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Abstract
Synthesis is the automated construction of systems from their specifications. Modern systems often con-
sist of interacting components, each having its own objective. The interaction among the components is
modeled by a multi-player game. Strategies of the components induce a trace in the game, and the object-
ive of each component is to force the game into a trace that satisfies its specification. This is modeled by
augmenting the game with ω-regular winning conditions. Unlike traditional synthesis games, which are
zero-sum, here the objectives of the components do not necessarily contradict each other. Accordingly,
typical questions about these games concern their stability — whether the players reach an equilibrium,
and their social welfare — maximizing the set of (possibly weighted) specifications that are satisfied.

We introduce and study repair of multi-player games. Given a game, we study the possibility of modi-
fying the objectives of the players in order to obtain stability or to improve the social welfare. Specifically,
we solve the problem of modifying the winning conditions in a given concurrent multi-player game in a
way that guarantees the existence of a Nash equilibrium. Each modification has a value, reflecting both
the cost of strengthening or weakening the underlying specifications, as well as the benefit of satisfying
specifications in the obtained equilibrium. We seek optimal modifications, and we study the problem
for various ω-regular objectives and various cost and benefit functions. We analyze the complexity of
the problem in the general setting as well as in one with a fixed number of players. We also study two
additional types of repair, namely redirection of transitions and control of a subset of the players. 1
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1 Introduction

Synthesis is the automated construction of systems from their specifications [19]. Modern systems
often consist of interacting components, each having its own objective. The interaction among
the components is modeled by a multi-player game. Each player in the game corresponds to a
component in the interaction. In each round of the game, each of the players chooses an action,
and the next vertex of the game depends on the current vertex and the vector of actions chosen. A
strategy for a player is then a mapping from the history of the game so far to her next action.

The strategies of the players induce a trace in the game, and the goal of each player is to dir-
ect the game into a trace that satisfies her specification. This is modeled by augmenting the game
with ω-regular winning conditions, describing the objectives of the players. Unlike traditional syn-
thesis games, which are zero-sum, here the objectives of the players do not necessarily contradict
each other. Accordingly, typical questions about these games concern their stability — whether the
players reach an equilibrium, and their social welfare — maximizing the set of (possibly weighted)
specifications that are satisfied [23].

Different types of games can model different schemes of interaction among the components. In
particular, we distinguish between turn-based and concurrent games. In the first, a single player

1 The research has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement no 278410.
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chooses an action and determines the successor vertex in each step of the interaction. In the second,
all players choose actions in all steps [1]. Another parameter is the way in which the winning
conditions in the game are specified. Most common are reachability, Büchi, co-Büchi, and parity
winning conditions [17], which are used to specify the set of winning traces. 2 As for stability and
social welfare, here too, several types have been suggested and studied. The most common criterion
for stability is the existence of a Nash equilibrium (NE) [18]. A profile of strategies, one for each
player, is an NE if no (single) player can benefit from unilaterally changing her strategy. In the
general setting of game theory, the outcome of a game fixes a reward to each of the players, thus
“benefiting” stands for increasing the reward. In our setting here, the objective of a player is to
satisfy her specification. Accordingly, “benefiting” amounts to moving from the set of losers – those
players whose specifications are not satisfied, to the set of winners – those whose specifications are
satisfied.

In [7, 22], the authors study the existence of an NE in games with Borel objectives. It turns out
that while a turn-based game always has an NE [7, 22], this is not the case for concurrent games [2].
The problem of deciding whether a given concurrent game has an NE can be solved in polynomial
time for Büchi games, but is NP-complete for reachability and co-Büchi games. Interestingly, this
is one of the few examples in which reasoning about the Büchi acceptance condition is easier than
reasoning about co-Büchi and reachability. The above results hold for a model with nondeterministic
transition functions and with imperfect monitoring, where the players can observe the outcome of
each transition and the vertex in which the game is, but cannot observe the actions taken by the other
players [21]. In Remark 2.1 we elaborate on the difference between the two models. As we show
in the paper, the results for reachability, co-Büchi, and Büchi stay valid also for our full-information
model. For the parity condition, however, our model simplifies the setting and the problem of decid-
ing the existence of an NE is NP-complete, as opposed to PNP

‖ in the nondeterministic model with
imperfect monitoring.

We introduce and study repair of multi-player games. We consider a setting with an authority
(the designer) that aims to stabilize the interaction among the components and to increase the social
welfare. In standard reactive synthesis [19], there are various ways to cope with situations when a
specification is not realizable. Obviously, the specification has to be weakened, and this can be done
either by adding assumptions on the behavior of the environment, fairness included, or by giving up
some of the requirements on the system [6, 15]. In our setting, where the goal is to obtain stability,
and the game is not zero-sum, a repair may both weaken and strengthen the specifications, which, in
our main model, is modeled by modifications to the winning conditions.

The input to the specification-repair problem (SR problem, for short) is a game along with a cost
function, describing the cost of each repair. For example, in Büchi games the cost function specifies,
for each vertex v and player i, the cost of making v accepting for Player i and the cost of making
v rejecting. The cost may be 0, reflecting the fact that v is accepting or rejecting in the original
specification of Player i, or it may be ∞, reflecting the fact that the original classification of v is
a feature of the specification that the designer is not allowed to modify. We consider some useful
classes of cost functions, like uniform costs – where all assignments cost 1, except for one that has
cost 0 and stands for the original classification of the vertex, or don’t-care costs – where several
assignments have cost 0, reflecting a don’t-care original classification, and all other assignments
have cost ∞. In reachability, Büchi, and co-Büchi games, we also refer to one-way costs, where
repair may only add or only remove vertices from the set of accepting vertices.

