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Abstract

Advancements in Natural Language Processing001
(NLP) have led to the development of Large002
Language Models (LLMs), which have demon-003
strated remarkable capabilities in various tasks,004
domains, and settings. These models have005
demonstrated efficacy in various training and006
evaluation scenarios, including zero-shot learn-007
ing and instruction settings. They have been008
effectively applied to tasks including reason-009
ing, summarizing, and answering questions.010
Moreover, LLMs have been used in a variety011
of industries, including the medical profession,012
where they have been used to jobs requiring013
accuracy, such answering questions. However,014
much research hasn’t been done on LLMs’ po-015
tential for resolving medical questions in a zero-016
shot manner. In order to close this knowledge017
gap, we provide a novel framework called ZK-018
GenMed, which uses LLMs’ advantages to pro-019
duce the information needed for medical ques-020
tion answering in a zero-shot scenario. This021
framework combines the generated knowledge022
with ranking strategies to extract relevant infor-023
mation, enabling the model to answer medical024
questions meaningfully. Experimental results025
demonstrate significant improvements, with026
marginal gains of over 10% on various datasets,027
highlighting the potential of ZK-GenMed for028
medical question-answering applications.029

1 Introduction030

The emergence of extensive pre-trained language031

models (LLMs) has transformed the domain of nat-032

ural language processing, allowing for zero-shot033

generalisation across a range of tasks, such as text034

classification, question answering, and text sum-035

marization (Sanh et al., 2022) (Brown et al., 2020).036

These models have performed remarkably in sev-037

eral areas, such as question-answering (QA) sys-038

tems. Zero-shot approaches have effectively been039

utilised in QA systems to improve their perfor-040

mance in areas with a scarcity of labelled data.041

Recent research have introduced zero-shot open- 042

book QA systems that employ retrievers to search 043

for pertinent documents and extractors to identify 044

answers within those documents, all without the 045

need for domain-specific training data (Gholami 046

and Noori, 2021). This technique has demonstrated 047

potential when there is limited annotated data, such 048

as in medical fields where data availability is fre- 049

quently difficult. 050

Nevertheless, although LLMs possess remark- 051

able powers, they are susceptible to hallucinations. 052

Hallucinations are instances where wrong or il- 053

logical information is generated, which may seem 054

believable but is actually factually incorrect or com- 055

pletely made up. The occurrence of hallucina- 056

tions in present-day LLMs is extensively estab- 057

lished, and several research has emphasised the 058

frequency and significance of these mistakes. To 059

overcome this constraint, scholars have suggested 060

frameworks that combine knowledge graphs and 061

employ hypothesis knowledge graphs to offer con- 062

textually pertinent information and enhance the 063

dependability of medical question-answering solu- 064

tions. The HyKGE architecture incorporates knowl- 065

edge graphs to offer better-organised and precise 066

answers, especially in intricate diagnostic situa- 067

tions. The authors of (Huang et al., 2023) high- 068

light that relying solely on fine-tuning and post- 069

processing methods is inadequate for effectively 070

addressing hallucinations, especially in situations 071

requiring high factual accuracy, such as medical 072

diagnosis and treatment suggestions. Nevertheless, 073

their practicality is constrained by data availability 074

for pertinent situations. 075

This work introduces a new and innovative multi- 076

step hybrid prompting approach. The technique is 077

specifically developed to address different question- 078

answering situations in LLMs while minimising 079

the occurrence of hallucinations. Importantly, this 080

technique does not rely on any external data. Our 081

approach utilises multi-step deep dive prompting 082
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techniques. This involves constructing a knowl-083

