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ABSTRACT

Transformers are increasingly employed for graph data, demonstrating competitive
performance in diverse tasks. To incorporate graph information into these models,
it is essential to enhance node and edge features with positional encodings. In
this work, we propose novel families of positional encodings tailored for graph
transformers. These encodings leverage the long-range correlations inherent in
quantum systems, which arise from mapping the topology of a graph onto in-
teractions between qubits in a quantum computer. Our inspiration stems from
the recent advancements in quantum processing units, which offer computational
capabilities beyond the reach of classical hardware. We prove that some of these
quantum features are theoretically more expressive for certain graphs than the
commonly used relative random walk probabilities. Empirically, we show that the
performance of state-of-the-art models can be improved on standard benchmarks
and large-scale datasets by computing tractable versions of quantum features. Our
findings highlight the potential of leveraging quantum computing capabilities to
potentially enhance the performance of transformers in handling graph data.

1 INTRODUCTION

Graph machine learning (GML) is an expanding field of research with applications in chemistry
(Gilmer et al., 2017), biology (Zitnik et al., 2018), drug design (Konaklieva, 2014), social networks
(Scott, 2011), computer vision (Harchaoui & Bach, 2007) and science (Sanchez-Gonzalez et al.,
2020; Xu et al., 2018). In the past few years, significant effort has been put into the design of Graph
Neural Networks (GNNs) (Hamilton). The objective is to learn suitable representations that enable
efficient solutions to the original problem.

To that end, a large number of models have been developed in the past few years (Kipf & Welling,
2016; Hamilton et al., 2018; Veličković et al., 2018). While the prevalent approach for constructing
GNNs relies on the Message Passing (MP) mechanism (Gilmer et al., 2017), this approach exhibits
several recognized limitations, with the most significant being its theoretical expressivity. Indeed,
two graphs that are indistinguishable via the Weisfeiler-Lehman (WL) test will lead to the same MP
Neural Network (MPNN) output (Morris et al., 2019). Another limitation arises from the fact that
MPNNs are more effective when dealing with homophilic data. This is based on the underlying
assumption that nodes that are similar, either in structure or features, are more likely to be related.
A study by (Zhu et al., 2020) demonstrates that MPNNs encounter difficulties when applied to
heterophilic graphs. Finally, MPNNs are prone to over-smoothing (Chen et al., 2020) as well as
over-squashing (Topping et al., 2021). These latter aspects constitute serious limitations for the
datasets that exhibit long-range dependencies (Dwivedi et al., 2022b).

The research community is actively exploring solutions to address these limitations. The key idea
is to expand aggregation beyond neighbouring nodes by incorporating information related to the
entire graph or a more extensive portion of it. Graph Transformers were created according to these
requirements, with success on standard benchmarks (Ying et al., 2021; Rampášek et al., 2022).
Among the myriad of proposed architectures, the Graph Inductive Bias Transformer (GRIT) (Ma
et al., 2023) stands out for its impressive generalization capacity. This stems from its independence
from the MP mechanism and its utilization of multiple positional encodings in its architecture. While
these features make it a good candidate for overcoming the aforementioned limitations, the authors
relied on discrete k-step random walks to initialize the PE tensor. These random walks constitute
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to this day the most widely adopted choice (He et al., 2023; Dwivedi et al., 2022a), since the main
alternative, the matrix of the Laplacian eigenvectors, is invariant by sign flip of each vector, resulting
in 2k possible choices.

The goal of this work is to leverage new types of structural features emerging from quantum physics
as positional encodings. The rapid development of quantum computers during the previous years
provides the opportunity to compute features that would be otherwise intractable. These features
contain complex topological characteristics of the graph, and their inclusion has the potential to
enhance the model’s quality, reduce training or inference time, and decrease energy consumption.

The paper is organized as follows: In Section 2, we provide a concise overview of the existing research
on graph transformers, along with references to the latest developments in quantum graph machine
learning. Section 3 delves into the core theoretical aspects of this work. It covers quantum mechanics
basics for readers unfamiliar with the topic, details the way to construct a quantum state from a graph
and explains why quantum states can provide relevant information that is hard to compute with a
classical computer. Additionally, we introduce our central proposal, a framework for both static and
dynamic positional encoding based on quantum correlations. Finally, Section 4 presents the outcomes
of our numerical experiments and includes discussions of the results.
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Figure 1: Summary of our method. (a) Our hybrid quantum-classical framework utilizes a classical
computer for parameter optimization and employs a hybrid model using a Quantum Processing Unit
(QPU) and a CPU and/or GPU, denoted as classical Processing Unit (cPU). In our quantum graph NN,
we initialize QPU at a quantum state |ψ0⟩, apply a mixing Hamiltonian ĤM evolution for a duration
θ, and utilize a Hamiltonian ĤG evolution for the graph feature map with a duration t. K layers are
used to obtain a sufficiently expressive quantum model. Finally, the output is obtained by measuring
correlators, e.g., ⟨ZiZj⟩. See Section 3.1 for details. (b) Static or trainable PE is constructed for a
graph G via (c) (quantum) random walk (static PE) or a quantum graph NN (static/trainable PE),
which computes quantum correlations. Note that our PEs are not restricted to classical models (such
as the transformer studied in this work) but are also applicable to all quantum models.

2 RELATED WORKS

2.1 GRAPH TRANSFORMERS

Efforts have been made in the community to go beyond MPNNs due to several issues (Zhu et al.,
2020; Chen et al., 2020; Topping et al., 2021). Inspired by the success of transformers in natural
language processing (Vaswani et al., 2017; Alayrac et al., 2022), new architectures of GNNs have
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been proposed to allow an all-to-all aggregation between the nodes of the graphs, and called graph
transformers (GT) (Dwivedi & Bresson, 2020; Dwivedi et al., 2021; Rampášek et al., 2022; Kreuzer
et al., 2021; Zhang et al., 2023; Ma et al., 2023). However, due to the quadratic cost of computing the
attention process, they are not applicable to large-scale graphs of millions of nodes and more. It has
been shown that GTs that include graph inductive biases such as MP modules perform better than
those that do not (Rampášek et al., 2022; Ma et al., 2023).

2.2 POSITIONAL AND STRUCTURAL ENCODING

Positional or structural embeddings are features computed from the graph that are concatenated to
original node or edge features to enrich GNN architectures (either MPNN or GT). These two terms
are used interchangeably in the literature and we denote them as "positional encodings" (PEs) in the
rest of this work. PEs can include random walk probabilities (Rampášek et al., 2022; Ma et al., 2023),
spectral information (Dwivedi et al., 2020; Rampášek et al., 2022; Kreuzer et al., 2021), shortest path
distances (Li et al., 2018), or heat kernels (Mialon et al., 2021). They can also be learned (Dwivedi
et al., 2021). We detail below the most common PEs used in the literature.

Laplacian Eigenvectors. The spectral information of the graph can be used as PE, more precisely
the eigenvectors of the Laplacian matrix. If one takes a line graph, it almost corresponds to positional
embeddings in the transformer architecture for sequences. The main issue of this encoding is to
ensure that the model remains invariant by changing the sign of eigenvectors, which has been solved
by (Lim et al., 2022).

Relative Random Walk Probabilities (RRWP). The authors of (Ma et al., 2023) introduced the
RRWP with which they initialize their model. For a graph G, let A be the adjacency matrix and D
the degree matrix. Let P be a 3 dimensional tensor such that Pk,i,j = (Mk)ij with M = D−1A.
For each pair of node (i, j), we associate the vector P:,i,j , i.e., the concatenation of the probabilities
for all k to get from node i to node j in k steps in a random walk. P:,i,i is the same as the Random
Walk Structural Encodings (RWSE) defined in (Rampášek et al., 2022). The authors of (Ma et al.,
2023) highlight the benefits of RRWP. They prove that the Generalized Distance WL (GD-WL) test
introduced by (Zhang et al., 2023) with RRWP is strictly more powerful than GD-WL test with the
shortest path distance, and they prove universal approximation results of multi-layer perceptrons
(MLP) initialized with RRWP.

2.3 QUANTUM COMPUTING FOR GRAPH MACHINE LEARNING

Using quantum computing for Machine Learning on graphs has already been proposed in several
works, as reviewed in (Tang et al., 2022). The authors of (Verdon et al., 2019) realized learning tasks
by using a parameterized quantum circuit depending on a Hamiltonian whose interactions share the
topology of an input graph. Comparable ideas were used to build graph kernels from the output of
quantum procedures, for photonic (Schuld et al., 2020) as well as neutral atom quantum processors
(Henry et al., 2021). The latter was successfully implemented on quantum hardware (Albrecht et al.,
2023). The architectures proposed in these papers were entirely quantum and only relied on classical
computing for the optimization of variational parameters. By contrast, in what we propose here
quantum dynamics only plays a role in the aggregation phase of a larger entirely classical architecture.
Such a hybrid model presents the advantage of gaining access to hard-to-access graph topological
features through quantum dynamics while benefiting from the power of well-known existing classical
architectures.

