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ABSTRACT

Low-precision arithmetic trains deep learning models using less energy, less mem-
ory and less time. However, we pay a price for the savings: lower precision may
yield larger round-off error and hence larger prediction error. As applications
proliferate, users must choose which precision to use to train a new model, and
chip manufacturers must decide which precisions to manufacture. We view these
precision choices as a hyperparameter tuning problem, and borrow ideas from
meta-learning to learn the tradeoff between memory and error. In this paper, we
introduce Pareto Estimation to Pick the Perfect Precision (PEPPP). We use matrix
factorization to find non-dominated configurations (the Pareto frontier) with a lim-
ited number of network evaluations. For any given memory budget, the precision
that minimizes error is a point on this frontier. Practitioners can use the frontier to
trade memory for error and choose the best precision for their goals.

1 INTRODUCTION

Training modern-day neural networks is becoming increasingly expensive as task and model sizes
increase. The energy consumption of the corresponding computation has increased alarmingly,
and raises doubts about the sustainability of modern training practices (Schwartz et al., 2019).
Low-precision training can reduce consumption of both computation (De Sa et al., 2018) and
memory (Sohoni et al., 2019a), thus minimizing the cost and energy to train larger models and
making deep learning more accessible to resource-limited users.
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Figure 1: Test error vs memory for ResNet-18 across 99
low-precision floating point configurations. Figure (a)
shows the tradeoff on CIFAR-10. (Non-dominated points
are blue circles.) Figure (b) shows that the best precision
to use varies depending on the memory budget, on 87
image datasets. See Section 4 for experimental details.

Low-precision training replaces 32-bit or
64-bit floating point numbers with fixed
or floating point numbers that allocate
fewer bits for the activations, optimiz-
ers, and weights. A rich variety of meth-
ods appear in recent literature, includ-
ing bit-centering (De Sa et al., 2018),
loss scaling (Micikevicius et al., 2017)
and mixed-precision training (Zhou et al.,
2016). There is however a fundamental
tradeoff: lowering the number of bits of
precision increases the quantization er-
ror, which may disrupt convergence and
increase downstream error (Zhang et al.,
2016; Courbariaux et al., 2014; Gupta
et al., 2015). The low-precision configura-
tion is thus a hyperparameter to be chosen
according to the resource constraints of
the practitioner.

How should we choose this hyperparameter? Many believe the highest allowable precision (given a
memory budget) generally produces the lowest error model. However, there are typically many ways

*Equal contribution.
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to use the same amount of memory. As shown in Figure 1(a), some of these configurations produce
much lower error than others! Figure 1(b) shows that no one configuration dominates all others. We
might consult previous literature to choose a precision; but this approach fails for new applications.

Our goal is to efficiently pick the best low-precision configuration under a memory budget.
Efficiency is especially important for resource-constrained practitioners, such as individual users or
early-stage startups. To promote efficiency, we use a meta-learning (Lemke et al., 2015; Vanschoren,
2018; Hospedales et al., 2020) approach: we train a small number of cheap very-low-precision models
on the dataset to choose the perfect precision. The gains from choosing the right low-precision format
can offset the cost of this extra training — but each precision must be chosen carefully to realize the
benefits of low-precision training.

We use ideas from multi-objective optimization to characterize the tradeoff between memory and error
and identify the Pareto frontier: the set of non-dominated solutions. Users will want to understand
the tradeoff between error and memory so they can determine the resources needed to adequately
train a model for a given machine learning task. This tradeoff may also influence the design of
application-specific low-precision hardware, with profound implications for the future (Hooker, 2020).
For example, among all 99 low-precision configurations we tried, we identified some configurations
that are Pareto optimal across many different tasks (listed in Appendix D). These results could help
hardware manufacturers decide which precision settings are worth manufacturing.

Computing the Pareto frontier by training models for all low-precision configurations is expensive
and unnecessary. Cloud computing platforms like Google Cloud and Amazon EC2 charge more for
machines with the same CPU and double memory: 25% more on Google Cloud* and 100% more on
Amazon EC2* as of mid-September 2021. We use techniques from meta-learning to leverage the
information from other low-precision training runs on related datasets. This approach allows us to
estimate the Pareto frontier without evaluating all of the low-precision configurations.

Our system, Pareto Estimation to Pick the Perfect Precision (PEPPP), has two goals. The first goal
is to find the Pareto frontiers of a collection of related tasks, and is called meta-training in the
meta-learning literature. Meta-training requires a set of measurements, each collected by training and
testing a neural network with a given precision on a dataset. This information can be gathered offline
with a relatively large resource budget, or by crowdsourcing amongst the academic or open-source
community. Still, it is absurdly expensive to exhaustively evaluate all measurements: that is, every
possible low-precision configuration on every task. Instead, we study how to choose a subset of
the possible measurements to achieve the best estimate. The second goal we call meta-test: using
the information learned on previous tasks, how can we transfer that information to a new task to
efficiently estimate its Pareto frontier? This goal corresponds to a resource-constrained individual or
startup who wants to determine the best low-precision configuration for a new dataset.

Both meta-training and meta-test rely on matrix completion and active learning techniques to avoid
exhaustive search: we make a subset of all possible measurements and predict the rest. We then
estimate the Pareto frontier to help the user make an informed choice of the best configuration.
We consider two sampling schemes: uniform and non-uniform sampling. Uniform sampling is
straightforward. Non-uniform sampling estimates the Pareto frontier more efficiently by making
fewer or even no high-memory measurements.

To the best of our knowledge, PEPPP is the first to study the error-memory tradeoff in low-precision
training and inference without exhaustive search. Some previous works show the benefit of low-
precision arithmetic in significant energy reduction at the cost of a small accuracy decrease (Hashemi
et al., 2017), and propose hardware-software codesign frameworks to select the desired model (Lan-
groudi et al., 2019). Many other papers focus on low-precision inference only and use it for model
compression (Wu et al., 2018; Cai & Vasconcelos, 2020). Another line of work seeks state-of-the-art
(SOTA) performance with low-precision training, using carefully designed learning schedules (Sun
et al., 2019; 2020). Our work imagines low-precision as a way to reduce training or deployment
costs of customized models trained on proprietary datasets (not SOTA models on ML benchmarks).
Even so, we show in Section 4 that our work picks promising models for every memory budget,
which enables near-SOTA results on CIFAR-10.

*https://cloud.google.com/ai-platform/training/pricing
*https://aws.amazon.com/ec2/pricing/on-demand
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Figure 2: The PEPPP workflow. We begin with a collection of (meta-) training datasets and low
precision configurations. In the meta-training phase, we sample dataset-configuration pairs to train,
and compute the misclassification error. We use matrix factorization to compute a low dimensional
embedding of every configuration. In the meta-test phase, our goal is to pick the perfect precision
(within our memory budget) for the meta-test dataset. We compute the memory required for each
configuration, and we select a subset of fast, informative configurations to evaluate. By regressing
the errors of these configurations on the configuration embeddings, we find an embedding for the
meta-test dataset, which we use to predict the error of every other configuration (including more
expensive ones) and select the best subject to our memory budget.