edge base by presenting multiple questions to LLM.084

The results of previous queries are combined using085

a ranking strategy to create deep prompts. These086

prompts are combined with an instruction-based087

approach to generate the final output. This strat-088

egy effectively tackles the limitations of current089

methods and offers a scalable way to improve the090

reliability of medical AI systems.091

First, we explore the related work on question-092

answering in the medical domain, followed by a093

discussion of the proposed framework. Later, we094

will present our experimental setup and results of095

comprehensive testing and evaluation to demon-096

strate the effectiveness of our approach in signif-097

icantly reducing hallucinations. Finally, we will098

discuss the improved safety and utility of LLMs099

in medical applications and outline directions for100

future work.101

2 Related Work102

Question answering (QA) has witnessed signifi-103

cant advancements over the years, driven by the104

availability of large datasets and the development105

of sophisticated natural language processing tech-106

niques. This section provides an overview of the107

key studies and methods that have contributed to108

the field, focusing on approaches that enhance ac-109

curacy, leverage zero-shot learning, and integrate110

external knowledge sources.111

Several studies have explored the impact of112

multi-task training on zero-shot generalization113

in natural language processing tasks(Zhou et al.,114

2022). For instance, (Ma et al., 2021) demonstrates115

that training on a few key tasks can significantly116

boost performance, with QA tasks playing a cru-117

cial role. Other studies have investigated the role of118

knowledge sources, question-generation strategies,119

language models, and training regimes in medical120

QA (Zhao et al., 2022). Furthermore, researchers121

have developed techniques to generate verbaliz-122

ers using embeddings automatically (Wang et al.,123

2023) and convert zero-shot learning into multiple-124

choice tasks (Gramopadhye et al., 2024). Simi-125

larly, (Teney and van den Hengel, 2016) proposed126

methods for zero-shot visual question answering127

(VQA), which highlight the importance of general-128

izing beyond the training examples to answer new129

questions about unseen images. These strategies130

underscore the potential of zero-shot techniques in131

extending the capabilities of QA systems across132

various domains. In the medical domain, few stud- 133

ies have explored zero-shot learning, including (Ji 134

et al., 2023), which presents a COT-based verifier 135

model with few-shot learning for response selection 136

and highlights the importance of tailored prompting 137

methods for accurate medical question-answering. 138

Over the years medical QA has benefited from 139

developing specialized datasets that facilitate the 140

training and evaluation of QA models. Notable 141

datasets include MedQA (USMLE)(Jin et al., 142

2020), MedMCQA(Pal et al., 2022), MMLU- 143

Medicine(Hendrycks et al., 2021), and Pub- 144

MedQA(Jin et al., 2019), which cover a wide range 145

of medical topics and provide a benchmark for 146

evaluating the performance of QA systems. One 147

notable approach to improving medical QA in- 148

volves the use of large pre-trained language models 149

(LLMs) that are fine-tuned on medical datasets. 150

The development of medical-specific LLMs, such 151

as MedAlpaca (Han et al., 2023), OpenBioLLM 152

(Ankit Pal, 2024), Mistral and Meditron (Chen 153

et al., 2023)„ has shown significant improvements 154

in tasks such as question answering and treatment 155

recommendation. These models leverage the vast 156

amounts of medical literature and patient records 157

to provide accurate and contextually relevant re- 158

sponses. 159

Despite the advancements in medical QA, chal- 160

lenges remain to be addressed. For instance, (Ji 161

et al., 2023) identifies self-contradiction as a signif- 162

icant factor contributing to hallucinations in med- 163

ical generative QA systems and proposes struc- 164

tured comparative reasoning and self-reflection 165

methodologies to reduce hallucinations. Addition- 166

ally, (Gao et al., 2023) introduces Retrofit Attri- 167

bution using Research and Revision (RARR), a 168

post-generation refinement technique that automat- 169

ically aligns generated content with retrieved evi- 170

dence, highlighting the need for real-time verifica- 171

tion and validation processes to ensure the accuracy 172

of AI-generated medical information. The compre- 173

hensive survey by (Tonmoy et al., 2024) outlines 174

various feedback mechanisms and iterative refine- 175

ment processes, such as the Decompose-and-Query 176

framework and the EVER (Real-time Verification 177

and Rectification) strategy, which attempt to detect 178

and correct hallucinations during the generation 179

phase. However, these limitations necessitate the 180

development of more robust techniques to enhance 181

the reliability of AI-generated medical information. 182
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3 Methodology183

This section discusses the Zero-shot techniques184

based on knowledge creation and instruction185

prompting, dataset, and models used. We begin186

with our proposed prompt techniques:187

Algorithm 1 ZK-GenMed

1: function CALCULATEBARTSCORE(Qo, Qg)
2: Calculate BARTScore for Qo and each Qg

3: return BARTScores

4: function SELECTTOPQUESTIONS(gen_Q,
BARTScores)

5: Select top K questions with highest
BARTScores

6: return topQuestions

7: function GENERATEANSWERS(Q,option,KB)
8: Prompt : "Consider the following Knowl-

edge Base: {answers}Answer the Question
{Q} and given {options}. What is the most
appropriate option for the given Question?"

