 27.42

floaters around objects. Moreover, R3F performs slightly worse than Zip-NeRF in the non-convex
and multi-material categories. These subsets contain many thin glass objects where the straight-ray
assumption, as made by Zip-NeRF, is reasonable. In contrast, R3F models these objects as solid vol-
umes and bend s rays more than appropriate, resulting in higher errors. This reveals both a limitation
of R3F and the overall difficulty of refractive reconstruction. Qualitative results for both synthetic
and real scenes are presented in Figure 4. A clear performance gap is observed between our meth-
ods and existing approaches. In scenes involving multiple refractions and total internal reflections
(TIR), most methods produce blurry or incorrect outputs. In contrast, the oracle and R3F methods
capture these refracted background patterns more accurately, although R3F may exhibit artifacts due
to inaccuracies in geometry estimation. Additional qualitative results are provided in Appendix A.6.

Furthermore, both the oracle method and R3F exhibit failure cases, particularly when reconstructing
objects with complex structures, as shown in Figure 5. The oracle method, with access to ground-
truth geometry, can capture fine details such as holes, but still struggles to model highly uneven
surfaces. While R3F relies on a variant of the visual hull algorithm (Laurentini, 1994), which pre-
vents it from modeling internal cavities, resulting in solid geometries and rendering artifacts. These
examples highlight the difficulty of handling objects with hidden or internal structures, where accu-
rate geometry estimation is critical. They also show that modeling refractive objects is challenging
even with ground-truth data, pointing to the need for more robust methods.

Ablation study. An ablation study is presented in Table 3, comparing the full oracle method with
four ablated versions: without the corrected distortion loss, first surface reflection, total internal
reflection (TIR), and replacing the Zip-NeRF (Barron et al., 2023) backbone with Nerfacto (Tancik
et al., 2023). The full oracle method accurately models both reflections and TIR, producing highly
detailed renderings. In contrast, removing the corrected distortion loss reduces sample points within
refractive objects, as illustrated in Figure 3. Omitting the first surface reflection leads to the loss
of subtle reflective details, while disabling TIR results in missing critical light interactions within
refractive objects, and replacing the backbone results in lower performance. These results highlight
the importance of each component, as removing any of them leads to a clear performance drop.

7 CONCLUSION

We have presented the RefRef dataset for 3D reconstruction and novel view synthesis of scenes
containing refractive and reflective objects. To establish a performance target, we introduce an
oracle method based on ground-truth geometry and refractive indices, as well as a more practical
alternative, R3F, that relaxes these assumptions. Benchmarking state-of-the-art methods revealed
significant performance gaps, even for models explicitly designed to handle nonlinear light paths.
More surprisingly, the oracle method exhibits several limitations despite its fairly mild assumptions
(a maximum of ten bends, a single explicit reflection). This highlights the high sensitivity of light
transport to geometric inaccuracies—small errors in surface normals can cause large deviations in
ray paths. These results point to the need for new reconstruction methods that can more reliably
account for complex light interactions in transparent and reflective scenes.
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ETHICS STATEMENT

Our work introduces a dataset and benchmark designed for reconstructing scenes containing refrac-
tive and reflective objects. While this addresses a known limitation in current 3D reconstruction and
novel view synthesis methods, it carries both potential benefits and risks for society.

Potential Positive Societal Impacts. This work contributes to the advancement of computer vision
research by enabling the development and evaluation of methods that can better model complex light
interactions such as refraction and reflection. These capabilities are essential for accurately recon-
structing scenes with non-Lambertian materials. Furthermore, the improvements in reconstruction
quality have potential applications in robotics, autonomous navigation, and augmented or virtual
reality, where reliable perception in complex environments is important. For example, a reconstruc-
tion method that fails to correctly model the 3D structure of a plastic object on a road may cause an
accident for an autonomous driving system.

