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ABSTRACT

The knowledge within large language models (LLMs) may become outdated
quickly. While in-context editing (ICE) is currently the most effective method for
knowledge editing (KE), it is constrained by the black-box modeling of LLMs
and thus lacks interpretability. Our work aims to elucidate the superior perfor-
mance of ICE in KE by analyzing the impacts of in-context new knowledge on
token-wise distributions. We observe that despite a significant boost in logits of the
new knowledge, the performance of ICE is still hindered by stubborn knowledge.
Stubborn knowledge refers to facts that have gained excessive confidence during
pretraining, making them hard to edit effectively. To address this issue and further
enhance the performance of ICE, we propose a novel approach termed Decoding by
Contrasting Knowledge (DeCK). DeCK derives the distribution of the next token
by contrasting the logits obtained from the newly edited knowledge guided by ICE
with those from the unedited parametric knowledge. Our experiments consistently
demonstrate that DeCK enhances the confidence of LLMs in edited facts. For
instance, it improves the performance of LLAMA3-8B-INSTRUCT on MQUAKE
by up to 219%, demonstrating its capability to strengthen ICE in the editing of
stubborn knowledge. DeCK can be easily integrated into any ICE method as a
decoding component to enhance editing capabilities. Our work paves the way to
develop both effective and accountable KE methods for LLMs.

1 INTRODUCTION

With the widespread deployment of large language models (LLMs) (OpenAI, 2022; 2023; Touvron
et al., 2023a;b; Song et al., 2024), there is a rising demand for accessing accurate information through
LLMs. However, despite the extensive knowledge stored in LLMs, this information can become
outdated due to changes in the real world. This can potentially result in factual inaccuracies (Chen &
Shu, 2023) or false information (Zhang et al., 2023b; Huang et al., 2023a).

Unlike the high computational resource burden incurred by retraining from scratch, knowledge editing
(KE) (Sinitsin et al., 2020; De Cao et al., 2021; Zhu et al., 2020; Mitchell et al., 2022; Yao et al.,
2023) has been proposed as an efficient means to update the knowledge of LLMs. They aim to edit
knowledge by incrementally injecting or modifying facts.

As LLMs demonstrate increasingly powerful in-context learning capabilities, recent research (Madaan
et al., 2022; Zhong et al., 2023; Zheng et al., 2023; Cohen et al., 2024; Wang et al., 2024; Bi et al.,
2024b;c) has delved into easier and efficient methods for in-context editing (ICE), aiming to directly
guide frozen LLMs in generating text with new knowledge through contextual prompts. Figure 1 (left)
illustrates an example of successful editing using ICE. These ICE methods showcasing state-of-the-art
performance without the need to alter internal model parameters, indicate the promising potential of
modeling LLMs as black boxes for ICE guided by external contexts.

However, as illustrated in Figure 1 (middle), there still exist deeply entrenched pieces of knowledge
in LLMs that are difficult for ICE to modify, which we refer to as stubborn knowledge. We argue
that LLMs, through extensive pre-training, have developed strong confidence in certain facts, making
them difficult to alter solely through external contextual prompts (Bi et al., 2024a). Therefore,
despite the fact that the sophisticated methods such as enhancing retrieval (Shi et al., 2024), checking
conflict (Zhong et al., 2023), and guiding reasoning (Wang et al., 2024) can enhance the overall
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The CEO of Tesla is Elon 
Musk. Elon Musk is a citizen 
of the United States. So the 
answer is United States.

What is the country of 
citizenship of Tesla's CEO?

The CEO of Tesla is Jack Ma.
Jack Ma is a citizen of China. 
So the answer is China.

What is the country of 
citizenship of Tesla's CEO?
Assume Tesla’s CEO is Jack Ma.

ICE of Easy Knowledge ICE of Stubborn Knowledge

The creator of WWE Velocity is 
Vince McMahon. His spouse, Linda 
McMahon, was born in the United 
States. So the answer is the 
United States.

In which country was the spouse of 
the creator of WWE Velocity born?

The creator of WWE Velocity is 
Vince McMahon, not Hoshino 
Gen. His spouse, Linda McMahon, 
was born in the United States. So 
the answer is the United States.