The goal of the designer is to suggest a repair to the winning conditions with which the game has

2 A game may also involve incomplete information or stochastic transitions or strategies. The setting we consider
here is not stochastic and players have full observability on the other players actions.



an NE. One way to quantify the quality of a repair is its cost, and indeed the problem also gets as
input a bound on the budget that can be used in the repairs. Another way, which has to do with the
social welfare, considers the specifications that are satisfied in the obtained NE. Specifically, in the
rewarded specification-repair problem (RSR problem, for short), the input also includes a reward
function that maps subsets of specifications to rewards. When the suggested repair leads to an NE
with a set W of winners, the designer gets a reward that corresponds to the specifications of the
players in W . The quality of a solution then refers both to the budget it requires and to its reward. In
particular, a reward function may prioritize the players and give a reward only to one player. Then,
the question of finding an NE is similar to that of rational synthesis, where a winning strategy for
the system can take into an account the objectives of the players that constitute the environment [9].
Thus, a special case of our contribution is repair of specifications in rational synthesis.

In [4], Brenguier describes several examples in which concurrent games and their stability model
real-life scenarios. This includes peer-to-peer networks, wireless channel with a shared access,
shared file systems, and more. The examples there also demonstrate the practicality of specification
repair in these scenarios. We give an explicit example below.

I Example 1. Consider a file-sharing system serving two users. Each user requests a file from
the other user or from a repository. Accessing the repository takes longer than transmitting between
users, but the connection between the users can be used only in one direction at a time. If both users
request the file from each other, they each choose a bit, and the file is transmitted to one of them
according to the XOR of the bits. We model the interaction between the players as a reachability
game, depicted in Fig. 1.

α1

α2

α1

α2

(u, u)(u, r)

(r, u) (r, r)

(0, 0) (1, 1)

(1, 0)
(0, 1)

Figure 1 File sharing game. Initially, each player chooses to request either from the other user (action u)
or from the repository (action r). In case both players choose u, the XOR game is played. The objective of
Player i is to reach a vertex labeled αi, in which case the other player sends her the file.

Observe that the game has no NE. Indeed, if w.l.o.g Player 1 does not reach α1, then either
Player 2 chose u and Player 1 lost in the XOR game, in which case Player 1 can deviate by choosing
a different bit in the XOR, or Player 2 chose r, in which case Player 1 can deviate by playing u.

There are several ways to repair the game such that it has an NE. One is to break the symmetry
between the players and make the vertex reached by playing (u, r) accepting for both players, and
similarly for the vertex reached by playing (r, u). The cost involved in this repair corresponds to
the cost of communicating with the slower repository, and it is particularly useful when the reward
function gives a priority to one of the players. Another possibility is to make the vertex reachable by
playing (r, r) accepting for both players. Again, this involves a cost. J

Studying the SR and RSR problems, we distinguish between several classes, characterized by
the type of winning conditions, cost functions, and reward functions. From a complexity point of
view, we also distinguish between the case where the number of players is arbitrary and the one
where it is constant. Recall that the problem of deciding whether an NE exists with an arbitrary
number of players is NP-complete for reachability, co-Büchi, and parity games and can be solved
in polynomial time for Büchi games. It is not too hard to lift the NP lower bound to the SR and
RSR problems. The main challenge is the Büchi case, where one should find the cases where the



polynomial complexity of deciding whether an NE exists can be lifted to the SR and RSR problems,
and the cases where the need to find a repair shifts the complexity of the problem to NP. We show
that the polynomial complexity can be maintained for don’t-care costs, but the other settings are
NP-complete. Our lower bounds make use of the fact that the unilateral change of a strategy that
is examined in an NE can be linked to a change of the XOR of votes of all players, thus a single
player can control the target of such transitions in a concurrent game.3 We continue to study a setting
with an arbitrary number of players. We check whether fixing the number of players can reduce the
complexity of the SR and RSR problems, either by analyzing the complexity of the algorithms for
an arbitrary number of players, or by introducing new algorithms. We show that in many cases, we
can solve the problem in polynomial time, mainly thanks to the fact that it is possible to go over all
possible subsets of players in search for a subset that can win in an NE.

In the context of verification, researchers have studied also other types of repairs (c.f., [11]).
After focusing on the SR and RSR problems, we turn to study two other repair models. The first is
transition-repair, in which a repair amounts to redirecting some of the transitions in the game. As
with the SR problem, each redirection has a cost, and we seek repairs of minimal cost that would
guarantee the existence of an NE. The transition-repair model is suitable in settings where the actions
of the players do not induce a single successor state and we can choose between several alternatives.
The second model we consider is that of controlled-players, in which we are allowed to dictate a
strategy for some players. Also here, controlling players has a cost, and we want to minimize the
cost and still guarantee the existence of an NE. We study several classes of the two types, and show
that they are at least as difficult as specification repair.

Due to lack of space, most proofs can be found in the full version, in the authors’ home pages.

2 Preliminaries

2.1 Concurrent games

A concurrent game is a tuple G = 〈Ω, V, A, v0, δ, {αi}i∈Ω〉, where Ω is a set of k players; V is
a set of vertices; A is a set of actions, partitioned into sets Ai of actions for Player i, for i ∈ Ω;
v0 ∈ V is an initial vertex; δ : V × A1 × A2 × · · · × Ak → V is a transition function, mapping
a vertex and actions taken by the players to a successor vertex; and αi, for i ∈ Ω, specifies the
objective for Player i. We describe several types of objectives in the sequel. For v, v′ ∈ V and
a ∈ A1 ×A2 × · · · ×Ak with δ(v, a) = v′, we sometimes refer to 〈v, a, v′〉 as a transition in G.

