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ABSTRACT

How to establish a closer relationship between pre-training and downstream task
is a valuable question. We argue that task-adaptive pretraining should not be just
performed before task. For word alignment task, we propose an iterative self-
supervised task-adaptive pretraining paradigm, tying together word alignment and
self-supervised pretraining by code-switching data augmentation. When we get
the aligned pairs predicted by the multilingual contextualized word embeddings,
we employ these pairs and origin parallel sentences to synthesize code-switched
sentences. Then multilingual models will be continuously finetuned on the aug-
mented code-switched dataset. Finally, finetuned models will be used to produce
new aligned pairs. This process will be executed iteratively. Our paradigm is
suitable for almost all unsupervised word alignment methods based on multilingual
pre-trained LMs and doesn’t need gold labeled data, extra parallel data or any other
external resources. Experimental results on six language pairs demonstrate that our
paradigm can consistently improve baseline method. Compared to resource-rich
languages, the improvements on relatively low-resource or different morphological
languages are more significant. For example, the AER scores of three different
alignment methods based on XLM-R are reduced by about 4 ∼ 5 percentage points
on language pair En-Hi.

1 INTRODUCTION

Although pre-trained language models (PTLMs) (Devlin et al., 2019b; Conneau et al., 2020)trained
with massive textual and computational resources have achieved high performance in natural language
processing tasks, there can be a distributional mismatch between the pretraining and target domain
corpora. To tackle domain discrepancies, domain-adaptive pretraining with a large corpus in the
domain of the downstream task is usefully employed, such as BioBERT (Lee et al., 2020). However,
this approach requires large corpora in the target domain and entails a high computational cost.
Gururangan et al. (2020) propose task-adaptive pretraining and explore the benefits of continued
pretraining on data from the task distribution. There are also others works (Gu et al., 2020; Karouzos
et al., 2021; Nishida et al., 2021) focusing on establishing a closer relationship between pre-training
and downstream task. For example, Gu et al. (2020) add a task-guided pre-training stage with
selective masking between general pre-training and fine-tuning. Karouzos et al. (2021) simultaneously
minimize a task-specific loss on the source data and a language modeling loss on the target data
during fine-tuning.

However, these methods generally follow a fixed paradigm: task-adaptive pretraining then task
training. There is an obvious lack of interactive feedback. Can the output of the task can be used
to improve pretraining? See Figure 1. And we find that an iterative self-supervised task-adaptive
pretraining paradigm can be designed for unsupervised word alignment tasks. In the following, we
give a detailed introduction about how to design our new paradigm.

Continued pretraining of a LM on the unlabeled data of a given task (task-adaptive pretraining)
(Gururangan et al., 2020) has been shown to be beneficial for task performance. And we think
that simply pre-training LMs with MLM or TLM on monolingual parallel sentences is obviously
not closely integrated with word alignment task. Based on the assumption that a closer interaction
between task pre-training and the task itself can improve performance, we propose an iterative
self-supervised continued pretraining paradigm, constantly pushing pre-trained LMs toward the word
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Figure 1: Continued pretraining of a LM on the unlabeled data of a given task (task-adaptive
pretraining) (Gururangan et al., 2020) has been show to be beneficial for task performance. However,
it only occurs before tasks and is obviously not closely integrated with tasks. For word alignment
task, we propose a new paradigm, in which task-adaptive pretraining and word alignment be executed
iteratively.

alignment task. We augment sentences with self-labeled pairs and code-switching strategy. When we
get the aligned pairs predicted by the multilingual contextualized word embeddings, we employ these
pairs and origin parallel sentences to synthesize code-switched sentences. Then multilingual models
will be continuously finetuned on the augmented code-switched dataset. Finally, finetuned models
will be used to produce new aligned pairs. This process will be executed iteratively. On the one hand,
data augmentation with self-labeled pairs and code-switching strategy can alleviates data scarcity.
On the other hand, training LMs with MLM on code-switched sentences can bring the different
languages closer together in the embedding space and if we training LMs on both code-switched
sentence and corresponding origin sentences, the code-switched tokens (predicted pairs) will also
move towards each other in the embedding space.