In which country… was born? 
Assume the creator of WWE is 
Hoshino Gen.

DeCK of Stubborn Knowledge

The creator of WWE Velocity is 
Hoshino Gen. His spouse, Yui
Aragaki, was born in Japan. So 
the answer is Japan.

In which country was the spouse of 
the creator of WWE Velocity born?

In which country… was born? 
Assume the creator of WWE is 
Hoshino Gen.

The creator of WWE Velocity is 
Vince McMahon. His spouse, Linda 
McMahon, was born in the United 
States. So the answer is the 
United States.

Figure 1: Comparison between in-context editing (ICE) and our DeCK. DeCK successfully edits the
stubborn knowledge, whereas ICE handles only simple knowledge and fails with complex cases.

performance of ICE, relying on these external methods still cannot genuinely improve the foundational
capability for editing individual stubborn knowledge.

In this work, we focus on enhancing the state-of-the-art KE method, ICE, to reduce the negative
impacts from the stubborn knowledge in LLMs. First, we observe the impact of the in-context new
knowledge in ICE on LLMs from the perspective of LLMs’ token-level distributions. We find that
incorporating this new knowledge significantly increases the predicted probability of generating
edited facts during the decoding process. A deeper exploration of the failed cases reveals the reasons
why stubborn knowledge is difficult to edit. Despite the significant improvement in the logits of
new knowledge achieved by ICE, there persists a small gap between new knowledge and parametric
knowledge, where parametric knowledge refers to the original unedited knowledge in LLMs.

Building upon the insights gained from above observations, we introduce a new decoding technique
called Decoding by Contrasting Knowledge (DeCK) to enhance LLMs’ confidence in edited facts for
better editing of stubborn knowledge. DeCK consists of two components: (1) an editing enhancement
module that improves attention to new knowledge, thus preventing it from being filtered out during
contrastive decoding, and (2) a contrastive decoding strategy that compares the logical distributions
after in-context editing with the original parametric logical distributions to predict the next token.

Overall, our contributions can be summarized by three points. First, as far as we know, we are the
first to elucidate superior performance of ICE on the KE from a model interpretability perspective.
Second, we find that stubborn knowledge significantly impacts the performance of ICE, and we
propose DeCK to boost confidence in editing facts, enhancing ICE to overcome it. Third, extensive
experiments on MQUAKE indicate that our DeCK can effectively enhance the performance of ICE
without altering the internal model or modifying external prompts. DeCK can be easily integrated
into any ICE method as a decoding component to enhance editing capabilities. Our work paves the
way to develop the both effective and accountable KE methods for LLMs.

2 BACKGROUND

Decoding in LLMs. The current objective of LLMs decoding is to predict the subsequent words
within a given context sequence. Formally, given a sequence of tokens X = {x1, x2, ..., xt−1}, the
next token probability distribution is computed conditioned on the previous context:

IP(xt|x<t) =
exp(h⊤

t Wxt/τ)∑
j∈V exp(h⊤

t Wj/τ)
(1)

where τ represents a temperature parameter regulating the precision of the subsequent-token distribu-
tion. In text generation, the language model samples from the conditional distribution IP(xt|x<t) to
generate the next token xt, continuing this process until an end-of-sequence token is produced.

Knowledge Editing. KE aims to transform the behavior of the original model fbase into post-
edit model fe. Given an edit descriptor ze = (xe, re, ye), where (xe, re, ye) represents a triplet
such as (US, President, Joe Biden) meaning Joe Biden is the president of US. KE ensures that
fe(xe, re) = ye while fbase(xe, re) ̸= ye. A thorough edit not only modifies the corresponding
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Knowledge before ICE Knowledge after ICE

Figure 2: The changes of new knowledge and parametric knowledge before and after editing. We
capture the first tokens of outputs to represent the corresponding knowledge and then record their
original logits along with their ranks within the entire vocabulary.

knowledge but also all the knowledge within the multi-hop relations that are impacted by this edit.
For example, consider a two-hop question like "Who is married to the British Prime Minister?"
The original answer would be "Carrie Johnson" and the associated knowledge could be represented:
(UK, Prime Minister, Boris Johnson), (Boris Johnson, spouse, Carrie Johnson). With an edit ze =
(UK,Prime Minister,Rishi Sunak) and existing knowledge (Rishi Sunak, spouse,Akshata Murthy),
fe should produce the updated response: "Akshata Murthy".