9: answers = LLM(prompt)
10: return answers

11: procedure (Answer generation)(Q, ops)
12: keywordq ←instructLLM(Q)
13: keywordo ←instructLLM(ops)
14: KB1←instructLLM(keywordq, keywordo)
15: gen_Q←instructLLM(question)
16: BARTScores ←

CalculateBARTScore(Q, gen_Q)
17: topQuestions ←

SelectTopQuestions(gen_Q,BARTScores)
18: KB ← topQuestions+KB1
19: Answer ←

GenerateAnswers(Q, ops,KB)
20: return Answer

This method 1 employs a hybrid approach. Ini-188

tially, we identify the entity present in the original189

question and generate 10 related questions based190

on this entity. We then select the top 3 questions191

that are most similar to the original question and192

generate answers for them. The generated answers193

serve as the knowledge base for our final query194

to the LLM. The final query includes the original195

question, multiple-choice options, and the gener-196

ated knowledge as context.197

To identify the top 3 similar questions to the orig-198

inal question, we employ similarity measures in-199

cluding BARTScore. BARTScore is a metric based 200

on the BART (Bidirectional and Auto-Regressive 201

Transformers) model, which is pre-trained for 202

sequence-to-sequence tasks such as summarization 203

and translation. Given a sequence-to-sequence pre- 204

trained model like BART, the BARTScore is cal- 205

culated using the log probability of the target text 206

given the revised text as the source text. 207

Let Qo represent the sequence of tokens in the 208

original question and Qg represent the sequence 209

of tokens in the generated related questions. The 210

BARTScore is computed as follows: 211

BARTScore =
k∑

t=1

log p(Qgt|Qg(<t), Qo, θ) 212

where θ represents the parameters of the BART 213

model. This score measures the semantic coverage 214

between the original question and the generated 215

questions. 216

Additionally, we use cosine similarity to further 217

quantify the relationship between the original ques- 218

tion and each generated question. Let Q represent 219

the vectorized form of the original question and Ri 220

represent the vector for the i-th generated question. 221

The cosine similarity between the original ques- 222

tion and each generated question is calculated as 223

follows: 224

similarity(Q,Ri) =
Q ·Ri

∥Q∥∥Ri∥
225

This similarity score helps in understanding how 226

closely each generated question aligns with the 227

core elements of the original question. 228

By combining BARTScore and cosine similarity, 229

we rank the generated questions and select the top 3 230

most similar ones to the original question. These se- 231

lected questions and their generated answers serve 232

as the knowledge base for our final query to the 233

LLM. This approach enhances the accuracy of the 234

final responses and reduces the likelihood of hallu- 235

cinations by ensuring the contextual relevance of 236

the information considered. 237

4 Experimental Setup 238

In this study, we aimed to evaluate the effective- 239

ness of our multi-step hybrid prompting technique 240

in reducing hallucinations and enhancing the reli- 241

ability of AI-generated medical information. Our 242

experimental setup consisted of three main com- 243

ponents: datasets, language models (LLMs), and 244

prompt techniques. 245
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Figure 1: ZK-GenMed Framework: In the first step, The LLM generates the important keywords and similar
questions. In step two, the KB is compiled, and later, it’s used for the final question answering. In the architecture,
Blue modules are frozen, while yellow modules can be finetuned.