A strategy for Player i is a function πi : (A1 × ... × Ak)∗ → Ai, which directs Player i which
action to take, given the history of the game so far. Note that the history is given by means of the
sequence of actions taken by all players so far.4

A profile is a tuple P = 〈π1, ..., πk〉 of strategies, one for each player. The profile P induces a
sequence a0, a1, . . . ∈ (A1 × ... × Ak)ω as follows: a0 = 〈π1(ε), ..., πk(ε)〉 and for every i > 0
we have ai = 〈π1(a0, ..., ai−1), ..., πk(a0, ..., ai−1)〉. For a profile P we define its outcome τ =
outcome(P ) ∈ V ω to be the path of vertices in G that is taken when all the players follow their
strategies in P . Formally, τ = v0, v1, ... starts in v0 and proceeds according to δ, thus vi+1 =
δ(vi, ai). The set of winners in P , denoted W (P ) ⊆ Ω, is the set of players whose objective is

3 We note that while the representation of our games is big, as the transition function specifies all vectors of actions,
our complexity results hold also for games with a succinct representation of the transition function, in particular
games with an arbitrary number of players in which only a constant number of players proceed in each vertex. The
complexity of finding NE in succinctly represented games was studied in [10]. Succinctly represented games were
studied in [16] the context of ATL model checking.

4 Note that strategies observe the history of actions, rather than the history of vertices. In Remark 2.1 we elaborate
on this aspect.



satisfied in outcome(P ). The set of losers in P , denote L(P ), is then Ω \W (P ), namely the set of
players whose objective is not satisfied in outcome(P ).

A profile P = 〈π1, ..., πk〉 is a Nash equilibrium (NE, for short) if, intuitively, no (single) player
can benefit from unilaterally changing her strategy. In the general setting, the outcome of P asso-
ciates a reward with each of the players, thus “benefiting” stands for increasing the reward. In our
setting here, the objective of Player i is binary – either αi is satisfied or not. Accordingly, “benefit-
ing” amounts to moving from the set of losers to the set of winners. Formally, for i ∈ Ω and some
strategy π′i for Player i, let P [i ← π′i] = 〈π1, . . . , πi−1, π

′
i, πi+1, ..., πk〉 be the profile in which

Player i deviates to the strategy π′i. We say that P is an NE if for every i ∈ Ω, if i ∈ L(P ), then for
every strategy π′i we have i ∈ L(P [i← π′i]).

We consider the following types of objectives. Let τ ∈ V ω be an infinite path.
In reachability games, αi ⊆ V , and τ satisfies αi if τ reaches αi.
In Büchi games, αi ⊆ V , and τ satisfies αi if τ visits αi infinitely often.
In co-Büchi games, αi ⊆ V , and τ satisfies αi if τ visits V \ αi only finitely often.
In parity games, αi : V → {1, ..., d}, for the index d of the game, and τ satisfies αi if the
maximal rank that is visited by τ infinitely often is even. Formally, let τ = v0, v1, ..., then τ
satisfies αi if max{j ∈ {1, ..., d} : αi(vl) = j for infinitely many l ≥ 0} is even.

Note that Büchi and co-Büchi games are special cases of parity games, with ranks {1, 2} and
{2, 3}, respectively. We sometimes refer to a winning condition αi ⊆ V also as a function αi : V →
{>,⊥}, with αi(v) = > iff v ∈ αi.

I Remark. Our definition of strategy is based on the history of actions played. This is different
from the setting in [4], where strategies are based on the history of visited vertices. Our setting
reflects the fact that players have full knowledge of the actions played by other players, and not
only the outcome of these actions. As we now demonstrate, our setting is different as it enables
the players to make use of this full knowledge to obtain an NE. In Section 2.4 we elaborate on the
algorithmic differences between the settings.

Consider the concurrent three-player Büchi game G = 〈Ω, V, A, v0, δ, {αi}i∈Ω〉, where Ω =
{1, 2, 3}, V = {v0, v1, a, b, c}, Ai = {0, 1} for i ∈ Ω, α1 = {a}, α2 = {b}, α3 = {c}, and the
transition function is as follows. In v0, if 1 and 2 play (0, 0), the game moves to c, and otherwise to
v1. In v1, Player 3 can choose to go to a or to b. The vertices a, b, and c are sinks.

There is an NE in G, whose outcome is the path v0, c
ω . That is, players 1 and 2 play (0, 0).

However, in order for this to be an NE profile, Player 3 needs to be able to “punish” either Player 1
or Player 2 if they deviate to v1. For that, Player 3 needs to know the action that leads to v1: if Player
1 deviates, then Player 3 chooses to proceed to b, and if Player 2 deviates, then Player 3 chooses to
proceed to a. If we consider strategies that refer to histories of vertices, then there is no NE in the
game. J

2.2 Partial games with costs and rewards

Let N∞ = N ∪ {∞}. A partial concurrent parity game G is a concurrent parity game in which
the winning conditions are replaced by a cost function that describes the cost of augmenting G with
different winning conditions. Formally, G = 〈Ω, V, A, v0, δ, cost〉, where the cost function cost :
V ×Ω×{1, ..., d} → N∞ states, for each vertex v ∈ V , player i ∈ Ω, and rank j ∈ {1, ..., d}, what
the cost of setting αi(v) to be j. We can think of a concrete game (one with fully specified winning
conditions αi, for i ∈ Ω) as a partial game in which the cost function is such that cost(v, i, j) = 0 if
αi(v) = j and cost(v, i, j) =∞ otherwise. Intuitively, leaving αi(v) as specified is free of charge,
and changing αi(v) is impossible, as it costs∞. Partial games enable us to model settings where a



designer can play with the definition of the winning conditions, subject to some cost function and a
given budget.

Consider a partial parity game G. A winning-condition assignment for G is f : V × Ω →
{1, ..., d}. The parity game induced by G and f , denoted Gf , has αi(v) = f(v, i), for all v ∈ V and
i ∈ Ω. The cost of f is cost(f) =

∑
i∈Ω

∑
v∈V cost(v, i, f(v, i)).