Potential Negative Societal Impacts. At the same time, the ability to reconstruct scenes contain-
ing reflective or transparent objects with greater fidelity could be misused for surveillance or the
unauthorized reconstruction of private spaces, raising privacy concerns. In addition, reliance on
large datasets for training and evaluation can lead to high computational costs. This contributes to
increased energy consumption and environmental impact.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results. All training procedures, hyper-
parameters, and loss functions are fully described in the main paper and Appendix. The dataset,
source files, rendering scripts, and algorithm code have all been fully implemented, organized, and
tested, and will be made publicly available in accordance with ICLR’s policy.
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A APPENDIX

A.1 ADDITIONAL METHODOLOGICAL DETAILS

In this section, we provide additional details on our sampling strategy and how updated sample
points are processed for density and color prediction in our oracle method. These extensions com-
plement the core concepts outlined in the main paper and focus on implementation-specific details.

Sampling Strategy. We begin by generating an initial straight ray r(¢) = o + td, which is then split
into two paths: ta refraction path r® and a reflection path r*. To sample along these paths, we adopt
the proposal sampling strategy introduced in ZipNeRF (Barron et al., 2023), which builds upon the
hierarchical sampling approach of Mip-NeRF 360 (Barron et al., 2022). ZipNeRF samples inside a
cone following a spiral path, we update the center line of the cone while preserving the sampling pat-
tern. It starts with a uniform sampler that generates N sample points x; along the initial straight ray.
These points are then updated, resulting in new positions xf‘ and x?! with corresponding direction

vectors d¥ and d?, which follow curved paths for refractions and reflections, respectively. Next,
the density o; and weight w; of each sample point along these curved paths are computed. These
weights, which represent the contribution of each sample, are further passed through a probability
density function sampler to concentrate samples in higher density regions to enhance the accuracy
of rendering.

Processing Updated Sample Points. After each sampling stage, the updated sample point positions
xf‘ and x! are processed through a spatial encoding function ¢ for efficient representation. These
encoded spatial points are then fed into a multi-layer perceptron (MLP) fy, which predicts the scene
density o;. To obtain the predicted color at each 3D position, another MLP gy processes the re-
fined viewing directions df‘ and d?, encoded using spherical harmonics 1, alongside the computed
density ;. This yields the emitted color ¢; = (R, G, B) for each sample point.

A.2 FURTHER IMPLEMENTATION DETAILS

For optimizing the oracle method, we use an Adam optimizer with an initial learning rate of 8 x 1073,
e = 1x1071%, and an exponential decay to 1 x 1072 over 2.5 x 10* steps, with a 1000-step warm-up.
Scene contraction is applied for HDR environment map backgrounds.

For R3F, geometry post-processing begins with applying a convex hull to all meshes. We identify
and remove floaters by computing the maximum convex-to-original vertex distance max;(d;). If
this distance exceeds a threshold, we apply the Remove Isolated Pieces filter (90% diameter) in
MeshLab (Cignoni et al., 2008) to eliminate disconnected or spurious components; otherwise, we
retain the convex hull as the final mesh, assuming it sufficiently represents the original shape. In
Blender, we further refine the meshes to improve smoothness and geometric fidelity. Specifically,
we apply a bevel operation (Zorin et al., 1996) (0.015m, 3 segments) to round sharp edges, perform
smoothing (Desbrun et al., 1999) (factor = 1.0, repeat = 100), and then utilize remeshing (Kobbelt
et al., 2001) (smooth mode, octree depth = 8, scale = 0.9, threshold = 1.0).