4.1 Datasets246

We utilized four diverse medical datasets to assess247

the performance of our technique comprehensively:248

MedHALT(Pal et al., 2023): This dataset includes249

three distinct tests to evaluate different aspects of250

model performance: The False Confidence Test251

(FCT) presents multiple-choice medical questions252

with a randomly suggested correct answer. The253

model evaluates the validity of the proposed answer254

and provides detailed explanations. It contains 95255

questions. The None of the Above Test (NOTA)256

involves multiple-choice questions where the cor-257

rect answer is replaced by ’None of the above’.258

The model must identify this and justify its selec-259

tion. This test includes 18,865 questions. The Fake260

Question Test (FAKE) presents fake or nonsensical261

medical questions to determine if the model can262

correctly identify and handle such queries. This263

test contains 1,857 questions.264

MedMCQA(Pal et al., 2022): This dataset consists265

of over 194k high-quality AIIMS and NEET PG266

entrance exam multiple-choice questions covering267

2.4k healthcare topics and 21 medical subjects.268

MedQA_USMLE(Jin et al., 2020): This dataset269

includes 12,723 4-way multiple-choice questions270

from practice tests for the United States Medical271

License Exams (USMLE), requiring biomedical 272

and clinical knowledge. 273

4.2 Language Models (LLMs) 274

We selected multiple LLMs with varying sizes 275

and capabilities to ensure a robust evaluation. 276

These included LLama3 Instruct - 8B, LLama3 277

- 8B, LLama2 chat - 7B (Touvron et al., 278

2023), LLama2 - 7B (Touvron et al., 2023), 279

OpenBioLLM-8B (Ankit Pal, 2024), Mistral-7B, 280

Mistral-7B-instruct, Meditron-7B (Chen et al., 281

2023) and Phi-3-mini-4k-instruct - 3.82B (?). 282

We used both the normal and instruct variants of 283

LLama3 and the base and chat versions of LLama2 284

models to compare their performance under differ- 285

ent prompting conditions. 286

4.3 Prompting Techniques 287

To assess the models, we used three different 288

prompting techniques. In the first approach, Nor- 289

mal Prompting, the LLM is merely asked to select 290

the appropriate option from a list of options. Multi- 291

Step Hybrid-1, on the other hand, resembles the 292

suggested method 1 but is marginally different in 293

that it utilises the pertinent key entities as context 294

rather than passing the same question. The pre- 295

ceding section’s Multi-step Hybrid Prompting 296
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method evaluates each alternative’s applicability to297

the query first. After then, it makes the ultimate298

decision by combining all of the information at its299

disposal with additional guidelines.300

4.4 Experimental Procedure301

For each LLM and dataset combination, we con-302

ducted a thorough comparison of accuracy between303

the normal prompting and our advanced prompt-304

ing technique. The evaluation focused on measur-305

ing the effectiveness of our technique in reducing306

hallucinations and improving the reliability of AI-307

generated medical information. The results of these308

experiments are presented and analyzed in the sub-309

sequent sections.310

By leveraging a diverse set of datasets, advanced311

language models, and a rigorous evaluation frame-312

work, our study provides a comprehensive assess-313

ment of the proposed prompting technique’s impact314

on mitigating hallucinations in medical applica-315

tions.316

Below is the Hyperparameter setting used for the317

experiments318

• Number of Question selected after319

BARTScore : 5320

• LLM setting321

– Number of Parameters : Parameters322

varies from 3.8B to 8B.323

– P value : 0.2324

– Top p : 0.9325

Total computation time for the experiments was326

500 hours on 40GB Nvidia-A100 GPUs.327

5 Results328

In this section, we present the evaluation results of329

different prompting techniques on various datasets330

using multiple LLMs. The objective is to assess the331

performance of each approach and provide insights332

into their effectiveness in different scenarios.333

5.1 Evaluation Metrics334

We used the following metrics to evaluate per-335

formance: Accuracy, F1 Score, and Pointwise336

Score.337

The Pointwise Score is a detailed evaluation metric338

that accounts for both correct and incorrect predic-339

tions. Each correct prediction is awarded +1 point,340

while each incorrect prediction incurs a penalty of341

-0.25 points. The final Pointwise Score is an aver- 342

age of these individual scores. The formula for this 343

is shown below. 344

S =
1

N

N∑
i=1

(I(yi = ŷi) · Pc + I(yi ̸= ŷi) · Pw)