In the case of reachability, Büchi, and co-Büchi, the cost function is cost : V × Ω× {>,⊥} →
N∞, and the winning-condition assignment is of the form f : V × Ω→ {>,⊥}.

Consider a partial game G and a cost function cost. For every player i ∈ Ω and vertex v ∈ V ,
we define the set freecost(v, i) ⊆ {1, ..., d} as the set of ranks we can assign to αi(v) free of charge.
Formally, freecost(v, i) = {j : cost(v, i, j) = 0}. We consider the following two classes of cost
functions in parity games.

Uniform costs: For every i ∈ Ω and v ∈ V , we have |freecost(v, i)| = 1 and for every j /∈
freecost(v, i), we have cost(v, i, j) = 1. Thus, a partial game with a uniform cost function
corresponds to a concrete game in which we can modify the winning condition with a uniform
cost of 1 for each modification.
Don’t cares: For every i ∈ Ω, v ∈ V , and j ∈ {1, ..., d}, we have cost(v, i, j) ∈ {0,∞},
and |freecost(v, i)| ≥ 1. Thus, as in concrete games, we cannot modify the rank of vertices that
are not in freecost(v, i), but unlike concrete games, here freecost(v, i) need not be a singleton,
reflecting a situation with “don’t cares”, where a designer can choose among several possible
ranks free of charge.

For the special case of reachability, Büchi, and co-Büchi games, we also consider the following
classes.

Negative one-way costs: For every i ∈ Ω and v ∈ V , either cost(v, i,>) = 0 and cost(v, i,⊥) =
1, or cost(v, i,⊥) = 0 and cost(v, i,>) = ∞. Intuitively, we are allowed only to modify >
vertices to ⊥ ones, thus we are only allowed to make satisfaction harder by removing vertices
from αi.
Positive One-way costs: For every i ∈ Ω and v ∈ V , either cost(v, i,>) = 0 and cost(v, i,⊥) =
∞, or cost(v, i,⊥) = 0 and cost(v, i,>) = 1. Intuitively, we are allowed only to modify ⊥
vertices to > ones, thus we are only allowed to make satisfaction easier by adding vertices to αi.

Reward function Consider a game G. A reward function for G is ζ : 2Ω → N. Intuitively, if the
players follow a profile P of strategies, then the reward to the designer is ζ(W (P )). Thus, a designer
has an incentive to suggest to the players a stable profile of strategies that maximizes her reward. We
assume that ζ is monotone w.r.t. containment.

2.3 The specification-repair problem

Given a partial game G and a threshold p ∈ N, the specification-repair problem (SR problem, for
short) is to find a winning-condition assignment f such that cost(f) ≤ p and Gf has an NE. Thus,
we are willing to invest at most p in order to be able to suggest to the players a stable profile of
strategies.

In the rewarded specification-repair problem (RSR problem, for short) we are also given a reward
function ζ and a threshold q, and the goal is to find a winning-condition assignment f such that
cost(f) ≤ p and Gf has an NE with a winning set of players W for which ζ(W ) ≥ q.

I Remark. An alternative definition to the RSR problem would have required all NEs in Gf to have
a reward greater than q. This is similar to the cooperative vs. non-cooperative definitions of rational
synthesis [9, 14]. In the cooperative setting, which we follow here, we assume that the authority can
suggest a profile of strategies to the players, and if this profile is an NE, then they would follow it.



In the non-cooperative one, the authority cannot count on the players to follow its suggested profile
even if it is an NE. We find the cooperative setting more realistic, especially in the context of repairs,
which assumes rational cooperative agents (indeed, they are willing to apply a repair for a cost).
Moreover, all existing work in Algorithmic Game Theory follow the cooperative setting in games
that are similar to the ones we study.

Also, rather than including in the input to the RSR problem two thresholds, one could require
that ζ(W ) ≥ cost(f) or to compare ζ(W ) with cost(f) in some other way. Our results hold also
for such definitions. J

We distinguish between several classes of the SR and RSR problems, characterized by the type
of winning conditions, cost function, and reward function. From a complexity point of view, we
also distinguish between the case where the number of players is arbitrary and the one where it is
constant.

I Remark. Another complexity issue has to do with the size of the representation of the game.
Recall that, specifying G, we need to specify the transition δ(v, a) for every vertex v ∈ V and action
vector a ∈ A|Ω|. Thus, the description of G is exponential in the size of Ω. While this may make the
lower bounds more challenging, it may also makes polynomial upper bounds easy. In Remark 3.1
we argue that our complexity results hold also in a settings with a succinct representation of G. For
example, when G is c-concurrent for some c ≥ 1, meaning that in each vertex, only c players control
the vertex. That is, in each vertex only c players choose actions and determine the successor vertex.
Then, the size of δ is bounded by |V ×Ac|, for a constant c. J

2.4 Deciding the existence of an NE.

The problem of deciding the existence of an NE, which is strongly related to the SR problem was
studied in [4]. The model there subsumes our model. First, as discussed in Remark 2.1, our strategies
have full knowledge of actions, whereas the strategies in [4] only observe vertices. Second, the
transition function in [4] is nondeterministic, thus a vertex and a vector of actions are mapped to a
set of possible successors. We can efficiently convert a game in our model into an “equivalent” game
in the model of [4] (in the sense that the existence of a NE is preserved). Thus, algorithmic upper
bounds from [4] apply to our setting as well. Conversely, however, lower bounds from [4] do not
apply to our model, and indeed the lower bounds we show differ from those of [4].