Our contribution can be listed as follows:

• We design an iterative task-adaptive pretraining paradigm for word alignment, in which
task-adaptive pretraining will be performed not only before task but also after task. In other
words, task-adaptive pretraining and word alignment will be executed iteratively.

• Our paradigm is suitable for almost all unsupervised word alignment methods based on
multilingual pre-trained LMs and doesn’t need gold labeled data, extra parallel data or any
other external resources. We also don’t need to introduce carefully designed loss function
and the results can be easily reproduced.

• In-depth analysis reveals that training model with standard masked language modeling on
source-language,target-language and code-switched sentences is approximately optimizing
the similarity of switched tokens. This can serve as a potential explanation why code-
switching can be used to improve machine translation and cross-lingual tasks.

• We perform experiments on six language pairs and demonstrate that our paradigm can
consistently improve baseline methods. For example, the AER scores of three different
alignment methods based on XLM-R are reduced by about 4 ∼ 5 percentage points on
language pair En-Hi.

2 RELATED WORK

2.1 TASK ADAPTIVE PRETRAINING

Language models pretrained on text from a wide variety of sources form the foundation of today’s
NLP. Gururangan et al. (2020) propose domain-adaptive pretraining and task-adaptive pretraining.
They explore the benefits of continued pretraining on data from the task distribution and the domain
distribution. Gu et al. (2020) add a task-guided pre-training stage with selective masking between
general pre-training and fine-tuning. Jin et al. (2022) study a lifelong language model pretraining
challenge where a PTLM is continually updated so as to adapt to emerging data. Karouzos et al.
(2021) simultaneously minimize a task-specific loss on the source data and a language modeling
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Figure 2: An overview of our iterative task-adaptive pretraining for word alignment. The alignment
method is based on multilingual pre-trained LMs and self-labeled pairs obtained by alignment method
will be used to augment sentences by code-switching strategy. Then multilingual pre-trained LMs will
be finetuned on the augmented sentences by self-supervised learning (masked language modeling).
And this process will be executed iteratively.

loss on the target data during fine-tuning. Nishida et al. (2021) propose a novel fine-tuning process:
task-adaptive pre-training with word embedding regularization which runs additional pre-training by
making the static word embeddings of a pretrained Language Models close to the word embeddings
obtained in the target domain with fastText. Kang et al. (2022) modulate the intermediate hidden
representations of PLMs with domain knowledge, consisting of entities and their relational facts.
Different from them, we proposed a new paradigm, in which the output of word alignment task can
be used to promote task-adaptive pretraining.

2.2 WORD ALIGNMENT

Statistical alignment models directly build on the lexical translation models such as the IBM models
(Brown et al., 1993) and their implementations Giza++ (Och & Ney, 2003), fast-align (Dyer et al.,
2013) and eflomal (Östling & Tiedemann, 2016) are widely used for alignment. Based on NMT
models (Bahdanau et al., 2015) trained on parallel corpora, researchers have proposed several methods
to extract alignments from them (Cohn et al., 2016; Zenkel et al., 2019; Garg et al., 2019; Chen et al.,
2021; Zenkel et al., 2020a; Chatterjee et al., 2022). Cohn et al. (2016) and Zenkel et al. (2019) create
alignments from attention matrices. Garg et al. (2019) extract discrete alignments from the attention
probabilities learnt during regular neural machine translation model training and leverage them in a
multi-task framework to optimize towards translation and alignment objectives. Zenkel et al. (2019;
2020a) both extend the network with an additional alignment layer. Chen et al. (2021) propose a self
supervised word alignment model that takes advantage of the full context on the target side. Chatterjee
et al. (2022) propose a simple architectural modification to modern NMT systems to obtain accurate
online alignments. However, most NMT-based methods require sufficient amount parallel data to
train high quality NMT systems. which limits their application in the low-resource languages and in
domain-specific scenarios without extra parallel data. Sabet et al. (2020) propose effective methods
to extract alignments from multilingual contextualized embeddings (Devlin et al., 2019b; Conneau
et al., 2020) for word alignments without explicit training on parallel data. Dou & Neubig (2021)
indicate that finetuning pre-trained LMs on extra parallel corpus can improve alignment quality.
There are also work on supervised neural word alignment (Stengel-Eskin et al., 2019; Nagata et al.,
2020). For example, (Nagata et al., 2020) present a novel supervised word alignment method based
on cross-language span prediction and formalize a word alignment problem as question answering
task. However, supervised data are not always accessible, making their methods inapplicable in many
scenarios.
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2.3 CODE-SWITCHING