Figure 2 shows a flowchart of PEPPP. The rest of this paper is organized as follows. Section 2
introduces notation and terminology. Section 3 describes the main ideas we use to actively sample
configurations and approximate Pareto frontiers. Section 4 shows experimental results.

2 NOTATION AND TERMINOLOGY

Low-precision formats. We use floating point numbers for low-precision training in this paper.

7 6 5 4 23 1 0
sign 3-bit exponent 4-bit mantissa

Figure 3: An 8-bit floating point number rep-
resenting (−1)sign · 2exponent−7 · 1.b3b2b1b0.

As an example, Figure 3 shows an 8-bit floating point
number with 3 exponent bits and 4 mantissa bits. A
specific low-precision representation with a certain
number of bits for each part is called a low-precision
format. We may use different low-precision formats
for the weights, activations, and optimizer. In the
case of using two formats to train and represent a
neural network (as discussed in Section 3.1), these two formats are called Format A and B. A specific
combination of these two formats is a hyperparameter setting of the neural network, and we call it a
low-precision configuration.

Math basics. We define [n] = {1, . . . , n} for a positive integer n. With a Boolean variable X , the
indicator function 1(X ) equals 1 if X is true, and 0 otherwise. With a scalar variable x, we use x+ to
denote max{x, 0}. ⊆ and ⊂ denote subset and strict subset, respectively.

Linear algebra. We denote vector and matrix variables respectively by lowercase letters (a) and
capital letters (A). All vectors are column vectors. The Euclidean norm of a vector a ∈ Rn is
‖a‖ :=

√∑n
i=1 a

2
i . To denote a part of a matrix A ∈ Rn×d, we use a colon to denote the varying

dimension: Ai,: and A:,j (or aj) denote the ith row and jth column of A, respectively, and Aij
denotes the (i, j)-th entry. With an ordered index set S = {s1, . . . , sk} where s1 < . . . < sk ∈ [d],
we denote A:S := [A:,s1 · · · A:,sk ] ∈ Rn×k. Given two vectors x, y ∈ Rn, x � y means xi ≤ yi

3



Published as a conference paper at ICLR 2022

for each i ∈ [n]. Given a matrixA ∈ Rn×d and a set of observed indices as Ω ⊆ [n]×[d], the partially
observed matrix PΩ(A) ∈ Rn×d has entries (PΩ(A))ij = Aij if (i, j) ∈ Ω, and 0 otherwise.

Pareto frontier. Multi-objective optimization simultaneously minimizes n costs {ci}i∈[n]. A feasible
point c(1) = (c

(1)
1 , . . . , c

(1)
n ) is Pareto optimal if for any other feasible point c(2) = (c

(2)
1 , . . . , c

(2)
n ),

c(2) � c(1) implies c(2) = c(1) (Boyd & Vandenberghe, 2004). The set of Pareto optimal points is the
Pareto frontier.

Tasks, datasets, measurements and evaluations. A task carries out a process (classification,
regression, image segmentation, etc.) on a dataset. Given a deep learning model and a dataset, the
training and testing of the model on the dataset is called a measurement. In our low-precision context,
we evaluate a configuration on a dataset to make a measurement.

Meta-learning. Meta-learning transfers knowledge from past (meta-training) tasks to better under-
stand the new (meta-test) task. To evaluate the error of meta-training, we use meta-leave-one-out
cross-validation (meta-LOOCV): on a collection of tasks, each time we treat one task as meta-test
and the others as meta-training, and average the results over all splits.
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Figure 4: Example error and memory matrices
for some datasets and low-precision configurations.
Dataset 1: CIFAR-10, 2: CIFAR-100 (fruit and veg-
etables), 3: ImageNet-stick (Deng et al., 2009). Con-
figuration Format A (exponent bits, mantissa bits),
Format B (exponent bits, mantissa bits). a: (3, 1), (6,
7); b: (3, 4), (7, 7); c: (4, 3), (8, 7); d: (5, 3), (6, 7).

Error matrix and memory matrix. Given
a neural network, the errors of different
low-precision configurations on meta-training
datasets form an error matrix, whose (i, j)-th
entry Eij is the test error of the jth configura-
tion on the ith dataset. To compute the error
matrix, we split the i-th dataset into training
and test subsets (or use a given split), train
the neural network at the j-th configuration on
the training subset, and evaluate the test error
on the test subset. The memory required for
each measurement forms a memory matrix M ,
which has the same shape as the correspond-
ing error matrix. Example error and memory
matrices are shown in Figure 4.

3 METHODOLOGY

PEPPP operates in two phases: meta-training and meta-test. First in meta-training, we learn configu-
ration embeddings by training a neural network of a specific architecture at different low-precision
configurations on different datasets. As listed in Appendix A, we study image classification tasks and
a range of low-precision formats that vary in the number of bits for the exponent and mantissa for the
activations, optimizer, and weights. Our hope is to avoid enumerating every possible configuration
since exhaustive search is prohibitive in practice. To this end, we make a few measurements and then
predict the other test errors by active learning techniques. We also compute the memory matrix to
understand the memory consumption of each measurement.

Then in meta-test, we assume that we have completed meta-training, and hence know the configuration
embeddings. The meta-test goal is to predict the tradeoff between memory usage and test error
on a new (meta-test) dataset. This step corresponds to inference in traditional machine learning; it
must be quick and cheap to satisfy the needs of resource-constrained practitioners. To select the
configuration that has smallest test error and takes less than the memory limit, we measure a few
selected (informative and cheap) configurations on the meta-test dataset, and use the information of
their test errors to predict the rest. The problem of choosing measurements is known as the “cold-start”
problem in the literature on recommender systems. Then we use the model built on the meta-training
datasets to estimate values for the other measurements on the meta-test dataset.

3.1 META-TRAINING

On the n meta-training datasets, we first theoretically compute the memory needed to evaluate each
of the d low-precision configurations to obtain the full memory matrix M ∈ Rn×d. The total memory
consists of memory needed for model weights, activations, and the optimizer (gradients, gradient
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accumulators, etc.) (Sohoni et al., 2019b). Among these three types, activations typically dominate, as
shown in Figure 5. Thus using lower precision for activations drastically reduces memory usage. Addi-
tionally, empirical studies (Zhou et al., 2016) have shown that adopting higher precision formats for the
optimizer can substantially improve the accuracy of the trained model. Since the optimizer usually re-
quires a relatively small memory, it is often the best to use a higher precision format for this component.
Thus for each low-precision configuration, it is typical to use a lower precision for network weights
and activations, and a higher precision for the optimizer, resulting in combinatorially many choices
in total. An example of the memory usage in this low-precision scenario is also shown in Figure 5.
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Figure 5: Memory us-
age under two training
paradigms. Both train a
ResNet-18 on CIFAR-10
with batch size 32.