Specifically, it is shown in [4, 3] that the problem of deciding whether a given game has an NE is
PNP
‖ -complete for parity objectives; that is, it can be solved in polynomial time with parallel queries

to an NP oracle. The problem is NP-complete for reachability and co-Büchi objectives, and can be
solved in polynomial time for Büchi games. We show that in our model, while the complexity of the
problem for reachability, Büchi, and co-Büchi objectives coincides with that of [4], the complexity
for parity objectives is NP-complete. In Section 3.1 we present Theorem 5, which entails an explicit
algorithm for deciding the existence of an NE in Büchi games. Our algorithm is significantly simpler
than the one in [4] as it considers a deterministic model.

Additionally, we emphasize that the main contribution of this work is the introduction of repairs,
and our choice of model is in part for its clarity. Indeed, repair can similarly be defined in the model
of [4], as partial observation is an orthogonal notion.

In the full version we prove the following theorem.

I Theorem 2. The problem of deciding whether a concurrent reachability, co-Büchi, or parity
game has an NE is NP-complete.

In particular, we note that the problem of verifying the existence of an NE can be solved in
polynomial time, using an appropriate witness. See the full version for details.



3 Solving the SR and RSR Problems

3.1 An Arbitrary Number of Players

In this section we consider the SR problem for an arbitrary number of players. Recall that the
problem of deciding whether an NE exists is NP-hard for reachability, co-Büchi, and parity games
and is in P for Büchi games. It is not too hard to lift the NP lower bound to the SR problem. The
main challenge is the Büchi case, where one should find the cases where the polynomial complexity
of deciding whether an NE exists can be lifted to the SR problem, and the cases where the need to
find a repair shifts the complexity of the problem to NP.

I Theorem 3. The SR problem for reachability, co-Büchi, and parity games with uniform, don’t
cares, positive one-way, or negative one-way costs is NP-complete.

Proof. Membership in NP is easy, as given a game G, a cost function cost, and a threshold p, we can
guess a winning-condition assignment f , and then proceed to nondeterministically check whether
there exists an NE in Gf as described in Section 2.4.

For the lower bound, we describe a reduction from the problem of deciding whether an NE exists
in a given co-Büchi or reachability game is NP-complete, proved to be NP-hard in Theorem 2.

Consider a game G, and let cost be the cost function induced naturally by it. That is, for every
v ∈ V and i ∈ Ω, we have cost(v, i, αi(v)) = 0, and the rest of the cost function is defined
to involve a positive cost and respect the definition of uniform, don’t cares, positive one-way, or
negative one-way cost function. With this cost function, the only assignment with cost 0 is such that
f(v, i) = αi(v) for every i ∈ Ω and v ∈ V . Thus, G has an NE iff there is a winning-condition
assignment f such that cost(f) ≤ 0 and Gf has an NE. J

We turn to Büchi games, where the goal is to find the cases where the polynomial complexity of
deciding the existence of an NE can be maintained. We start with the negative cases.

I Theorem 4. The SR problem for Büchi games with uniform, positive one-way, or negative one-
way costs is NP-complete.

Proof. Membership in NP is easy, as given a game G, a cost function cost, and a threshold p,
we can guess a winning-condition assignment f , and then check in polynomial time whether there
exists an NE in Gf [4]. For the lower bounds we describe reductions from SET-COVER, which is
well known to be NP-complete [12]. We bring its definition here for completeness. Consider a set
U = {1, . . . , n} of elements and a set S = {S1, ..., Sm} of subsets of U , thus Si ⊆ U for every
1 ≤ j ≤ m. A set-cover of size ` is {Sj1 , ..., Sj`

} ⊆ S such that for every i ∈ U there exists
1 ≤ l ≤ ` such that i ∈ Sjl

. The SET-COVER problem is to decide, given U, S, and `, whether
there exists a set-cover of size `. We assume w.l.o.g that ` < min{n,m}.

Uniform costs. Consider an input 〈U, S, `〉 for SET-COVER. We construct a partial concurrent
game G = 〈Ω, V, A, v0, δ, cost〉 such that there is a set cover of U of size ` iff there exists a winning-
condition assignment f with cost(f) ≤ ` such that Gf has an NE.

The players in G are Ω = U ∪ S. That is, there is one player, referred to as Player i, for every
i ∈ U , and one player, referred to as Player Sj , for every Sj ∈ S. The set of vertices in G is
V = U ∪ {〈Sj , i〉 : i ∈ Sj ∈ S} ∪ {vend}. The initial vertex is 1 ∈ U . We now describe the
transitions and actions (see Fig. 2).

At vertex i ∈ U , Player i alone has control, in the sense that only her action is taken into an
account in deciding the successor. Player i can choose to move to a vertex 〈Sj , i〉 for which i ∈ Sj .
At vertex 〈Sj , i〉, all players in U ∪ {Sj} have control on the choice of the successor vertex and can
choose either to stay at 〈Sj , i〉, or to proceed, either to vertex i + 1, if i < n, or to vend, if i = n.
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Figure 2 Reduction in the uniform costs setting in
Theorem 4. Here, 1 ∈ S2 ∩ S4 ∩ S9, and n ∈ S1 ∩ S9.
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Figure 3 Reduction of the negative one-way
costs setting in Theorem 4. Here, 1 ∈ S1 ∩ S2,
2 ∈ S3 and n ∈ S2 ∩ S3 ∩ Sm.

This choice is made as follows. The actions of the players are {0, 1}, and the transition depends on
the XOR of the actions. If the XOR is 0, then the game stays in 〈Sj , i〉 and if the XOR is 1, the game
proceeds to i+ 1 or to vend. Finally, vend has a self loop.