Code-switching is a prevalent phenomenon in multilingual communities where the words, morphemes
and phrases from two or more languages are switched in speech or writing. And it has been employed
to improve NMT tasks (Yang et al., 2020a; Liu et al., 2021; Yang et al., 2020b) and cross lingual
tasks (Qin et al., 2020; Zhang et al., 2021; Lee et al., 2021). Most of related work attribute the
improvement of model performance to an intuitive assumption: Using code-switching data to train
models will encourages them to align representations from source and target languages by mixing
their context information. In this work, we dig deeper and give an approximate formal explanations
for the connection between word alignment and masked language modeling.

3 METHOD

Although multilingual contextualized embeddings of pre-trained LMs can be employed to achieve
reasonable performance even in the absence of explicit training on parallel data, there is still a clear
gap: the model is trained with language modeling loss function and tested on word alignments
task. Dou & Neubig (2021) leverage pre-trained LMs and fine-tune them on parallel texts with new
objectives designed to improve alignment quality. However, they need extra large amounts of parallel
sentences, which is at least thousands of times larger than test sentences and limit their applications
on low-resource languages and settings without parallel text. So here is a practical and valuable
setting: if we only have a few parallel sentences which need to be aligned and a pre-trained LM, can
we further improve the performance of alignment methods? Figure 2 illustrates an overview of our
paradigm. More accurate alignment results in higher-quality code-switched sentences. And finetuning
on higher-quality code-switched sentences will encourage pretrained LMs to align representations
from source and target languages by mixing their context information. A better pretrained LMs will
obviously improve the accuracy of alignment. This iterative process will promote each other. In the
following paragraphs, we will elaborate on each part.

3.1 WORD ALIGNMENT

The task of word alignment can be defined as: Given a source-language sentence x = ⟨x1, · · · , xn⟩
of length n and its target-language translation y = ⟨y1, · · · , ym⟩ of length m, the method of word
alignment needs to find a set of pairs of source and target words:

A = {⟨xi, yj⟩ : xi ∈ x, yj ∈ y} (1)

Aligned words are assumed to correspond to each other, i.e. for each word pair ⟨xi, yj⟩ , xi and yj
are semantically similar to each other within the context of the sentence. We focus on improving
the methods which can leverage multilingual pre-trained LMs (Devlin et al., 2019b; Conneau et al.,
2020) for word alignments by extracting alignments from similarity matrices induced from their
contextualized embeddings without relying on parallel data. For each pair of parallel sentences x
and y, these methods extract the hidden states of the k -th layer of the multilingual model: hk

x =〈
hk
x1
, · · · , hk

xn

〉
and hk

y =
〈
hk
y1
, · · · , hk

ym

〉
. Given these contextualized word embeddings, there are

many methods to obtain alignments. For example, a simple and effective method Argmax (Sabet et al.,
2020) is to align xi and xj when hk

xi
is the most similar to hk

yj
and vice-versa. That is, we set Aij = 1

if
(
i = argmaxl S

k
l,j

)
∧
(
j = argmaxl S

k
i,l

)
and Aij = 0 otherwise. And Sk

ij = sim
(
hk
xi
, hk

yj

)
is

some normalized measure of similarity, e.g., cosine-similarity. Some other methods frame alignment
as an assignment problem (Sabet et al., 2020) or regularized optimal transport problem (Dou &
Neubig, 2021; Chi et al., 2021) and is defined by A = argmax

A∈{0,1}le×lf

∑le
i=1

∑lf
j=1 AijSij .

