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Abstract

Language models (LMs) have profoundly re-001
shaped the field of natural language process-002
ing (NLP) in recent years. This paper presents003
the first investigation of the implications of004
LMs for linguistics, examining their role as005
a source of linguistic data. Despite their limi-006
tations, LMs have shown remarkable fluency007
and proficiency in modeling human language,008
suggesting their potential as linguistic artifacts.009
By proposing approaches to uncover these en-010
coded linguistic structures, the paper explores011
how LMs provide opportunities for linguists.012
Embracing LMs as linguistic artifacts reopens013
the door for collaboration between NLP and014
linguistics, overcoming limitations of previous015
paradigms and providing new opportunities for016
the field of linguistics research.017

1 Introduction018

Language models (LMs), especially large language019

models (LLMs), have caused a revolution in the020

natural language processing domain. Replacing the021

previous linguistically-informed pipeline, they ush-022

ered in a new paradigm for computational process-023

ing of human language. While some may despair at024

the decreasing importance of linguistics in modern025

NLP, these developments provide an opportunity026

for uncovering knowledge about human language027

since, as shall be argued in this paper, language028

models represent a linguistic artefact in their own029

right.030

Despite their shortcomings in real-world AI ap-031

plications, such as hallucinations (OpenAI, 2024;032

Dash et al., 2023), it is clear that LMs can accu-033

rately model human language, as evidenced by their034

surprisingly fluent conversational ability. Crucially035

they can generate sentences never before seen in036

training. The fluency of their text output has even037

led some to claim that ChatGPT has passed the038

Turing test (Biever, 2023), being indistinguishable039

from a human in short conversations in a text for- 040

mat. 041

One of the main aims of (synchronic) linguistics 042

as a field is "to account for the potentially infi- 043

nite set of well-formed sentences in all languages" 044

(Rastall, 2010), that is, to uncover the structure and 045

productive rules of human language. And it just 046

so happens that language models, albeit covertly, 047

encode at least a large majority of these structures, 048

if not all, as evidenced by their conversational abil- 049

ity.1 This provides an as of yet unused opportunity 050

to extract the embedded language structures for the 051

purpose of furthering linguistic knowledge. 052

In this paper I would therefore like to show the 053

great potential of language model analysis for the 054

field of linguistics and to propose some methods 055

of extracting linguistic knowledge from LMs, thus 056

showing that the benefits of collaboration between 057

linguistics and NLP are not a one-way street. 058

2 Some current computational 059

approaches to linguistics 060

Computational approaches to linguistics are noth- 061

ing new, and this section aims to outline some of 062

the relevant previous work in this field. 063

2.1 Corpus linguistics 064

The advent of the computer era in the 1960s 065

brought with it the appearance of digital text cor- 066

pora. This made it possible to study what Firth calls 067

"attested language" (Anderman and Rogers, 2007) 068

on a large scale for the first time. English corpora 069

such as the Brown Corpus (Francis and Kucera, 070

1979) or the British National Corpus (Leech, 1992), 071

consisting of millions of tokens from texts of dif- 072

ferent domains, were a valuable tool for theoretical 073

and computational linguists alike. This made it 074

1This is to say nothing about the question of their con-
sciousness, cf. Searle’s Chinese Room Argument (Searle,
1980).