3 METHODS AND THEORY

In this section, we outline the process of mapping graphs to a quantum state of a QPU. To extract
graph features, we introduce correlators and define the concept of the ground state for a quantum
graph representation. Finally, we explore an alternative approach for extracting graph features using
quantum random walks (QRW) and their advantages over classical analogues.
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3.1 QUANTUM GRAPH MACHINE LEARNING

The graph as a quantum state. We explain in this subsection how to create a quantum state that
contain relevant information about the graph. More details about quantum information processing
can be found in (Nielsen & Chuang, 2002). The quantum state |ψ⟩ of a system of N qubits
can be represented as a vector of unit norm in C2N . Quantum states are modified through the
action of operators, that can be represented as hermitian matrices of size 2N × 2N . Its dynamics
obeys the Schrödinger equation −id|ψ⟩dt = Ĥ |ψ⟩, where the operator Ĥ is the Hamiltonian of the

system, with solution |ψ(t)⟩ = T exp
[
−i

∫ t
0
Ĥ(τ)dτ

]
|ψ(0)⟩, with T the time-ordering operator.

An operator Ô that can be measured is called an observable, and its eigenvalues correspond to
possible outcome of its measurement. Its expectation value on the quantum state |ψ⟩ is the scalar
⟨Ô⟩ = ⟨ψ| Ô |ψ⟩, where ⟨ψ| is the conjugate transpose of |ψ⟩. The Pauli matrices are defined as
follows: I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

They form a basis of hermitian matrices of size 2× 2. A Pauli string of size N is an operator that
can be written as the Kronecker product of N Pauli matrices. We will note Pauli strings by their
non-trivial Pauli operations. For instance, in a system of 5 qubits, X0Y3 = X ⊗ I ⊗ I ⊗ Y ⊗ I . We
associate a graph G(V, E), to a quantum state |ψG⟩ of |V| qubits containing information about G via a
hamiltonian ĤG of the form

ĤG =
∑

(i,j)∈E

Ĥij (1)

where Ĥij is an Pauli string acting non-trivially on i and j only. We will be focusing on the Ising
hamiltonian ĤI =

∑
(i,j)∈E ZiZj and the XY hamiltonian ĤXY =

∑
(i,j)∈E XiXj +YiYj . We will

note |0⟩ and |1⟩ the two eigenstates (or eigenvectors) of Z with respective eigenvalues 1 and -1, and
we will use

{
|b⟩ =

⊗N
i=1 |bi⟩

}
b∈{0,1}N

as a basis of the 2N -dimensional space of quantum states.

We consider the quantum state obtained by alternated action of p layers of ĤG and a mixing hamilto-
nian ĤM (that doesn’t commute with ĤG , for instance ĤM ∝

∑
i Yi)

|ψG(θ)⟩ =
p∏
k=1

(
e−iĤMθke−iĤGtk

)
e−iĤMθ0 |ψ0⟩ , (2)

where θ = (θ0, t0, θ1, t1, . . . θp) is a real vector of parameters. The choice of these states is motivated
by their similarity with the Trotterized dynamics of a lot of quantum systems(Suzuki, 1976).

Correlation. The correlations (or correlators) Cij of local operators Ôi and Ôj acting respectively
on qubits i and j can be defined either as the expectation value of their product ⟨ÔiÔj⟩, or their
covariance ⟨ÔiÔj⟩ − ⟨Ôi⟩⟨Ôj⟩ (note that the orders matters if Ôi and Ôj don’t commute). In the
rest of the paper, we will indifferently call correlation the two former expressions, and give precisions
when necessary. We will be focusing on the case where Ôi is a Pauli string of length 1 (i.e. Xi, Yi or
Zi).

Ground state. The ground state of a system is defined as the lowest-energy eigenstate of its
hamiltonian (when it is degenerate, one considers the ground state manifold HGS). Ground state
properties are widely studied in many-body physics and their properties depend on the topology of
the graph. Preparing this state is the purpose of quantum annealing (Das & Chakrabarti, 2008). When
using neutral atom quantum processors (Henriet et al., 2020), one can natively address hamiltonians
of the form ĤG =

∑
(i,j)∈E Jij(Zi − αiI)(Zj − αjI), with αi real coefficients. Its eigenstates are

the basis states |b⟩ described above. In the case where αi = 1− δ/(2zi) with zi =
∑
j|(i,j)∈E Jij

and Jij = 1/4, the eigenenergies (or eigenvalues) are E(b) =
∑
i,j∈E bibj − δ

∑N
i=1 bi. When

0 < δ < 1, this is the cost function associated with the maximum independent set problem, a NP-hard
problem (Garey & Johnson, 1979). In the absence of degeneracy-lifting or symmetry-breaking
effects, a quantum annealing scheme would prepare a symmetric, equal-weight superposition of
all maximum independent sets. With that in mind, we will call ground state of the graph the state
|ψGS⟩ = 1√

|HGS |

∑
b∈HGS

|b⟩.
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Classical and Quantum Walks. Quantum walks, as introduced by (Aharonov et al., 1993), differ
fundamentally from classical random walks by evolving through unitary processes, allowing for
interference between different trajectories. These walks manifest in two primary types: continuous-
time quantum walks (CQRW) (Farhi & Gutmann, 1998; Rossi et al., 2017) and discrete-time quantum
walks (DQRW) (Lovett et al., 2010). Discrete classical random walks on G(V, E) use the probability
matrix M = D−1A for node transitions over a walk of length K, resulting in the probability
distribution PK = MKP0 (Aharonov et al., 2001). Note that this approach is utilized in RRWP
encodings (Ma et al., 2023). In the continuous case, CQRW can be viewed as a natural extension of
continuous-time classical random walks (CRW). In CRW, the probability of a walker being at vertex i
and time t is represented as pi(t), which follows the differential equation d

dtpi(t) = −
∑
j Gijpj(t).

Here, the infinitesimal generator Gij = −γ if an edge exists between nodes i and j, and 0 otherwise,
with diagonal elements Gii = kiγ determined by the node degree ki. Considering now a quantum
evolution with a graph Hamiltonian ĤG , given a 2N -dimensional Hilbert space of N qubits, the
Schrödinger equation which governs the evolution of a quantum state |ψG⟩ when projected onto a
state |i⟩ is given as

i
d

dt
⟨i|ψG(t)⟩ =

∑
j

⟨i|ĤG |j⟩⟨j|ψG(t)⟩︸ ︷︷ ︸
Quantum

←→ d

dt
pi(t) = −

∑
j

Gijpj(t).︸ ︷︷ ︸
Classical

(3)

Note the similarity between the differential equations of CQRW and CRW. A quantum analogue
of CRW can be obtained by taking ⟨i|ĤG |j⟩ = Gij . The probabilities are preserved as the sum
of amplitude squared,

∑
i |⟨i|ψG(t)⟩|2 = 1, in the quantum case, instead of

∑
i pi(t) = 1 in the

classical case. This difference between evolution of probabilities(which are real) and evolution of
amplitudes(which are complex) leads to interesting differences between dynamics of classical and
quantum walks. Using this formalism, any quantum evolution can be thought of as a CQRW (Childs
et al., 2002). Notably, quantum walks have demonstrated exponential hitting time advantage for
graphs like hypercubes (Kempe, 2002) and glued binary trees (Childs et al., 2003). These results
have been recently extended for more general hierarchical graphs (Balasubramanian et al., 2023). For
an overview, refer to (Kempe, 2003).

3.2 POSITIONAL ENCODINGS WITH QUANTUM FEATURES

In this section, we detail our proposals to incorporate quantum features in GNN models, and we
discuss the potential benefits and drawbacks. Our methods can be roughly divided in two categories:
quantum features that are used as static positional encodings and are precomputed at the begining of
the procedure and quantum features that can be dynamically trained.