We now describe the cost function. Intuitively, we define cost so that the default for vend is to
be accepting for all players i ∈ U and rejecting for all players Sj ∈ S. Thus, cost(vend, i,>) = 0
for all i ∈ U and cost(vend, Sj ,⊥) = 0 for all Sj ∈ S. Also, for every Sj ∈ S and i ∈ Sj , we have
cost(〈Sj , i〉, Sj ,>) = 0 and cost(〈Sj , i〉, i,⊥) = 0. Thus, 〈Sj , i〉 is accepting for Player Sj and is
rejecting for Player i. All other costs are set to 1, as required by a uniform cost.

We claim that 〈U, S, `〉 ∈ SET-COVER iff G has a winning-condition assignment f with cost
at most ` such that Gf has an NE. In the full version we formally prove the correctness of the
reduction. Intuitively, every assignment f of cost at most ` must set f(vend, i) = > and f(v, i) = ⊥
for v 6= vend, for some i ∈ U . Thus, an NE must end in vend, as otherwise Player i uses the XOR
transitions in order to deviate to a strategy whose outcome reaches vend. Hence, an assignment must
set f(vend, Sj) = > for at most ` players Sj1 , ..., Sj`

, such that it is possible to get from 1 to vend
by going only through vertices 〈Sjk

, i〉 for 1 ≤ k ≤ `. These ` players induce a set cover. The other
direction is easy.

Positive one-way costs. In the correctness proof of the reduction above we show that in fact, the
only assignments that need to be considered are positive one-way. Thus, the same reduction, in fact
with a simpler correctness argument, can be used to show NP-hardness of the setting with positive
one-way costs.

Negative one-way costs. Finally, we consider the setting of negative one-way costs. Again, we
describe a reduction from SET-COVER. Consider an input 〈U, S, `〉 for SET-COVER. We construct
a partial two-player game G = 〈Ω, V, A, v0, δ, cost〉 such that there is a set cover of U of size ` iff
there exists a winning-condition assignment f with cost(f) ≤ ` such that Gf has an NE. The game
G is constructed as follows. The players are Ω = {1, 2}. The vertices are V = U ∪S∪{s0, s1, s2}∪
{v1, ..., v`+1}. The game starts in s0, where the actions for the players are {0, 1}. If the XOR of the
actions is 0, the game moves to vertex s1, where Player 1 chooses a vertex from v1, ..., v`+1, all of
which have self loops. We set cost(vi, 1,>) = 0 for 1 ≤ i ≤ `+ 1. Intuitively, if the game proceeds
to s1, then Player 1 can choose a winning vertex, and the play gets stuck there. If the XOR in s0 was
1, the game proceeds to vertex s2 from which player 2 chooses a vertex i ∈ U . In vertex i, player
1 chooses a vertex Sj such that i ∈ Sj . For every 1 ≤ j ≤ m, the vertex Sj has only a self loop.
We set cost(Sj , 2,>) = 0 for 1 ≤ j ≤ m. Intuitively, if the game proceeds to s2, then Player 2
“challenges” Player 1 with a value i ∈ U , and Player 1 has to respond with some set Sj such that
i ∈ Sj , and then the play gets stuck in Sj . See Fig. 3 for an illustration.

The rest of the cost function is set to give ⊥ cost 0, and is completed to be a negative one-way
cost. That is, we set cost(vj , 2,⊥) = 0 for every 1 ≤ j ≤ ` + 1, cost(Sj , 2,⊥) = 0 for every 1 ≤
j ≤ m, and cost(x, 1,⊥) = cost(x, 2,⊥) = 0 for x ∈ U ∪ {s0, s1, s2}. Finally, cost(v, i,⊥) = 1
if cost(v, i,>) = 0 and cost(v, i,>) = ∞ if cost(v, i,⊥) = 0, for every i ∈ {1, 2} and v ∈ V , as



per the definition of a negative one-way cost.
In the full version we formally prove the correctness of the reduction. Intuitively, every as-

signment f of cost at most ` must set f(vi, 1) = > for some 1 ≤ i ≤ ` + 1. Thus, Player 1 is
guaranteed to be able to deviate and win in any profile. In order to have an NE, we must be able to
set f(Sj , 2) = ⊥ for at most ` vertices Sj1 , ..., Sj`

, such that for every i ∈ U that Player 2 chooses,
there exists 1 ≤ k ≤ ` such that i ∈ Sjk

, and so there is a set-cover. The other direction is again,
easy. J

We now turn to consider the positive case, where the polynomial complexity of deciding whether
an NE exists can be lifted to the SR problem.

I Theorem 5. The SR problem for Büchi games and don’t-cares can be solved in polynomial time.

Proof. Consider a partial Büchi game G = 〈Ω, V, A, v0, δ, cost〉 with don’t-cares. For every i ∈ Ω,
the set of vertices V can be partitioned into three sets:
1. The set Fi = {v : cost(v, i,>) = 0 ∧ cost(v, i,⊥) =∞}, of accepting vertices.
2. The set Ri = {v : cost(v, i,⊥) = 0 ∧ cost(v, i,>) =∞}, of rejecting vertices.
3. The set DC i = {v : cost(v, i,⊥) = cost(v, i,>) = 0}, of don’t-care vertices.
The SR problem then amounts to deciding whether there is an assignment f :

⋃
i∈Ω DC i → {>,⊥}

such that Gf has an NE. Note the cost of every such assignment is 0.
For a set S ⊆ V , let WS ⊆ Ω be the set of potential winners in S: players that either have an

accepting or don’t-care vertex in S. Formally, WS = {i ∈ Ω : (Fi ∪ DC i) ∩ S 6= ∅}. The set of
losers in S is then LS = Ω \WS , thus i ∈ LS iff S ⊆ Ri.

