ZK-GenMed: A Zero-shot Knowledge Generative Medical Large Language
Model

Abstract

Advancements in Natural Language Processing
(NLP) have led to the development of Large
Language Models (LLMs), which have demon-
strated remarkable capabilities in various tasks,
domains, and settings. These models have
demonstrated efficacy in various training and
evaluation scenarios, including zero-shot learn-
ing and instruction settings. They have been
effectively applied to tasks including reason-
ing, summarizing, and answering questions.
Moreover, LLMs have been used in a variety
of industries, including the medical profession,
where they have been used to jobs requiring
accuracy, such answering questions. However,
much research hasn’t been done on LLMs’ po-
tential for resolving medical questions in a zero-
shot manner. In order to close this knowledge
gap, we provide a novel framework called ZK-
GenMed, which uses LLMs’ advantages to pro-
duce the information needed for medical ques-
tion answering in a zero-shot scenario. This
framework combines the generated knowledge
with ranking strategies to extract relevant infor-
mation, enabling the model to answer medical
questions meaningfully. Experimental results
demonstrate significant improvements, with
marginal gains of over 10% on various datasets,
highlighting the potential of ZK-GenMed for
medical question-answering applications.

1 Introduction

The emergence of extensive pre-trained language
models (LLMs) has transformed the domain of nat-
ural language processing, allowing for zero-shot
generalisation across a range of tasks, such as text
classification, question answering, and text sum-
marization (Sanh et al., 2022) (Brown et al., 2020).
These models have performed remarkably in sev-
eral areas, such as question-answering (QA) sys-
tems. Zero-shot approaches have effectively been
utilised in QA systems to improve their perfor-
mance in areas with a scarcity of labelled data.

Recent research have introduced zero-shot open-
book QA systems that employ retrievers to search
for pertinent documents and extractors to identify
answers within those documents, all without the
need for domain-specific training data (Gholami
and Noori, 2021). This technique has demonstrated
potential when there is limited annotated data, such
as in medical fields where data availability is fre-
quently difficult.

Nevertheless, although LLMs possess remark-
able powers, they are susceptible to hallucinations.
Hallucinations are instances where wrong or il-
logical information is generated, which may seem
believable but is actually factually incorrect or com-
pletely made up. The occurrence of hallucina-
tions in present-day LLMs is extensively estab-
lished, and several research has emphasised the
frequency and significance of these mistakes. To
overcome this constraint, scholars have suggested
frameworks that combine knowledge graphs and
employ hypothesis knowledge graphs to offer con-
textually pertinent information and enhance the
dependability of medical question-answering solu-
tions. The HyKGE architecture incorporates knowl-
edge graphs to offer better-organised and precise
answers, especially in intricate diagnostic situa-
tions. The authors of (Huang et al., 2023) high-
light that relying solely on fine-tuning and post-
processing methods is inadequate for effectively
addressing hallucinations, especially in situations
requiring high factual accuracy, such as medical
diagnosis and treatment suggestions. Nevertheless,
their practicality is constrained by data availability
for pertinent situations.

This work introduces a new and innovative multi-
step hybrid prompting approach. The technique is
specifically developed to address different question-
answering situations in LLMs while minimising
the occurrence of hallucinations. Importantly, this
technique does not rely on any external data. Our
approach utilises multi-step deep dive prompting



techniques. This involves constructing a knowl-
edge base by presenting multiple questions to LLM.
The results of previous queries are combined using
a ranking strategy to create deep prompts. These
prompts are combined with an instruction-based
approach to generate the final output. This strat-
egy effectively tackles the limitations of current
methods and offers a scalable way to improve the
reliability of medical Al systems.

First, we explore the related work on question-
answering in the medical domain, followed by a
discussion of the proposed framework. Later, we
will present our experimental setup and results of
comprehensive testing and evaluation to demon-
strate the effectiveness of our approach in signif-
icantly reducing hallucinations. Finally, we will
discuss the improved safety and utility of LLMs
in medical applications and outline directions for
future work.

2 Related Work

Question answering (QA) has witnessed signifi-
cant advancements over the years, driven by the
availability of large datasets and the development
of sophisticated natural language processing tech-
niques. This section provides an overview of the
key studies and methods that have contributed to
the field, focusing on approaches that enhance ac-
curacy, leverage zero-shot learning, and integrate
external knowledge sources.