In practice, ML tasks are often correlated: for example, meta-training
datasets might be subsets of a large dataset like CIFAR-100 or Im-
ageNet. The ranking of different configurations tends to be simi-
lar on similar tasks. For example, we computed the test errors of
99 low-precision configurations on 87 datasets (both listed in Ap-
pendix A) to form a performance vector in R99 for each dataset.
We use the Kendall tau correlation to characterize the alignment be-
tween the ranking of errors incurred by different configurations on two
datasets: the Kendall tau correlation is 1 if the order is the same and -1
if the order is reversed. As shown in Figure 6(a), similar datasets have
larger correlations: for example, datasets with indices 38–87 correspond
to ImageNet subproblems such as distinguishing types of fruit or boat.
Notice also that some dataset pairs have configuration performance
rankings that are negatively correlated. The corresponding error matrix
E concatenates the performance vector for each dataset. It is not low rank, but its singular values
decay rapidly, as shown in Figure 6(b). Hence we expect low rank approximation of this matrix from
a few measurements to work well: it is not necessary to measure every configuration.

0 40 80
dataset index

0

40

80

d
at

as
et

in
d

ex

C
IF

A
R

-1
00

Im
ag

eN
et

-1

0

1

(a) dataset correlation

0 10 20 30
index i

100

102

104

σ
i

(b) singular value decay

Figure 6: Kendall tau correlation of test er-
ror of all configurations between all pairs of
datasets, and singular value decay of corre-
sponding error matrix. Strong correlations al-
low PEPPP to succeed with a few measure-
ments. Details in Appendix A.

In the uniform sampling scheme, we sample mea-
surements uniformly at random to obtain a partially
observed error matrix PΩ(E). We then estimate the
full error matrix E using a low rank matrix comple-
tion method to form estimate Ê. In this paper, we
use SOFTIMPUTE (Mazumder et al., 2010; Hastie
et al., 2015) (Algorithm 1, Appendix B). Using the
estimated error matrix Ê and computed memory
matrix M , we compute the Pareto frontier for each
dataset to understand the (estimated) error-memory
tradeoff. Section 4 Figure 10 shows an example.

In the non-uniform sampling scheme, we sample
measurements with non-uniform probabilities, and
use a weighted variant of SOFTIMPUTE, weighting
by the inverse sampling probability, to complete the
error matrix (Ma & Chen, 2019). Then we estimate
the Pareto frontier in the same way as above. Non-uniform sampling is useful to reduce the memory
needed for measurements. To this end, we construct a probability matrix P by entry-wise transforma-
tion Pij = σ(1/Mij), in which the monotonically increasing σ : R→ [0, 1] maps inverse memory
usage to a sampling probability. In this way, we make more low-memory measurements, and thus
reduce the total memory usage.

3.2 META-TEST

Having estimated the embedding of each configuration, our goal is to quickly compute the error-
memory tradeoff on the meta-test dataset, avoiding the exhaustive search of all possible measurements.

We first compute the memory usage of each low-precision configuration on the meta-test dataset.
With this information and guided by meta-training, we evaluate only a few (cheap but informative)
configurations and predict the rest. Users then finally select the non-dominated configuration with
highest allowable memory. An example of the process is shown in Figure 7.
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PEPPP uses Experiment Design with Matrix Factorization (ED-MF) described below to choose
informative configurations. With more time, ED-MF evaluates more configurations, improving our
estimates. We may also set a hard cutoff on memory: we do not evaluate low-precision configurations
exceeding the memory limit. This setting has been studied in different contexts, and is called active
learning or sequential decision making.

ED-MF picks measurements to minimize the variance of the resulting estimate. Specifically, we
factorize the true (or estimated) error matrixE ∈ Rn×d (or Ê) into its best rank-k approximation, and
get dataset embeddings X ∈ Rn×k and configuration embeddings Y ∈ Rd×k as E ≈ X>Y (Fusi
et al., 2018; Yang et al., 2019). On a meta-test dataset, we denote the error and memory vectors
of the configurations as enew ∈ Rd and mnew ∈ Rd, respectively. We model the error on the new
dataset as enew = Y >xnew + ε ∈ Rd, where xnew ∈ Rk is the embedding of the new dataset and
ε ∈ Rd accounts for the errors from both measurement and low rank decomposition. We estimate the
embedding xnew from a few measurements (entries) of enew by least squares. Note that this requires
at least k measurements on the meta-test dataset to make meaningful estimations, in which k is the
rank for matrix factorization.
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Figure 7: Meta-test on CIFAR-10. After meta-training
on all other datasets in Appendix A Table 2, we use
ED-MF to choose six informative measurements (or-
ange squares) with a 275MB memory limit for each
measurement on CIFAR-10. Then we estimate test er-
rors of other configurations by ED-MF, and restrict
our attention to configurations that we estimate to be
non-dominated (red x’s). Note some of these are in fact
dominated, since we plot true (not estimated) test error!
Finally we select the estimated non-dominated configu-
ration with highest allowable memory (blue square).

If ε ∼ N (0, σ2I), the variance of the es-

timator is
(∑

j∈S yjy
>
j

)−1

, in which yj
is the jth column of Y . D-optimal experi-
ment design selects measurements on the
new dataset by minimizing (a scalarization
of) the variance,

minimize log det
(∑

j∈S yjy
>
j

)−1

subject to |S| ≤ l
S ⊆ [d],

(1)
to find S, the set of indices of config-
urations to evaluate. The positive inte-
ger l bounds the number of measurements.
Given a memory cap mmax, we replace
the second constraint above by S ⊆ T , in
which T = {j ∈ [d] | mnew

j ≤ mmax}
is the set of feasible configurations. Since
Problem 1 is combinatorially hard, we may
either relax it to a convex optimization
problem by allowing decision variables to have non-integer values between 0 and 1, or use a
greedy method to incrementally choose measurements (initialized by measurements chosen by the
column-pivoted QR decomposition (Gu & Eisenstat, 1996; Golub & Van Loan, 2012)). We compare
these two approaches in Appendix C.

In Section 4.2, we compare ED-MF with competing techniques and show it works the best to estimate
the Pareto frontier and select the final configuration.

4 EXPERIMENTS AND DISCUSSIONS

The code for PEPPP and experiments is in the GitHub repository at https://github.com/
chengrunyang/peppp. We use QPyTorch (Zhang et al., 2019) to simulate low-precision formats
on standard hardware. The 87 datasets and 99 low-precision configurations in experiments are listed
in Appendix A. The datasets consist of natural and medical images from various domains. Apart from
CIFAR-10, the datasets include 20 CIFAR-100 partitions from mutually exclusive subsets, based on
the superclass labels. They also include 50 subsets of ImageNet (Deng et al., 2009), which contains
over 20,000 classes grouped into multiple major hierarchical categories like fungus and amphibian;
each of the 50 datasets come from different hierarchies. Finally, we use 16 datasets from the visual
domain benchmark (Wallace & Hariharan, 2020) to increase the diversity of domains.