3 DEEP INSIGHTS INTO ICE THROUGH DECODING PERSPECTIVES

With ϕ(·) replacing the affine layer to predict the probability of the next token over the vocabulary
set V , we can obtain a simplified representation of Equation equation 1. Given a sequence of tokens
XE = {x(E)

1 , x
(E)
2 , ..., x

(E)
m−1}, which includes guidance from an editing prompt, such as "Assume

Tesla’s CEO is Jack Ma", we compute the probability of next token x
(E)
m with editing guidance as

follows:

IPE(x(E)
m |x(E)

<m) = softmax(ϕ(h(E)
m )), x(E)

m ∈ V (2)

We can also represent the parametric probability distribution IPB(x
(B)
n |x(B)

<n ) by considering only
the token sequence XB containing the original question prompt without any editing content. The
distribution IPE(x

(E)
m |x(E)

<m) also reflects the feedback from the introduction of external knowledge,
while IPB(x

(B)
n |x(B)

<n ) solely represents the response of LLMs based on their parametric knowledge
to the question.

3.1 HOW ICE CAN EFFECTIVELY EDIT KNOWLEDGE IN LLMS?

Although the ICE methods on LLMs (Zhong et al., 2023; Cohen et al., 2024; Wang et al., 2024) have
demonstrated promising performance, they all rely on the black-box modeling of LLMs for editing,
and the internal mechanisms behind their effectiveness remain unclear. In this subsection, we delve
into the intrinsic reasons behind the superior performance of ICE on KE.

We designed dedicated experiments to capture the logits output of knowledge that would be influenced
by the edit. A striking observation in Figure 2 is that the introduction of new knowledge through
ICE leads to a significant rightward shift in the probability distribution of the new knowledge, while
the logits for parametric knowledge remain largely unchanged or decrease to some extent. This
suggests that ICE significantly enhances the logits of new knowledge while having minimal impact
on parametric knowledge. Additionally, the number of top-ranked positions for new knowledge
significantly increases after ICE, with the majority surpassing that of parametric knowledge. This
indicates that the in-context new knowledge can improve the confidence of LLMs in editing facts,
thereby prompting responses with the edited answers.
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Succ-
essful
Edit

parametric new

Knowledge Answer Parametric Change

logits rank

Input

question edit

Egnlish ItalianWhat‘s the official language in scr-
een International's home country?

The official language of 
United Kingdom is Italian 20.219 → 19.875 10.461 → 20.179 25 → 11 → 2

United 
States BulgariaMarc Cherry is a citizen of 

Bulgaria 16.641 → 12.211 5.586 → 18.500 186 → 11 → 4

Failed
Edit

Europe AustriliaWhich continent does Blur's origin 
lie in?

London is located in the 
continent of Australia. 27.391 → 22.730 13.734 → 18.094 12 → 31 → 1

French EnglishThe official language of 
France is English 19.266 → 17.578 12.211→ 17.062 4 → 21 → 1

logits rank

New ChangeCase
Type

Which country is the creator of "
Devious Maids" a citizen of?

What is the official language of the 
country of Marcellin Champagnat?

Figure 3: Edit cases with changes in the first token for both parametric and new knowledge. We
obtained the case results by conducting ICE in the LLAMA2-7B-CHAT model. ‘→’ indicates the
knowledge change after incorporating editing prompts. ‘logits’ and ‘rank’ pertain to the first token of
knowledge answer, reflecting the confidence of LLMs in the corresponding knowledge.

3.2 INHERENT CHALLENGES OF STUBBORN KNOWLEDGE

While ICE has significantly boosted the confidence of LLMs in new knowledge, we find that there
are still instances where certain new knowledge ranks prominently but not as the top-1, as illustrated
in Figure 2. We term this phenomenon "stubborn knowledge", which refers to cases where editing
fails due to either an excessive confidence in existing parametric knowledge or insufficient confidence
in new knowledge. The edit cases in Figure 3 deeply reveals the failed pattern for ICE in addressing
stubborn knowledge, which happens when there is still an extremely small gap compared to the
parametric knowledge after editing, despite the significant increase in new knowledge logits induced
by the editing prompt. Taking the last case as an example, after editing, the new knowledge "English"
lags behind the parametric knowledge "French" by only 0.516 in terms of logical distribution,
illustrating how a minor gap leads to editing failure. This indicates the intrinsic reasons for the failure
of black-box ICE methods to edit stubborn knowledge in LLMs in most cases.