In our setting, these methods will self-label parallel sentences. In order to get high quality aligned
pairs, we filter the pairs with a particular threshold ϵ:

Afilter =
{
⟨xi, yj⟩ : Sk

ij > ϵ
}

(2)
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Algorithm 1: Augmented Sentences Sampling
input : A pair of parallel sentences ⟨x,y⟩, alignment of the t-th iteration At, alignment of the

(t+ 1)-th iteration At+1, sampling probability Pold for old pairs, sampling probability
Pnew for new pairs, the sampling rounds rounds.

output :Augmented sentences Saug

1 Saug ← ∅
2 Aold ← At ∩At+1

3 Anew ← At+1 \ (At ∩At+1)
4 SETAP ← {(Aold, Pold), (Anew, Pnew)}
5 for i← 1 to rounds do
6 for (A, P ) ∈ SETAP do
7 for pair ∈ A do
8 if P ≥ random.random() then
9 ⟨x,y⟩ =Code-switch( ⟨x,y⟩,pair)

10 Saug ← Saug ∪ ⟨x,y⟩

3.2 CODE-SWITCHED AUGMENTATION

Code-switching is a prevalent phenomenon in multilingual communities where the words, morphemes
and phrases from two or more languages are switched in speech or writing. The switched ones usually
are semantically similar.

Suppose we get p different pairs of source and target words for sentence x = ⟨x1, · · · , xn⟩ and
y = ⟨y1, · · · , ym⟩, it is easy to augment sentences by code-switching. The source words and target
words in one pair can be considered as synonyms and can be switched. If we augmented sentences by
code-switch sentences with one token at a time, then we have C1

p kinds choices, which means we can
get C1

p different sentence pairs at most. If the number of switched pairs range from 0 to p, then the
maximum of different sentence pairs without considering special cases:

C0
p +C1

p +C2
p + · · ·+Cp

p = 2p (3)

Obviously this is an exponential and impressive data augmentation method. In practice, we do not
exhaust all code-switched sentences and the sampling method is illustrated in Algorithm 1. We set
A0 = ∅ and A1 = ∅ so that when t = 0, Algorithm 1 still works and in this setting, the 0-th iteration
is exactly the standard task-adaptive pretraining. When t > 1, alignment results of two successive
iterations will be used so that we can assign different sampling distributions to the intersection and
new aligned pairs. In general, we give a higher probability for new aligned pairs. In addition, we
will also add origin parallel sentences to augmented dataset which is prepared for masked language
modeling.

3.3 MLM ON CODE-SWITCHED DATASET

For masked language modeling (MLM), the input sequence x consists of multiple individual tokens.
A fraction of the input tokens are chosen randomly and replaced with < MASK > tokens. Assume
that these masked indices are collected together in a set mask(x) and we use x̂ to denote a masked
token. Then model with parameters θ learns to predict mask(x) by the surrounding unmasked tokens
x\mask(x).

LMLM = −
∑

x̂∈mask(x)

logP
(
x̂ | x\mask(x); θ

)
(4)

Using code-switched and origin parallel sentences to train model will encourages them to align repre-
sentations from source and target languages by mixing their context information. More importantly,
self-labeled word pairs have the same surrounding tokens. So training model on these sentences
will obviously align code-switched tokens in implicit manner and the predicted pairs will also move
towards each other in the embedding space. For example, in Figure 2, "Das" and "This" is aligned
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pair. When we train model on the code-switched sentence "Das is quite a good idea. " and origin
sentence "This is quite a good idea. ", the word "Das" and English word "This" will move towards
each other in the embedding space because they have same surrounding tokens. We try to dig deeper
and give an approximate formal explanations for the connection between word alignment and masked
language modeling, which can also serve as a potential explanation why code-switching can be used
to improve machine translation and cross-lingual tasks.

Proposition: Training model with standard masked language modeling on source-language,target-
language and source-target code-switched sentences is approximately optimizing:

csrcxi
∼ exi ∼ eyi ∼ ctgtyi

where csrcxi
represents the contextualized embedding of token xi in source sentence and csrcyi

represents
the contextualized embedding of token yi in target sentence. And exi and eyi are word embeddings
of token xi and yi in vocabulary. csrcxi

∼ exi
represents that csrcxi

is similar to exi
. See appendix for

details.

We assume that this approximate similarity is sufficient to induce word alignment. Then we have:
Corollary: The performance based on the last layer of optimized model (with iterative task-adaptive
pretraining) is better than the best results (usually the eighth layer) of baseline model (without iterative
task-adaptive pretraining).

In section 4, we will test whether this corollary holds in experiments.

4 EXPERIMENTS

Our experiments focus on three questions: (1) To what extent can our paradigm improve word
alignment across methods, models, languages and layers. (2) The effect of the number of augmented
sentences and sampling probability. (3) The detailed ablation study.

