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Abstract—Causal inference is crucial for humans to explore the
world, which can be modeled to enable an agent to efficiently
explore the environment in reinforcement learning. Existing
research indicates that establishing the causality between action
and state transition will enhance an agent to reason how a
policy affects its future trajectory, thereby promoting directed
exploration. However, it is challenging to measure the causality
due to its intractability in the vast state-action space of complex
scenarios. In this paper, we propose a novel Goal Discovery
with Causal Capacity (GDCC) framework for efficient environ-
ment exploration. Specifically, we first derive a measurement of
causality in state space, i.e., causal capacity, which represents the
highest influence of an agent’s behavior on future trajectories.
After that, we present a Monte Carlo based method to identify
critical points in discrete state space and further optimize this
method for continuous high-dimensional environments. Those
critical points are used to uncover where the agent makes
important decisions in the environment, which are then regarded
as our subgoals to guide the agent to make exploration more pur-
posefully and efficiently. Empirical results from multi-objective
tasks demonstrate that states with high causal capacity align
with our expected subgoals, and our GDCC achieves significant
success rate improvements compared to baselines.

I. INTRODUCTION

Reinforcement Learning (RL) has proven to be an effective
approach for training agents to perform a wide range of tasks,
achieving notable success in domains such as games [5],
autonomous driving [41], and robotics [25]. In RL, an agent
explores the environment, gathers data and maximizes accu-
mulated reward to learn a high-quality policy. Generally, there
exists a causal association between an agent’s action and future
trajectory. Modeling such causal association will enhance the
agent’s ability to explore and exploit the environment, which
leads to efficient policy learning.

Causality plays a crucial role in decision-making. Humans
typically desire that the outcomes of their actions align with
their active decisions rather than being passively driven by
the environment. Decisions made at critical points often have
significant causal impacts on future outcomes. For instance,
at a crossroad, the chosen direction may significantly affect
the final destination, whereas shifts on a one-way road result
in only trivial changes in the final destination. For agents,
learning actions with strong causal effects on the future is more
valuable. The causal value of an action depends not only on the
action itself but also on the state in which it is executed, similar
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Fig. 1. (a) Two scenarios demonstrates that actions taken at different states
will have varying impacts on the future. At the crossroads, an agent’s different
choices will result in different destinations, while on a one-way street, shifts
to the left or right have little influence on the final destination. (b) The causal
capacity results of all states in a demo maze environment, where red regions
represent high causal capacity and blue regions indicate low causal capacity.
It is observed that causal capacity effectively highlights the states where the
agent can exert control over its future trajectory.

to the example in Fig. 1(a). Existing research has focused
on directly measuring the causal association between actions
and state transitions, enabling more comprehensive exploration
[34]. However, due to the vastness of the state-action space,
such measurement is complex and inaccurate. To address this,
we resort to identify critical points in the environment like the
red regions in Fig. 1(b), where an agent’s actions have a clear
causal associations with the expected destination, facilitating
more efficient exploration and policy optimization.

In this work, we propose a causality-aware framework
that enables the agent to understand the association between
states and actions. Drawing from the concept of maximum
caliber in statistical physics [23, 15, 10], we derive the
causal capacity from Granger entropy [21]. Causal capacity
measures the maximum causal impact of the agent’s actions
on future trajectories. It is defined as the entropy of the
probability distribution over the state transition. Essentially,
it measures the uncertainty in state transitions. A state with
a larger causal capacity indicates more available choices for
the agent. To address the challenge of accurately measuring
causal capacity, we propose a Monte Carlo-based method that
requires only data collected through a random policy, allowing



us to effectively measure the causal capacity of each state.
Based on the measurement of causal capacity, we can

identify critical points in the environment that align with our
expectations, selecting them as subgoals. By achieving these
subgoals sequentially, the agent can explore the environment
more effectively and train more efficiently. To further utilize
the subgoals during training, we preserve the sequential struc-
ture of the random policy data and train a prediction model
along with a directed acyclic graph (DAG). This clarifies the
causal associations among subgoals and improves the training
efficiency and effectiveness of downstream tasks.

To evaluate our approach, we design multi-objective tasks
in the MuJoCo maze environment [39] and the Habitat envi-
ronment [31, 38, 30]. In these tasks, the agent cannot simply
memorize paths to the goal, but must understand the asso-
ciation between the environment and the task. Our empirical
results demonstrate that the calculated subgoals align perfectly
with our expectations. Furthermore, our method outperforms
baseline algorithms, demonstrating the effectiveness of the
GDCC framework in subgoal exploration.

II. RELATED WORK

A. Causal Reinforcement Learning

Causal reinforcement learning [12] aims to develop agents
capable of comprehending their environment, solving complex
tasks and improving the interpretability of decision-making
processes. Many previous works focus on the advantages of
CRL in task generalization, discovery of spurious correlations,
representation learning, and data augmentation [42, 13, 37,
35, 6]. Besides, encouraging the agent to discover the causal
mechanisms underlying state transitions is crucial for facil-
itating exploration. In [29], it models the causalities among
environments variables (EV) to discover subgoals and high-
quality hierarchical structures in complicated environment.
In [14], the problem is formulated into variational likelihood
maximization with causal graph (CG) as latent variables. But
both EV and CG requires strong prior knowledge about the
environment.