Several studies have explored the impact of
multi-task training on zero-shot generalization
in natural language processing tasks(Zhou et al.,
2022). For instance, (Ma et al., 2021) demonstrates
that training on a few key tasks can significantly
boost performance, with QA tasks playing a cru-
cial role. Other studies have investigated the role of
knowledge sources, question-generation strategies,
language models, and training regimes in medical
QA (Zhao et al., 2022). Furthermore, researchers
have developed techniques to generate verbaliz-
ers using embeddings automatically (Wang et al.,
2023) and convert zero-shot learning into multiple-
choice tasks (Gramopadhye et al., 2024). Simi-
larly, (Teney and van den Hengel, 2016) proposed
methods for zero-shot visual question answering
(VQA), which highlight the importance of general-
izing beyond the training examples to answer new
questions about unseen images. These strategies
underscore the potential of zero-shot techniques in
extending the capabilities of QA systems across

various domains. In the medical domain, few stud-
ies have explored zero-shot learning, including (Ji
et al., 2023), which presents a COT-based verifier
model with few-shot learning for response selection
and highlights the importance of tailored prompting
methods for accurate medical question-answering.
Over the years medical QA has benefited from
developing specialized datasets that facilitate the
training and evaluation of QA models. Notable
datasets include MedQA (USMLE)(Jin et al.,
2020), MedMCQA(Pal et al., 2022), MMLU-
Medicine(Hendrycks et al., 2021), and Pub-
MedQA(Jin et al., 2019), which cover a wide range
of medical topics and provide a benchmark for
evaluating the performance of QA systems. One
notable approach to improving medical QA in-
volves the use of large pre-trained language models
(LLMs) that are fine-tuned on medical datasets.
The development of medical-specific LLMs, such
as MedAlpaca (Han et al., 2023), OpenBioLLM
(Ankit Pal, 2024), Mistral and Meditron (Chen
et al., 2023),, has shown significant improvements
in tasks such as question answering and treatment
recommendation. These models leverage the vast
amounts of medical literature and patient records
to provide accurate and contextually relevant re-
sponses.

Despite the advancements in medical QA, chal-
lenges remain to be addressed. For instance, (Ji
et al., 2023) identifies self-contradiction as a signif-
icant factor contributing to hallucinations in med-
ical generative QA systems and proposes struc-
tured comparative reasoning and self-reflection
methodologies to reduce hallucinations. Addition-
ally, (Gao et al., 2023) introduces Retrofit Attri-
bution using Research and Revision (RARR), a
post-generation refinement technique that automat-
ically aligns generated content with retrieved evi-
dence, highlighting the need for real-time verifica-
tion and validation processes to ensure the accuracy
of Al-generated medical information. The compre-
hensive survey by (Tonmoy et al., 2024) outlines
various feedback mechanisms and iterative refine-
ment processes, such as the Decompose-and-Query
framework and the EVER (Real-time Verification
and Rectification) strategy, which attempt to detect
and correct hallucinations during the generation
phase. However, these limitations necessitate the
development of more robust techniques to enhance
the reliability of Al-generated medical information.



3 Methodology

This section discusses the Zero-shot techniques
based on knowledge creation and instruction
prompting, dataset, and models used. We begin
with our proposed prompt techniques:

Algorithm 1 ZK-GenMed

—_

: function CALCULATEBARTSCORE((Q),, Q)
Calculate BARTScore for (), and each @,
return BART Scores

4: function SELECTTOPQUESTIONS(gen_Q,
BARTScores)

5: Select top K questions with highest
BART Scores

6: return topQuestions

7: function GENERATEANSWERS(Q,option,KB)
Prompt : "Consider the following Knowl-
edge Base: {answers}Answer the Question
{@Q} and given {options}. What is the most
appropriate option for the given Question?"
9: answers = LLM(prompt)
10: return answers

11: procedure (Answer generation)(Q), ops)
12: keyword, <instructLLM(Q)
13: keyword, <—instructLL.M(ops)

14: K B1 <«instructLLM(keywordy, keyword,)

15: gen_(Q) «+instructLL.M(question)