4 DECK: ENHANCING LLMS’ CONFIDENCE ON EDITED FACTS

Inspired by the observations in Section 3, we design our novel decoding strategy DeCK to enhance
ICE in overcoming stubborn knowledge. Figure 4 illustrates the process of using DeCK to handle
the stubborn knowledge case shown in Figure 1 (right). DeCK can be formalized as follows. Using
IP(xt) to represent IP(xt|x<t) for notational brevity, we compute the probability of the next token by,

IPE
Enh(x

(E)
m ) = Enh(IPE(x(E)

m )) (3)

ÎP
E

Enh(x
(E)
m ) = softmax

(
F
(

IPE
Enh(x

(E)
m ), IPB(x(B)

n )
))

(4)

Here, the function Enh(·) in Equation 3 is improve the attention to edit facts, as detailed in Section
4.1. The operator F(·, ·) in Equation 4 is used to contrast between the output distributions from
enhanced new knowledge and parametric knowledge, as explained in Section 4.2.

4.1 EDITING SIGNAL ENHANCEMENT

To enhance the confidence of LLMs in edited knowledge, we design an editing enhancement function
that minimizes the Knowledge Enhancement Divergence (KED) between the enhanced distribution
and a target distribution. Assume that P̃ and Q are discrete probability distributions over a finite
vocabulary V , and that the weights wi are non-negative and sum to 1.

Definition 4.1 (Knowledge Enhancement Divergence). Let P̃ (x
(E)
m ) be the enhanced probability

distribution of the next token x
(E)
m after incorporating edited knowledge, and let Q be the target

distribution that assigns higher probabilities to tokens related to the edited knowledge. The KED

4
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Which country is the spouse of the 
creator of WWE Velocity was 
born?

Input Question:

Assume the creator of 
WWE is Hoshino Gen.

Adding New Knowledge:

In-Context 
Editing

Initial ICE distribution 

Parametric knowledge: LindaMcMahon
New knowledge: Hoshino Gen

COT

Vin
ce
Ry
ohe
i
Go

Ho
shi
no

Ke
ita

Original distribution 

Vin
ce
Ry
ohe
i
Go

Ho
shi
no

Ke
ita

Enhanced distribution

Vin
ce
Ry
ohe
i
Go

Ho
shi
no

Ke
ita

The creator of WWE is      ._

Enhance
Editing

Contrast

DeCK distribution

Lin
da

Ry
ohe
i
Yu
i

Ho
shi
no

Ke
ita

The creator of WWE Velocity is 
Vince McMahon. His spouse, Linda
McMahon, was born in United States.

DeCK output:

The creator of WWE Velocity is Hoshino Gen. 
His spouse, Yui Aragaki, was born in Japan.

Original
output

Figure 4: Illustration of DeCK enhancing ICE to edit the stubborn knowledge. During decoding,
DeCK contrasts the enhanced ICE distribution with the original distribution to highlight new knowl-
edge, inducing LLMs to generate edited facts using chain-of-though (CoT) (Wei et al., 2022) during
the reasoning process for answering input questions.

between P̃ (x
(E)
m ) and Q is defined as:

KED(P̃ ||Q) =
1

2

n∑
i=1

wi

(
P̃ (vi) log

P̃ (vi)

M(vi)
+Q(vi) log

Q(vi)

M(vi)

)
(5)

where M = 1
2 (P̃ +Q) is the average distribution, and wi = s(vi, E) is the weight assigned to the

i-th token based on its semantic relevance score.