(1) 345

where S is the final score, N is the total number 346

of samples, yi is the true label of the i-th sam- 347

ple, ŷi is the predicted label of the i-th sample, 348

I(condition) is the indicator function that returns 349

1 if the condition is true and 0 otherwise, Pc is the 350

points awarded for a correct prediction, and Pw is 351

the points deducted for an incorrect prediction. 352

5.2 Results by Dataset 353

The performance of different Medical LLMs on 354

various datasets is summarized in Table 2 for base- 355

line results and Table 1 for the results using the 356

proposed prompting techniques. The analysis fo- 357

cuses on the accuracy improvements observed with 358

the multi-step hybrid prompting methods. 359

The performance of different Medical LLMs on 360

various datasets shows significant improvements 361

in accuracy with the application of the proposed 362

Multi-step Hybrid prompting techniques. 363

For the MedHALT-FCT dataset, the baseline re- 364

sults show that OpenBioLLM-8B achieved an ac- 365

curacy of 32.81%. With the Multi-step Hybrid 366

technique 1 approach, Phi-3-mini-4k-instruct im- 367

proved to 46.88%. LLaMA-3-instruct-8B also 368

demonstrated substantial improvements, achieving 369

51.74% with the Hybrid technique 1 method. 370

In the MedHALT-FAKE dataset, baseline perfor- 371

mance was low, with the Medalpaca-7B model 372

achieving only 4.63% accuracy. However, Phi-3- 373

mini-4k-instruct increased to 9.47% with Hybrid 374

technique 1, and LLaMA-2-7B achieved 22.55%. 375

For the MedHALT-NOTA dataset, Mistral-7B- 376

instruct had a baseline accuracy of 24.12%. With 377

the advanced prompting methods, Phi-3-mini-4k- 378

instruct achieved 21.50% with Hybrid technique 1. 379

In the MedQA_USMLE dataset, OpenBioLLM- 380

8B had a baseline accuracy of 20.24%. Phi-3-mini- 381

4k-instruct improved accuracy to 52.50% using 382

Hybrid technique 1, while LLaMA-3-instruct-8B 383

reached 54.88% with Hybrid technique 2. 384

For the MedMCQA dataset, OpenBioLLM-8B’s 385

baseline accuracy was 34.39%. Phi-3-mini-4k- 386

instruct achieved 47.61% with Hybrid technique 1. 387

LLaMA-3-instruct-8B also showed improvements, 388
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Datset Normal ZK GenMed-1 ZK GenMed-2
LLM
Model

Acc. F1 P.S. Acc. F1 P.S. Acc. F1 P.S.

FCT 43.75 0.32 28.50 46.88 0.46 32.25 32.81 0.32 15.38
Phi-3- NOTA 21.50 0.16 18.75 32.50 0.26 156.25 16.40 0.15 -45.0
mini- MedQA 33.58 0.24 216.12 52.50 0.49 517.17 35.66 0.34 249.25
4k- MedMCQA 38.23 0.28 641.62 47.61 0.38 971.83 33.77 0.32 484.75
instruct FAKE 1.13 0.00 -438.25 9.47 0.02 -244.50 3.07 0.01 -393.25

FCT 22.92 3.50 7.25 19.79 0.17 -0.25 18.75 0.17 -1.50
NOTA 9.65 0.09 -129.38 12.70 0.10 -91.25 11.00 0.08 -112.50

LLaMA MedQA 24.98 0.22 79.25 24.98 0.22 79.25 16.42 0.15 -57.00
2-7B MedMCQA 26.03 0.25 212.25 20.61 0.17 21.62 29.94 0.26 349.75

FAKE 0.93 0.00 -442.83 22.55 0.04 59.25 - - -
FCT 38.54 0.38 22.25 20.31 0.21 0.38 38.54 0.34 22.25

NOTA 7.10 0.07 -161.25 7.10 0.07 -161.25 9.60 0.09 -130.0
LLaMA MedQA 41.87 0.42 348.0 45.40 0.45 404.25 24.46 0.26 71.00
3-8B MedMCQA 44.46 0.44 861.0 44.46 0.44 861 27.92 0.27 278.92

FAKE 0.94 0.00 -442.62 2.66 0.01 -402 6.62 0.02 -310.75
FCT - - - 51.74 0.48 38.08 52.26 0.44 38.71

LLaMA NOTA 33.10 0.26 163.75 32.0 0.26 150.0 32.0 0.26 150.0
3- MedQA 45.40 0.45 404.25 53.69 0.43 536.12 54.88 0.44 555.08
instruct MedMCQA - - - 50.75 0.40 1082.25 50.37 0.41 1069.12
-8B FAKE 10.01 0.03 -232.00 12.33 0.03 -178.25 - - -

Table 1: Performance matrix Analysis of Acc(Accuracy), F1(F1 score) and P.S.(Pointwise score.)

Dataset Metric Medalpaca-7B Mistral-7B-instruct OpenBioLLM-8B Meditron-7B
Acc. 4.63 4.41 25.87 0.0

FAKE F1 0.01 0.01 0.06 0.0
P.S. -357.00 -362.00 136.33 -464.5
Acc. 37.50 50.0 32.81 10.42

FCT F1 0.23 0.40 0.28 0.06
P.S. 21.0 36.0 15.38 -11.50
Acc. 34.80 39.83 20.24 12.33

MedQA F1 0.25 0.34 0.23 0.07
P.S. 235.50 315.50 3.83 -122.00
Acc. 37.14 40.98 34.39 10.03

MedMCQA F1 0.29 0.32 0.31 0.06
P.S. 603.50 150 506.42 -11.50

Table 2: Comparison of Baseline for Medical LLMs.