On the other hand, conditional mutual information have
been introduced as intrinsic reward to encourage agent to
explore more diversely [17] or to detect the states of influence
[34]. However, it remains a significant challenge to accurately
estimate the causality of the agent’s behavior. In this work,
we aim to figure out an accurate measurement of the causality
between the agent’s behavior and the environment without
relying on prior knowledge, so that the agent’s policy can
maximize its causal value. To achieve this, we employ causal
discovery to identify subgoals, improving exploration and
sampling efficiency.

B. Goal-Conditioned Reinforcement Learning

In the paradigm of Goal-Conditioned Reinforcement Learn-
ing (GCRL) [11, 24], complex tasks are decomposed into
simpler tasks through subgoals and completed sequentially,
similar to the problem-solving approach used by humans
[28, 2]. However, it is a non-trivial issue to generate subgoals

in GCRL. Hindsight experience replay [1] relabels achieved
goals in the buffer as desired goals to better utilize data [18, 3].
In [9], a value function is used to evaluate experience and se-
lects intermediate states between the current state and the final
goal as subgoals, optimizing the policy for selecting subgoals.
However, these subgoals lack clear physical significance, and
do not guarantee effective guidance in complex environments
and tasks. Other approaches encourage the agent to learn
multiple effective skills [43, 27, 20], which, however, requires
strong prior knowledge of the environment or are limited to
simple, discrete environments. In contrast, our method does
not rely on any prior knowledge or expert data and can be
applied in continuous state spaces. Our approach generates
subgoals with causal significance through pretraining using
the Monte Carlo method, without requiring high-quality offline
data, relying instead on data sampled from a random policy.

III. PRELIMINARIES

In this section, we provide the background knowledge of our
method. We start by introducing the problem formulation of
goal-conditioned reinforcement learning, followed by detailed
explanations of Structural Causal Models, Granger causality,
and Transfer Entropy. These concepts serve as the theoretical
foundations of our work.

A. Problem Formulation

The problem studied in this work is formulated as a goal-
conditioned Markov Decision Process (MDP), represented
as a six-tuple M = ⟨S,A,G, P,R, γ⟩. It includes a state
space S, an action space A, and a subgoal space G. The
transition probability function P defines the environment’s
intrinsic dynamics and is given by the conditional probability
p(s′ | s, a). The reward function R provides rewards based
on the current state s, action a, subgoal g, and next state
s′, expressed as r(s, a, g, s′). γ ∈ (0, 1) is a discount factor.
Our objective is to obtain an optimal policy π : S,G → A
that maximizes the expected cumulative discounted reward
Eπ [

∑∞
t=0 γ

trt | π]. In this work, we focus on the sparse
reward setting, where the agent receives zero rewards for most
of the time.

B. Structural Causal Model

We use a Structural Causal Model (SCM) to represent the
state transition in an MDP. As shown in Fig. 2, Ust and
Uat

represent independent noises or other unobserved con-
founders of the environment on state and action, respectively.
The SCM consists of a set of random variables denoted
by V = {(Si, Usi , Ai, Uai)}Ni=1, and is structured using a
directed acyclic graph (DAG). Each node in the graph follows
a conditional probability distribution P (Vi | Pa(Vi)), where
Pa(Vi) is the set of parents of Vi.

The causal model not only provides a clear structure of
the variables but also facilitates the modeling of causal in-
terventions [36]. In reinforcement learning, an agent’s policy
serves as an intervention mechanism, denoted as I = do(A :=
π(a | s)), where the do(·) operator specifies fixing the
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Fig. 2. The structural causal model (SCM) illustrates the state transition
from St to St+1 as St+1 = f(St, At, Ust+1 ). In the SCM, the policy π is
highlighted as the causal intervention mechanism in reinforcement learning.

value of a variable in the intervention process. Generally,
intervening with different policies results in different distri-
butions of the next state, i.e., P do(A:=πi(a|s))(S′ | S) ̸=
P do(A:=πj(a|s))(S′ | S), but state transition remains the same,
i.e., pdo(A:=πi(a|s))(s′ | s, a) = pdo(A:=πj(a|s))(s′ | s, a).

C. Granger Causality and Transfer Entropy

According to Granger causality [21], if including past in-
formation of variables X and Y helps improves the prediction
of Y′ compared to predicting Y′ based solely on its past
information, then “X Granger-causes Y in Granger causality".
Transfer entropy [32] follows a similar concept, measuring
the directed information transfer between joint processes. For
Gaussian variables, Granger causality and transfer entropy are
equivalent [4]. The expression of transfer entropy is as follows:

T (X → Y) = H(Y′ | Y)−H(Y′ | Y,X). (1)

Transfer entropy measures the degree to which X reduces
uncertainty in predicting the future of Y. Since its introduction
[32], transfer entropy has become a widely recognized tool for
analyzing causal relationships in nonlinear systems [22].