4.1 DATASET

Our test data are a diverse set of 6 language pairs: Persian,Czech, German, French, Hindi and
Romanian, always paired with English. All of them are public dataset: En-Fa(Tavakoli & Faili),
En-Cs (Marecek), En-De 1 , En-Fr(Och & Ney, 2000), En-Hi and En-Ro 2. See Table 1 for detailed
statistics of datasets.

Langs En-Hi En-Fa En-Cs En-De En-Fr En-Ro
Size 90 400 2500 508 447 203
|S| 1409 11606 44292 9612 4038 5033
|P\S| 0 0 23132 921 13400 0

Table 1: Statistics of Datasets. Test sentences of the six gold word alignment datasets used in our
experiments: English-Hindi (En-Hi), English-Persian (En-Fa), English-Czech (En-Cs), English-
German (En-De), English-French (En-Fr), English-Romanian (En-Ro). "Size" refers to the number
of sentences. S is sure alignments and P is possible alignments (S ⊂ P ).

4.2 EVALUATION MEASURES

We use Alignment Error Rate (Och & Ney, 2003) as the standard evaluation:

AER = 1− |A ∩ S|+ |A ∩ P |
|Λ|+ |S|

(5)

where A is a set of predicted alignment edges, S(sure) is (sure) unambiguous alignments and
P(possible) is ambiguous alignments (S ⊂ P ). We report the percentage.

1http://www-i6.informatik.rwth-aachen.de/goldAlignment/
2http://web.eecs.umich.edu/ mihalcea/wpt05/
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Model Method En-Hi En-Fa En-Cs En-De En-Fr En-Ro
F1 AER F1 AER F1 AER F1 AER F1 AER F1 AER

IBM2 fast-align 38 62 58 42 78 23 71 30 85 16 68 32
IBM4 Giza++ 48 52 57 43 82 18 78 22 92 9 69 32

- eflomal 52 48 63 37 84 17 76 24 91 9 72 28
mBERT Argmax 55 45 67 33 86 14 81 19 94 6 65 35
mBERT Iter 0 56.2 43.8 68.5 31.5 86.1 13.7 80.7 19.2 94.6 5.3 66.4 33.5
mBERT Iter 1 57.5 42.5 69.6 30.4 86.2 13.5 81.2 18.7 94.7 5.0 68.9 31.0
mBERT Iter 2 57.8 42.1 70.4 29.6 86.6 13.2 81.4 18.5 95.1 4.6 69.9 30.1
XLM-R Argmax 61 39 71 29 87 13 81 19 93 7 71 29
XLM-R Iter 0 62.9 37.1 72.9 27.1 88.2 11.6 81.3 18.6 94.4 5.3 72.4 27.6
XLM-R Iter 1 65.5 34.5 73.9 26.1 88.9 10.9 82.6 17.3 95.0 4.8 73.9 26.1
XLM-R Iter 2 66.2 33.8 74.6 25.4 89.3 10.6 82.5 17.4 95.0 4.8 74.2 25.8
XLM-R Match 59.9 40.1 68.5 31.5 80.8 19.8 76.4 23.6 87.7 13.6 69.9 30.1
XLM-R Iter 0 61.5 38.5 70.0 30.0 81.9 18.7 77.0 23.0 88.9 12.3 70.9 29.1
XLM-R Iter 1 62.9 37.1 70.8 29.2 82.5 18.1 77.4 22.6 89.5 11.8 71.6 28.3
XLM-R Iter 2 64.3 35.7 70.7 29.3 82.6 18.0 77.7 22.3 89.6 11.6 71.9 28.1
XLM-R Itermax 62 39 72 28 86 14 80 20 92 9 72 28
XLM-R Iter 0 63.8 36.2 73.6 26.4 86.5 13.7 80.2 19.7 92.2 8.4 73.0 26.9
XLM-R Iter 1 66.1 33.9 75.1 24.9 87.5 12.6 81.8 18.4 93.1 7.3 74.5 25.5
XLM-R Iter 2 66.6 33.4 75.1 24.9 87.8 12.4 81.5 18.2 93.1 7.4 74.9 25.1

Table 2: Evaluation results on six datasets. Argmax, Itermax and Match are three different alignment
methods (Sabet et al., 2020) based on multilingual contextualized embeddings. Results are average
over different runs. Best results are in bold. (For AER, lower is better.)