We introduce a semantic relevance function s : V ×E → R that measures the relevance of a token
vi ∈ V to the edited knowledge represented by E, defined as:

s(vi, E) = max
ej∈E

sim(vi, ej) · ϕ(vi)

where sim(·, ·) is a similarity function, such as cosine similarity, that measures the semantic similarity
between two token embeddings, and ϕ : V → R is a frequency-based weighting function:

ϕ(vi) = log(freq(vi) + ϵ) · α

Here, freq : V → N denotes the frequency of a token in the edited descriptor E, ϵ > 0 is a
small constant to avoid taking the logarithm of zero, and α is a scaling factor. We also define an
enhancement function Enh : Rn × Rn → Rn that takes the original logits ϕ(h(E)

m ) ∈ Rn and the
semantic relevance scores s ∈ Rn as inputs and produces the enhanced logits ϕ̃(h(E)

m ) ∈ Rn:

Enh(ϕ(h(E)
m ), s) = α · ϕ(h(E)

m ) + β · s

where α, β ∈ R are scaling coefficients that control the balance between the original logits and the
semantic relevance scores. Hence, the target distribution Q over the vocabulary V is constructed to
assign higher probabilities to the tokens related to the edited knowledge:

Q(vi) =

{
1
m if vi ∈ E

ϵ otherwise

where ϵ > 0 is a small constant to ensure a valid probability distribution.

4.2 DECODING BY CONTRASTING KNOWLEDGE

The idea of Decoding by Contrasting Knowledge is to highlight the output probability increment of
new knowledge by contrasting it with the parametric knowledge from the inherent knowledge of the
LLMs. Given the ICE probability distribution IPE

Enh(x
(E)
m ) after editing enhancement in Section 4.1

and the original parametric probability distribution IPB(x
(B)
n ), we aim to amplify the outputs of new

knowledge during the generation process while downplaying the outputs of paprametric knowledge.

5
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Model Method MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

LLAMA2- ROME (Meng et al., 2022a) 18.2 19.1 15.7

7B-CHAT
IKE (Zheng et al., 2023) 85.4 85.1 88.9
IKE w/ DeCK (ours) 91.3 89.4 98.6

LLAMA2- ROME (Meng et al., 2022a) 39.4 39.7 35.2

13B-CHAT
IKE (Zheng et al., 2023) 63.8 64.1 55.2
IKE w/ DeCK (ours) 84.6 84.4 89.7

LLAMA3- ROME (Meng et al., 2022a) 14.5 15.9 12.7

8B-INSTRUCT
IKE (Zheng et al., 2023) 31.6 32.5 14.3
IKE w/ DeCK (ours) 54.7 55.9 45.7

MISTRAL- ROME (Meng et al., 2022a) 28.1 30.2 26.3

7B-INSTRUCT
IKE (Zheng et al., 2023) 34.1 35.6 15.6
IKE w/ DeCK (ours) 46.7 48.5 19.2

Table 1: Experimental results (accuracy; %) across various models and datasets. We set the batch
size of the edit memory to 1 to evaluate the foundational capability of directly editing knowledge.
The best editing result on every LLM is highlighted in bold font.
Following the Contrastive Decoding approach proposed by Li et al. (2023). We subtract the original
log probabilities of parametric outputs guided by knowledge question alone from those of the outputs
guided by ICE with the in-context new knowledge. Then, we use this resulting distribution as the
next-word prediction for the generation guided by editing prompts. Therefore, the operator F(·, ·) in
Equation 4 can be expanded as follows:

F(IPE
Enh(x

(E)
m ), IPB(x(B)

n )) =

log
IPE

Enh(x
(E)
m )

IPB(x
(B)
n )

, if x(E)
m ∈ Vhead (x

(E)
m |x(E)

<m),

−∞, otherwise.
(6)

The contrasting coefficient γ is also introduced to adjust the proportion of the subtraction:
log IPE

Enh(x
(E)
m ) − γ log IPB(x

(B)
n ). And the subset Vhead (x

(E)
m |x(E)

<m) ∈ V is defined as whether
or not the token has high enough probabilities from the editing output,

Vhead(x
(E)
m |x(E)

<m) =
{
x(E)
m ∈ V : IPE

Enh(x
(E)
m ) ≥ λmax

w
IPE

Enh(w)
}
. (7)

As adaptive plausibility constraint (APC) strategy proposed in Li et al. (2023), we use Vhead to filter
out tokens with low probabilities in IPE

Enh(x
(E)
m ) and considering only high-score tokens. Without APC,

some extremely low-probability tokens could be excessively amplified by the softmax function after
subtraction, leading to the generation of implausible words and severely impacting the performance
of contrastive decoding. Specifically, the Editing Signal Enhancement module in Section 4.1 cleverly
avoids being filtered out in Equation 7 by enhancing the new knowledge signal before contrastive
processing, ensuring that DeCK can function effectively.