1



possible to empirically test claims that are other-075

wise hard to validate reliably through introspection076

(Hunston, 2022). It also made linguistics more re-077

producible and objective, abstracting away from078

the linguistic bias of singular speakers or groups of079

researchers.080

Written and spoken corpora have contributed081

enormously to linguistics, and despite Chomsky’s082

misgivings their use has now become common-083

place in the field. An adequate discussion of their084

contribution to the field would go beyond the scope085

of this paper, but some examples of using corpus086

data to show hypotheses are O’Keeffe (2007) from087

the ESOL domain, Kesebir and Kesebir (2012)088

from psychology or Meurers (2005) in syntax. His-089

torical linguistics also relies heavily on corpora,090

since it is of course impossible to ask a native091

speaker in many cases.092

2.2 Word embeddings093

Arguably a precursor to modern LMs, building on094

the corpora discussed in 2.1, word embeddings095

(Mikolov et al., 2013; Pennington et al., 2014)096

aim to represent words (or tokens) as a real vec-097

tor v ∈ Rd. These are usually calculated so that098

words that often appear together in training corpora099

have a high similarity. This real-world encoding of100

Firth’s famous hypothesis that "a word is character-101

ized by the company it keeps" (Firth, 1957) opened102

the door to serious empirical linguistic research103

with the formerly purely theoretical distributional104

hypothesis of semantics.105

Using vector word representations embedded106

in time, Hamilton et al. (2016) showed how di-107

achronic semantic changes in English terms could108

be rediscovered through comparing their embed-109

dings rooted in time. Their experiments also em-110

pirically confirmed the hypothesis from diachronic111

linguistics that polysemous words change at faster112

rates.113

Other examples are Basirat and Tang (2018),114

who were also able to convincingly predict gram-115

matical features of nouns in Swedish such as the116

common/proper noun distinction and grammati-117

cal gender using word embeddings, and, on the118

sociolinguistic front, Caliskan et al. (2022), who119

demonstrated how gender bias pervases GloVe120

word-embeddings trained on internet corpora.121

3 LMs in linguistics 122

Currently the two main approaches used to develop 123

and validate linguistic hypotheses are through cor- 124

pora and through introspection, the former be- 125

ing championed by empiricists and the latter by 126

the Chomskyan rationalist tradition (McEnery and 127

Wilson, 2001). It is clear that corpora, includ- 128

ing those used to train LLMs, can only contain 129

a fraction of the famously infinite set of possible 130

grammatical sentences in a language, and this has 131

led Chomsky to decry corpus linguistics as seek- 132

ing to model language performance rather than 133

competence (McEnery and Wilson, 2001). Native 134

speaker introspection, on the other hand, while 135

able to judge the grammaticality of any sentence, 136

is clearly highly subjective and biased. Language 137

models, however, are productive and are able to 138

generalize across their corpora to produce, with 139

some sophistication, sentences not seen before in 140

training, thus blurring the line between the tradi- 141

tional Chomskyan distinction between competence 142

and performance. 143

3.1 History and design of LMs 144

In order to analyze language models as a linguistic 145

object, it is necessary to look at what exactly an 146

LM is and where it has come from. 147

Statistical language modeling has its origins in 148

the 1990s with models such as the n-gram model 149

(Brown et al., 1992), which uses the chain rule to 150

calculate the probability of the next token wi based 151

off of the previous n tokens using the following 152

formula: 153

P (wi) = P (wi|wi−n+1, ..., wi−1) (1) 154

In this case corpora were used to train these statis- 155

tical models and thus calculate the n-gram proba- 156

bilities which are used during generation. 157

The refinement of neural networks, however, 158

lead to the first neural training of vector represen- 159

tations of words, as described in 2.2, in order to 160

apply the geometric concept of (cosine) similarity 161

to the semantic space. This was further refined 162

by the idea of contextual word embeddings (Pe- 163

ters et al., 2018; Devlin et al., 2019), which allows 164

for polysemy in word tokens. This contextualiza- 165

tion allows the embeddings to take word order into 166

account and thus to be able to model sentences 167

much more accurately. BERT (Devlin et al., 2019) 168

uses an attention mechanism to embed information 169
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from other tokens in a sentence in a word represen-170

tation and was a breakthrough in the world of NLP,171

ushering in the age of pre-trained language mod-172

els (PLMs). Their popularity lies in the fact that173

PLMs, which have been pre-trained on large text174

corpora, can subsequently be fine-tuned on many175

downstream NLP tasks such as sentiment classifi-176

cation or question-answer systems, achieving state177

of the art results in many of these tasks.178

Increasing amounts of data and more efficient179

hardware led to the development of large language180

models (LLMs) (Brown et al., 2020; Chowdhery181

et al., 2022; Touvron et al., 2023), consisting usu-182

ally of at least 1 billion parameters. Together183

with improvements on traditional NLP benchmarks,184

these models seem to exhibit other "emergent abili-185

ties" (Wei et al., 2022) such as logical reasoning or186

performing simple arithmetic,2 also including tasks187

more relevant to linguistics such as POS tagging188

(Chopra, 2024).189

Therefore LLMs, which are usually trained on190

such trivial tasks as minimizing their error on next191

word prediction on the training corpus, end up be-192

ing able to produce fluent human-like text and can193

be used for a variety of tasks.194

3.2 LMs as a linguistic artefact195

The performance of LMs, particularly LLMs, im-196

plies that the linguistic structures underlying the197

written language they were trained on are stored, al-198

beit implicitly, within the parameters of the model.199

This fact alone warrants their closer analysis by200

linguists: the generative capabilities of LMs com-201

bined with their lack of personal bias provides a202

third way in the current methodological opposition203

between rationalists and empiricists. Indeed Chat-204

GPT can even be asked about the acceptability of a205

particular sentence (see 4.3). The black-box nature206

of neural networks (i.e. the arbitrary nature of their207

parameters outside of the whole parameter system)208

makes the task of examining their inner workings209

more complex, however in the following section210

I will propose some methods to extract linguistic211

knowledge from LMs.212

4 Methods for extraction of linguistic213

knowledge from LMs214

The use of LMs in linguistics research can be215

grouped into two main approaches: internal and216

external probing. Internal probing aims to find217

2Albeit with imperfect results (Liu et al., 2023).