4.3 BASE METHODS AND MODELS

Our experiments focus on three alignment method based on multilingual pretrained models: Argmax,
Itermax and Match, proposed by SimAlign (Sabet et al., 2020) and we follow the default setting
of repository 3 without any modification. We use the contextualized embeddings from 8-th layer.
We employ two multilingual pretrained models: the multilingual BERT model (mBERT), which is
pretrained on the 104 largest Wikipedia languages and XLM-RoBERTa base (Conneau et al., 2020),
which is pretrained on 100 languages on cleaned CommonCrawl data (Wenzek et al., 2020). The
pretrained LMs often use subword segmentation techniques (Kudo & Richardson, 2018; Sennrich
et al., 2016) and the above alignment extraction methods can only produce alignments on the subword
level, we follow previous work (Sabet et al., 2020; Zenkel et al., 2020b; Dou & Neubig, 2021) and
consider two words to be aligned if any of their subwords is aligned. For masked language modeling,
we following Devlin et al. (2019a) and use a special [MASK] token 80% of the time, a random token
10% of the time and the original token 10% of the time to perform masking. The batch size is set
to 32. Max epoch is set to 10. We use the Adam optimizer with a learning rate of 2e− 5. Weight
decay is 0.03. We set the filtering threshold to 0.9. When the number of iterations is 1, it only one
alignment set sampling probability to 0.7. When the number of iterations is more than 1, we set the
sampling probability Pold to 0.7 and Pnew to 1.0. The sampling rounds is defaults to 5.

Probs En-De En-Fa En-Hi En-Ro
0.5 17.6 25.9 34.8 26.1
0.7 17.3 25.8 34.5 26.1
0.9 17.7 26.2 35.2 26.5

Table 3: AER with different sampling proba-
bilities.

Rounds En-De En-Fa En-Hi En-Ro
2 17.4 26.2 35.1 26.5
5 17.3 25.8 34.5 25.8
8 17.3 25.7 34.3 25.8

Table 4: The effect of the number of aug-
mented sentences.

4.4 RESULTS

As shown in Table 2, we report the F1 and AER scores on the six language pairs. And Table 2
also includes some widely used algorithms which is not based on pretrain mdoels, such as Giza++
(Och & Ney, 2003), fast-align (Dyer et al., 2013) and eflomal (Östling & Tiedemann, 2016). It can

3https://github.com/cisnlp/simalign
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Layer 0 1 2 3 4 5 6 7 8 9 10 11

En-Hi Baseline 53.4 58.5 61.9 57.4 49.7 45.9 40.4 40.2 39.4 42.2 44.4 46.7
Ours 53.5 55.1 59.0 52.9 45.8 41.2 36.0 35.7 34.5 35.9 37.0 39.1

En-Fa Baseline 47.7 50.4 54.2 47.2 39.2 34.0 29.9 29.2 28.9 30.7 33.6 37.0
Ours 47.6 48.2 52.0 45.8 37.1 30.7 27.2 26.6 26.1 25.8 26.1 28.0

Table 5: Evaluation results of different layers.

be observed that our method improve the performance of three alignment methods on generating
high-quality alignment pairs. And from section 3.2, the standard task-adaptive pretraining is equiv-
alent to Iter 0. With the increase of iteration rounds, our method can constantly improve model
performance. This prove that iterative task-adaptive pretraining is effective. In addition, there is
an impressive trends: The worse the initial performance, the more the improvement. For En-Cs,
En-De and En-Fr, baseline methods perform well and the AER scores are generally lower than 20
percent. After three iterations, the AER scores are reduced by about 1.5 points on average. For
En-Ro, En-Fa and En-Hi, which are relatively low-resource or different morphological language-
pairs, baseline methods perform poorly and AER scores are generally greater than 30 percent.
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Figure 3: The comparison between ours and baseline
cross layers. Lower is better.