IV. METHOD

In this section, we introduce the derivation of causal capac-
ity and the details of the GDCC framework, which includes
subgoal generation and prediction. First, we analyze the causal
association between the agent’s actions and their outcomes,
deriving the action causality measurement and defining causal
capacity based on transfer entropy. Given the challenges of
measuring causal capacity without prior knowledge of the
environment’s dynamics, we design a Monte Carlo method to
estimate causal capacity and further optimize this estimation
for continuous, high-dimensional environments using a clus-
tering algorithm. Next, we identify the critical points with the
highest causal capacity, which are used to guide the agent in
purposeful exploration. Finally, we propose a prediction model
to obtain the optimal subgoal for the current state, effectively
simplifying the task and reducing the exploration space. The
overall framework is shown in Fig. 3.
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Fig. 3. Overall framework of GDCC.

A. Action Causality Measurement

If performing action a in state s reduces the uncertainty of
transition from s to next state s′, it implies that there exists
a state si or a set of states Si with a higher probability of
transitioning from s to si or Si. It is reasonable to assume
that there is a causal association between executing the action
a and the increased transition probability towards si or Si,
which can be quantified using transfer entropy as follows:

T (A →S | S = s, do(A = a)) =

H(S′ | S = s)−H(S′ | S = s, do(A = a)),
(2)

where H(S′ | S = s) denotes the entropy of the non-
interventional state transition distribution of state s, and
H(S′ | S = s, do(A = a)) represents the entropy of the state
transition distribution with the agent’s action set to a.

B. Causal Capacity Measurement

We are interested in identifying the state that maximizes
the diversity of the state transition while minimizing its
uncertainty after taking actions. However, since directly mea-
suring action causality requires estimating the state transi-
tion probabilities of all actions executed in all states, which
is computationally infeasible in continuous state and action
spaces, we need another variable to evaluate the causality. We
propose the following propositions regarding the upper and
lower bounds of action causality:

Proposition 1: If the entropy of the non-interventional state
transition distribution of state s can be calculated, then the
upper and lower bounds of the transfer entropy for any action
a are given as follows:

H(S′ | S = s) ≥ T (A → S | S = s,do(A = a))

≥ min
a

(
1− 1

p(a | s)

)
H(S′ | S = s).

(3)

Furthermore, when we control the policy such that the agent
selects actions with the most causal impact, the upper and
lower bounds of action causality are:

Proposition 2: When we choose an action to maximize the
transfer entropy, and H(S′ | S) can be calculated, the upper
and lower bounds of the transfer entropy are as follows:

H(S′|S = s) ≥ max
a

T (A → S | S = s,do(A = a)) ≥ 0.

(4)



The proof of the proposition can be found in the supplementary
material.

According to Eq. (3) and Eq. (4), H(S′ | S) represents
the maximum potential causal influence that an agent’s action
can have in state s. Meanwhile, under a controlled policy,
the lower bound of action causality becomes independent of
H(S′ | S). Therefore, it is reasonable to use the entropy of the
non-interventional state transition distribution as a measure of
the maximum causal value of a state. We define the causal
capacity as follows:

C(s) = H(S′ | S = s). (5)

Through estimating the causal capacity of each state, we
can identify states where the agent’s actions have a substantial
impact on the next state. However, accurately estimating causal
capacity remains challenging, especially when the transition
function P is not fully understood. Predicting the entire state
transition distribution without action constraints is not feasible,
even within the framework of Model-Based Reinforcement
Learning (MBRL). The typical approach is to predict the next
state based on a specific state-action pair, rather than relying
solely on the state.

To overcome this challenge, we propose a Monte Carlo-
based method for measuring causal capacity, making it ap-
plicable to real-world problems. Additionally, we incorporate
a clustering algorithm to extend GDCC to continuous, high-
dimensional environments.

1) Monte Carlo Based Measurement: Based on the def-
inition of entropy, the causal capacity can be factorized as
follows:

C(s) = −
∑
si∈S′

p(si | s) log p(si | s). (6)

Since calculating p(s′ | s) requires knowledge of the state
transition distribution under all actions, we propose using a
Monte Carlo method to estimate it. To this end, we introduce
the following proposition. The proof of this proposition can
be found in the supplementary material.

Proposition 3: The non-interventional state transition prob-
ability is equivalent to the state transition probability under the
intervention of a random policy:

p(s′ | s) = pdo(A:=πran)(s′ | s), (7)

where πran denotes the random policy.
Therefore, it is reasonable to collect trajectory data D with
a random policy πran to approximate the non-interventional
transition probabilities. We count the frequencies of each state
N(S = s) in D. Accordingly, the causal capacity can then be
represented as:

C(s) = −
∑
si

pdo(A:=πran)(si | s) log pdo(A:=πran)(si | s). (8)

where pdo(A:=πran)(si | s) ≈ N(S′=si|S=s)
N(S=s) .

2) Clustering Based Measurement: In complex environ-
ments or real-world scenarios, the state space is often high-
dimensional and continuous. As a result, a state s may only
be visited once, making frequency-based statistics ineffective.