The key to our contrastive decoding approach is the simultaneous maintenance of two token sequences’
generation, which differs from previous methods (Li et al., 2023; Chuang et al., 2023; Zhang et al.,
2023a). In iterative decoding, we predict the next token based on ÎP

E

Enh(x
(E)
m ) in Equation 4. Then,

a key step involves simultaneously concatenating the new token to two separate token sequences
XE and XB , which may have different lengths. This ensures that updates to both sequences are
synchronized, preventing any implausible discrepancies in the log distribution during iteration.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We conduct extensive experiments using the MQUAKE-3K dataset (Zhong et al., 2023)
and its derivatives, MQUAKE-2002 and MQUAKE-HARD, proposed by Wang et al. (2024).

6
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Model Method MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

IKE (Zheng et al., 2023) 20.7 20.6 2.3
LLAMA2- IKE w/ DeCK (ours) 22.4 20.4 3.8

7B-CHAT MeLLo (Zhong et al., 2023) 32.6 40.8 5.1
MeLLo w/ DeCK (ours) 43.1 45.8 5.8

IKE (Zheng et al., 2023) 19.4 18.8 2.7
LLAMA2- IKE w/ DeCK (ours) 20.6 18.4 3.5

13B-CHAT MeLLo (Zhong et al., 2023) 33.4 35.9 3.9
MeLLo w/ DeCK (ours) 36.8 38.2 6.2

Table 2: Experimental results (accuracy; %) using LLAMA2-CHAT models. We conduct the
experiments with the full batch size edit memory to evaluate the performance of memory based KE.

MQUAKE provides multi-hop knowledge questions containing extensively edited facts, which are
used to evaluate KE on counterfactual edits. Additionally, we constructed corresponding STUBBORN
datasets in 5.3 to further evaluate the effectiveness of editing stubborn knowledge.

Models and Baselines Our experiments examine three types of LLAMA-CHAT models (2-7b, 2-
13b, 3-8b) (Touvron et al., 2023b) and also MISTRAL-7B-INSTRUCT (Jiang et al., 2023). We employ
the state-of-art in-context editing methods IKE (Cohen et al., 2024) and MeLLo (Zhong et al., 2023),
alongside advanced model-editing techniques ROME (Meng et al., 2022a) as baseline approaches on
the aforementioned open-source models. IKE prompts LLMs to edit given knowledge by providing
contextual demonstrations. MeLLo edits multi-hop knowledge by decomposing sub-questions,
prompting LLMs to generate answers, and retrieving contradictions from the edit memory.

Implementation Details We implement IKE with multi-hop question-answering demonstrations
and chain-of-thought (COT) (Wei et al., 2022; Li et al., 2024) prompting to enhance its in-context
editing performance. Our decoding strategy DeCK is inherently deployed onto IKE and MeLLo to
validate their enhancements without any additional adjustments. It simply requires providing the
relevant factual guiding context before generating the edited answers. The model editing methods
ROME in our baselines are deployed using EasyEdit (Wang et al., 2023). We set adaptive plausibility
constraint λ to 0.01 and contrasting coefficient γ to 0.2 for our DeCK.