3.2.1 STATIC POSITION ENCODING

Eigenvectors of the correlation on the ground state. We propose to use the correlation matrix
Cij = ⟨ZiZj⟩ on the ground state of the graph defined in Sec. 3.1. Since this matrix is symmetric
with non-negative eigenvalues, it can formally be used in the same place as the Laplacian matrix in
graph learning models. Hence, we use the eigenvectors of this correlation matrix in the same way
Laplacian eigenvectors (LE) are used in other architectures of graph transformers. Instead of taking
the eigenvectors with the lowest eigenvalues as for the Laplacian eigenmaps, we take the ones with
highest eigenvalues, since they are the ones in which most of the information about the correlation
matrix is contained. We expect to face the same challenges about the sign ambiguity (Dwivedi et al.,
2021; Kreuzer et al., 2021), and to implement the same techniques to alleviate them (Lim et al., 2022).

k-particles quantum random walks (k-QRW). In this work, we introduce the k-particles (or
walkers) random walk positional encoding, that can be can be obtained using ĤXY . We note ĤXYk
the XY hamiltonian restricted to the k particles subspace Hk (i.e. the span of states |b⟩ of hamming
weight k, noted |i1 . . . ik⟩, parameterized by k integers i1 . . . ik ∈ {0, 1}k). For a 1-particle QRW,
we calculate the probability [X(1)(t)]ij = | ⟨j| e−iĤ

XY
1 t |i⟩ |2 to find particle at node j coming from

node i after time t. Similarly for a 2-particle QRW, we calculate [X(2)(t)]ij = | ⟨ij| e−iĤ
XY
2 t |ψi⟩ |2,

where |i, j⟩ ∈ ĤXY2 is the state with walkers at nodes i and j and |ψi⟩ ∈ ĤXY2 the initial state. As
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choices for the initial distribution we propose to use some localised state |ψinit⟩ ∝ |ij⟩, or the uniform
distribution over all pairs of nodes |ψinit⟩ ∝

∑
(i,j)∈V2|i̸=j |ij⟩, or the uniform distribution over the

edges of the original graph |ψinit⟩ ∝
∑

(i,j)∈E |ij⟩. From these we obtain the positional encodings
using Pij = [I,Xnw(t1), X

nw(t2)...X
nw(tK)]ij , where nw = 1, 2 is the number of walkers. From

the symmetries of ĤXY , this 2-QRW can be viewed as a 1-QRW on the set of 2-particle states (see
A.3.2). From there, we consider a discrete 2-particle quantum-inspired RW (2-QiRW) encoding that
reads Pij =

[
⟨ij| (ĤXY2 )k |ψinit⟩ |k ∈ [0,K]

]
ij

.

3.2.2 LEARNABLE POSITIONAL ENCODINGS

Here we consider a specific case of equation 2, with p = 1, θ0 = −θ1 = θ, ĤM ∝
∑
i∈V Yi and

ĤG =
∑

(i,j)∈E ZiZj − δ
∑
i∈V Zi. A similar setting was implemented on neutral atom QPU in

(Albrecht et al., 2023), where ĤM ∝
∑
i∈V Xi + εĤG (with ε ≲ 1) due to hardware constraints. We

then use the covariance matrix of the number of occupation observable Ôi = 1
2 (I−Zi), which equals

one when the i−th atom is in its excited state, and 0 otherwise. This is one of the few particular cases
where we can recover a closed formula for the correlation matrix used as PE, see Appendix A.2.1 for
its full expression.

The goal in this section is to learn the positional encoding by training a GNN, or any permutation
equivariant NN, to find an optimised value of the parameters (θ, t and δ) involved in our PE. The
training of this module is carried out jointly with that of the transformer layers, and the input PE is
updated after each backward pass. This allows a custom value of the parameters for each graph in the
dataset. To this end, we train a GNN PW(A,X), with A being the adjacency matrix, X the feature
matrix of the nodes in the graph, and W the parameter set of the NN. We obtain the PE parameters as
(θ||t||δ) = PW(A,X) ∈ R3×k (we learn k triples, encoding as many correlations matrices, which
we concatenate in one tensor as it is done in the original GRIT paper). Here we chose X as the
pairwise graph distance matrix between the nodes, such that we only consider its structural features.
Since the positional encoding discussed here is obtained from a special case of QAOA, a key aspect
of this approach concerns the initial values taken by θ, t and δ (Egger et al., 2021). Among the many
possible initialization protocols, the authors in (Jain et al., 2022) used GNN to find a warm start
in the non-convex energy landscape, prior to an optimization through quantum annealing, for the
Max-Cut problem. In our case, the training is carried out classically (only because we recover a
closed formula), and its extension as a quantum NN module in a transformer-like architecture is yet
to be investigated in future works.

3.3 GNN MODELS WITH QUANTUM AGGREGATION

In the previous subsection, we explained how to integrate positional encodings coming from a
quantum processing unit into a graph transformer of graph neural network model. In this subsection,
we propose to directly include the quantum correlations as a trainable part of the model. Given H l

the node features matrix at the layer l, the node features matrix at the next layer is computed with the
following formula :

H l+1 = σ((A(θ)H l||H l)W ) (4)

where A(θ) is the quantum attention matrix. Given a quantum graph state, we
compute for every pair of nodes (i, j) the vector of 2-bodies observables Cij =
[⟨ZiZj⟩, ⟨XiXj⟩, ⟨YiYj⟩, ⟨XiZj⟩, ⟨XiYj⟩, ⟨YiZj⟩, ⟨XjZi⟩, ⟨XjYi⟩, ⟨YjZi⟩]T . The quantum atten-
tion matrix is computed by taking a linear combination of the previous correlation vector and
optionally a softmax over the lines. More details are given in the Appendix B.

3.4 THEORETICAL ARGUMENTS FOR QRWS

Two-interacting-particle QRW are more expressive than RRWP. WL tests (Weisfeiler & Leman,
1968) and their extensions (Morris et al., 2019; Grohe & Otto, 2015; Grohe, 2017) are widely used
algorithms for distinguishing graphs (Graph Isomorphism). A standard WL test generates node
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colorings as a function of the node neighbourhood. An extension of this called the generalized
distance WL (GD-WL) test had been introduced by (Zhang et al., 2023) as a generalization of the
WL isomorphism test. Let G be a graph on a set of vertices V and let d(u, v) be the distance between
nodes u, v. Just like the WL test, the GD-WL test starts with an initial color h0(u) for a node u.
Then at iteration l, the color hl(u) is computed by hl(u) = HASH({(hl−1(v), d(u, v)), v ∈ V} where
HASH is a hash function. The algorithm stops when the colors don’t change after an iteration. The
authors of Zhang et al., 2023 show that if equipped with some distances such as the shortest path
distance (SPD), the GD-WL test is strictly more powerful than the WL test. The authors of (Ma et al.,
2023) show that the GD-WL test equipped with RRWP is strictly more powerful than the GD-WL
test with the SPD distance. We can show however (see Appendix A.3.1 for a proof), that GD-WL test
with RRWP embeddings cannot distinguish non-isomorphic strongly regular graphs (see (Gamble
et al., 2010) for the definition of strongly regular graphs) :

Theorem 1 GD-WL test with RRWP embedding fails to distinguish non isomorphic strongly regular
graphs. 2 particle-QRW can distinguish some of them.

4 EXPERIMENTS

We performed several experiments to assess the capabilities of quantum features to improve existing
GNN models. We report in the following subsections the most significant results. Less conclusive
experiments are detailed in Appendices C.4, C.3.

4.1 EXPERIMENTS ON RW MODELS

In this subsection, we test concatenating the QRW encodings to the RRWP in the GRIT model (Ma
et al., 2023). We compute the (continuous) 1-CQRW for K random times and the discrete 2-QRW for
K steps. Those encodings are computed numerically since they are still tractable for graphs below
200 nodes compared to the higher order k-QRW ones. We benchmark our method on 7 datasets from
(Dwivedi et al., 2020), following the experimental setup of (Rampášek et al., 2022) and (Ma et al.,
2023). Our method is compared to many other architectures and the results directly taken from (Ma
et al., 2023). We do not perform an extensive hyperparameter search for each architecture and only
run ourselves the GRIT model by taking the same hyperparameters as the authors. The experiments
are done by building on the codebase of (Ma et al., 2023) which is itself built on (Rampášek et al.,
2022). More details about the protocol and hyperparameters can be found in C.1, and more details
about the datasets can be found in Appendix D.1. The results are included in Table 1. Our methods
performs better on ZINC, MNIST and CIFAR10 than all others, and comes second for PATTERN
and CLUSTER. We also benchmark our methods on large-scale datasets, ZINC-full (a bigger version
of ZINC (Irwin et al., 2012)) and PCQM4MV2 (Hu et al., 2021). As before we only compute GRIT
and report other results from (Ma et al., 2023). Our methods performs the best among all others.