Considering continuous state spaces, a small change in state,
such as s+∆s, can be nearly identical to the original state s
in the physical world. In our study of causality, our primary
objective is to determine whether the agent’s actions will
have significant impact on its future, which requires a clear
difference in the physical world. Therefore, we cannot rely
solely on state-action transitions as the basis for estimating
the set of possible next states S′ for s. Instead, we propose
partitioning the sampled state data SD into distinct state sets,
based on s, as follows:

Snei(s) = {ŝ | d(s, ŝ) < τnei},
Sadj(s) = {ŝ | τnei ≤ d(s, ŝ) < τadj},
Sout(s) = {ŝ | τadj ≤ d(s, ŝ)},

(9)

where d(·, ·) is a distance function, which could be a standard
distance function, such as Euclidean distance or Manhattan
distance, or a neural network trained on specific metrics. τs
are the distance threshold set based on the scope of agent’s
actions. The set of neighboring states Snei(s) includes those
states within a distance of τnei, which are considered to be in
the same physical state with s. Sout(s) includes states that are
too far away from s to be reached by a single action and can
only be accessed after multiple state transitions. Sadj denotes
the expected set of next states for s, consisting of states that
are adjacent and reachable in a single action. We define the
general set of next states for s as S̃′(s) = Sadj(s).

To estimate the probability distribution of different state
transitions in S̃′(s), we measure the distance between each pair
of states in S̃′(s) using d(·, ·), and then apply the Agglomera-
tive Clustering algorithm [7]. This process partitions S̃′(s) into
N clusters, i.e., Cluster(S̃′(s)) = {S̃1, S̃2, . . . , S̃N}. We then
use the frequency |S̃i| of each state cluster to approximate
the probability of each state transition type. Based on this
clustering, we can calculate the causal capacity for the state
s:

Cclu(s) =
∑

S̃i∈S̃′(s)

pclu(S̃i | s) log pclu(S̃i | s), (10)

where pclu(S̃i | s) = |S̃i|
|S̃′(s)| .

The maximum causal capacity of a state s is relative to the
number of clusters of S̃′(s). States with a small number of
clusters are constrained, preventing the agent from making its
own choices, or they are situated at a larger state in physics
where agent cannot transition to another state in a single step.

The primary reason to use clustering algorithms is that
predicting the distribution without intervention requires fully
sampling the state transition under all actions and then es-
timating the distribution for each next state. This contrasts
with typical Model-Based Reinforcement Learning (MBRL)
tasks, where the goal is often to predict the mean of the
next states. In our case, however, we are particularly inter-
ested in accurately estimating the variance of the next state



distribution. The standard MBRL approaches for estimating
variance in continuous state spaces may not always meet our
requirement. Therefore, we adopt a distance-based statistical
method combined with a clustering algorithm. Additionally,
we can design a distance function d(·, ·) to characterize the
environment based on state representation. By incorporating
more information about the environment, including temporal
and semantic information, we improve the representation and
distinguishability of clustering algorithm in state transitions.
Empirical results of this clustering approach can be found in
the supplementary material.

C. Subgoal Prediction

The purpose of calculating the causal capacity is to find the
most suitable subgoals in the environment. Once the causal
capacity of each state has been computed, we can select those
states whose causal capacity exceeds a certain threshold as
subgoals. By constraining the agent’s actions to these subgoal
states, we maximize the likelihood that its future trajectory
will be controlled and lead to the desired outcomes.

However, in some cases, the agent may not be able to
explore the entire environment through random policy. This
could prevent us from obtaining the causal capacity of all
states. In such scenarios, we employ the Go-Explore approach
[16]. It involves training a model to achieve the latest sub-
goal and then exploring with random policy to complete the
exploration of the entire environment.

Once the agent has executed actions in the environment,
the next challenge is how it can select the optimal subgoal
for any given state. To address this, we propose a prediction
model that identifies the most suitable subgoal for each state.
Its structure is shown in Fig. 4. The prediction model consists
of two key components: (1) an encoder and a decoder are self-
supervised pretrained for embedding states and distinguishing
subgoals, (2) a predictor for subgoal prediction. The encoder
pθ(z | s) takes states s and subgoals sG as input, projecting
them into latent space as z and zG . The decoder qϕ(s | z)
reconstructs the embedded states and subgoals back to original
space s′ and s′G . During encoding and decoding, the encoder
also minimizes the similarity between each pair of subgoals in
the latent space, ensuring that subgoals remain distinguishable
while preserving information from the original state. The loss
functions for the encoder and decoder are defined as follows:

L(θ, ϕ) = λθ

∑
si∈D

∥si − s′i∥
2
+ λϕ

∑
i ̸=j

sim(zGi , z
G
j ), (11)

where sim(·, ·) represents the similarity function, commonly
using the cosine similarity measurement. Both λθ and λϕ are
positive coefficients.