The 99 low-precision configurations use mixed-precision as described in Section 3.1. Format A
(for the activations and weights) uses 5 to 9 bits; Format B (for the optimizer) ranges from 14 to
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20 bits. For each, these bits may be split arbitrarily between the exponent and mantissa. Across all
configurations, we use ResNet-18, ResNet-34 and VGG (Simonyan & Zisserman, 2014) variants (11,
13, 16, 19) with learning rate 0.001, momentum 0.9, weight decay 0.0005 and batch size 32. Each
training uses only 10 epochs as an early stopping strategy (Yao et al., 2007) to prevent overfitting.
All the measurements take 35 GPU days on NVIDIA® GeForce® RTX 3090.

Developing a method to select the above hyperparameters at the same time as the low-precision format
is an important topic for future research, but not our focus here. In Section 4.3 we demonstrate how
PEPPP can naturally extend to efficiently select both optimization and low-precision hyperparameters.

A number of metrics may be used to evaluate the quality of the obtained Pareto frontier in a multi-
objective optimization problem (Wu & Azarm, 2001; Li et al., 2014; Audet et al., 2020): the distance
between approximated and true frontiers (convergence), the uniformity of the distances between
neighboring Pareto optimal points (uniformity), how well the frontier is covered by the approximated
points (spread), etc. In our setting, the memory is accurate and the test error is estimated, so we do
not have full control of the uniformity and spread of the 2-dimensional frontiers between test error
and memory. As illustrated in Figure 8, we evaluate the quality of our estimated Pareto frontiers by
the following two metrics:
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Figure 8: Illustration of Pareto frontier metrics.
(a) Convergence is the average distance from each
estimated Pareto optimal point to its closest true
point: average(d1, d2, d3). (b) HyperDiff is the
absolute difference in area of feasible regions given
by the true and estimated Pareto optimal points: the
shaded area between Pareto frontiers.

Convergence (Deb et al., 2002) between the
sets of true and estimated Pareto optimal points
P , P̂ is 1

|P̂|

∑
v∈P̂ dist(v,P), where the dis-

tance between point v and set P is dist(v,P) =
min{‖v − w‖ : w ∈ P}. This is a surrogate for
the distance between Pareto frontiers.

Hypervolume difference (HyperDiff) (Zitzler
& Thiele, 1998; Coello & Sierra, 1999; Wu &
Azarm, 2001) is the absolute difference between
the volumes of solution spaces dominated by the
true and estimated Pareto frontiers. This metric
improves with better convergence, uniformity,
and spread. Its computation requires an upper
boundary for each resource.

When computing these metrics, we normalize the memories by proportionally scaling them to
between 0 and 1. To evaluate the matrix completion performance, we use the relative error defined as
‖v̂ − v‖/‖v‖, in which v̂ is the predicted vector and v is the true vector.

4.1 META-TRAINING

We study the effectiveness of uniform and non-uniform sampling schemes. For simplicity, we regard
all 87 available datasets as meta-training in this section. In SOFTIMPUTE, we use λ = 0.1 (chosen by
cross-validation from a logarithmic scale); and we choose a rank 5 approximation, which accounts
for 78% of the variance in the error matrix (as shown in Figure 6(b)).

In the uniform sampling scheme, we investigate how many samples we need for accurate estimates:
we sample the error matrix at a number of different ratios, ranging from 5% to 50%, and complete the
error matrix from each set of sampled measurements. In uniform sampling, the sampling ratio is also
the percentage of memory we need to make the measurements in parallel, compared to exhaustive
search. Hence we show the relationship between Pareto frontier estimation performance and sampling
ratio in Figure 9. We can see the estimates are more accurate at larger sampling ratios, but sampling
20% of the entries already suffices for good performance.

As a more intuitive example, Figure 10 shows the error-memory tradeoff on CIFAR-10. Compared
to the estimated Pareto optimal points at sampling ratio 5%, the ones at 20% are closer to the true
Pareto frontier (better convergence), lie more evenly (better uniformity) and cover the true Pareto
frontier better (better spread), as shown by the respective convergence and HyperDiff values.

The non-uniform sampling scheme has a similar trend and is shown in Appendix E.2.
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Figure 9: Pareto frontier estimation in PEPPP meta-
training, with uniform sampling of configurations.
The violins show the distribution of the performance
on individual datasets, and the error bars (blue) show
the range. The red error bars show the standard de-
viation of the error on CIFAR-10 across 100 random
samples of the error matrix. Figure (a) shows the
matrix completion error for each dataset; Figure (b)
and (c) show the performance of the Pareto frontier es-
timates. Modest sampling ratios (around 0.1) already
yield good performance.
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Figure 10: Error vs memory on CIFAR-10 with
true and estimated Pareto frontiers from uni-
form sampling in PEPPP meta-training. A 20%
uniform sample of entries yields a better esti-
mate of the Pareto frontier (convergence 0.03
and HyperDiff 0.02) compared to a 5% sample
(convergence 0.09 and HyperDiff 0.16).

4.2 META-LEAVE-ONE-OUT CROSS-VALIDATION (META-LOOCV)

Now suppose that we have already collected measurements on the meta-training datasets to form a
meta-training error matrix E (or its low rank approximation Ê). On the meta-test dataset, PEPPP
estimates the Pareto frontier by the active learning technique ED-MF. We compare ED-MF with a
few other active learning techniques: Random selection with matrix factorization (RANDOM-MF),
QR decomposition with column pivoting and matrix factorization (QR-MF) and two Bayesian
optimization techniques (BO-MF and BO-FULL), to understand whether the strong assumptions in
ED-MF (low rank and Gaussian errors) are a hindrance or a help. An introduction to these techniques
can be found in Appendix E.1.

Table 1: Meta-LOOCV experiment settings

meta-training error matrix memory cap on meta-test?

no yes

full I II
uniformly sampled III IV

non-uniformly sampled V VI

We use rank 3 for matrix factorization: Y:,j ∈
R3 for each j ∈ [d]. In BO, we tune hyperpa-
rameters on a logarithmic scale and choose
the RBF kernel with length scale 20, white
noise with variance 1, and ξ = 0.01. Ta-
ble 1 shows the meta-LOOCV settings for
each acquisition technique. We compare the
techniques at a range of number of configura-
tions to measure in each meta-LOOCV split,
resembling what practitioners do in hyperparameter tuning: evaluate an informative subset and infer
the rest. Setting I is the most basic, Setting IV and VI are the most practical. We only show results of
Setting I and IV in the main paper, and defer the rest to Appendix E.

In Setting I, we do meta-LOOCV with the full meta-training error matrix in each split and do not cap
the memory for meta-test. This means we evaluate every configuration on the meta-training datasets.
We can see from Figure 11(a) and 11(b) that:

• ED-MF stably outperforms under both metrics, especially with fewer measurements.

• QR-MF overall matches the performance of ED-MF.

• BO-MF, BO-FULL and RANDOM-MF underperform ED-MF and QR-MF at lower memory
usage, but often match their performance with higher memory.