We describe the intuition behind our algorithm. An outcome of a profile is an infinite path in
G, which gets stuck in a SCC S. We distinguish between the case S is an ergodic SCC – one that
has no outgoing edges to other SCCs in G, and the case S is not ergodic. Our algorithm tries to find
a witness ergodic SCC S: one for which there is an assignment f such that Gf has an NE whose
outcome gets stuck in S. When an ergodic SCC cannot serve as a witness, it is removed from G
along with transitions that guarantee the soundness of such a removal, and the search for a witness
ergodic SCC in the new game continues. When all SCCs are removed, the algorithm concludes that
no NE exists.

In order to examine whether an ergodic SCC S can serve as a witness, the algorithm checks
whether the players in WS can force the game to reach S. Once the game reaches S, every outcome
would not satisfy the objective of the players in LS . Moreover, consider the assignment f that sets,
for i ∈ WS , every vertex in DC i to >. The profile whose outcome visits all the vertices in S is an
NE in Gf . Checking whether the players WS can force the game to reach S is not straightforward,
as it should take into an account possible collaboration from players in LS that are doomed to lose
anyway and thus have no incentive to deviate from a strategy in which they collaborate with the
players in WS .

Formalizing this intuition involves the following definitions. Consider a player i ∈ Ω. We define
the game against i to be a two-player zero-sum concurrent game, where the players are Player i
and the coalition Ω \ {i}. The game is played on G, where the objective of player i is αi, and the
objective of Ω \ {i} is to prevent i from satisfying αi. The cage for player i is the set of vertices
Ci ⊆ V that consists of all vertices from which the coalition wins the game against i.

Deciding whether a vertex v is in Ci amounts to solving a two-player zero-sum concurrent game.
These games can be solved in polynomial time for reachability, Büchi, and co-Büchi objectives [8].

Next, consider a transition t = 〈v, a, v′〉 with v, v′ ∈ Ci, thus δ(v, a) = v′. We say that t is
doomed for Player i if Player i cannot alter her action in a and escape the cage Ci. We denote by
doomed(B) the set of transitions that are doomed for all players in B.



Problem � Game Büchi co-Büchi Reachability Parity
NE Existence P [3] P P [2] NP∩coNP

Uniform P NP-C P NP-C
Don’t care P P P NP∩coNP

Negative One-way NP-C –
Positive One-way P P P –

Table 1 Complexity results for the setting with a constant number of players.

For a game with don’t-cares, whenever we consider the game against i, we refer to the concrete
two-player games obtained from G with the assignment that assigns ⊥ to the vertices in DC i.

Our algorithm checks whether there is a path τ to S that traverses only transitions in doomed(LS).
If so, it concludes that G can be repaired to have an NE with the assignment f that is defined as fol-
lows. For every v ∈ V , for j ∈ LS , we have f(v, j) = ⊥ and, for j ∈ WS , we have f(v, j) = >.
Indeed, the profile whose outcome is τ followed by a path that visits all the vertices in S infinitely
often, and which punishes a player that deviates from her expected action in τ is an NE in Gf . J

I Remark. As discussed in Remark 2.3, our results stay valid when the games are c-concurrent
for a constant c ≥ 2. In particular, the running time of the algorithm described in Theorem 5 is
polynomial in the representation size of G. As for lower bounds, the second reduction described in
the proof of Theorem 4 generates a game with only two players. In addition, the first reduction there
can be slightly modified to capture 2-concurrent games. For that, we replace the vertices S×U in G
by a cycle of n vertices, where 〈Sj , i〉 is the first vertex in the cycle 〈Sj , i〉1, ..., 〈Sj , i〉n. The players
that control the l-th vertex, for 1 ≤ l ≤ n, are Sj and l. Both players have two possible actions
{0, 1}. If the XOR of their choices is 0, the game continues to (l+ 1) mod n, the next vertex in the
cycle, and if it is 1, then the game exits the cycle and proceeds to vertex i+1. Clearly, each player in
U ∪{Sj} can force the game to stay in the gadget or exit it assuming the other players fix a strategy.

3.2 A Constant Number of Players

In this section, we consider the SR problem for a constant number of players. The algorithms
presented in Section 3.1 can be clearly applied in this setting. For example, Theorem 5 implies
that the SR problem for Büchi games with don’t cares can be solved in polynomial time, and in
particular this holds when the number of players is fixed. For NP-complete problems, however,
the upper bounds in Section 3.1 only imply exponential time algorithms. In this section, we check
whether fixing the number of players can reduce the complexity, either by analyzing the complexity
of the algorithms from Section 3.1, or by introducing new algorithms.

The results are summarized in Table 1, and the proofs appear in the full version with the exception
of Theorem 6 below.

I Theorem 6. The SR problem for co-Büchi games with positive one-way costs and a constant
number of players can be solved in polynomial time.

Proof. We solve the problem by presenting a polynomial time algorithm for checking, given a game
G, a bound p ∈ N on the budget for the repair, and a setW ⊆ Ω, whether there is a positive one-way
assignment f with cost at most p, for which Gf has an NE profile P with W ⊆ W (P ). We then
iterate over all subsets W ⊆ Ω to obtain a polynomial time algorithm.

Under the definitions used in the proof of Theorem 5, letL = Ω\W , and let GW = G|doomed(L).
Consider a vertex v ∈ V that is reachable from v0 in GW . We look for an assignment f for which



there is a cycle that contains v and traverses only vertices in
⋂

i∈W αf
i . Such a cycle satisfies the

objectives of the players in W . In order to do so, we add weights to GW as follows. The weight of
an edge 〈u, u′〉 in GW is the repair budget that is needed in order to make u′ accepting for all players
in W . That is, 〈u, u′〉 gets the weight

∑
i∈W cost(u′, i,>). Then, we run Dijkstra’s shortest-path

algorithm from v to find the minimal-weight cycle that contains v. If the weight of the cycle is at
most p, we return “yes”. If there is no such cycle for every v ∈ V and W ⊆ Ω, we return “no”. We
then repeat this process for every W ⊆ Ω.