4.2 EXPERIMENTS ON LEARNING THE POSITIONAL ENCODING

Here we discuss results related to the learned parameters of the quantum PE, which were mainly run
on the ZINC dataset. We observe from the comparison of these results, displayed in the right part of
table 2, and those of random parameters (table 1) that the performances are significantly lower in
this case. The main reason for this is the incapacity of the proposed model, to efficiently explore the
space of the encoded parameters θ, t and δ. More details about this are provided in the Appendix A.1
Given such limitations, the question arises as to whether the proposed positional encoding, via learned
or randomly fixed parameters, plays any role in the training of the transformer model, or whether the
attention scheme proposed in (Ma et al., 2023) along with the graph external features is enough to
obtain the same performances. For that we compare our results with three different GRIT+RRWP
models on randomized Zinc datasets. In the first one, we remove the structural information while
keeping the degree sequence in each graph (configuration model of the graph (Newman, 2010)),
in the second we remove any trace of structural information by randomly replacing each graph in
the dataset by a random graph with the same number of nodes and edges, and in the final case we
keep the structural information but randomly permute the feature vectors of each graph, such that we
isolate the contribution of the structural features from that of the external features. In each case, we
benchmark these results using a 2 layered graph neural network (with GAT convolutional layers), to
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Table 1: Test performance in five benchmarks from (Dwivedi et al., 2020). We show the mean ± s.d.
of 4 runs with different random seeds as in (Ma et al., 2023). Highlighted are the top first, second,
and third results. Models are restricted to ∼ 500K parameters for ZINC, PATTERN, CLUSTER
∼ 100K for MNIST and CIFAR10. We compare our model to our run of GRIT and indicate the
results obtained by the authors for information. Figures other than the last 3 lines are taken from (Ma
et al., 2023). Models in bold are our models.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑

GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GAT 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
DGN 0.168 ± 0.003 − 72.838 ± 0.417 86.680 ± 0.034 −
GIN-AK+ 0.080 ± 0.001 − 72.19 ± 0.13 86.850 ± 0.057 −
SAN 0.139 ± 0.006 − − 86.581 ± 0.037 76.691 ± 0.65
K-Subgraph SAT 0.094 ± 0.008 − − 86.848 ± 0.037 77.856 ± 0.104
EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
GPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
GRIT 0.059 ± 0.002 98.108 ± 0.111 76.468 ± 0.881 87.196 ± 0.076 80.026 ± 0.277
GRIT (our run) 0.060 ± 0.002 98.164 ± 0.054 76.198 ± 0.744 90.405 ± 0.232 79.856 ± 0.156

GRIT 1-CQRW 0.058 ± 0.002 98.108 ± 0.111 76.347 ± 0.704 87.205 ± 0.040 78.895 ± 0.1145
GRIT 2-QiQRW 0.059 ± 0.004 98.204 ± 0.048 76.442 ± 1.07 90.165 ± 0.446 79.777 ± 0.171

Table 2: Left part : test performance on ZINC-full (Irwin et al., 2012) and PCQM4Mv2. For
ZINC-full, we show the mean and s.d of 4 runs with different random seeds and we limit the model
to ∼ 500K parameters. For PCQM4Mv2 we show the output of a single run due to computation
time. We compare our model to our run of GRIT and indicate the results obtained by the authors for
information. Figures other than GRIT are taken from (Ma et al., 2023). Highlighted are the top first,
second, and third results. Right part: results related to the Isolation of the effects of structural and
external graph features in the GRIT model, on the small zinc dataset. For the result with ∗ only 55
epochs were used.

Method Model ZINC-full PCQM4Mv2 Model Zinc
(MAE ↓) (MAE ↓) (MAE ↓)

MPNNs

GIN 0.088 ± 0.002 0.1195 − −
GraphSAGE 0.126 ± 0.003 − − −
GAT 0.111 ± 0.002 − − −
GCN 0.113 ± 0.002 0.1195 − −

PE-GNN SignNet 0.024 ± 0.003 − − −

Graphormer 0.052 ± 0.005 0.0864 Rand. feats +RRWP 0.393 ± 0.012
Graph Graphormer-URPE 0.028 ± 0.002 − Rand. struct. +RRWP 0.245 ± 0.009

Transformers Graphormer-GD 0.025 ± 0.004 − Config. model+RRWP 0.156 ±0.004
GPS-medium − 0.0858 2 layers GAT+QCorr 0.134 ± 0.017
GRIT (Ma et al., 2023) 0.023 ± 0.001 0.0859 2 layers SAGE+QCorr 0.130 ± 0.003
GRIT (our run) 0.025 ± 0.002 0.0842 2 layers Transf. +QCorr 0.127 ± 0.014
GRIT 1-CQRW (ours) 0.025 ± 0.003 0.0947∗ 2 layers GCN +QCorr 0.111 ± 0.003
GRIT 2-QiQRW (ours) 0.023 ± 0.002 0.0838 − −

encode the parameters of the PE tensor. The results of these comparisons are showcased in the right
part of table 2, and further details about the randomization process in Appendix A.2

4.3 SYNTHETIC EXPERIMENTS

In this section, we provide two examples of datasets with a binary graph classification task for which
the use of the correlation matrix on the ground state as defined in 3.2.1 is more powerful than other
commonly used features like the eigenvectors of the laplacian matrix or the diagonal of the random
walk matrix. We name our datasets special pattern (S-PATTERN) and cross ladder (C-LADDER),
and we provide a detail of their construction in appendices D.1.1 and D.1.2. The idea is to construct
graphs that will exhibit very different Ising ground states but similar spectral properties or random
walk transition probabilities. We illustrate the differences between the encodings in Appendix C.2.
We train classical models on these datasets with LEs and random walk embeddings (RWSE) as node
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features, and we compare it to the same models with eigenvectors of the correlation on the ground
state. We experiment with GCN and GPS with many hyperparameters combinations. More details
on the protocols can be found in C.2 We also benchmark the GRIT model with RRWP. The results
are shown in table 3. The quantum encoding models achieve 100% accuracy in both cases whereas
the models with LE or RWSE achieve only 57% maximum. The GRIT model achieves 78% for the
S-PATTERN, and 100% for the C-LADDER.

Table 3: Results on synthetic data. We show the accuracy on the test set for each datasets. For
each positional encoding, we show the score of the best model among all the combinations of
hyperparameters tested. LE : Laplacian Eignevectors, RWSE: Random Walk Structural Encodings,
Q: Quantum, eigenvectors of the correlation on the ground state.

Dataset (GCN/GPS)-LE (GCN/GPS)-RWSE GRIT-RRWP (GCN/GPS)-Q

C-LADDER 57 56 78 100
S-PATTERN 56 55 100 100

4.4 DISCUSSION

We performed several experiments comparing the quantum encodings to the classical ones. Including
the quantum walk features into state of the art models improves their performances on most of the
datasets tested. It is not surprising that the method works well for datasets for which random walks
are known to be relevant features like ZINC (Rampášek et al., 2022). We only limited ourselves
to versions of quantum features that are efficiently computable, and we were able to show a small
gain in performances compared to state of the art models. It is then believable that using quantum
features that cannot be classically accessible could lead to a great improvement of models, if quantum
hardware can be made widely available. We were able to engineer artificial datasets with for which
classical approaches have difficulties to perform the associated binary classification tasks. GPS
model fails both of the tasks whereas GRIT model is successful on the S-PATTERN task and mildly
successful on the C-LADDER task. We think GRIT is successful on the S-PATTERN dataset because
the degree distribution is different for the two classes, and GRIT specifically uses a degree scaler in its
architecture. We have addressed, albeit at a preliminary stage, the issue of learning parameters related
to the positional encoding. We have shown that even with non-optimal parameters (noted QCorr on
the right-hand side of the table 2), the model still performs better than when undergoing structural
randomization, which underlines the discriminative capacity of the QCorr positional encoder, and
that the performance of the GRIT-QCorr model is not exclusively due to the graph external features.

5 CONCLUSION

In this paper we have investigated how quantum computing architectures can be used to construct new
families of graph neural networks. This study involved measuring observables like correlations and
probabilties for a quantum system whose hamiltonian has the same topology as the graph of interest.
We then integrated these observables as positional encodings and used them in different classical
graph neural network architectures. We also used them as attention layers in graph transformers. We
proved that some positional encodings that use quantum features are theoretically more expressive
than ones based on simple random walk, on certain classes of graphs. Our experiments show that state
of the art models can already be enhanced with restricted quantum features that are classically efficient
to compute. This study provides strong indications that the full leverage of quantum hardware can
lead to development of high-performance architectures for certain tasks. In particular, Neutral Atom
quantum hardware (Henriet et al., 2020) would be particularly suited to the type of time-dependent
Hamiltonian we described here. Furthermore, we can create artificial classification tasks that are easily
solvable with quantum enhanced models while classical models struggle. While the exact capabilities
of our approach have to be explored, the results we obtain show that quantum enhanced GNNs are a
promising family of models that could be fully exploited with near term quantum hardware.

9
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REPRODUCIBILITY STATEMENT

The code to reproduce the experiments discussed in the main text is included in the supplementary
materials with indications to run it. We also detail in the appendices C.1 C.2 C.4 the details of the
protocols.
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A METHODS AND THEORY

A.1 LEARNING POSITIONAL ENCODINGS

Here we examine the responsiveness of the model presented section 3.2.2 to the initial values of θ, t,
and δ. To do so, we compare the distributions of the 3× k parameters before and after training the
transformer model. In our case, these initial values are directly related to the initial values of the PW

model parameters, as well as its architecture.
This comparison is summarized in figure 2. We can see on the top figures of fig.2 that the initial
variances of θ, t, and δ are small (0.03) which leads to a distribution of the values of the positional
encoding that is highly peaked around zero (green curves) either for the diagonal elements (bottom
left of fig.2) with a variance of a magnitude of 10−10 or the off diagonal elements (bottom right of
fig.2) with a variance of a magnitude of 10−8.