achieving 50.75% with Hybrid technique 1 and389

50.37% with Hybrid technique 2.390

Additionally, Phi-3-mini-4k-instruct showed im-391

provements across multiple datasets, notably392

achieving 33.58% accuracy on MedQA_USMLE393

with the Normal approach, and 52.50% with Hy-394

brid technique 1. Similarly, on MedMCQA, the395

accuracy improved from 38.23% to 47.61% with396

Hybrid technique-1.397

LLaMA-2-7B improved its performance on the398

MedQA_USMLE dataset from a baseline of 399

24.98% to 24.98% with both Normal and Hy- 400

brid technique 1 approaches. On the MedMCQA 401

dataset, its accuracy increased from 26.03% to 402

29.94% with Hybrid technique 2. 403

LLaMA-3-8B demonstrated significant gains on 404

the MedQA_USMLE dataset, improving from 405

41.87% to 45.40% with Hybrid technique 1 and 406

reaching 53.69% with Hybrid technique 2. On 407

the MedMCQA dataset, its performance increased 408

6



from 44.46% to 50.75% with Hybrid technique 1.409

Overall, the results indicate that the advanced410

prompting techniques yielded substantial improve-411

ments across all datasets, highlighting their effec-412

tiveness in enhancing the performance of Medical413

LLMs.414

6 Conclusion415

In this study, we proposed an effective frame-416

work ZK-GenMed, a multi-step text-generative417

hybrid prompting technique for zero-shot QA418

setting, along with the analysis of its perfor-419

mance of various Medical Large Language Models420

(LLMs) across several medical datasets, including421

MedHALT-FCT, MedHALT-FAKE, MedHALT-422

NOTA, MedQA_USMLE, and MedMCQA. Our423

proposed methods demonstrated significant im-424

provements over multiple models on accuracy, F1425

score, and pointwise score across all datasets com-426

pared to baseline results.427

The experimental findings demonstrated the pos-428

sibility of sophisticated prompting techniques to429

improve Medical LLM performance, particularly430

in difficult datasets with low initial baseline ac-431

curacies. The LLaMA-3-instruct-8B models and432

Phi-3-mini-4k-instruct, for example, demonstrated433

considerable accuracy gains, demonstrating the ver-434

satility and resilience of the suggested techniques.435

Furthermore, the uniform performance improve-436

ments on several datasets highlight how broadly437

applicable our method is.438

In conclusion, this study opens the door for more439

precise and dependable medical NLP applications440

by demonstrating the effectiveness of multi-step441

generative hybrid prompting strategies in improv-442

ing the performance of medical language models.443

The developments discussed here can help to im-444

prove diagnostic tools, medical record analysis, and445

overall healthcare management through enhanced446

language understanding and creation skills.447

7 Future Work448

This work can be extended by exploring its effec-449

tiveness in general domain question answering and450

by adding more domain-specific knowledge and451

examining how these prompting strategies affect452

other NLP tasks like named entity identification453

and relation extraction; future research may im-454

prove these prompting strategies even further. A455

deeper understanding of these methods’ scalability456

and efficacy may also be obtained by merging them457

with bigger and more varied datasets. Additionally, 458

adding verified facts to Knowledge Graphs could 459

improve the factual accuracy and dependability of 460

the LLMs’ outputs, guaranteeing that the informa- 461

tion produced is accurate and reliable. 462

8 Limitations 463

In the ZK-GenMed framework, we use the gener- 464

ated text from an LLM to create a knowledge base, 465

which is later used to direct the development of 466

responses. Also, our technique needs more pro- 467

cessing power to conduct concentrated and multi- 468

step thinking before response creation. Also, the 469

prompts in our system are human-written; they are 470

not universally applicable. Along with this, the 471

generated text may not be free from the issue of 472

LLM hallucination and may contain incorrect in- 473

formation. Since the the generation of relevant text 474

depends on the reasoning abilities of LLMs, and 475

the manual prompts asked by the user may impact, 476

it may produce incorrect phrases during the pon- 477

dering or extraction or in the inference phase. The 478

technical method of creating these prompts requires 479

more work. Our goal is for future research to build 480

on our approach, which is more error-resilient and 481

by augmenting current implementation with real- 482

world correct data and more resilient in variances of 483

automatic prompt engineering. Hence, it can assist 484

the existing framework in generating high-quality 485

knowledge used in the later stages. 486
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