Next, we train the predictor ρϑ(z | s) for subgoal prediction.
We sample sequential trajectory τ = {st, st+1, · · · , st+T−1}
of length T and check if there is any state in τ achieves
subgoal. If a state sm achieves the subgoal sGn , the expected
prediction target for the states before st+m is set to pθ(s

G
n). If

not, the prediction result of the last state ρϑ(st+T−1) will be

Reconstruction(a)

Cos similarity
minimization

Cos similarity
maximization

Trajectory

achieve

(b)

Cos similarity
maximizationTrajectory (c)

Fig. 4. Illustration of subgoal prediction model. (a) Pretraining encoder and
decoder. (b) Training predictor when sm achieves subgoal sGn . (c) Training
predictor when no subgoal is achieved.

set as the expected prediction target for the entire trajectory.
The loss function for the predictor is defined as follows:

L(ϑ) =


− 1

m+ 1

t+m∑
i=t

sim(ρϑ(si), pθ(s
G
n))

if ∃ st+m

achieves sGn,

− 1

T

t+T−1∑
i=t

sim(ρϑ(si), ρϑ(st+T−1)) otherwise.

(12)

V. EXPERIMENTS

In this section, we conduct a series of experiments to
investigate the following issues:

1) Whether GDCC can accurately identify states with high
causal capacity and are these states suitable for use as
subgoals in the environment?

2) Whether the prediction model is capable of accurately
predicting the corresponding subgoals for each state?

3) Whether GDCC can effectively improve performance
compared to baseline methods?

4) Is the time consumption of GDCC acceptable?
We selected the MuJoCo-Maze [39] and Habitat [31, 38, 30]

environments as our benchmarks to evaluate the performance
of GDCC. To increase the persuasiveness and effectiveness
of the experiments, we modified the environments to provide
sparse reward multi-objective tasks. In these tasks, the agent
must navigate from a random starting point to a random
endpoint. This modification increases the difficulty of the
environment. In the sparse reward setting, the agent receives
a non-zero reward only upon achieving the final goal. Instead
of simply memorizing a path to complete the task, the agent
must fully understand the dynamic changes within the envi-
ronment and make reasonable decisions. The visualization of
the Habitat environment is shown in Fig. 5.

A. Results of Causal Capacity Calculation

We first evaluate the accuracy of the GDCC framework in
estimating the causal capacity of each state in the environment.
The results of causal capacity in the MuJoCo Maze-large and



Fig. 5. Visualization of the Habitat environment, which corresponds to the
trajectory from the courtyard to the bathroom.

(a) (b)

(c) (d)

Fig. 6. Causal capacity calculation and subgoal prediction. (a) and (b):
Results for Maze-large, (c) and (d): Results for Annawan. In the causal
capacity calculation results, regions marked in red and blue indicate high
and low causal capacity, while yellow stars represent the selected subgoals.
In the subgoal prediction results, regions with the same color correspond to
states predicted to the same subgoal by the GDCC.

the Annawan and Applewold of Habitat are shown in Fig. 6.
High and low causal capacity states are represented by red and
blue, respectively, with selected subgoals marked by yellow
stars. The results demonstrate that GDCC accurately estimates
the causal capacity of each state and selects subgoals that align
with our expectations, effectively characterizing the intrinsic
causality of the environment. More results can be found in the
supplementary material.

B. Results of Subgoal Prediction

After calculating the causal capacity, we predict the cor-
responding subgoal for each state. This process can be seen
as partitioning the state space into different regions. In Fig.
6, we illustrate the partitioning results with different colors.
Even in irregular maps like Habitat, the prediction model can
clearly segment the boundaries of each region, ensuring the
agent accurately acquires the optimal subgoal. More results
are available in the supplementary material.

Fig. 8 shows the curves of the reconstruction loss and
the subgoal similarity loss during pretraining, as well as the
curve of the predictor’s accuracy. The encoder and decoder,
trained with data sampled by the random policy, are able to
quickly differentiate various subgoals while embedding states
into latent space. The predictor can then accurately predict the
optimal subgoal for the current state.

TABLE I
TIME CONSUMPTION OF EACH MODULE IN GDCC AND EACH

ALGORITHM.

Module of GDCC Time(h) Algorithm Time(h)

Sampling Data 0.08 ± 0.01 GDCC-TD3 5.06 ± 0.23
Calculating Causal Capacity 0.02 ± 0.04 GDCC-PPO 13.64 ± 0.46
Training Subgoal Predictor 0.02 ± 0.01 CAI 2.09 ± 0.03
Training TD3 Policy 4.94 ± 0.24 RND 18.01 ± 1.31
Training PPO Policy 13.52 ± 0.46 TD3 2.26 ± 0.03

PPO 9.96 ± 0.75

C. Performance of GDCC

To study the effectiveness of GDCC, we integrate it with
two well-known reinforcement learning algorithms: Proximal
Policy Optimization (PPO) [33] and Twin Delayed Deep De-
terministic Policy Gradient (TD3) [19], which are two major
categories of RL. We then compare the performance of the
GDCC framework with several baseline algorithms, including
Causal Action Influence (CAI) [34] and Random Network
Distillation (RND) [8] to demonstrate its effectiveness in both
causal goal-conditioned RL and exploration RL. For tasks with
sparse rewards, we designed a potential-based reward function
that only activates when subgoals are correctly predicted
by GDCC. This design can have negative effects on other
algorithms if no subgoal is utilized. More details regarding
the design of the potential-based reward are presented in
supplementary material.