Figure 2: The probability density estimation (PDE) of the parameters output by the PW model
before (green curve) and after (blue curve) training. In the top figures we have the distributions of
(from left to right) θ, δ and t normalized by their respective variances. The bottom figures show the
distributions of the QCorr positional encoding (obtained from the Ising Hamiltonian) resulting from
such parameters for the diagonal elements (bottom left figure) and off-diagonal elements (bottom
right figure). The green curves correspond to the distribution of the PE obtained from the model
before the training, and the blue curves those from the trained model. Here again, the distributions
are normalized by their respective variances. All the PDEs are obtained using a Gaussian kernel.

Although these distribution become wider after the training of the model, since the variance doubles
in each of these distributions as we can see it in all three of the top curves of fig.2, and even gains a
factor of 100 in the distribution of the elements of the positional encoding (bottom curves in fig.2),
it still results in very small values in the latter case. We can see from fig.3b that the gray band
delimiting the variance around the mean value of each of the parameters θ (blue), t (red) and δ(green)
includes only two regimes, and both are very close to zero, whereas for larger randomly extracted
variances, we observe multiple regimes in which the positional encoding values display more diverse
behavior fig.3a. In order to exploit this more diversified regime, we can either set a relative scaling
between the output values of the PW encoder, or fix its initial parameters appropriately, so that
its outputs benefit from a higher variance. The former option is more compatible with a potential
implementation of such approaches on real neutral-atom QPU hardware (Henriet et al., 2020), and
requires further study, which relies on considerations from the quantum phase transitions of the Ising
model (Boel & Kasteleyn, 1978; Dutta et al., 1996; Suzuki et al., 2013), to be properly addressed. It
is not discussed in this paper and will be a a key aspect of future work.
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(a)

(b)

Figure 3: In (a) we have the values of the QCorr PE (all the values in the tensor are superposed in
this figure) for a set of parameters θ, t and δ chosen randomly from a normal distribution of zero
mean and fixed variance (of arbitrary values 1, 2 and 2.5). The blue curve shows the values of the
PE when θ varies while t and δ are fixed, the red curve is for varying t and the green curves for
varying δ. The grey vertical tape indicates the variance of the normal distribution. In (b) we plot the
same quantities, for the adjusted parameters after training. Here we used a 2 layered GAT model
(Veličković et al., 2018) as a parameter encoder. In each case, we used a batch of 32 graphs from the
Zinc (Gómez-Bombarelli et al., 2018) dataset to display these results

A.2 DATA RANDOMIZATION

Here we describe the different randomization processes that we use in order to evaluate the contri-
butions of the positional encoding and the external features in the model’s results. Each process is
summarized in figure 4

1. The first model is trained on a dataset where each graph is replaced by its configuration model
(Newman, 2010). The graphs in this model are obtained by randomizing structural features,
more precisely by arbitrarily rewiring pairs of edges (so-called double edge swapping), thus
completely destroying the graph’s structural information, with the exception of its degree
sequence. A model trained on such data only receives relevant information from the external
features associated with the dataset. An example of a single double edge swap is represented
in figure 4a.

2. A second model is trained in an opposite way, by randomly permuting the elements of the
external features vector, while keeping the structural information intact (no double edge
swap is performed). A model trained in such data only receives relevant information from
the positional encoding, here kept as the classical RRWP random walks tensor. An example
of such randomization is given on figure 4c

3. In order to separate the contribution of the external features from that of the degree sequence
(which is explicitly exploited in the GRIT model), we add one more structural randomization
in which we do not keep the degree sequence anymore. The only structural feature conserved
in this case is the graph density. To do so, we replace each graph in the dataset by a graph
with a graph chosen randomly from the set Gn,m of all graphs with the same number of
nodes n and the same number of edges m, thus removing the information related to the
degree sequence. An example of such randomization if provided in figure 4b
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(a) (b) (c)

Figure 4: (a) An example of one double edge swap, the configuration model related to the input
graph is obtained after a fixed (large) number of edge swaps. (b) a random graph picked from
the class of Gn,m graphs with n nodes and m edges (identical to those of the input graph). (c) a
randomization that only concerns the external features (here represented at node level), in which each
vector undergoes a random permutation of its elements.

A.2.1 FORMAL EXPRESSION FOR THE CORRELATION MATRIX OF THE ISING HAMILTONIAN

Here we consider a specific case of the equation 2 , with p = 1, θ0 = −θ1 = θ, ĤM =
∑
i∈V Yi and

ĤG =
∑

(i,j)∈E ZiZj − δ
∑
i∈V Zi.

|ψG(θ, t)⟩ = eiθĤM e−itĤG e−iθĤM |ψ0⟩ ,

We then compute the covariance matrix of the number of occupation observable n̂i = 1
2 (I + Zi),

obtained from ⟨ninj⟩ − ⟨ni⟩⟨nj⟩, where ⟨ninj⟩ = ⟨ψG | n̂in̂j |ψG⟩.
In order to emphasise the structure of the expression, we introduce

wij(θ, t) =
(
cos2 θ + sin2 θ eiJijt

)
(5)

and

ϱ
(δ)
i (θ, t) = eiδt

∏
j

wij(θ, t), (6)

Introducing
w±
ij(θ, t) =

∏
l∈Nij∪{i,j}

cos2 θ + sin2 θ ei(Jil±Jjl)t

the correlation between densities at i and j can then be expressed as

⟨ninj(t)⟩ − ⟨ni(t)⟩⟨nj(t)⟩ = 4 sin4 θ cos4 θ ℜ
{[
ϱ
(δ)
i (θ, t) + ϱ

(δ)
j (θ, t)

] [
1− wij(θ, t)−1

]
+

1

2

[
1− eiJijtw+

ij(θ, t)
−1

]
ϱ
(δ)
i (θ, t)ϱ

(δ)
j (θ, t)

+
1

2

[
1− w−

ij(θ, t)
−1

]
ϱ
(δ)
i (θ, t)ϱ

(δ)
j (θ,−t)

}
.

where ϱ(δ)j (θ,−t) is equal to the complex conjugate of ϱ(δ)j (θ, t). This is uniformly equal to zero if i
and j are not neighbours and do not share any neighbours, and has peaks whenever t = k π

Jil±Jjl or
t = k π

Jij
for k ∈ Z.

A.3 THEORY

A.3.1 PROOF OF THEOREM 1

Strongly regular graphs Gamble et al., 2010 are graphs of N vertices such that
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• all vertices have the same degree k
• each pair of neighboring vertices has the same number of shared neighbors λ
• each pair of non-neighboring vertices has the same number of shared neighbors µ

One can show (Shiau & Joynt, 2003; Gamble et al., 2010) that for strongly regular graphs, the powers
of the adjacency matrix A can be expressed as

An = αnI + βnJ + γnA

where αn, βn, γn only depend on N, k, λ, µ. I is the identity matrix, J is the matrix full of 1s.
The degree matrix is also equal to kI , then (D−1A)n = An/kn.
Hence the information about distance contained in Puv for strongly regular graphs is the same as
in their adjacency matrices. Therefore, for strongly regular graphs, the GD-WL with RRWP test is
equivalent to the WL test.
Furthermore, (Bodnar et al., 2021) proved that strongly regular graphs cannot be distinguished by the
3-WL test. Therefore GD-WL test with RRWP cannot distinguish non isomorphic strongly regular
graphs.

We now show empirically that the GD-WL test with discrete 2-QiRW can distinguish between an
example of two non-isomorphic strongly regular graphs with N = 16, k = 6, λ = 2, µ = 2, example
also taken by (Bodnar et al., 2021).
Those two graphs named G1 and G2 are shown figure 5, and the data are taken from (Spence). In
order to do this, we calculate the distance matrix for the GD-WL test using the 2-QiRW encoding for
an arbitrary K > 2. We compute the distance between node i and node j,

Dij =
[
⟨ij| (ĤXY2 )K |ψinit⟩ |k ∈ [0,K]

]
ij

where ψinit is the uniform distribution over all edges of the graph. We perform the GD-WL test with
K = 5000 and successfully distinguishes the two graphs.
We illustrate in figure 5 the distance between the encodings of the two graphs. We show the norm
of the difference between the vectors consisting of the encoding flattened and sorted such that the
measure is invariant with respect to the initial labeling. The code is available in the supplementary
material to reproduce the experiment.

G1

G2

Figure 5: Two non-isomorphic strongly regular graphs G1 and G2 with N = 16, k = 6, λ = 2, µ = 2
from (Bodnar et al., 2021). Difference between the discrete 2-QiRW encodings of G1 and G2. We
additionally plot the difference between G1 and a permutation of labels of G1 to emphasize the
difference.
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A.3.2 STATE GRAPHS

Given a quantum system described by a hamiltonian Ĥ, acting on a Hilbert space H, and a basis
{|ai⟩}Ni=1 of H, we define a state graphs(Henry et al., 2021) GĤ = (V, E) in the following way :

• Each node i in V is associated with a state |ai⟩.
• The set of edges E contains each pair of nodes (i, j) such that ⟨j| Ĥ |i⟩ ≠ 0.