A.3 RENDERING DETAILS

We render all synthetic scenes using the Cycles path tracer in Blender (Blender, 2024), which em-
ploys Monte Carlo integration to solve the rendering equation using BSDFs (Bidirectional Scatter-
ing Distribution Functions) (Kajiya, 1986). Light transport is approximated by stochastically tracing
paths of light rays and recursively evaluating their interactions with surfaces and transmissive mate-
rials:

Lo(@,w0) = Le(wsc0) + / £y iy o) L, i) (ws - m) dw,
Q

where L,(z,w,) is the radiance leaving point z in direction w,, L. is the emitted radiance, f; is
the BSDF, L; is the incoming radiance from direction wj;, n is the surface normal at =, and 2 is the
hemisphere of incoming directions. The dot product w; -n accounts for the cosine falloff of incoming
light. Unlike the BRDEF, the BSDF f accounts for both surface reflection and transmission, which
is necessary for modeling materials such as glass and transparent plastics used in our scenes.
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Table 4: Source and license information for objects used in our dataset. Objects are ob-
tained from various sources: BlenderKit (https://www.blenderkit.com/), CGTrader
(https://www.cgtrader.com/), Free3D (https://free3d.com/), Keenan’s 3D Model
Repository (Crane et al., 2013)(https://www.cs.cmu.edu/~kmcrane/Projects/
ModelRepository/), and custom creations. All externally sourced objects were materially mod-
ified for our requirements.

Source License Objects

BlenderKit Royalty Free cat, diamond, fox, man sculpture, sleeping dragon, candle holder, cola bottle,
crystal vase, demijohn vase, flower vase, Korken jar, Vardagen jar,
wisolt kettle, magnifier, plastic bottle, reed diffuser, skull bottle,
teacup, teapot, water pitcher, wine glass, light bulb, perfume red,
perfume yellow, star-shaped bottle, household item set, ampoule,
beaker, conical flask, vial, lab equipment set

BlenderKit CCO generic sculpture, woman sculpture

Blender GPL monkey, ball, coloured ball, cube, coloured cube, cylinder,
coloured cylinder, pyramid, coloured pyramid, torus, coloured torus

CGTrader Royalty Free graduated cylinder, test tube, round bottom flask

Free3D Royalty Free dog

Keenan’s CCo cow

Authors CCO syringe

We model the scenes using physically realistic materials provided by Blender’s Principled BSDF
shader, specifying material parameters for glass, metal, and dielectric plastics. Object placements,
lighting, and camera positions are randomized to encourage variation across samples. To ensure
rendering quality:

* Adaptive sampling (Bucher, 1988) is enabled to improve rendering efficiency by dynamically ad-
justing the number of samples per pixel based on estimated noise. Pixels with low variance receive
fewer samples, while high-frequency regions are sampled more densely. We set the noise thresh-
old to 0.05, which defines the per-pixel error tolerance for terminating sampling. The minimum
number of samples is set to 0, allowing Cycles to automatically determine this value from the
threshold. The maximum number of samples per pixel is capped at 600.

* The maximum number of light bounces is set to 12 to support complex global illumination. This

includes up to 4 diffuse bounces for soft indirect light, 4 glossy bounces for specular reflections,

12 transmission bounces to handle multiple refractive interfaces, and 8 transparent bounces for

rays passing through alpha-masked geometry. Volume scattering is disabled (volume bounces =

0) since no participating media are present in our scenes.

To reduce bright noise artifacts ("fireflies”), we clamp both direct and indirect light contributions

to 1.0. We also enable reflective and refractive caustics to preserve high-frequency light transport

effects such as focused reflections or refractions.

* The Glossy Filter is set to 0.0 to retain sharp caustic and highlight details without blurring.

A.4 LICENSES

Detailed information on the sources and licensing of objects in our dataset is provided in Table 4,
covering both objects created by our team and those sourced from online repositories with specific
licensing terms. For sourced objects, we made material modifications where necessary to better
align with the dataset’s requirements.
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Table 5: Quantitative results on the top-5 test views farthest from any training view in camera
pose space. We report view synthesis metrics (PSNR, masked PSNR, SSIM, LPIPS) and geometry
accuracy using the distance root mean square error (DRMSE).