Practitioners may have only collected part of the meta-training performance, and desire or are
limited by a memory cap when they do meta-test on the new dataset. In Setting IV, we cap the
single-configuration memory usage for meta-test at 816MB, the median memory of all possible mea-
surements across configurations and datasets. Additionally, we uniformly sample 20% configurations
from the meta-training error matrix in each split. In Figure 11(c) and 11(d), we can see similar trends
as Setting I, except that QR-MF is slightly worse.
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Figure 11: Pareto frontier estimates in meta-LOOCV Setting I and IV (with a 20% meta-training
sampling ratio and an 816MB meta-test memory cap). Each error bar is the standard error across
datasets. The x axis measures the memory usage relative to exhaustively searching the permissible
configurations. ED-MF consistently picks the configurations that give the best PF estimates.

Ultimately, users would want to select a configuration that both achieves a small error and takes
lower memory than the limit. As shown in Figure 2, PEPPP offers users the predicted Pareto frontier
and chooses the non-dominated configuration with the highest allowable memory and hence the
lowest error. We compare the acquisition techniques with the “random high-memory” baseline that
randomly chooses a configuration that takes the highest allowable memory: an approach that follows
the “higher memory, lower error” intuition. Figure 12 shows an example.

1 1.2 1.4
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(relative to ED-MF)

ape
shorebird
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foodstuff
substance

relation
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percussion
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BO-MF

BO-full
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Figure 12: Relative performance with re-
spect to ED-MF in meta-test Setting IV
when making 3 measurements (memory
usage ∼10%) on 10 ImageNet partitions.
ED-MF outperforms in most cases.

Overall, among all approaches and across all memory us-
age, ED-MF outperforms, especially at a smaller number
of measurements. Compared to BO techniques, ED-MF
also enjoys the benefit of having less hyperparameters to
tune. Although techniques like QR-MF and RANDOM-
MF are easier to implement, the additional cost of ED-MF
is much smaller than the cost of making measurements:
neural network training and testing.

4.3 TUNING OPTIMIZATION HYPERPARAMETERS

Previously, we have shown that PEPPP can estimate the
error-memory tradeoff and select a promising configura-
tion with other hyperparameters fixed. In practice, users
may also want to tune hyperparameters like learning rate
to achieve the lowest error. In Appendix E.4, we tune
the number of epochs and learning rate in addition to pre-
cision, and show that the methodology can be used in
broader settings.

4.4 META-LEARNING ACROSS ARCHITECTURES

The meta-learning in previous sections were conducted on ResNet-18. In Appendix E.5, we show
that on 10 ImageNet partitions, PEPPP is also capable of estimating the error-memory tradeoff of
ResNet-34, VGG-11, VGG-13, VGG-16 and VGG-19 competitively. Moreover, the meta-learning
across architectures works better than considering each architecture separately.

5 CONCLUSION

This paper proposes PEPPP, a meta-learning system to select low-precision configurations that
leverages training information from related tasks to efficiently pick the perfect precision given
a memory budget. Built on low rank matrix completion with active learning, PEPPP estimates
the Pareto frontier between memory usage and model performance to find the best low-precision
configuration at each memory level. By reducing the cost of hyperparameter tuning in low-precision
training, PEPPP allows practitioners to efficiently train accurate models.
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All the tables in this appendix are shown in the last page.

A DATASETS AND LOW-PRECISION FORMATS

The 87 datasets chosen in our experiment are listed in Table 2. Note that the datasets contain images
of two different resolutions: 32 denotes resolution 3× 32× 32, and 64 denotes 3× 64× 64. We list
our choices of Format A and B in Table 3 and 4, respectively. In each evaluation, the low-precision
configuration is composed of one Format A (for the activations and weights) and one Format B (for
the optimizer), as detailed in Section 3.1. Therefore, the total number of low-precision configurations
used in our experiment is 99.

B THE SOFTIMPUTE ALGORITHM

There are several versions of SOFTIMPUTE; (Hastie et al., 2015) gives a nice overview. We use the
version in (Mazumder et al., 2010).

At a high level, SOFTIMPUTE iteratively applies a soft-thresholding operator Sλ on the partially
observed error matrix with a series of decreasing λ values. Each Sλ replaces the singular values {σi}
with {(σi − λ)+}. The regularization parameter λ can be set in advance or ad hoc, by convergence
dynamics.

The pseudocode for the general SOFTIMPUTE algorithm is shown as Algorithm 1, in which PΩ(E)
is a matrix with the same shape as E, and has the (i, j)-th entry being Eij if (i, j) ∈ Ω, and 0
otherwise. In our implementation, λi = λti for each step i, and ti is the step size from TFOCS
backtracking (Becker et al., 2011).

Algorithm 1 SOFTIMPUTE

Input: a partially observed matrix PΩ(E) ∈ Rn×d, number of iterations I , a series of decreasing λ
values {λi}Ii=1

Output: an estimate Ê
1 for i = 1 to I do
2 Ẽ ← PΩ(E) + PΩC (Ê)

3 U,Σ, V ← svd(Ẽ)

4 Ê ← USλ(Σ)V >

C ALGORITHMS FOR EXPERIMENT DESIGN

As mentioned in Section 3.2, there are mainly two algorithms to solve Problem 1, the D-optimal
experiment design problem: convexification and greedy.

The convexification approach relaxes the combinatorial optimization problem to the convex optimiza-
tion problem

minimize log det
(∑d

j=1 vjyjy
>
j

)−1

subject to
d∑
j=1

vj ≤ l
vj ∈ [0, 1],∀j ∈ [d]

(2)

that can be solved by a convex solver (like SLSQP). Then we sort the entries in the optimal solution
v∗ ∈ Rd and set the largest l entries to 1 and the rest to 0.

The greedy approach (Madan et al., 2019; Yang et al., 2020) maximizes the submodular objective
function by first choosing an initial set of configurations by column-pivoted QR decomposition, and
then greedily adding new configuration to the solution set S in each step until |S| = l. The greedy
stepwise selection algorithm is shown as Algorithm 2, in which the new configuration is chosen by
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the Matrix Determinant Lemma* (Harville, 1998), and X−1
t is updated by the close form from the

Sherman-Morrison Formula* (Sherman & Morrison, 1950). The column-pivoted QR decomposition
selects top k pivot columns of Y ∈ Rk×d to get the index set S0, ensuring that X0 =

∑
j∈S0

yjy
>
j is

non-singular.

Algorithm 2 Greedy algorithm for D-optimal experiment design
Input: design vectors {yj}dj=1, in which yj ∈ Rk; maximum number of selected configurations l;

initial set of configurations S0 ⊆ [d], s.t. X0 =
∑
j∈S0

yjy
>
j is non-singular

Output: the selected set of designs S ⊆ [d]
1 S ← S0

2 while |S| ≤ l do
3 i← argmaxj∈[d]\Sy

>
j X

−1
t yj

4 S ← S ∪ {i}
5 Xt+1 ← Xt + yiy

>
i

The convexification approach empirically works because most entries of the optimal solution v∗ are
close to either 0 or 1. The histogram in Figure 13 shows an example when we use rank k = 5 to
factorize the entire error matrix and set l = 20.
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Figure 13: Convexification vs greedy for ED.