The dynamics of the quantum system can then be seen as a QRW on GĤ, where the (complex)
hopping rate from node i to node j is given by ⟨j| Ĥ |i⟩. The XY model preserves the number of
excitations, therefore if one chooses {|ai⟩} =

{
|i1 . . . ik⟩ , (i1, . . . , ik) ∈ {0, 1}k

}
as a basis, then

the graph splits into N + 1 non-overlapping subgraphs Gk, each corresponding to a different number
of particles k (or hamming weights), as illustrated in figure 6. If the system is initiated in a state with
k paticles, then its dynamics will be restricted to Gk.

1 2 3 4 5 6 7

Figure 6: State graphs for a XY model on an arbitrary graph of 8 nodes. Gi contains all states with i
particles (figure taken from (Henry et al., 2021)).

B GRAPH TRANSFORMER WITH QUANTUM CORRELATIONS

This section presents one of our proposal GTQC (Graph Transformer with Quantum Correlations),
an architecture of Graph Neural Network based on Graph Transformers and incorporating global
graph features computed with quantum dynamics. A global view of the algorithm is represented on
figure 7. Representation learning on graphs using neural network has become the state of the art of
graph machine learning (Wu et al., 2020). Scaling deep learning models has brought lots of benefits
as shown by the success of large language models (Brown et al., 2020; Alayrac et al., 2022). The
goal was to bring the best of both worlds, meaning large overparameterized deep learning models,
and structural graph features intractable with a classical computer. The architecture we propose only
uses nodes features, but similar techniques could be implemented for edges features.

B.1 TRANSITION MATRIX FROM QUANTUM CORRELATIONS

Here we develop a method to compute a parameterized transition matrix or quantum attention matrix
from the correlations of a quantum dynamic. It is done with a quantum computer, or Quantum
Processing Unit (QPU). This matrix will later be used in the update mechanism of our architecture.
Once the quantum attention matrix is computed, the rest of the architecture is purely classical, and
all existing classical variations could be implemented. Finally, the quantum attention matrix is by
construction equivariant to a permutation of the nodes.

We consider a parameterized graph state as defined in equation 2, parameterized by the trainable
parameter θ = (θ0, t0, θ1, t1, . . . θp), and noted |ψ(θ)⟩. θ will be called the quantum parameters in
the rest of the section. We then compute for every pair of nodes (i, j) the vector of 2-bodies observ-
ables Cij = [⟨ZiZj⟩, ⟨XiXj⟩, ⟨YiYj⟩, ⟨XiZj⟩, ⟨XiYj⟩, ⟨YiZj⟩, ⟨XjZi⟩, ⟨XjYi⟩, ⟨YjZi⟩]T where
⟨O⟩ = ⟨ψ(θ)|O |ψ(θ)⟩.
The quantum attention matrix is computed by taking a linear combination of the previous correlation
vector and optionally a softmax over the lines.

A(θ)ij = γTCij (7)

A(θ)ij = softmax(γTCij) (8)

where γ is a trainable vector of size 9. Multiple correlators are measured to enrich the number of
features that can be extracted out of the quantum state. Limiting ourselves to e.g ⟨ZiZj⟩ might be
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Figure 7: Overview of our model. The graph is translated into a hamitonian that will drive a quantum
system. After a parameterized evolution, the correlations are measured and aggregated into a single
attention matrix.

inefficient because ⟨ψf |ZiZj |ψf ⟩ could be written XX† where X is a matrix with row i equal to
(Zi |ψf ⟩)†. The resulted weight matrix is therefore a symmetric positive semi-definite matrix, and
can be reduced by a Choleski decomposition A = LLT where L is a real matrix of shape N ×N .
The same model can then be constructed by learning the matrix L even though it is unclear if that
would be efficient.

B.2 UPDATE MECHANISM

The quantum weight matrix previously computed is used as a transition matrix, or attention matrix,
in the update mechanism of our model. Given H l the node features matrix at the layer l, the node
features matrix at the next layer is computed with the following formula :

H l+1 = σ((A(θ)H l||H l)W ) (9)

where σ is a non-linearity,H is of size (N×d) where each row represents a node feature of dimension
d, W is a learnable weight matrix of size (2d× dh), A(θ) is the attention matrix with parameters θ
computed in B.1 and || is the concatenation on the columns. With the same approach as Transformers
or Graph Attention Networks, one can use several attention heads per layer to improve the expressivity
of the architectures. The update formula is given by H l+1 =

∣∣∣∣Nheads

i
HEADi(H

l).

where each head is computed with the formula B.2. The total dimension of the feature vector is
Nheadsdh. Each head has a different quantum circuit attached, and can be computed in parallel if one
possesses several QPUs.
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B.3 EXECUTION ON A QUANTUM DEVICE

We provide here some precisions on how our model would be implemented on quantum devices.

Decoupling between quantum and classical parts
The parameters of the quantum states and the classical weight parameters are independent in our
algorithm. One can then asynchronously measure all the quantum states of the model and run the
classical part. This may be particularly important for NISQ implementation since the access of
QPUs are quite restricted in time. Furthermore, the gradients of the classical parameters depend
only on the correlation matrices, so they can be easily computed with backpropagation without any
supplementary circuit run.

Training the parameters of the quantum state
Computing the gradients of parameterized quantum circuits is a challenge source of numerous
research in the quantum computing community (Kyriienko & Elfving, 2021; Wierichs et al., 2022;
Banchi & Crooks, 2021). Finite-difference methods fail because of the sampling noise of quantum
measurements and the hardware noise. Some algorithms named parameter-shift rules were then
created to circumvent this issue (Mitarai et al., 2018). In some cases, the derivative of a parameterized
quantum state can be expressed as an exact difference between two other quantum states with the
same architecture and other values of the parameters.

We detail here how we would compute the gradient in a simple case of our architecture. Let Ĥ be a
hamiltonian, Ô an observable, |ψ0⟩ an initial state. We introduce

|ψ(θ)⟩ = U(θ) |ψ0⟩ = exp(−iθĤ) |ψ0⟩ (10)

f(θ) = ⟨ψ(θ)| Ô |ψ(θ)⟩ (11)

It is known (Wierichs et al., 2022) that f can be expressed as a trigonometric polynomial

f(θ) =
∑
ω∈Ω

aω sin(ωθ) + bω cos(ωθ) (12)

where Ω is a finite set of frequencies whose values are equal to the gaps between eigenvalues of Ĥ. In
the case of Ĥ = ĤM , the frequencies are the integers between 0 and N . One can then evaluate f on
2N + 1 points and solve the linear equations to determine {aω}, {bω} and the derivative of f . This
is the same for the ĤI Hamiltonian which associated frequencies are the integers between 0 and |E|.
Alternate training
At the time of this work, quantum resources are very expensive, so we want to limit ourselves in
the number of access to the QPU. One way to do so is not to update every parameter at each epoch.
Typically the gradients of the quantum parameters are expensive to compute so the update would
be less frequent. Due to the decoupling between the quantum and classical parameters, one is able
to compute the gradients of the weights matrix with only the quantum attention matrices stored in
memory.

Random parameters
Optimizing over the quantum parameters can be costly and ineffective with current quantum hardware.
Even with emulation, back-propagating the loss through a system of more than 20 qubits is very
difficult. We encounter memory errors for more than 21 qubits on our A100 GPUs, even though our
implementation is certainly not optimal. Therefore we propose an alternative scheme to our model, to
help with both actual hardware implementations and classical emulation.

The main idea in the spirit of (Rahimi & Recht, 2008) is to evaluate the attention matrices on many
random quantum parameters, and only training the classical weights. From a model f(x;W, θ) =∣∣∣∣∣∣Nheads

i
σ((A(θi)H

l||H l)Wi) with one layer, we would normally find the parameters that minimize
a loss between inputs x and labels y

W ∗, θ∗ = argmax
W,θ

M∑
i=1

l(f(xi;W, θ), yi) (13)
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Instead, we create a model with more heads and fixed random values. θ′ expressed as f(x;W, θ′) =∣∣∣∣∣∣N ′
heads

i
σ((A(θ′i)H

l||H l)Wi) and we minimize only on θ

W ∗ = argmax
W

M∑
i=1

l(f(xi;W, θ
′), yi) (14)

B.4 SPECTRAL VERSION OF OUR MODEL

The spectral version of our model consists of formally identify the correlation matrix C with the
laplacian matrix in the formulas of the previous sections. This replacement is possible because the
correlation matrix has the key properties to be symmetric and positive semi-definite just like the
Laplacian, so all the expressions have a proper definition. If we noteC = VcΛcV

T
c with Vc orthogonal

and Λc diagonal, we can define pseudo-Fourier transform, pseudo-convolution and pseudo-filtering
operation by

f̃ = V ⊤
c f (15)

f ∗ g = V ⊤
c ((Vcf)⊙ (Vcg)) (16)

g = γθ(C)f = γθ(VcΛcV
⊤
c )f = Vcγθ(Λc)V

⊤
c f (17)

These definitions come from (Shuman et al., 2013; Bruna et al., 2013; Defferrard et al., 2016). The
analogy we drew between the correlation matrix and the Laplacian is only a formal one, hence
the term "pseudo-Fourier". Indeed, the correlation matrix has not the same characteristics as the
Laplacian. People came up with the previous formalism in order to generalize signal processing
to arbitrary graphs (Shuman et al., 2013). Convolution operators were well defined for continuous
spaces or images, and convolutional neural networks showed a remarkable power in computer vision
tasks. It was therefore natural to look for an extension to a broader family of spaces. In the same way
that a grid can be viewed as a discretization of a plane, the interpretation of the framework is natural
considering that an arbitrary graph can be viewed as the discretization of an arbitrary surface.