The empirical results presented in Fig. 9 clearly illustrate
the superiority of GDCC. In various scenarios such as Maze-
medium and Maze-large (MuJoCo environments) and An-
nawan and Applewold (Habitat environments), GDCC signifi-
cantly outperforms the baselines. Specifically, the combination
of GDCC and TD3 achieves at least a 25% higher success rate
on average than other algorithms. Although GDCC combined
with PPO does not reach the highest performance, it still
shows substantial improvements over PPO and RND alone.
In the Habitat environment, where PPO and RND struggle
to complete the tasks, the incorporation of GDCC leads to a
notable increase in success rates.
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Fig. 9. Comparison of our method against baselines in different scenarios: Maze-medium and Maze-large of MuJoCo, and Annawan and Applewold of
Habitat.

D. Ablation Study
To investigate the contributions of each module in GDCC,

we conducted an ablation study on the Maze-large environ-
ment. Fig. 10 demonstrates the improvements of subgoal pre-
dictor and potential-based reward to GDCC. The performance
of GDCC is severely affected when the subgoal predictor is
removed, the agent struggles to accomplish the task. This
highlights the importance of correctly predicting the current
subgoal for the hierarchical framework. The introduction of
the potential-based reward helps GDCC explore more pur-
posefully, enabling the agent to better understand both the
environment and the task.
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Fig. 10. Ablation study results of GDCC. In the NoReward setting, the agent
only receives the sparse reward from the environment. In the NoPredictor
setting, the current subgoal is set to the closest subgoal in the state space.

E. Computational Overhead
Fig. 7 and Tab. I show the time consumption of each module

in GDCC, including sampling data, calculating causal capacity

and training the subgoal predictor. The time consumption of
the pretraining phase is less than 3% of the overall GDCC
framework. We also present the time consumption for all of
the baselines conducted on GeForce RTX 2080Ti.

VI. CONCLUSION

In this paper, we propose the GDCC framework, which
enables agents to actively explore the environment by under-
standing the causal influences of their actions on state tran-
sitions. By deriving causal capacity from Granger causality,
we identify states where an agent’s actions have the most
significant impact on its future trajectory. Those critical states
are selected as subgoals to guide the exploration of the agent.
Our empirical results demonstrate the efficacy of the GDCC
framework in the MuJoCo and Habitat benchmarks, where
GDCC consistently outperforms baselines.
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APPENDIX

Proof of Prop. 1: For any variable X, it holds that p(X =
x) ∈ [0, 1], and thus:

H(X) = −
∑

x∈|X|
p(x) log p(x) ≥ 0. (13)

T (X → Y) = H(Y′|Y)−H(Y′|Y,X) ≤ H(Y′|Y). (14)

This property applies to state and action variables. It proves
that the upper bound of T (A → S | S = s, do(A = a))
(hereafter referred to as TA→S) is:

TA→S = H(S′ | S = s)−H(S′ | S = s, do(A = a))

≤ H(S′ | S = s).
(15)

When the state transition is deterministic under a certain
action, i.e., ∃sj , ai, p(sj | s, ai) = 1, we have:

H(S′|S = s, do(A = ai))

= −p(sj | s, ai) log p(sj | s, ai) = 0.
(16)

So when the environment exhibits a deterministic state transi-
tion at s, the equality holds.

For the lower bound of the transfer entropy, we first factorize
the non-interventional state transition probability p(s | s) as
follows:

p(s′ | s) =
∑
a∈A

p(a | s)p(s′ | s, a). (17)

We set f(x) = −x log x, x ∈ [0, 1]. Obviously, f(x) is
a concave function and

∑
a∈A P (a | s) = 1. According to

Jensen’s inequality, we have:

f(p(s | s)) ≥
∑
a∈A

p(a | s)f(p(s′ | s, a)). (18)

We further derive the non-interventional state transition en-
tropy as follows:

H(S′ | S = s) = −
∑
s∈S

p(s′ | s) log p(s′ | s)

=
∑
s∈S

f(p(s′ | s))

≥
∑
s∈S

∑
a∈A

p(a | s)f(p(s′ | s, a))

=
∑
a∈A

p(a | s)
∑
s∈S

(−p(s′ | s, a) log p(s′ | s, a))

=
∑
a∈A

p(a | s)H(S′ | S = s, do(A = a)).

(19)
Since p(a | s)H(S′ | S = s, do(A = a)) ≥ 0, ∀a ∈ A, then
we have:

H(S′ | S = s)

≥ p(a | s)H(S′ | S = s, do(A = a)), ∀a ∈ A,
(20)

⇒ H(S′ | S = s, do(A = a))

≤ 1

p(a | s)H(S′ | S = s) ∀a ∈ A.
(21)

By substituting Eq. 21 into the definition of transfer entropy,
we can derive the lower bound of transfer entropy as follows:

TA→S = H(S′ | S = s)−H(S′ | S = s, do(A = a))

≥ min
a

(
1− 1

p(a | s)

)
H(S′ | S = s).

(22)

In the context where the environment satisfies the condition
of equal probability of taking each action under no interven-
tion, the transfer entropy achieves its lower bound:

TA→S ≥ (1− |A|)H(S′ | S = s). (23)

Proof of Prop. 2: As TA→S ≤ H(S′ | S = s) has
been proved above, the upper bound of maxa TA→S is also
H(S′ | S = s).