In terms of solution quality, the relative
error plot in Figure 13 shows that the
greedy approach consistently outperforms
in terms of the relative matrix completion
error for each dataset in ED-MF solutions.
Since the greedy approach is also more
than 10× faster than convexification (im-
plemented by scipy), we use the greedy
approach throughout all experiments for
the rest of this paper.

D INFORMATION TO HARDWARE DESIGN

Among all 87 datasets (each has its own error-memory tradeoff), the promising configurations that
we identify among all 99 configurations are as below (number of sign bits - number of exponent bits
-number of mantissa bits).

• Format A: 1-4-1, Format B: 1-6-7 (appears on 60 out of 87 Pareto frontiers)
• Format A: 1-4-1, Format B: 1-7-7 (appears on 33 out of 87 Pareto frontiers)
• Format A: 1-3-1, Format B: 1-7-7 (appears on 30 out of 87 Pareto frontiers)
• Format A: 1-4-2, Format B: 1-6-7 (appears on 24 out of 87 Pareto frontiers)
• Format A: 1-5-2, Format B: 1-6-7 (appears on 21 out of 87 Pareto frontiers)

E MORE DETAILS ON EXPERIMENTS

We first show the plot of explained variances of top principal components in Figure 14: how much
variance in our data do the first several principal components account for (Bishop, 2006). This
quantity is computed by the ratio of sum of squares of the first k singular values to that of all singular
values. In Figure 14, we vary k from 1 to 30, corresponding to the decay of singular values shown in
Figure 6(b). We can see the first singular value already accounts for 99.0% of the total variance, and
the first two singular values account for more than 99.5%. This means we can pick a small rank for
PCA in meta-training and still keep the most information in our meta-training data.

*The Matrix Determinant Lemma states that for any invertible matrix A ∈ Rk×k and a, b ∈ Rk, det(A+
ab>) = det(A)(1 + b>A−1a). Thus argmaxj∈[d]\S det(Xt + yjy

>
j ) = argmaxj∈[d]\Sy

>
j X−1

t yj .
*The Sherman-Morrison Formula states that for any invertible matrix A ∈ Rk×k and a, b ∈ Rk, (A +

ab>)−1 = A−1 − A−1ab>A−1

1+b>A−1a
.
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We use the ratio of incorrectly classified images as our error metric. Figure 15 shows histograms of
error and memory values in our error and memory matrices from evaluating 99 configurations on 87
datasets. The vertical dashed lines show the respective medians: 0.78 for test error and 816MB for
memory. We can see both the test error and memory values span a wide range. The errors come from
training a wide range of low-precision configurations with optimization hyperparameters not fine-
tuned, and are thus larger than SOTA results. In Section 4.3 of the main paper and Section E.4 here, we
show that training for a larger number of epochs and with some other optimization hyperparameters
yield the same error-memory tradeoff as Figure 1(a) in the main paper.

In meta-LOOCV settings with a meta-test memory cap at the median memory 816MB, Figure 16
shows a histogram of number of feasible configurations on each of the 87 datasets. There are “cheap”
(resolution 32) datasets on which each of the 99 configurations takes less than the cap, and “expensive”
(resolution 64) datasets on which the feasible configurations are far less than 99.

E.1 INTRODUCTION TO RANDOM-MF, QR-MF AND BO

• Random selection with matrix factorization (RANDOM-MF). Same as ED-MF, RANDOM-
MF predicts the unevaluated configurations by linear regression, except that it selects the
configurations to evaluate by random sampling.

• QR decomposition with column pivoting and matrix factorization (QR-MF). QR-MF first
selects the configurations to evaluate by QR decomposition with column pivoting: EP = QR,
in which the permutation matrix P gives the most informative configurations. Then it predicts
unevaluated configurations in the same way as ED-MF and RANDOM-MF.

• Bayesian optimization (BO). Bayesian optimization is a sequential decision making framework
that learns and optimizes a black-box function by incrementally building surrogate models and
choosing new measurements (Frazier, 2018). It works best for black-box functions that are
expensive to evaluate and lack special structures or derivatives. We compare ED-MF with two
BO techniques. The first technique, BO-MF, applies BO to the function f1 : Rk → R that maps
low-dimensional configuration embeddings {Y:,j}dj=1 to the test errors of the configurations
on the meta-test dataset {enew

j }dj=1 (Fusi et al., 2018). The embeddings come from the same
low-rank factorization of the error matrix E as in ED-MF. The second, BO-FULL, applies
BO to the function f2 : Rn → R that directly maps columns of the error matrix {E:,j}dj=1

to {enew
j }dj=1. To learn either of these black-box functions, we start by evaluating a subset of

configurations S ⊆ [d] and then incrementally select new configurations that maximize the
expected improvement (Močkus, 1975; Jones et al., 1998).
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E.2 ADDITIONAL META-TRAINING RESULTS: NON-UNIFORM SAMPLING

20% 40%
relative memory usage

0.0

0.2

0.4

0.6

re
la

ti
ve

er
ro

r

CIFAR-10

(a) relative error

20% 40%
relative memory usage

0.0

0.2

0.4

0.6

co
nv

er
ge

n
ce CIFAR-10

(b) convergence

20% 40%
relative memory usage

0.0

0.2

0.4

0.6

H
yp

er
D

iff CIFAR-10

(c) HyperDiff

Figure 17: Pareto frontier estimation performance in PEPPP meta-
training with non-uniform sampling of configurations. The violins
and scatters have the same meaning as Figure 9. The x axis
measures the memory usage relative to exhaustive search.

In non-uniform sampling, we
sample each entry of the er-
ror matrix E with probabilities
Pij = σ(1/Wij), in which σ
maps {1/Wij} into an interval
[0, pmax] ⊆ [0, 1] according to
the cumulative distribution func-
tion of {1/Wij}. By varying
pmax, we change how we ag-
gressively sample the configu-
rations, how different the sam-
pling probabilities are between
large and small memory configu-
rations, and also the percentage of memory needed. In Figure 17, we vary pmax from 0.1 to 1 and see
that the quality of the estimated Pareto frontier improves with more memory.

E.3 ADDITIONAL META-LOOCV RESULTS

In the main paper, we have shown the performance of Pareto frontier estimates and configuration
selection for Setting I and IV. For the rest of the settings in Table 1, we conduct meta-LOOCV in the
same way and show the results of Pareto frontier estimates in Figure 18.

Setting II. We have the 816MB memory cap for meta-test, and have the full meta-training error
matrix in each split.
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Figure 18: Pareto frontier estimates in meta-LOOCV Setting II (full meta-training error matrix, a
816MB memory cap), Setting III (uniformly sample 20% meta-training measurements, no meta-test
memory cap), Setting V (non-uniformly sample 20% meta-training measurements, no meta-test
memory cap), and Setting VI (non-uniformly sample 20% meta-training measurements, an 816MB
meta-test memory cap). Each error bar is the standard error across datasets. ED-MF is among the
best in every setting and under both metrics.