We have that the powers of the Laplacian correspond to the nodes that are connected, whereas this is
not true for the correlation matrix.

C EXPERIMENTS

C.1 EXPERIMENTS ON QUANTUM RANDOM WALK

In the same way as (Ma et al., 2023), we perform the experiments on the standard train/val/test splits.
For each dataset, we perform 4 runs with the seeds 0, 1, 2, 3 and display the average of the scores and
the standard deviation.

We do not perform an extensive hyperparameter search, and we only compute ourselves the GRIT
model. We take the same hyperparameters as (Ma et al., 2023) that we remind in table 4.

C.2 EXPERIMENTS ON SYNTHETIC DATASETS

We benchmark GPS and GCN models with different types of positional encoding, the random walk,
laplacian eigenvectors, and the eigenvector of quantum correlations. We try all combinations of
hyperparameters among the following

• dimension of position encoding : 10, 20, 50

• number of layers : 2, 4

• hidden dimension : 32, 64, 128

• type of layer : GPS, GCN

We also try the GRIT model with RRWP with the same hyperparameters as for ZINC. The biggest
models have around 300k parameters, whereas the smallest ones have around 20k. We train for 200
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Table 4: Hyperparameters for five datasets from BenchmarkingGNNs (Dwivedi et al., 2020), ZINC-
full (Irwin et al., 2012) and (Hu et al., 2021)

Hyperparameter ZINC/ZINC-full MNIST CIFAR10 PATTERN CLUSTER PCQM4Mv2

# Transformer Layers 10 3 3 10 16 16
Hidden dim 64 52 52 64 48 256
# Heads 8 4 4 8 8 8
Dropout 0 0 0 0 0.01 0.1
Attention dropout 0.2 0.5 0.5 0.2 0.5 0.1
Graph pooling sum mean mean − − mean

PE dim (RW-steps) 21 18 18 21 32 16
PE encoder linear linear linear linear linear linear

QPE dim (1CQRW steps) 20 18 18 20 32 16
Max duration π π π π π π
Min duration 0.1 0.1 0.1 0.1 0.1 0.1
Initial distribution local local local local local local

QPE dim (2QiRW steps) 20 18 18 20 32 16
Initial distribution adjacency adjacency adjacency adjacency adjacency adjacency

Batch size 32/256 16 16 32 16 256
Learning Rate 0.001 0.001 0.001 0.0005 0.0005 0.0002
# Epochs 2000 200 200 100 100 150
# Warmup epochs 50 5 5 5 5 10
Weight decay 1e − 5 1e − 5 1e − 5 1e − 5 1e − 5 0

# Parameters GRIT 473,473 102,138 99486 477,953 432,206 11.8M
# Parameters 2QiRW GRIT 476,033 104,010 101,358 480,513 434,742 11.8M

epochs using the Adam optimizer, 0.001 learning rate, no weight decay. We split randomly the dataset
on train/validation/test with a proportion 0.8/0.1/0.1, and we measure the test accuracy of the model
having the highest validation accuracy.

We illustrate figure 8 the fact that quantum encodings are distinctive features of the two categories of
the S-PATTERN dataset whereas classical encodings are not.

Class 0
1212021
Even, odd, 
even, odd, 
even, even, odd

Class 1
1212021
odd, odd, 
odd, odd, 
even, even, 
odd

Figure 8: Different positional encodings for graphs of each class of the C-LADDER dataset. RW:
Random Walk Structural Encodings. LE: Laplacian Eigenvectors. Quantum: Eigenvectors of the
correlation on the ground state. The quantum encodings are very distinctive of each class, which is
not the case for the other ones.

C.3 EXPERIMENTS ON GROUND STATE EIGENVECTORS

In this subsection, we experiment the use of the eigenvectors of the correlation matrix on the ground
state as node features in comparison to other PE such as the laplacian eigenvectors or random walk
encodings. We experiment two architectures (SAGE, GPS) and benchmark our encodings on three
standard chemistry datasets (QM7, QM9, ZINC) for regression tasks. All results are available in

25



Under review as a conference paper at ICLR 2024

table 5. We show the scores for a sample of hyperparameters of the models, and we include cases
where our model perform either worse or better than other approaches. The use of quantum features
achieves the best overall score for QM7, whereas a mix of LE and RW performs the best for QM9,
and we are able to retrieve the fact from (Rampášek et al., 2022) that the RW features perform the
best on ZINC.

We don’t reach the same score because we didn’t include the edge features. For QM9, the features are
rescaled such that their average across the dataset is 0 and their variance is 1. The quantum features
are computed by brute forcing the ground state of all graphs until size 30. Only ZINC has some
graphs whose size is between 31 and 38, in that case the quantum features are set to 0. For ZINC we
do not include the edge features.

Table 5: Results of GPS and other GNNs with different input features on real datasets. We use the
Adam estimator for 500 epochs and a learning rate of .001. For ZINC, standard partitions train/val/test
are given. For QM7, QM9 we report the average error over 5 random partitions train/val/test of
proportion .8/.1/.1. We take 10-dimensional features for each type. The hyperparameters are (#heads,
#layers, #hidden neurons).

Dataset QM9 QM7 ZINC
Model GPS SAGE GPS GPS SAGE GPS GPS GPS

Hyperparameters (1, 2, 128) (1, 2, 128) (4, 3, 256) (1, 2, 256) (1, 2, 128) (4, 2, 128) (4, 5, 32) (8, 10, 64)
No PE 2.96 3.28 1.75 32.23 60.45 34.97 0.53 0.43

LE 1.95 2.19 1.56 14.68 36.62 15.40 0.67 0.65
RW 2.28 2.93 1.47 16.18 14.97 16.45 0.29 0.27

LE+RW 1.83 2.05 1.42 14.48 14.27 14.81 0.44 0.40
Q (ours) 2.13 2.7 1.79 16.15 15.85 15.36 0.67 0.66

LE+RW+Q (ours) 1.80 2.02 1.49 14.66 14.13 14.03 0.56 0.55

C.4 EXPERIMENTS ON THE MODEL DESCRIBED IN APPENDIX B

C.4.1 TRAINING ON GRAPH COVERS DATASET

We test the performances of our model on a dataset of non isomorphic graphs constructed to be
indistinguishable by the WL test. We believe that this task will be especially difficult for classical
GNNs and could constitute an interesting benchmark. The way to construct such graphs has been
investigated in (Bamberger, 2022) and more details can be found in the Appendix D.1. We compare
the training loss with one of the most recent implementation of graph transformers (GraphGPS) by
(Rampášek et al., 2022). The results and implementation details are in figure 9. We can see that our
model is able to reach much lower values of the loss than GraphGPS, even if both model acheive
100% accuracy after 20 epochs.

0 100 200 300 400 500
Epoch

10 3

10 2

10 1

100

101

Lo
ss

GTQC (ours)
Graph Transformer GPS

Figure 9: Training loss for our model and a recent graph transformer implementation (GraphGPS)
(Rampášek et al., 2022). We both train our model and the GraphGPS model with two layers, a hidden
dimension of 128, and 10 dimensional position embedding for the spectral attention of GraphGPS.
We use a learning rate of 0.1 and no weight decay. Both models achieve 100% accuracy after 20
epochs.

C.4.2 BENCHMARK ON GRAPH CLASSIFICATION AND REGRESSION TASKS

We benchmarked our model GTQC and its randomized version of it with different GNN architectures.
We selected different datasets from various topics and with diverse tasks to show the general capabili-
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ties of our approach. We limited the size of the graphs to 20 nodes in order to be able to simulate the
quantum dynamics, and performing a backpropagation. We then chose datasets with the majority of
graphs falling below this size limit. The details of each dataset can be found in Appendix D.1.

We implemented the models with a classical emulator of quantum circuits implemented in pytorch
(Paszke et al., 2019) and with dgl (Wang et al., 2019), and ran them on A100 GPUs. All experiments
were done using one GPU, except QM9 which required 4. We used a Adam optimizer with a learning
rate .001, no weight decay for 500 epochs. The quantum parameters were only updated every 10
epochs because of computation time. As an order of magnitude, one epoch of QM7 takes 6 min with
1 GPU, and one epoch of QM9 takes 1h with 4 GPUs. Most of the time is allocated to compute the
quantum dynamics, the size of classical parameters has little effect on the compute time except for
the 2048 hidden layers.