5.2 MAIN RESULTS

We evaluate the foundational capability of KE methods in directly editing explicit new knowledge
by considering multi-hop questions containing 1,000 instances and setting the batch size of the edit
memory to 1. The batch size means the number of instances providing the edited facts for knowledge
retrieval. Table 1 displays the performance of different baselines and the enhanced in-context editing
through our DeCK across various models and datasets. As with previous work, ICE methods exhibit
superior performance in multi-hop KE tasks compared to model-editing methods ROME. Overall,
IKE enhanced by our DeCK (IKE w/ DeCK) consistently exhibits the best performance, indicating
that the DeCK can reliably improves the foundational KE capabilities of ICE for LLMs. Specifically,
as the model parameters increase, LLMs tend to retain more stubborn knowledge, resulting in a
decrease in the accuracy of ICE. For instance, the average accuracy of LLAMA2-13B-CHAT is 61%,
whereas that of LLAMA2-7B-CHAT is 86%. Additionally, although the parameters of llama3 are
not extensive, its more refined pretraining and instruct tuning also may instill greater confidence in
its acquired knowledge, resulting in poor performance in ICE. However, to our great surprise, our
DeCK has significantly enhanced ICE’s editing of these stubborn knowledge. Notably, on the HARD
dataset, DeCK has increased ICE’s editing success rate in LLAMA2-13B-CHAT by an impressive
63% and in LLAMA3-8B-INSTRUCT by an amazing 219%.

In-context editing methods typically require retrieving edit demonstrations from the edit memory and
then editing LLMs with the retrieved knowledge. Therefore, we follow the setup of previous work
(Zheng et al., 2023; Zhong et al., 2023; Madaan et al., 2022) to conduct experiments for ICE methods
with the full batch size edit memory. As shown in Table 2, the experimental results illustrate that
DeCK enhances ICE methods to varying degrees in full batch experiments. The IKE methods does not

7
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ICE w/ DeCK ICE w/o DeCK

Figure 5: Probability statistics of new Knowledge for LLAMA2-7B-CHAT on stubborn datasets.
The probabilities are derived from softmax calculations.

exhibit consistent improvement in this regard, potentially constrained by its inherent editing accuracy.
We ingeniously integrate our DeCK into MeLLo, aiding MeLLo in generating crucial edited answers
during the reasoning process. We find that leveraging the foundational editing capabilities provided
by DeCK consistently improves MeLLo’s performance across all experiments. This indicates that
our DeCK holds significant potential for real-world KE applications.

Original Rank 2 3-5 6-10 11-20 21-50 51-100

LLAMA2-7B-CHAT 1.6(↑ 0.4) 2.7(↑ 0.9) 4.3(↑ 3.6) 4.6(↑ 8.2) 4.8(↑ 24.3) 6.1(↑ 61.3)

LLAMA2-13B-CHAT 1.4(↑ 0.6) 1.9(↑ 1.9) 2.2(↑ 4.9) 2.8(↑ 13.4) 4.1(↑ 34.1) 5.4(↑ 72.7)

Table 3: Improvement of new knowledge ranking by DeCK on MQUAKE-3K. Here, ‘original rank’
refers to the ranking of new knowledge after the original IKE w/o DeCK. The table shows the average
ranking of new knowledge and the improvement after integrating DeCK.

5.3 METAMORPHOSIS OF STUBBORN KNOWLEDGE

To further explore the reasons behind the significant improvement brought by DeCK to ICE, we
conduct a statistical analysis of the ranking changes. Specifically, we sample the new knowledge
with probability rankings between top 2-100 after the original ICE method, and examine the changes
in their ranks after integrating DeCK. The results in Table 3 demonstrate that our DeCK effectively
improves the ranking of new knowledge that failed to be edited by ICE, leading to a metamorphosis
of stubborn knowledge.

Model STUBBORN ROME IKE IKE w/ DeCK (ours)
LLAMA2- > 33% 17.7 56.4 72.3
7B-CHAT > 67% 19.3 37.8 55.9
LLAMA2- > 33% 42.5 38.9 70.1
13B-CHAT > 67% 40.2 29.4 48.5

Table 4: Performance of LLAMA2-7B-CHAT and LLAMA2-13B-CHAT on their respective STUB-
BORN datasets. ‘STUBBORN > 67%’ indicates instances from the MQUAKE-3K dataset where IKE
failed to edit knowledge more than 67% of the time. ‘STUBBORN > 33%’ follows the same criterion.
We constructed corresponding STUBBORN datasets for different models to specifically evaluate ICE’s
performance on stubborn knowledge. The stubborn datasets are categorized into different difficulty
levels based on the proportion of correct answers when using ICE methods to edit the same knowledge
multiple times with different knowledge questions. The experimental results on the STUBBORN
datasets are presented in Table 4. We found that IKE’s performance on STUBBORN significantly
declined compared to other datasets, as shown in Table 1, and even fell below that of the model
editing method ROME on LLAMA2-13B-CHAT. Our DeCK consistently brings about a dramatic
improvement for IKE, with enhancements of up to 80% on LLAMA2-13B-CHAT, ensuring that IKE
w/ DeCK maintains the highest performance. This suggests that DeCK brings about improvements
by enhancing ICE methods’ ability to edit stubborn knowledge.