structure in the model parameters through mathe- 218

matical or statistical techniques such as dimension 219

reduction or clustering. One notable example of 220

this is Tenney et al. (2019a), who used edge probing 221

(Tenney et al., 2019b) to show how the classic NLP 222

pipeline (starting with POS tagging and parsing, 223

and ending with semantic roles and coreference) 224

can be found in the layers of BERT. 225

External probing, on the other hand, utilizes the 226

model’s linguistic ability in order to analyze its 227

output from a linguistic perspective, such as using 228

it for annotation, to generate data or to query the 229

acceptability of certain sentences. 230

4.1 Latent space analysis 231

The latent space of an LM, i.e. the embedding 232

space Rd, is a d-dimensional space where the vec- 233

tor representations of components of the natural lan- 234

guage input reside. Analysis of this space through 235

internal probing can be fruitful, leading to a deeper 236

understanding of how LMs work the way they do 237

and, by extension, how the language system itself 238

is structured. 239

One minimal example of the use of this is the 240

following:3 by fine-tuning a BERT model on an 241

English dataset annotated for one of five verbal as- 242

pect classes, it becomes possible to examine the 243

embedding space used by the model (for more de- 244

tails see B). Figure 1 provides a visualization of the 245

[CLS] token embedding of verb-sentence pairs in 246

the training set, together with their aspect label. It 247

is clear how this could be useful to, for example, 248

empirically motivate the hypothesis that habituals 249

inhabit an area of the semantic aspect space be- 250

tween activities and states, which also intuitively 251

makes sense. 252

4.2 LMs for annotation 253

Among the professed "emergent capabilities" of 254

LLMs (Wei et al., 2022) is a capacity for logical 255

reasoning. While not perfect, LLMs do seem to 256

have human-like abilities in many areas, which can 257

be utilized for annotation of linguistic data. While 258

of course to be used with caution, the performance 259

of LLMs as annotators has been shown to rival 260

or even surpass that of human annotators in some 261

cases (Gilardi et al., 2023). An example use-case 262

could be POS tagging of a large corpus in order to 263

study the relative frequency of different syntactic 264

structures, thus overcoming the difficulty of finding 265

3Code available here.

3

https://anonymous.4open.science/r/reversing-nlp-pipeline-01C0/


Figure 1: [CLS] embedding space of a BERT model fine-tuned on English verbs annotated for aspect in context,
reduced to 2 dimensions by t-SNE.

and funding expert human annotators with systems266

capable of near-human performance (Bohnet et al.,267

2018).268

This area also opens up possibilities for low-269

resource languages, where finding annotators may270

be more difficult, or where data is sparse. For exam-271

ple, Kholodna et al. (2024) show how LLMs can be272

used for named entity recognition (NER) in African273

languages such as isiZulu and Bambara, reaching a274

comparable (or better) performance compared to a275

human annotator.276

4.3 LMs for acceptability analysis277

A special case of using LMs for annotation is using278

them for acceptability analysis, a key feature of lin-279

guistic research. While most studies in linguistics280

use introspection to determine the acceptability of281

a certain utterance (since, as already mentioned,282

corpora are finite), this is a highly subjective and,283

in essence, unscientific process due to its lack of284

objectivity and observability.285

This problem can be solved by querying LLMs286

on the acceptability of a sentence (see A for an287

example) or using an LM fine-tuned on a dataset288

such as CoLA (Warstadt et al., 2018), a dataset289

consisting of 10,657 sentences in English labeled290

as grammatical or ungrammatical taken from pub-291

lished linguistics literature. The sentences were 292

reannotated by five linguistics students leading to 293

an average annotator agreement of 86.2% with the 294

original judgement in the paper, signifying the prob- 295

lem with introspection as a source of linguistic data. 296

Taking this as a baseline, this has been surpassed 297

by several neural network systems (Cherniavskii 298

et al., 2022; Proskurina et al., 2023; Sileo, 2023), 299

showing their suitability for such tasks. Using a lan- 300

guage model for acceptability annotation increases 301

the objectivity and reproducibility of the results, 302

without sacrificing their validity. 303

5 Conclusion 304

In conclusion, LMs are a linguistic artefact and 305

should be seen as such by the linguistics commu- 306

nity. Acceptance of this assumption opens up a 307

world of possibilities for linguistics research and 308

could help overcome some of the drawbacks of 309

previous paradigms. 310

The techniques presented in this paper serve as 311

some examples for extracting linguistic knowledge 312

from LMs, and I hope that this paper will inspire 313

further interdisciplinary research leading to the de- 314

velopment and refinement of more sophisticated 315

methods. 316
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6 Limitations317