Setting III. We have no memory cap for meta-test, and uniformly sample 20% configurations for
meta-training in each split.

Setting V. We have no memory cap for meta-test, and non-uniformly sample 20% configurations for
meta-training in each split. The sampling method is the same as in meta-training (Figure 17).

Setting VI. We have the 816MB memory cap for meta-test, and non-uniformly sample 20% meta-
training configurations in the same way as Setting V above.
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Figure 19: Errors of 99 configurations trained for different numbers of epochs.
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Figure 20: CIFAR-10 error-memory tradeoff. Figure (a) has learning rate 0.001 for all low-precision
configurations. Figure (b) shows the tradeoff with tuned learning rates: at each low-precision
configuration, the lowest test error achieved by learning rates {0.01, 0.001, 0.0001} is selected.

E.4 TUNING OPTIMIZATION HYPERPARAMETERS

E.4.1 NUMBER OF EPOCHS

The low-precision networks still underfit after 10 epochs of training. This situation is typical:
underfitting due to budget constraints is unfortunately common in deep learning. Luckily, meta-
learning the best precision will succeed so long as the validation errors are correctly ordered, even
if they all overestimate the error of the corresponding fully trained model. Indeed, our validation
errors correlate well with the errors achieved after further training: on CIFAR-10, the Kendall tau
correlation between ResNet-18 errors at 10 epochs and 100 epochs is 0.73, shown in Figure 19. The
lowest error at 100 epochs is 9.7%, only approximately 2% higher than SOTA (Bungert et al., 2021).

E.4.2 LEARNING RATE

Previously, we have shown that PEPPP can estimate the error-memory tradeoff and select a promising
configuration with other hyperparameters fixed. In practice, users may also want to tune hyperparam-
eters like learning rate to achieve the lowest error. Here, we tune learning rate in addition to precision,
and show that the methodology can be used in broader settings of hyperparameter tuning.

Figure 20 shows that the error-memory tradeoff still exists with a fine-tuned learning rate for each
configuration. With the learning rate tuned across {0.01, 0.001, 0.0001}, the test errors are in general
smaller, but high-memory configurations still achieve lower errors in general. Thus the need to
efficiently select a low-precision configuration persists.

Our approach can naturally extend to efficiently selecting optimization and low-precision hyperpa-
rameters. We perform the meta-training and meta-LOOCV experiments on a subset of CIFAR-100
partitions with multiple learning rates {0.01, 0.001, 0.0001}. The error and memory matrices we use
here have 45 rows and 99 columns, respectively. Learning rate and low-precision configuration are
collapsed into the same dimension: each row corresponds to a combination of one CIFAR-100 subset
and one of the learning rates {0.01, 0.001, 0.0001}, as shown in Table 5. We say that these error and
memory matrices are LR-tuned. Figure 21 shows the LR-tuned error matrix also has a fast singular
value decay. The other hyperparameters are the same as in LR-fixed experiments, except that we use
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Figure 21: Singular value decay of the LR-tuned error matrix.
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Figure 22: The Pareto frontier estimation performance in meta-training, with uniform sampling of
configurations on the LR-tuned error and memory matrices. Similar to Figure 9, the violins show the
distribution of the performance on individual datasets, and the error bars (blue) show the range. The
red error bars show the standard deviation of the error on CIFAR-100 aquatic mammals and learning
rate 0.01, across 100 random samples of the error matrix. Figure (a) shows the matrix completion
error for each dataset; Figure (b) and (c) show the performance of the Pareto frontier estimates in
convergence and HyperDiff.

batch size 128 and train for 100 epochs. The meta-training and meta-LOOCV results are consistent
with those in Sections 4.1 and 4.2, respectively:

• In meta-training, we first uniformly sample the error matrix and study the performance of
matrix completion and Pareto frontier estimation. Figure 22 shows the matrix completion
error and Pareto frontier estimation metrics. Then we do non-uniformly sampling and get
Figure 23, the LR-tuned version of Figure 17 in the main paper.

• In meta-test, we evaluate settings in Table 1 in the main paper. We get the performance of
Pareto frontier estimates in Figure 24, the LR-tuned version of Figure 11 in the main paper.
ED-MF steadily outperforms.
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Figure 23: The Pareto frontier estimation performance in meta-training, with non-uniform sampling
of configurations on the LR-tuned error and memory matrices. The violins and scatters have the same
meaning as Figure 17 in the main paper.
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Figure 24: Pareto frontier estimates in meta-LOOCV settings on the LR-tuned error and memory
matrices. Each error bar is the standard error across datasets.
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Figure 25: Pareto frontier estimates in meta-LOOCV Setting I when learning across architectures:
from ResNet-18 to either ResNet-34, or to VGG variants. Each error bar is the standard error across
datasets. The x axis measures the memory usage relative to exhaustively searching the permissible
configurations. ED-MF consistently picks the configurations that give the best PF estimates.

E.5 LEARNING ACROSS ARCHITECTURES

We show that on 10 ImageNet partitions, PEPPP with ED-MF is able to estimate the error-memory
tradeoff of the low-precision configurations on of ResNet-34, VGG-11, VGG-13, VGG-16 and VGG-
19. The 10 ImageNet partitions have WordNet IDs {n02470899, n01482071, n02022684, n03546340,
n07566340, n00019613, n01772222, n03915437, n02489589, n02127808} and are randomly selected
from the 50 ImageNet subsets on which we collected the error matrix. On these ImageNet partitions,
we use the performance of ResNet-18 as meta-training data, and either the performance of ResNet-18
or VGG variants as meta-test data. In Figure 25, we can see that ED-MF is steadily among the best
in Pareto frontier estimation, and there is no statistical difference between the estimation performance
on ResNet-34 and VGG variants.

Next, we compare the performance of the following two cases:

i Meta-learning across datasets with performance from the same architecture: For example,
to learn the error-memory tradeoff of ResNet-18 on n02470899, we only use the tradeoffs of
ResNet-18 on 9 other ImageNet partitions as the meta-training data.

ii Meta-learning across datasets with performance from both the same and other architectures:
For example, the error-memory tradeoff of ResNet-18 on n02470899, we not only use the
tradeoffs of ResNet-18 on 9 other ImageNet partitions, but also use those of ResNet-34,
VGG-11, VGG-13, VGG-16 and VGG-19 on the 9 partitions as the meta-training data.