Method PSNR? PSNRy SSIM1 LPIPS, DRMSE,
ZipNeRF (Barron et al., 2023) 25.37 17.81 0.89 0.12 1.21
MS-NeRF (Yin et al., 2023) 22.08 16.14 0.78 0.29 0.94
RayDef (Deng et al., 2024b) 19.99 16.28 0.72 0.38 1.98
R3F (Ours) 24.63 17.17 0.87 0.16 0.88
Oracle (Ours) 28.44 21.06 0.92 0.09 0.00

A.5 HYPERPARAMETERS

In this section, we detail the hyperparameter settings used for training the models evaluated in our
experiments. The configurations, including learning rates, optimizers, and scheduler settings, were
carefully chosen to ensure stable convergence and performance across different methods. Specific
hyperparameter choices for each evaluated approach are described below.

For MS-NeRF (Yin et al., 2023) and RoseNeRF (Liang et al., 2024), both the proposal networks and
the field optimizer utilize an Adam optimizer with an initial learning rate of 4 x 1073, ¢ = 1x 10715,
and an exponential decay scheduler that reduces the learning rate to 1 x 10~% over 2 x 10° steps.
For Zip-NeRF (Barron et al., 2023), the model optimizer utilizes a default configuration with an
Adam optimizer set to an initial learning rate of 8 x 1073, ¢ = 1 x 107'5, and an exponential
decay scheduler reducing the learning rate to 1 x 1073 over 2.5 x 10* steps, with 1000 warm-up
steps. For Ray Deformation Network (Deng et al., 2024b), both the proposal networks and the field
optimizer utilize an Adam optimizer with an initial learning rate of 2 x 1073, ¢ = 1 x 107!, and
an exponential decay scheduler reducing the learning rate to 1 x 10~% over 1 x 10° steps. For
NeuS (Wang et al., 2021) and TNSR (Deng et al., 2024a), the proposal networks utilize a default
configuration with an Adam optimizer set to an initial learning rate of 1 x 1072, ¢ = 1 x 10715,
and a multi-step decay scheduler reducing the learning rate by a factor v = 0.33 every milestone
over 2 x 10* steps. The milestones are at 10000, 15000, and 18000 steps, respectively. For the field
optimizer, we use an initial learning rate of 5 x 10—, and a cosine decay scheduler with 500 warm-
up steps and learning rate peak value set to 5 x 10~2. We have also included a 3D Gaussian splatting
approach, Splatfacto (Kerbl et al., 2023), which is implemented in nerfstudio. For Splatfacto, we
used the default configurations in nerfstudio.

A.6 EXTENDED EXPERIMENTAL RESULTS

In this section, we compare more results of the oracle and R3F methods with existing state-of-the-art
methods on our RefRef test set. We present comparative qualitative results on objects placed in pat-
terned cube and patterned sphere backgrounds in Figure 6, and HDR environment map backgrounds
in Figure 7. The patterned backgrounds are more challenging due to the presence of complex tex-
tures, where most methods struggle, especially in handling multiple refractions and total internal
reflection. These methods are unable to reconstruct the highly detailed patterns, either blurry or
incorrect. In contrast, the oracle and R3F methods are better able to capture these complex light
interactions. The HDR environment map background is relatively easier, and most methods perform
well on simple geometries. However, their performance fluctuates significantly on more complex
shapes. In both settings, our approaches consistently produce more accurate and stable results, es-
pecially in scenes dominated by refractive components.

We also present further quantitative comparison in Table 5 on the top-5 test views farthest from any
training view in camera pose space. While ZipNeRF (Barron et al., 2023) achieves competitive view
synthesis metrics on the full dataset, its performance drops on this challenging subset, particularly
in geometry accuracy, where it is notably worse than the oracle and R3F methods. This suggests that
ZipNeRF may be improving appearance metrics by either deforming the geometry or introducing
floaters around the object to compensate for refractive effects, rather than accurately modeling the
physical light transport. In contrast, our R3F maintains stable performance across both the full
dataset and this challenging subset, with only subtle differences in these metrics, demonstrating
its robustness to viewpoint variations. The oracle method, as expected, achieves perfect geometry
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Table 6: Quantitative results on the real scene test views. Metrics include PSNR, masked PSNR,
SSIM, and LPIPS.