After three iterations, the AER scores are
reduced by about 4 ∼ 5 points on average.
This is an exciting result, which doesn’t
need any additional parallel sentences and
gold labels. In the following experiments,
we employ the alignment method Argmax
for further analysis and explore the word
alignment across different layers. Figure 3
and table 5 show that our paradigm con-
sistently improves baseline performance
cross all layers. For both En-Hi and EN-Fa,
the performance of last layer based on our
methods consistently outperforms the best
result of baseline models. So the Corollary
in section 3.3 is valid and our assumption
"this approximate similarity is sufficient to
induce word alignment" is supported by
experiments.

4.5 ANALYSIS

We further explore the effect of sampling probability and the number of augmented sentences on
model performance. We choose XLM-RoBERTa base for multilingual pretrained models and Argmax
as the alignment method. Given the large amount of possible experiments when considering 6
language pairs, we do not present all scores for all languages and we will pick up four of them in most
cases: En-De, an established and well-known dataset, En-Fa and En-Hi, two low-resource languages
written in a different script and En-Ro. And only two rounds of iterative training are performed
(t=0,1) and we only list the final results.

Table 3 shows the Alignment Error Rate in the setting of different sampling probabilities. When the
sampling probability of code-switching is too high or too low, the diversity of augmented sentences
will decline, which may hurt model performance. Table 3 proves this point. Although the final scores
of different sampling probabilities are close, the middle probability 0.7 achieve the best scores cross
four languages. Table 4 shows the effect of the number of augmented sentences. The sampling rounds
is proportional to the number of augmented sentences. From this table, we can infer that the scores
will increase in general when more augmented sentences becomes available. But gains continue to
decay. At the same time, the cost of MLM training will increases with more augmented sentences.
So we set the sampling rounds to 5 without special statements.
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Languages En-De En-Fa En-Hi En-Ro
Baseline 19 29 39 29
NO-CS 18.6 27.1 37.1 27.5
Random 18.4 26.8 36.5 27.3
NO-Filter 17.8 26.4 34.9 26.0
Ours 17.4 25.8 33.8 25.4

Table 6: Ablation study of code-switching strategy.

4.6 ABLATION STUDIES

For ablation study, we choose XLM-RoBERTa base for multilingual pretrained models and Argmax
as the alignment method. We consider three kinds of ablation studies. Table 6 lists the final iterative
results. "NO-CS" means only origin monolingual parallel sentences and there are no code-switched
sentences. "Random" means the pairs used for code-switching are randomly generated and they
are not gold-pairs in most cases. Note that the dataset "Random" also includes origin monolingual
parallel sentences. "NO-Filter" means that we don’t use a threshold to filter the pairs and all aligned
pairs will be employed to augment code-switched sentences. The result of "NO-CS" indicates that
without code-switched sentences, method can improve performance. In fact, it is almost equivalent
to standard task-adaptive pretraining and Iter 0 (section 3.2). The comparison of "Random" and
"NO-CS" shows that the improvement of "Random" mainly comes from origin monolingual parallel
sentences. And the randomly code-switched sentences only bring a very slight boost. The comparison
of "NO-Filter" and "Ours" indicates the filtering the pairs with a threshold is beneficial to model
performance.

5 CONCLUSION

Inspired by the fact that continued pretraining of pretrained models on the unlabeled data of a given
task has been show to be beneficial for task performance, we further design an iterative task-adaptive
pretraining paradigm for word alignment, in which task-adaptive pretraining will be performed not
only before task but also after task. The multilingual models will be continuously finetuned on the
augmented code-switched dataset. The iterative process will promote each other. More accurate
alignment results in higher-quality code-switched sentences. And finetuning on higher-quality code-
switched sentences will encourage pretrained LMs to align representations from source and target
languages by mixing their context information. A better pretrained LMs will obviously improve the
accuracy of alignment. Experimental results on six language pairs and demonstrate that our paradigm
can consistently improve baseline methods.

We are considering a more general paradigm about iterative task-adaptive pretraining and will apply
the paradigm to other token-level tasks such as such as Named Entity Recognition and Parts-of-speech
tagging. And how to establish a connection between the downstream tasks and self-supervised tasks
of pretraining stage is key point, especially for low-resources tasks and languages. In fact, the prompt-
based methods in which downstream tasks are reformulated to language modeling are alternative
solutions. And we are trying to combine our iterative task-adaptive pretraining with prompt-based
methods.
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A APPENDIX

A.1 A PROOF OF MLM ON CODE-SWITCHED DATASET

Proposition Training model with standard masked language modeling on source-language, target-
language and source-target code-switched sentences is approximately optimizing:

csrcxi
∼ exi

∼ eyi
∼ ctgtyi

where csrcxi
represents the contextualized embedding of token xi in source sentence and csrcyi

represents
the contextualized embedding of token yi in target sentence. And exi and eyi are word embeddings
of token xi and yi in vocabulary.