16: BART Scores <
Calculate BART Score(Q, gen_Q)
17: topQuestions —

SelectTopQuestions(gen_Q, BART Scores)

18: KB + topQuestions + K B1

19: Answer +—
Generate Answers(Q, ops, K B)
20: return Answer

This method 1 employs a hybrid approach. Ini-
tially, we identify the entity present in the original
question and generate 10 related questions based
on this entity. We then select the top 3 questions
that are most similar to the original question and
generate answers for them. The generated answers
serve as the knowledge base for our final query
to the LLM. The final query includes the original
question, multiple-choice options, and the gener-
ated knowledge as context.

To identify the top 3 similar questions to the orig-
inal question, we employ similarity measures in-

cluding BARTScore. BARTScore is a metric based
on the BART (Bidirectional and Auto-Regressive
Transformers) model, which is pre-trained for
sequence-to-sequence tasks such as summarization
and translation. Given a sequence-to-sequence pre-
trained model like BART, the BARTScore is cal-
culated using the log probability of the target text
given the revised text as the source text.

Let ), represent the sequence of tokens in the
original question and (), represent the sequence
of tokens in the generated related questions. The
BARTScore is computed as follows:

k

BART Score = Z logp(Qgt‘Qg(<t)7 Qo,0)
=1

where 6 represents the parameters of the BART
model. This score measures the semantic coverage
between the original question and the generated
questions.

Additionally, we use cosine similarity to further
quantify the relationship between the original ques-
tion and each generated question. Let () represent
the vectorized form of the original question and R;
represent the vector for the ¢-th generated question.
The cosine similarity between the original ques-
tion and each generated question is calculated as
follows:

o Q- R
similarity(Q, R;) QIR
This similarity score helps in understanding how
closely each generated question aligns with the
core elements of the original question.

By combining BARTScore and cosine similarity,
we rank the generated questions and select the top 3
most similar ones to the original question. These se-
lected questions and their generated answers serve
as the knowledge base for our final query to the
LLM. This approach enhances the accuracy of the
final responses and reduces the likelihood of hallu-
cinations by ensuring the contextual relevance of
the information considered.

4 Experimental Setup

In this study, we aimed to evaluate the effective-
ness of our multi-step hybrid prompting technique
in reducing hallucinations and enhancing the reli-
ability of Al-generated medical information. Our
experimental setup consisted of three main com-
ponents: datasets, language models (LLMs), and
prompt techniques.
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Figure 1: ZK-GenMed Framework: In the first step, The LLM generates the important keywords and similar
questions. In step two, the KB is compiled, and later, it’s used for the final question answering. In the architecture,
Blue modules are frozen, while yellow modules can be finetuned.

4.1 Datasets

We utilized four diverse medical datasets to assess
the performance of our technique comprehensively:
MedHALT(Pal et al., 2023): This dataset includes
three distinct tests to evaluate different aspects of
model performance: The False Confidence Test
(FCT) presents multiple-choice medical questions
with a randomly suggested correct answer. The
model evaluates the validity of the proposed answer
and provides detailed explanations. It contains 95
questions. The None of the Above Test (NOTA)
involves multiple-choice questions where the cor-
rect answer is replaced by ’None of the above’.
The model must identify this and justify its selec-
tion. This test includes 18,865 questions. The Fake
Question Test (FAKE) presents fake or nonsensical
medical questions to determine if the model can
correctly identify and handle such queries. This
test contains 1,857 questions.

MedMCQA (Pal et al., 2022): This dataset consists
of over 194k high-quality AIIMS and NEET PG
entrance exam multiple-choice questions covering
2.4k healthcare topics and 21 medical subjects.
MedQA_USMLE(Jin et al., 2020): This dataset
includes 12,723 4-way multiple-choice questions
from practice tests for the United States Medical

License Exams (USMLE), requiring biomedical
and clinical knowledge.

4.2 Language Models (LLMs)

We selected multiple LLMs with varying sizes
and capabilities to ensure a robust evaluation.
These included LLama3 Instruct - 8B, LLama3
- 8B, LLama2 chat - 7B (Touvron et al.,
2023), LLama2 - 7B (Touvron et al., 2023),
OpenBioLLM-8B (Ankit Pal, 2024), Mistral-7B,
Mistral-7B-instruct, Meditron-7B (Chen et al.,
2023) and Phi-3-mini-4k-instruct - 3.82B (?).
We used both the normal and instruct variants of
LLama3 and the base and chat versions of LLama2
models to compare their performance under differ-
ent prompting conditions.