Method PSNR? PSNRy SSIM*+ LPIPS|
ZipNeRF (Barron et al., 2023) 19.70 16.46 0.79 0.34
MS-NeRF (Yin et al., 2023) 16.76 13.66 0.71 0.49
RayDef (Deng et al., 2024b) 20.11 16.45 0.74 0.42
TNSR (Deng et al., 2024a) 19.87 15.14 0.82 0.33
R3F (Ours) 18.98 17.30 0.70 0.43

reconstruction and superior rendering quality, further validating our theoretical framework. These
results highlight the limitations of prior work in handling challenging refractive scenes under novel
viewpoints and further demonstrate the robustness of our approaches.

Moreover, we evaluate several methods on the real scene to test generalization beyond synthetic
data, with quantitative results reported in Table 6. ZipNeRF (Barron et al., 2023) and TNSR (Deng
et al., 2024a) achieve higher SSIM and lower LPIPS, indicating they preserve overall structural simi-
larity and perceptual quality, but they struggle under heavy refractions, as seen in their lower masked
PSNR. Ray Deformation Networks (Deng et al., 2024b) obtains the highest overall PSNR, yet its
performance drops considerably when evaluating only the refractive regions. In contrast, our R3F
method achieves the strongest masked PSNR, demonstrating accurate reconstruction of the refrac-
tive object, which is the main challenge in real scenes. However, R3F produces minor artifacts in
background regions, often appearing as blurred floaters. This behavior is likely due to the fact that
R3F relies on estimated object geometry, and in real scenes the object’s pose and size may deviate
from the true values more than in synthetic data. Even small deviations in geometry or pose can
cause large discrepancies in refracted light paths, leading the model to introduce floaters or blurred
contributions around the foreground object to compensate. Despite this effect, R3F maintains more
stable and physically-consistent reconstructions on foreground compared to prior methods, demon-
strating its robustness in challenging real-world settings.

A.7 USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely as a writing assist tool. In particular, we used LLMs
to polish the readability of our text and to refine I5[IEX commands. The research ideas, experimental
design, and analysis were entirely conducted by the authors without LLM involvement.

A.8 AUTHOR STATEMENT

The authors confirm that they bear full responsibility for any violations of rights related to the
objects and data used in this work. All objects utilized in the dataset were either sourced from
publicly available repositories with appropriate licensing or created by the authors. The data licenses
are documented in Appendix A.4, and any modifications to the sourced objects were performed in
compliance with the respective licenses. The authors ensure that all data used adhere to the specified
licenses and terms of use.
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R3F (Ours) TNSR Ray Deform MS-NeRF Zip-NeRF Splatfacto NeuS Ground Truth

Oracle (Ours)

Figure 6: Qualitative comparison of novel view synthesis results on scenes with patterned cube
and patterned sphere backgrounds using NeuS (Wang et al., 2021), Splatfacto (Tancik et al., 2023),
Zip-NeRF (Barron et al., 2023), MS-NeRF (Yin et al., 2023), Ray Deformation Network (Deng
et al., 2024b), TNSR (Deng et al., 2024a), R3F, and Oracle. R3F and Oracle produce more accurate
renderings, especially in scenes involving multiple refractions and total internal reflection, where
other methods often fail.
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R3F (Ours) Ray Deform MS-NeRF Zip-NeRF Splatfacto Ground Truth

Oracle (Ours)

Figure 7: Qualitative comparison of novel view synthesis on scenes with HDR environment map
backgrounds, using Splatfacto (Tancik et al., 2023), Zip-NeRF (Barron et al., 2023), MS-NeRF
(Yin et al., 2023), Ray Deformation Network (Deng et al., 2024b), R3F (Ours), and Oracle. This
background type is generally less challenging than the patterned ones. Most methods perform well
on simple geometries, but their results vary significantly on complex shapes, where R3F and Oracle
remain relatively robust.
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