Let an be the action that achieves the minimum transfer
entropy in state s:

Han
= H(S′|S = s, do(A = an))

≤ H(S′|S = s, do(A = a)), ∀a ∈ A.
(24)

According to Eq. 19, we can further derive that:

H(S′ | S = s) ≥
∑
a∈A

p(a | s)H(S′ | S = s, do(A = a))

≥
∑
a∈A

p(a | s)Han
= Han

.

(25)
Therefore, the lower bound of the transfer entropy is:

max
a

TA→S= H(S′ | S= s)

−min
a

H(S′ | S = s, do(A = a))

= H(S′ | S= s)−Han

≥ H(S′ | S= s)−H(S′ | S = s)

= 0.
(26)

Proof of Prop. 3: For the non-interventional state tran-
sition probability p(s′ | s), it can be factorized based on the
transition dynamics under each action a ∈ A in the action
space.

p(s′ | s) =
∫
A
p(s′ | s, a)p(a | s)da. (27)

Here, we consider the continuous action space. The proof is the
same for discrete action space. Under the condition of non-
intervention, we usually assume a uniform distribution over
actions:

p(a | s) = 1

|A| , ∀a ∈ A. (28)

where |A| is the cardinality of the action space. Under the
random policy, all actions also have an equal probability.



Hence we can substitute Eq. 28 into Eq. 27:

p(s′ | s) =
∫
A
p(s′ | s, a) 1

|A|da

=

∫
A
p(s′ | s, a)πran(a | s)da

=pdo(A:=πran)(s′ | s).

In some cases, due to characteristics of the environment, the
non-interventional action distribution may follow a Gaussian
distribution or another specific distribution, or some actions
may rarely be executed. In such cases, we can adjust the
random policy to better align with the action distribution of the
environment. This adjustment enables us to use sampled data
to estimate the non-interventional state transition distribution.

In this section, we analyze the effectiveness of the clus-
tering algorithm in estimating causal capacity across different
scenarios. In Fig. 11, we present the results of calculating
the causal capacity of the demo maze using the clustering
algorithm, with specific positions selected to illustrate the
specific details of the algorithm. In scenarios (b) and (c),
where the agent encounters a crossroad and an endpoint, the
clustering algorithm clearly captures the number and frequency
of available choices, aligning with our expectations regarding
causal capacity. In addition, we selected two special cases

(b)

(a)

(c)

Fig. 11. Illustration of the clustering algorithm in the demo maze. (a) Causal
capacity of each state in the demo maze. (b) Clustering result at a three-way
intersection, calculated based on the central state (marked with a star). (c)
Clustering result at an endpoint.

to further explain the results of the clustering algorithm. In
Fig. 12(a) and Fig. 12(b), when the agent is at a convergence
point with a large area, the clustering algorithm is unable
to identify the convergence point because it cannot predict
a subsequent path within a single-step transition. This is
due to the clustering threshold being designed based on the
range of the agent’s actions. This approach is practical, as
for large convergence points, we are more concerned with
the intersections rather than the convergence point itself. The
approach is effective when the agent moves to the edge of the
convergence point.

Besides convergence points, clustering algorithms can be
effectively applied to various special situations. In an indoor
environment, such as the one shown in Fig. 12(c), clustering
algorithms can accurately identify the entrances to each room.
These entrances represent locations with the highest causal
capacity in the indoor environment, offering clear guidance
for the agent to achieve goals.

0.00

0.25

0.50

0.75

1.00

(a) (b)

0.00

0.21

0.42

0.63

0.84

(c)

Fig. 12. (a) The causal capacity results in large convergence points. (b) The
clustering results in large convergence points. If the agent’s action does not
lead to a clear state transition, it is considered as having no state transition
from the causality perspective, resulting in a single cluster (the red region)
around the agent. (c) The causal capacity results in an indoor environment.
The entrances to each room are states with high causal capacity, representing
the state transitions that occur when entering or exiting each room.

In addition to identifying critical states where the agent’s
actions can determine its future, subgoals with high causal
capacity offer the additional advantage in facilitating envi-
ronment representation through the use of potential-based
rewards. Potential-based rewards refer to the rewards the agent
receives when transitioning from high-potential states to low-
potential states, along with the equivalent penalty incurred
when returning to high-potential states. This ensures that the
optimal solution of the environment remains unchanged. How-
ever, a limitation arises when the agent has only a single final
goal to achieve. In such cases, potential-based rewards may
not sufficiently support the execution of complex behaviors,
such as obstacle avoidance, turning, or ascending/descending
stairs. This limitation is demonstrated in Fig. 13.

With our prediction model, we can predict the correspond-
ing subgoal for each state, allowing us to decompose the
environment based on subgoals. Apart from the subgoal itself,
there are no other states with high causal capacity within the
subgoal’s corresponding region, meaning the agent does not
need to make complex decisions unless it is at a subgoal.
As a result, the potential-based reward function within each
subgoal’s region is flat and effective. We only need to construct
a potential-based reward function in each region and then
concatenate them according to the transitions of each subgoal
to create a comprehensive reward function that effectively
represents the environment.