Figure 26 shows that Case ii outperforms Case i in better estimating the error-memory tradeoffs on
different architectures and datasets.
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Figure 26: Benefit of meta-learning across architectures. Each error bar is the standard error across
architecture-dataset combinations (e.g., ResNet-18 + n02470899 is a combination). The x axis
measures the memory usage relative to exhaustively searching the permissible configurations.
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Table 2: Datasets

index dataset name resolution # points

1 CIFAR10 32 60000
2 CIFAR100 (aquatic mammals) 32 3000
3 CIFAR100 (fish) 32 3000
4 CIFAR100 (flowers) 32 3000
5 CIFAR100 (food containers) 32 3000
6 CIFAR100 (fruit and vegetables) 32 3000
7 CIFAR100 (household electrical devices) 32 3000
8 CIFAR100 (household furniture) 32 3000
9 CIFAR100 (insects) 32 3000
10 CIFAR100 (large carnivores) 32 3000
11 CIFAR100 (large man-made outdoor things) 32 3000
12 CIFAR100 (large natural outdoor scenes) 32 3000
13 CIFAR100 (large omnivores and herbivores) 32 3000
14 CIFAR100 (medium-sized mammals) 32 3000
15 CIFAR100 (non-insect invertebrates) 32 3000
16 CIFAR100 (people) 32 3000
17 CIFAR100 (reptiles) 32 3000
18 CIFAR100 (small mammals) 32 3000
19 CIFAR100 (trees) 32 3000
20 CIFAR100 (vehicles 1) 32 3000
21 CIFAR100 (vehicles 2) 32 3000
22 aircraft 64 6667
23 cub 64 10649
24 dtd 64 3760
25 isic 64 22802
26 merced 64 1890
27 scenes 64 14088
28 ucf101 64 12024
29 daimlerpedcls 64 29400
30 gtsrb 64 26640
31 kather 64 4000
32 omniglot 64 25968
33 svhn 64 73257
34 vgg-flowers 64 2040
35 bach 64 320
36 protein atlas 64 12113
37 minc 64 51750
38 ImageNet (bag) 64 6519
39 ImageNet (retriever) 64 6668
40 ImageNet (domestic cat) 64 6750
41 ImageNet (stick) 64 6750
42 ImageNet (turtle) 64 6750
43 ImageNet (finch) 64 6750
44 ImageNet (watchdog) 64 6404
45 ImageNet (footwear) 64 6587
46 ImageNet (salamander) 64 6750
47 ImageNet (anthropoid ape) 64 6750
48 ImageNet (elasmobranch) 64 6750
49 ImageNet (shorebird) 64 6750
50 ImageNet (housing) 64 6605
51 ImageNet (foodstuff) 64 6750
52 ImageNet (substance) 64 6643
53 ImageNet (spider) 64 8100
54 ImageNet (percussion instrument) 64 8082
55 ImageNet (New World monkey) 64 8100
56 ImageNet (big cat) 64 8100
57 ImageNet (box) 64 7829
58 ImageNet (fabric) 64 7862
59 ImageNet (kitchen appliance) 64 7773
60 ImageNet (mollusk) 64 8100
61 ImageNet (hand tool) 64 8054
62 ImageNet (butterfly) 64 8100
63 ImageNet (stringed instrument) 64 8100
64 ImageNet (boat) 64 8006
65 ImageNet (rodent) 64 8006
66 ImageNet (toiletry) 64 7522
67 ImageNet (computer) 64 7696
68 ImageNet (shop) 64 9400
69 ImageNet (musteline mammal) 64 9450
70 ImageNet (Old World monkey) 64 9450
71 ImageNet (bottle) 64 9205
72 ImageNet (fungus) 64 9450
73 ImageNet (truck) 64 9309
74 ImageNet (spaniel) 64 9119
75 ImageNet (sports equipment) 64 9450
76 ImageNet (game bird) 64 9450
77 ImageNet (seat) 64 9126
78 ImageNet (fruit) 64 9450
79 ImageNet (weapon) 64 9450
80 ImageNet (beetle) 64 10800
81 ImageNet (toy dog) 64 9832
82 ImageNet (decapod crustacean) 64 10800
83 ImageNet (fastener) 64 10675
84 ImageNet (timepiece) 64 10164
85 ImageNet (dish) 64 10556
86 ImageNet (mechanical device) 64 10617
87 ImageNet (colubrid snake) 64 12150

Table 3: Format A (for activations and weights)

index # exponent bits # mantissa Bits total bit width

1 3 1 5
2 3 2 6
3 3 3 7
4 3 4 8
5 4 1 6
6 4 2 7
7 4 3 8
8 4 4 9
9 5 1 7
10 5 2 8
11 5 3 9

Table 4: Format B (for optimizer)

index # exponent bits # mantissa Bits total bit width

1 6 7 14
2 6 9 16
3 6 11 18
4 7 7 15
5 7 9 17
6 7 11 19
7 8 7 16
8 8 9 18
9 8 11 20

Table 5: Datasets and learning rates in Section 4.3

index dataset name learning rate

1 CIFAR100 (aquatic mammals) 0.01
2 CIFAR100 (fish) 0.01
3 CIFAR100 (flowers) 0.01
4 CIFAR100 (food containers) 0.01
5 CIFAR100 (fruit and vegetables) 0.01
6 CIFAR100 (household electrical devices) 0.01
7 CIFAR100 (household furniture) 0.01
8 CIFAR100 (insects) 0.01
9 CIFAR100 (large carnivores) 0.01
10 CIFAR100 (large man-made outdoor things) 0.01
11 CIFAR100 (large natural outdoor scenes) 0.01
12 CIFAR100 (large omnivores and herbivores) 0.01
13 CIFAR100 (medium-sized mammals) 0.01
14 CIFAR100 (non-insect invertebrates) 0.01
15 CIFAR100 (people) 0.01
16 CIFAR100 (reptiles) 0.01
17 CIFAR100 (aquatic mammals) 0.001
18 CIFAR100 (fish) 0.001
19 CIFAR100 (flowers) 0.001
20 CIFAR100 (food containers) 0.001
21 CIFAR100 (fruit and vegetables) 0.001
22 CIFAR100 (household electrical devices) 0.001
23 CIFAR100 (household furniture) 0.001
24 CIFAR100 (insects) 0.001
25 CIFAR100 (large carnivores) 0.001
26 CIFAR100 (large man-made outdoor things) 0.001
27 CIFAR100 (large natural outdoor scenes) 0.001
28 CIFAR100 (large omnivores and herbivores) 0.001
29 CIFAR100 (medium-sized mammals) 0.001
30 CIFAR100 (non-insect invertebrates) 0.001
31 CIFAR100 (people) 0.001
32 CIFAR100 (reptiles) 0.001
33 CIFAR100 (aquatic mammals) 0.0001
34 CIFAR100 (fish) 0.0001
35 CIFAR100 (flowers) 0.0001
36 CIFAR100 (food containers) 0.0001
37 CIFAR100 (fruit and vegetables) 0.0001
38 CIFAR100 (household electrical devices) 0.0001
39 CIFAR100 (household furniture) 0.0001
40 CIFAR100 (insects) 0.0001
41 CIFAR100 (large carnivores) 0.0001
42 CIFAR100 (large man-made outdoor things) 0.0001
43 CIFAR100 (large natural outdoor scenes) 0.0001
44 CIFAR100 (large omnivores and herbivores) 0.0001
45 CIFAR100 (medium-sized mammals) 0.0001
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