Figure 5 reveals the underlying reasons why DeCK can effectively edit stubborn knowledge. ICE w/
DeCK has a higher distribution in the high-probability range, while ICE w/o DeCK is concentrated
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in the low-probability range. This further indicates that DeCK boosts the confidence of LLMs in
low-confidence new knowledge, making them more likely to accept the edited facts.

5.4 ABLATION STUDY

We conduct ablation experiments on the key components of our DeCK. Table 5 shows how the
contrasting coefficient introduced in Equation 6 affects DeCK’s performance. DeCK is highly
sensitive to the contrasting coefficient. If γ is too large, it can excessively amplify unreasonable
token probabilities, significantly reducing DeCK’s performance, even below that of the original ICE.
Table 6 demonstrates that the editing signal enhancement introduced in Section 4.1 can consistently
enhance DeCK’s performance. This is because it ensures that the enhanced edited knowledge is not
filtered out by Equation 7.

Scale γ = 0.1 γ = 0.2 γ = 0.5

-7B 88.7 91.3 80.2
-13B 76.1 84.6 48.5

Table 5: Ablation results on MQUAKE-3K
with LLAMA2-CHAT models.

DeCK MQUAKE-3K MQUAKE-2002

w/o Enh 89.1 87.3
w/ Enh 91.3 89.4

Table 6: Ablation results of the editing signal enhance-
ment component on the LLAMA2-7B-CHAT model.

6 RELATED WORK

Hallucinations and Misinformation Hallucination (Kang et al., 2024) is one of the main source of
LLM-generated misinformation. In general, there are two lines of works on hallucination mitigation.
In training stage, Hu et al. (2023); Pan et al. (2024) has investigated training data curation or
knowledge grounding methods to integrate more knowledge. In the inference stage, recent works have
explored methods including confidence estimation (Huang et al., 2023b), knowledge retrieval (Feng
et al., 2024; Yang et al., 2024) and KE to improve accurate outputs.

Contrast Decoding The recent contrasting decoding methods achieve the desired output by con-
trasting logical distribution during the decoding phase. CD (Li et al., 2023) compares powerful
expert language models with weaker amateur language models to enhance fluency and coherence.
DoLa (Chuang et al., 2023) contrasts mature layers with premature layers, while ICD (Zhang et al.,
2023a) compares with models injected with hallucinations, aiming to enhance the factual accuracy of
the model.

Model Editing and In-Context Editing Model Editing is a type of effective technique for KE,
altering the model’s internal structure to modify its output regarding the edited content. Current
model editing methods (Meng et al., 2022a;b; Mitchell et al., 2022; Yao et al., 2023; Xu et al., 2024)
for LLMs involve integrating an auxiliary network with the original model or modifying and adding
model parameters to manipulate the model’s output. The emergent method of ICE (Madaan et al.,
2022; Zhong et al., 2023; Zheng et al., 2023), demonstrates significant potential, enabling the editing
of language models by prompting them with edited fact and retrieving editing demonstrations from
the edit memory.

7 CONCLUSION AND LIMTATIONS

In this paper, we introduce Decoding by Contrasting Knowledge (DeCK), a novel decoding strategy
aimed at enhancing in-context editing in overcoming stubborn knowledge for LLMs. Based on
observations at the token-level of edited knowledge, DeCK contrasts the logits of new knowledge
with those from parametric knowledge to amplify the changes in model knowledge brought about by
in-context editing. Experimental results show that DeCK significantly improves editing accuracy.
Overall, DeCK is a critical step in enhancing in-context editing to overcome stubborn knowledge.

DeCK also has limitations; it requires the reception of input from two different token sequences
during the generation process, resulting in approximately a 1.6X increase in latency compared to
original decoding. This suggests that we can pursue further optimization within the transformers
architecture or explore alternative, more cost-effective versions of DeCK.
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