4.3 Prompting Techniques

To assess the models, we used three different
prompting techniques. In the first approach, Nor-
mal Prompting, the LLM is merely asked to select
the appropriate option from a list of options. Multi-
Step Hybrid-1, on the other hand, resembles the
suggested method 1 but is marginally different in
that it utilises the pertinent key entities as context
rather than passing the same question. The pre-
ceding section’s Multi-step Hybrid Prompting



method evaluates each alternative’s applicability to
the query first. After then, it makes the ultimate
decision by combining all of the information at its
disposal with additional guidelines.

4.4 Experimental Procedure

For each LLLM and dataset combination, we con-
ducted a thorough comparison of accuracy between
the normal prompting and our advanced prompt-
ing technique. The evaluation focused on measur-
ing the effectiveness of our technique in reducing
hallucinations and improving the reliability of Al-
generated medical information. The results of these
experiments are presented and analyzed in the sub-
sequent sections.

By leveraging a diverse set of datasets, advanced
language models, and a rigorous evaluation frame-
work, our study provides a comprehensive assess-
ment of the proposed prompting technique’s impact
on mitigating hallucinations in medical applica-
tions.

Below is the Hyperparameter setting used for the
experiments

e Number of Question selected after
BARTScore : 5
e LLM setting
— Number of Parameters : Parameters

varies from 3.8B to 8B.
— Pvalue: 0.2
— Topp: 0.9

Total computation time for the experiments was
500 hours on 40GB Nvidia-A100 GPUs.

5 Results

In this section, we present the evaluation results of
different prompting techniques on various datasets
using multiple LLMs. The objective is to assess the
performance of each approach and provide insights
into their effectiveness in different scenarios.

5.1 Evaluation Metrics

We used the following metrics to evaluate per-
formance: Accuracy, F1 Score, and Pointwise
Score.

The Pointwise Score is a detailed evaluation metric
that accounts for both correct and incorrect predic-
tions. Each correct prediction is awarded +1 point,
while each incorrect prediction incurs a penalty of

-0.25 points. The final Pointwise Score is an aver-
age of these individual scores. The formula for this
is shown below.

| N
S= (I(yi = 9i) - Pe + I(yi # 0i) - Puw)
i=1
(D

where S is the final score, N is the total number
of samples, y; is the true label of the i-th sam-
ple, 9; is the predicted label of the ¢-th sample,
I(condition) is the indicator function that returns
1 if the condition is true and O otherwise, P, is the
points awarded for a correct prediction, and P, is
the points deducted for an incorrect prediction.

5.2 Results by Dataset

The performance of different Medical LLMs on
various datasets is summarized in Table 2 for base-
line results and Table 1 for the results using the
proposed prompting techniques. The analysis fo-
cuses on the accuracy improvements observed with
the multi-step hybrid prompting methods.

The performance of different Medical LLMs on
various datasets shows significant improvements
in accuracy with the application of the proposed
Multi-step Hybrid prompting techniques.

For the MedHALT-FCT dataset, the baseline re-
sults show that OpenBioLLLM-8B achieved an ac-
curacy of 32.81%. With the Multi-step Hybrid
technique 1 approach, Phi-3-mini-4k-instruct im-
proved to 46.88%. LLaMA-3-instruct-8B also
demonstrated substantial improvements, achieving
51.74% with the Hybrid technique 1 method.

In the MedHALT-FAKE dataset, baseline perfor-
mance was low, with the Medalpaca-7B model
achieving only 4.63% accuracy. However, Phi-3-
mini-4k-instruct increased to 9.47% with Hybrid
technique 1, and LLaMA-2-7B achieved 22.55%.