TABLE II
ENVIRONMENT SETTINGS

Scenario τnei τadj Causal Capacity Threshold Learning Rate Episode Length

Maze-medium 0.7 1.0 log 2.5 1e−4 600
Maze-large 0.7 1.0 log 2.5 1e−4 600
Annawan 0.8 1.1 log 2.8 5e−5 500

Applewold 0.8 1.1 log 2.8 5e−5 500

(a) Original rewards

0

1 2

F

(b) Subgoals

(c) Decomposed rewards (d) Concatenated rewards

Fig. 13. (a) The original potential-based reward function, with the final
goal located in the top-right corner of the environment. Arrows indicate the
direction of the current reward gradient. It can be observed that this reward
function fails to guide the agent past obstacles towards the final goal. (b)
Subgoals calculated based on causal capacity. (c) The potential-based reward
for each region after decomposing the state space according to each subgoal.
(d) The concatenated reward function obtained by combining the potential-
based reward functions of each region. It can be seen that this reward function
effectively guides the agent around obstacles.

A. Hyperparameter Setting

Here we present the hyperparameter settings for the exper-
iments and environments in Tab. II-IV. The experiments were
conducted on GeForce RTX 2080Ti and GeForce RTX 3070Ti
GPUs.

B. Environments

a) MuJoCo: MuJoCo is a general-purpose physics en-
gine designed for fast and accurate simulation of articulated
structures interacting with their environment. It supports a
wide range of models and environments, making it a popular
benchmark for reinforcement learning experiments.

b) Habitat: Habitat is designed for training agents to per-
form a variety of embodied AI tasks. For our experiments, we
utilize the Gibson datasets [40] within the Habitat simulator,
which model real-world scenarios, including complex terrains
such as furniture, rooms, and multi-story buildings. This
environment closely mimics real-world settings, providing a
more accurate reflection of an agent’s ability to understand
its environment. To compute the causal capacity of each

TABLE III
GENERAL SETTINGS

Parameter Value

Network Size 4× 256
Gamma 0.99
Policy Noise 0.2
Noise Clip 0.5
Max Grad Norm 0.5
Activation Function ReLU
Batch Size 1024
Replay Buffer Size 200000
Replay Buffer Warmup 10000

TABLE IV
PREDICTION MODEL SETTINGS

Parameter Value

Network Size 3× 256
Embedding Dimension 64
Learning Rate 1e − 3
Similarity Function cos
Activation Function ReLU
Batch Size 1000
Encoder Training Times 10000
Predictor Training Times 10000

state, we used the radar position information provided by the
environment. Our experiments were conducted on two Habitat
maps: Annawan, which features a single floor, and Applewold,
a three-floor environment requiring traversal through stairs,
making it more challenging. Fig. 14 shows the 3D models of
these two maps.

(a) Annawan (b) Applewold

Fig. 14. 3D models of two Habitat maps.

C. Baselines

We chose Proximal Policy Optimization (PPO) and Twin
Delayed Deep Deterministic Policy Gradient (TD3) as the



(a) Maze-medium causal capacity (b) Maze-medium prediction

Fig. 15. Results of causal capacity calculation and subgoal prediction of
GDCC for the Maze-medium.

two basic algorithms of the GDCC framework. As baselines
for comparison, we selected Causal Action Influence (CAI)
and Random Network Distillation (RND). Both PPO and TD3
are widely used reinforcement learning algorithms known for
their high sample efficiency and broad applicability. PPO is an
improvement on the policy gradient method that stabilizes the
learning process by limiting the magnitude of policy updates.
TD3 is a deep reinforcement learning algorithm for continuous
action spaces that addresses the instability of Deep Deter-
ministic Policy Gradient (DDPG) [26] by using the delayed
policy updates and twin-target Q-learning. CAI is a causal
reinforcement learning method, integrates conditional mutual
information into policy optimization to enhance the agent’s
understanding of how its actions influence the environment.
RND promotes efficient exploration by providing intrinsic
rewards, encouraging agents to discover novel states and
actions that reduce environment uncertainty.

To further verify the effectiveness of GDCC in estimating
causal capacity and predicting subgoals, we present the results
of causal capacity calculation and subgoal prediction for the
Maze-medium in Fig. 15 and Applewold and Capistrano
maps from Habitat in Fig. 16 and 17. Both Applewold and
Capistrano are multi-story scenarios, we present the results
for each floor, as well as the overall 3D predictions.



(a) (b) (c) (d) Applewold 3d

(e) (f) (g) (h) Applewold 3d

Fig. 16. Results of causal capacity calculation 16(a)-16(c) and subgoal prediction 16(e)-16(g) of GDCC for each individual floor of Applewold map. 16(d)
and 16(h) show the overall 3D predictions.

(a) Capistrano layer 1 (b) Capistrano layer 2 (c) Capistrano 3d

(d) Capistrano layer 1 (e) Capistrano layer 2 (f) Capistrano 3d

Fig. 17. Results of causal capacity calculation 17(a)-17(b) and subgoal prediction 17(d)-17(e) of GDCC for each individual floor of Capistrano map. 17(c)
and 17(f) show the overall 3D predictions.
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