In light of the current hype surrounding deep learn-318

ing it is important to highlight the limitations of319

such techniques and what language models cannot320

do.321

It is well-known that training the LMs discussed322

in this paper requires a large amount of data and323

computing resources. While pre-trained models324

mean that LMs trained on relatively large amounts325

of data are now available for general use, for less326

well-resourced languages this is a problem, and327

their performance suffers drastically. While this328

does not rule out the use of LMs on such languages329

(see (Kholodna et al., 2024)), it certainly limits330

the applicability of some of the uses highlighted in331

this article, such as for annotation or acceptability332

analysis.333

Furthermore, it must also be noted that LMs take334

on any biases present in the training data, meaning335

the language they approximate should be treated336

with caution. Examining these biases, as has often337

been done before, can, however, be an area of study338

in its own right and can produce valuable data for339

sociolinguistics. However, it must also be noted340

that it cannot be guaranteed that characteristics of341

a model’s latent space can be transferred to a more342

general linguistic space, since human linguistic343

competence and LM competence differ in some344

aspects. Further research is therefore needed in this345

area.346

Finally, since LMs are trained to minimize error347

on one variety of a language, they are less well-348

suited to study linguistic variation, whether geo-349

graphical or temporal. This makes their use less350

suitable for languages without an accepted stan-351

dard variant, such as Swiss German. In these cases,352

however, an approach using word embeddings such353

as Hamilton et al. (2016) could still be useful.354
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A ChatGPT and linguistic acceptability568

The following is a script from an interaction with569

ChatGPT 3.5 on 20/03/2023:570

Prompt: Is the following sentence grammatically571

and syntactically acceptable: "He not merely likes572

her, he loves her."573

ChatGPT: Yes, the sentence "He not merely likes574

her, he loves her." is both grammatically and syntac-575

tically acceptable. It follows a parallel structure,576

presenting two related ideas in a balanced way.577

However, it’s worth noting that the phrase "not578

merely" is a bit formal and might sound slightly579

old-fashioned in casual conversation. A more com-580

mon way to express the same sentiment would be:581

"He doesn’t just like her, he loves her."582

While Silvennoinen (2023) argues that the above 583

sentence is unacceptable, a search on Google n- 584

grams reveals that examples with the phrase "not 585

merely" followed by a finite verb construction can 586

be found, especially in earlier texts, validating Chat- 587

GPT’s response. 588

However, ChatGPT agreed with the author on 589

the inacceptability of the following case: 590

Prompt: Is the following sentence acceptable: 591

"He not only likes her." 592

ChatGPT: The sentence "He not only likes her" 593

is grammatically incomplete. It lacks the second 594

part of the comparison, which is necessary for clar- 595

ity and grammatical correctness. You need to fol- 596

low up "not only" with "but also" or some other 597

comparative phrase to complete the structure. For 598

example: 599

"He not only likes her, but he also admires her." 600

"He not only likes her, but he also respects her." 601

Adding the "but also" or similar comparative 602

phrase makes the sentence grammatically accept- 603

able and conveys a clear comparison. 604

B Experiment details 605

In order to calculate the embeddings shown in 606

figure 1, a BERT-base-uncased model (110M pa- 607

rameters) was fine-tuned for 5 epochs on a selec- 608

tion of 4008 verbs together with the sentence they 609

appear in from the English part of the UMC003 610

trilingual dataset (Klyueva and Bojar, 2008). The 611

verb-sentence pairs were annotated by a fine-tuned 612

Llama 2 model (Touvron et al., 2023), outputting 613

one of the 5 aspect classes in the Uniform Mean- 614

ing Representation (UMR) framework (Gysel et al., 615

2021). The reason for the choice of this aspect clas- 616

sification was the availability of a small amount of 617

training data for fine-tuning the Llama 2 model. 618

Gysel et al. (2021) defines the UMR aspect 619

classes as follows: 620

• State - The State value corresponds to stative 621

events in Vendler (1957); no change occurs 622

during the event. It also includes predicate 623

nominals (be a doctor), predicate locations 624

(be in the forest), and thetic (presentational) 625

possession (have a cat). 626

• Habitual - The Habitual value is annotated 627

on events that occur regularly in the past or 628

present. 629

• Activity - The Activity value indicates an 630
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event has not necessarily ended and may be631

ongoing at Document Creation Time (DCT).632

• Endeavour - Endeavor is used for processes633

that end without reaching completion (i.e., ter-634

mination).635

• Performance - Performance is used for pro-636

cesses that reach a completed result state.637

For a more in-depth description of the UMR638

aspect classes, please see Gysel et al. (2021); Chen639

et al. (2021).640

The fine-tuned BERT model was then given dat-641

apoints from the test set and the embedding of the642

[CLS] classifier token was reduced to 2 dimensions643

by t-SNE (van der Maaten and Hinton, 2008). This644

was then plotted in figure 1 together with the as-645

pect label to show the topology of the LM’s aspect646

space.647
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