For the MedHALT-NOTA dataset, Mistral-7B-
instruct had a baseline accuracy of 24.12%. With
the advanced prompting methods, Phi-3-mini-4k-
instruct achieved 21.50% with Hybrid technique 1.
In the MedQA_USMLE dataset, OpenBioLLM-
8B had a baseline accuracy of 20.24%. Phi-3-mini-
4k-instruct improved accuracy to 52.50% using
Hybrid technique 1, while LLaMA-3-instruct-8B
reached 54.88% with Hybrid technique 2.

For the MedMCQA dataset, OpenBioLLM-8B’s
baseline accuracy was 34.39%. Phi-3-mini-4k-
instruct achieved 47.61% with Hybrid technique 1.
LLaMA-3-instruct-8B also showed improvements,



Datset Normal ZK GenMed-1 ZK GenMed-2
LLM Acc. F1 PS. Acc. F1 PS. Acc. F1 PS.
Model
FCT 4375 |1 0.32 | 28.50 | 46.88 | 0.46 | 32.25 32.81 | 0.32 15.38
Phi-3- NOTA 21.50 | 0.16 | 18.75 | 32.50 | 0.26 | 156.25 | 16.40 | 0.15 -45.0
mini- MedQA 33.58 | 0.24 | 216.12 | 52.50 | 0.49 | 517.17 | 35.66 | 0.34 | 249.25
4Kk- MedMCQA | 3823 | 0.28 | 641.62 | 47.61 | 0.38 | 971.83 | 33.77 | 0.32 | 484.75
instruct FAKE 1.13 | 0.00 | -438.25 | 9.47 | 0.02 | -244.50 | 3.07 | 0.01 | -393.25
FCT 22.92 | 3.50 7.25 19.79 | 0.17 -0.25 18.75 | 0.17 -1.50
NOTA 9.65 | 0.09 | -129.38 | 12.70 | 0.10 | -91.25 | 11.00 | 0.08 | -112.50
LLaMA| MedQA 2498 | 022 | 79.25 | 2498 | 0.22 | 79.25 16.42 | 0.15 | -57.00
2-7B MedMCQA | 26.03 | 0.25 | 212.25 | 20.61 | 0.17 | 21.62 | 29.94 | 0.26 | 349.75
FAKE 093 | 0.00 | -442.83 | 22.55 | 0.04 | 59.25 - - -
FCT 38.54 | 0.38 | 22.25 | 20.31 | 0.21 0.38 38.54 | 0.34 | 22.25
NOTA 7.10 | 0.07 | -161.25 | 7.10 | 0.07 | -161.25 | 9.60 | 0.09 | -130.0
LLaMA| MedQA 41.87 | 042 | 3480 | 4540 | 045 | 40425 | 2446 | 0.26 | 71.00
3-8B MedMCQA | 4446 | 0.44 | 861.0 | 4446 | 0.44 861 27.92 | 0.27 | 278.92
FAKE 094 | 0.00 | -442.62 | 2.66 | 0.01 -402 6.62 | 0.02 | -310.75
FCT - - - 51.74 | 048 | 38.08 | 52.26 | 0.44 | 38.71
LLaMA NOTA 33.10 | 0.26 | 163.75 | 32.0 | 0.26 150.0 32.0 | 0.26 150.0
3- MedQA 4540 | 045 | 404.25 | 53.69 | 0.43 | 536.12 | 54.88 | 0.44 | 555.08
instruct | MedMCQA - - - 50.75 | 0.40 | 1082.25 | 50.37 | 0.41 | 1069.12
-8B FAKE 10.01 | 0.03 | -232.00 | 12.33 | 0.03 | -178.25 - - -

Table 1: Performance matrix Analysis of Acc(Accuracy), F1(F1 score) and P.S.(Pointwise score.)

Dataset Metric | Medalpaca-7B | Mistral-7B-instruct | OpenBioLLM-8B | Meditron-7B
Acc. 4.63 441 25.87 0.0
FAKE F1 0.01 0.01 0.06 0.0
P.S. -357.00 -362.00 136.33 -464.5
Acc. 37.50 50.0 32.81 10.42
FCT F1 0.23 0.40 0.28 0.06
P.S. 21.0 36.0 15.38 -11.50
Acc. 34.80 39.83 20.24 12.33
MedQA F1 0.25 0.34 0.23 0.07
P.S. 235.50 315.50 3.83 -122.00
Acc. 37.14 40.98 34.39 10.03
MedMCQA| Fl 0.29 0.32 0.31 0.06
P.S. 603.50 150 506.42 -11.50

Table 2: Comparison of Baseline for Medical LLMs.

achieving 50.75% with Hybrid technique 1 and
50.37% with Hybrid technique 2.