Note Under the existing conditions, we can not derive a strict bound but an approximate conclusion.
Given a ∈ Rn, b ∈ Rn,c ∈ Rn we assume a ∼ b, if the projection components of a and b onto
another vector c are the same: a · c = b · c. We think this is approximately reasonable for word
alignment task, because for word alignments method two words are aligned as long as their similarity
is higher than other words in two parallel sentences and doesn’t need to exceed a fixed number. And
in section 3.3, we give a corollary. Subsequent experiments prove that our assumption is reasonable.

Proof We denote the embeddings of the corresponding original tokens as e1, e2, · · · , eL. The MLM
objective LMLM(x) can be formulated as:

− 1

|M|
∑
i∈M

log
exp (mi · ei)∑|V|

k=1 exp (mi · ek)
= − 1

|M|
∑
i∈M

log

|V|∑
k=1

exp (mi · ek −mi · ei) (6)

where M denotes the set of masked tokens and |V| is the size of vocabulary V .
mi is hidden state of the last layer at the masked position, and can be regarded
as a fusion of contextualized representations of surrounding tokens. Given two sen-
tences: one source-language sentence x = ⟨x1, · · · , xi−1, xi, xi+1, · · · , xn⟩ of length
n and its code-switched sentence x′ = ⟨x1, · · · , xi−1, yi, xi+1, · · · , xn⟩, where ⟨xi, yi⟩
is aligned pair. If we only mask xi in the x and yi in the x′, then xmask =
⟨x1, · · · , xi−1, < mask >, xi+1, · · · , xn⟩=⟨x1, · · · , xi−1, < mask >, xi+1, · · · , xn⟩= x′

mask, the
loss function can be written as

LMLM = Lx+Lx′ = −1

2
(log

|V|∑
k=1

exp (m · ek −m · exi
)+log

|V|∑
k=1

exp (m · ek −m · eyi
)) (7)

This inequality below is easily proved.

max {x1, . . . , xn} ≤ log

n∑
i=0

exi ≤ max {x1, . . . , xn}+ log n (8)

So for

Lx = − log

|V|∑
k=1

exp (m · ek −m · exi
) (9)

We have:

max



m · e0 −m · exi

...
m · exi−1 −m · exi

0
m · exi+1 −m · exi

...
m · e|V| −m · exi


≤ log

|V|∑
k=1

em·ek−m·exi ≤ max



m · e0 −m · exi

...
m · exi−1 −m · exi

0
m · exi+1 −m · exi

...
m · e|V| −m · exi


+log n

(10)

In Ineq.10, 0 is fixed value. So when training model with this loss function, model is optimized to
learn m · ek −m · exi ≤ 0,∀k ∈ |V|. In other words, m · ek ≤m · exi , ∀k ∈ |V|. When k = yi,

14



Under review as a conference paper at ICLR 2023

we have m · eyi
≤ m · exi

. Similarly, for Lx′ , we have m · exi
≤ m · eyi

. So when training
model with loss function LMLM = Lx + Lx′ , model will be optimized to learn m · exi

= m · eyi
.

This equation can’t ensure exi
= eyi

but exi
∼ eyi

to some extent. For standard masked language
modeling, there is a probability that the original token will not be masked and we use csrcxi

to represent
the hidden state of the last layer, which is the contextualized embedding of token xi. So we have
csrcxi
· ek ≤ csrcxi

· exi
, ∀k ∈ |V|. Obviously, exi

∼ csrcxi
. Similarly, if we consider target language

sentence y = ⟨y1, · · · , yi−1, yi, yi+1, · · · , yn⟩, we have eyi
∼ ctgtyi

. So training model with masked
language modeling on source-language, target-language and source-target code-switched sentences is
approximately optimizing:

csrcxi
∼ exi

∼ eyi
∼ ctgtyi
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