In the full version we analyze the runtime and prove the correctness of the algorithm. J

3.3 Solving the RSR problem

Recall that in the RSR problem we are given, in addition to G, cost, and p ∈ N, a reward function
ζ : 2Ω → N and a threshold q, and we need to decide whether we can repair G with cost at most p
in a way that the set of winners W in the obtained NE is such that ζ(W ) ≥ q. In the full version we
argue that the additional requirement about the reward maintains the complexity of the problem.

I Theorem 7. The complexity of the SR and RSR problems coincide for all classes of objectives
and cost functions, for both an arbitrary and a constant number of players.

4 Other Types of Repairs

So far, we studied repairs that modify the winning conditions of the players. Other types of repairs
can be considered. In this section, we examine two such types: transition repair, which modifies the
transitions of the game, and controlled-players repair, where we can control (that is, force a strategy)
on a subset of the players. The later is related to the Stackelberg model, which has been extensively
studied in economics and more recently in Algorithmic Game Theory [13, 20], and in which some
of the players are selfish whereas others are controllable.

4.1 Transition repair

In the transition repair model, we are allowed to redirect the transitions of a game. This is suitable in
cases where a system is composed of several concurrent components, and we have some control on
the flow of the entire composition. For example, consider a system in which several threads request
a lock and granting a lock to a certain thread is modeled by a transition. Redirecting this transition
can correspond to the lock being given to a different thread. Typically, not all repairs are possible,
which is going to be modeled by an∞ cost to impossible repairs. Finally, the games we study are
sometimes obtained from LTL specifications of the players. Repairs in the winning conditions then
have the flavor of switching between “until” and “weak-until” in the LTL specification. In this set-
ting, one may find transition-repair to be more appropriate. First, it enables more elaborate changes
in the specifications. Secondly, changes in the acceptance condition of the nondeterministic Bü-
chi automata for the specifications induce transition changes in their deterministic parity automata,
which compose the game.

In the full version we formalize this model, and define the transition-repair problem (TR prob-
lem, for short) similarly to the SR problem, with the goal being to find a cheap transition-repair that
guarantees the existence of an NE. We prove the following results.

I Theorem 8. The TR problem is NP-complete for the following cases:
A constant number of players, for all objectives.
Uniform costs with an arbitrary number of players, for all objectives.
Uniform costs with a constant number of players, and co-Büchi and parity objectives.



and can be solved in polynomial time for uniform costs with a constant number of players and Büchi
and reachability objectives. The TR problem with uniform costs can be solved in polynomial time
for Büchi and reachability objectives, and is NP complete

4.2 Controlled-players repair

The underlying assumption in game theory is that players are selfish and rational. In particular,
they would follow a suggested strategy only if it is in their interest. In the controlled-players repair
model, we assume that we can control some of the players and guarantee they would follow the
strategy we assign them. The other players cooperate only if the profile is an NE. Controlling a
player has a cost and our goal is to reach such a profile with a minimal cost. This model is a type of
Stackelberg model, where there is a leader player whose goal is to increase the social welfare. She
moves first, selects a fraction α of the players, and assigns strategies to them. The rest of the players
are selfish and choose strategies to maximize their revenue. Previous works in Algorithmic Game
Theory study how the parameter α affects the social welfare in an NE. Clearly, when α is high, the
social welfare increases.

Formally, given a game G = 〈Ω, V, A, v0, δ, {αi}i∈Ω〉 and a control cost function cost : Ω →
N∞, which maps each agent to the cost of controlling him, the controlled-player repair problem
(the CR problem, for short), is to find a set of players of minimal cost such that if we are allowed
to fully control these players, then the game has an NE. By controlling we mean that the players are
not allowed to deviate from their strategies in the suggested profile.

Controlled-players repair arises in settings where an unstable system can be stabilized by re-
stricting the environment, but this involves a cost. For example, controlling players is possible in
settings where players accept an outside payment. As another example, taken from [20], the players
are customers who can either pay a full price for using a system, and then their choices are unlim-
ited, or they can pay a “bargain” price, and then their choices are limited, and hence their quality
of service is not guaranteed. As a third example, consider a system that receives messages from the
environment. We may want to require that messages arrive chronologically, otherwise our system is
unstable. We can require this, but it involves a latency cost, and is effectively translated to asking
the message dispatching thread to work in a non-optimal way, which is not the best strategy for the
message dispatch server.

In the decision version of the problem, we are given a threshold p, and we need to determine if
there exists a set S ⊆ Ω such that cost(S) =

∑
i∈S cost(i) ≤ p and controlling the players in S

ensures the existence of an NE.
We start by studying the general case. In order to solve the CR problem, we observe that con-

trolling Player i can be modeled by setting αi to be the most permissive, thus for reachability, Büchi,
and co-Büchi objectives, we set αi = V , and for parity objectives αi(v) is the maximal even index.
Indeed, if there is an NE profile P in G in which we control Player i, then P is also an NE when we
set αi as in the above (without controlling player i). Clearly, Player i has no incentive to deviate.
Conversely, if there is an NE profile P after setting αi to be the most permissive, then the same
profile P is an NE in a game in which we control Player i and force it to play his strategy in P .

Theorem 9 below summarizes our results, and is proved in the full version.

I Theorem 9. The CR problem is NP-complete for reachability, co-Büchi, and parity objectives,
as well as for c-concurrent Büchi games, and is in P for general Büchi games, and for all objectives
with a constant number of players.

I Remark. In the future, we plan to investigate scheduling repairs, where a repair controls the
set of players that proceed in a vertex, as well as disabling repairs, in which some actions of some
players are disabled in some vertices.
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