Additionally, Phi-3-mini-4k-instruct showed im-
provements across multiple datasets, notably
achieving 33.58% accuracy on MedQA_USMLE
with the Normal approach, and 52.50% with Hy-
brid technique 1. Similarly, on MedMCQA, the
accuracy improved from 38.23% to 47.61% with
Hybrid technique-1.

LLaMA-2-7B improved its performance on the

MedQA_USMLE dataset from a baseline of
24.98% to 24.98% with both Normal and Hy-
brid technique 1 approaches. On the MedMCQA
dataset, its accuracy increased from 26.03% to
29.94% with Hybrid technique 2.

LLaMA-3-8B demonstrated significant gains on
the MedQA_USMLE dataset, improving from
41.87% to 45.40% with Hybrid technique 1 and
reaching 53.69% with Hybrid technique 2. On
the MedMCQA dataset, its performance increased



from 44.46% to 50.75% with Hybrid technique 1.
Overall, the results indicate that the advanced
prompting techniques yielded substantial improve-
ments across all datasets, highlighting their effec-
tiveness in enhancing the performance of Medical
LLMs.

6 Conclusion

In this study, we proposed an effective frame-
work ZK-GenMed, a multi-step text-generative
hybrid prompting technique for zero-shot QA
setting, along with the analysis of its perfor-
mance of various Medical Large Language Models
(LLMs) across several medical datasets, including
MedHALT-FCT, MedHALT-FAKE, MedHALT-
NOTA, MedQA_USMLE, and MedMCQA. Our
proposed methods demonstrated significant im-
provements over multiple models on accuracy, F1
score, and pointwise score across all datasets com-
pared to baseline results.

The experimental findings demonstrated the pos-
sibility of sophisticated prompting techniques to
improve Medical LLM performance, particularly
in difficult datasets with low initial baseline ac-
curacies. The LLaMA-3-instruct-8B models and
Phi-3-mini-4k-instruct, for example, demonstrated
considerable accuracy gains, demonstrating the ver-
satility and resilience of the suggested techniques.
Furthermore, the uniform performance improve-
ments on several datasets highlight how broadly
applicable our method is.

In conclusion, this study opens the door for more
precise and dependable medical NLP applications
by demonstrating the effectiveness of multi-step
generative hybrid prompting strategies in improv-
ing the performance of medical language models.
The developments discussed here can help to im-
prove diagnostic tools, medical record analysis, and
overall healthcare management through enhanced
language understanding and creation skills.

7 Future Work

This work can be extended by exploring its effec-
tiveness in general domain question answering and
by adding more domain-specific knowledge and
examining how these prompting strategies affect
other NLP tasks like named entity identification
and relation extraction; future research may im-
prove these prompting strategies even further. A
deeper understanding of these methods’ scalability
and efficacy may also be obtained by merging them

with bigger and more varied datasets. Additionally,
adding verified facts to Knowledge Graphs could
improve the factual accuracy and dependability of
the LLMSs’ outputs, guaranteeing that the informa-
tion produced is accurate and reliable.

8 Limitations

In the ZK-GenMed framework, we use the gener-
ated text from an LLM to create a knowledge base,
which is later used to direct the development of
responses. Also, our technique needs more pro-
cessing power to conduct concentrated and multi-
step thinking before response creation. Also, the
prompts in our system are human-written; they are
not universally applicable. Along with this, the
generated text may not be free from the issue of
LLM hallucination and may contain incorrect in-
formation. Since the the generation of relevant text
depends on the reasoning abilities of LLMs, and
the manual prompts asked by the user may impact,
it may produce incorrect phrases during the pon-
dering or extraction or in the inference phase. The
technical method of creating these prompts requires
more work. Our goal is for future research to build
on our approach, which is more error-resilient and
by augmenting current implementation with real-
world correct data and more resilient in variances of
automatic prompt engineering. Hence, it can assist
the existing framework in generating high-quality
knowledge used in the later stages.
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