We compare our model to three architectures of message passing models : GCN (Kipf & Welling,
2016), SAGE (Hamilton et al., 2018), GAT (Veličković et al., 2018). In order to have a fair comparison
between the models, we employ similar hyperparameters for all of them. We use ReLU function
for all activation functions. Each model has 2 layers and 1 head for multi-head ones like ours and
GAT, except on the randomized version of our model. We don’t use apply softmax as described in
section B.1, except for the randomized instance because we observed the training was more stable.
We also report the results by comparing models that have the same number of hidden neurons per
layer and therefore approximately the same number of parameters. Each dataset is randomly split
in train, validation, test with respective ratios of .8, .1, .1 and the models are run on 5 seeds, except
QM9 for which we have only one seed.

All metrics are such that the lower the better, for classification tasks we display the ratio of misclas-
sified objects. For QM9 the loss is aggregated over all the targets. Figure 10 shows results as box
plots accompanied by the underlying points. Though the variability of the results is a bit higher,
GTQC reaches similar results than usual classical well-known approaches on QM7 and DBLP_v1
(even beating GCN on this dataset) and seems relevant on QM9 as well. GTQC random usually
outperforms GTQC, illustrating the complexity of the optimisation of the quantum system. GTQC
random provides very promising results on DBLP_v1 and outperforms all other approaches on QM9.
Letter-med seems to represent a difficult task for our quantum methods as they both perform very
poorly and way worse than classical methods. QM7 also seems to be challenging for GTQC random.
Table 6 shows the results.

Table 6: Scores for each model

dataset DBLP Letter-med QM7 QM9
model breadth

GAT

128 0.08 ± 0.00 0.22 ± 0.02 64.27 ± 6.40 4.03 ± 0.00
512 0.08 ± 0.01 0.20 ± 0.03 60.42 ± 5.56 3.23 ± 0.00
1024 0.08 ± 0.01 0.21 ± 0.04 56.06 ± 2.77 0.00 ± 0.00
2048 0.08 ± 0.00 0.19 ± 0.04 59.27 ± 3.33 0.00 ± 0.00

GCN

128 0.09 ± 0.01 0.21 ± 0.05 67.50 ± 4.70 4.22 ± 0.00
512 0.09 ± 0.01 0.16 ± 0.02 63.30 ± 2.67 3.44 ± 0.00
1024 0.09 ± 0.01 0.15 ± 0.02 62.94 ± 2.90 0.00 ± 0.00
2048 0.09 ± 0.01 0.14 ± 0.02 60.70 ± 2.30 0.00 ± 0.00

GTQC

128 0.08 ± 0.00 0.71 ± 0.06 68.95 ± 8.50 8.01 ± 0.00
512 0.08 ± 0.00 0.66 ± 0.04 70.09 ± 18.48 6.23 ± 0.00
1024 0.08 ± 0.01 0.67 ± 0.06 67.85 ± 16.78 5.27 ± 0.00
2048 0.08 ± 0.00 0.73 ± 0.06 65.53 ± 2.48 5.30 ± 0.00

GTQC random
32 0.00 ± 0.00 0.56 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
64 0.00 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
128 0.08 ± 0.01 0.49 ± 0.00 92.62 ± 2.82 2.34 ± 0.00

SAGE

128 0.08 ± 0.01 0.09 ± 0.02 62.30 ± 3.47 3.26 ± 0.00
512 0.07 ± 0.00 0.09 ± 0.02 61.47 ± 3.06 2.41 ± 0.00
1024 0.07 ± 0.00 0.09 ± 0.01 61.30 ± 3.07 2.23 ± 0.00
2048 0.08 ± 0.01 0.09 ± 0.02 54.41 ± 6.42 0.00 ± 0.00
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Figure 10: Summary graph of the results of the different models on the studied datasets. Each point
is an instance of the model with specific hyperparameters and specific seed for dataset splits.

D SUPPLEMENTARY INFORMATION ABOUT THE DATASETS

D.1 DATASETS USED IN EXPERIMENTS ON QUANTUM RANDOM WALKS

The datasets used for benchmarking the use of quantum random walks encodings are standard in the
GNN community. The first five are from (Dwivedi et al., 2020), the last one is from (Hu et al., 2021).
We reproduce the table of statistics 7 taken from (Ma et al., 2023), and we also refer the reader to
(Rampášek et al., 2022) for more information about the datasets.

Table 7: Overview of the graph learning datasets involved in this work (Dwivedi et al., 2020), (Irwin
et al., 2012), (Hu et al., 2021) .

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric

ZINC(-full) 12,000 (250,000) 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Accuracy

PCQM4Mv2 3,746,620 14.1 14.6 No graph regression Mean Abs. Error

D.1.1 S-PATTERN

We define strongly correlated graphs as graphs that possesses only two ground states, and one state
can be obtained by flipping all the bits from the other. The correlation matrix on this graph can be
decomposed in four quadrants of 1s and -1s given a suitable permutation of the vertices. Examples of
strongly correlated subgraphs are graphs composed of even cycles tiled next to each other. Importantly
all strongly correlated graphs of same number of nodes have the same correlation matrix upon a
suitable permutation of the nodes. However they may be extremely different by other characteristics
like laplacian eigenvectors or random walk features. In our example, we will look to exploit this
invariance.

Our example consists of strongly correlated subgraphs linked together by a small graph composed of
triangles. It is illustrated in figure 11. The values of the correlations are diferrent for each class. For
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one class, the absolute value of correlations between the two strongly correlated graphs is equal to 1/9
whereas for the other class it is equal to 1/11. The numerical difference is too small to be exploited
with a traditional attention approach as explained in section ??, but there is a striking difference when
one computes the eigenvectors of the correlation matrices.

(a) The base subgraph. (b) A random strongly correlated graph.

(c) An example of graph of class 0. (d) An example of graph of class 1.

Figure 11: Construction of the S-PATTERN dataset. Two random strongly correlated graphs (11b)
are linked to the base subgraph (11a), either in opposite sides, or in adjacent sides. In the class 0, the
correlations between one strongly correlated graph to the other are in absolute value 1/9, whereas for
class 1 this correlation is 1/11.

Our dataset consists of 1000 graphs per class, so 2000 in total, and is composed of graphs of about
450 nodes.

D.1.2 C-LADDER

In this subsection, we explain how to construct the C-LADDER dataset. Our building blocks are
3 types of graphs, called types 0, 1, 2. Each type is composed of one ladder graphs with crossings
inserted at different places. All crossings are in the same fixed arbitrary direction. Type 0 graphs
are plain ladder graphs and their Ising hamiltonian has two ground states. Type 1 graphs are type 0
graphs with crossings separated with an odd number of nodes. The crossings are located such that
they have one possible Ising ground state which is one of the ground states of the type 0 associated
graph. The crossings will effectively select one of the two possible ground states. Type 2 graphs are
ladder graphs of odd length with crossings at the beginning and the end. An illustration of the types
of graphs is provided figure 12a.

We construct a graph given a sequence of types of graphs by concatenating a graph within each
building block. The concatenation is made by adding edges to continue the ladder, the process is
illustrated figure 12b. The ground state of the total graph is included in a union of the groundstate of
the subgraph, so it can be efficiently computed for short sequence length (less than 10 subgraphs).
The number of ground states of the whole graph will not change with the length of the subgraphs of
type 0 and 1, but will depend on their parity. The length of type 2 graphs is necessarily even and the
number of possible ground states grows linearly with the length. For a type 1 graph, the number of
crossings or their exact location does not change the ground state.

Our dataset is composed of two categories of graphs, each one with the same sequence of types of
graphs (1, 2, 1, 2, 0, 2, 1), with different parities of lenght of graphs. The parity for class 0 was (even,
odd, even, odd, even, even, odd) whereas for class 1 it was (odd, odd, odd, odd, even, even, odd
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). The length of graphs are chosen randomly in a uniform way between 10 and 52, the number of
crossings in type 1 graphs are chosen randomly in a uniform way between 2 and 9.

Our dataset consists of 1000 graphs per class, so 2000 in total, and is composed of graphs of about
350 nodes.

(a) The base subgraphs (type 0, type 1, type 2) and their possible ground state. Top left: type 0 graphof length
15, 2 possible ground states. Top right: type 1 graph of length 15, 1 possible ground state. Bottom : type 2 graph
of length 9, 9 possible ground states.

(b) Example of graph associated with sequence 0201. In red are the added edges.

Figure 12: Construction of our C-LADDER dataset

D.2 QM7 AND QM9 MOLECULES AND GRAPH REGRESSION

Context
QM7 dataset is a subset of the GDB-13 database (Blum & Reymond, 2009), a database of nearly 1
billion stable and synthetically accessible organic molecules, containing up to seven heavy atoms
(C, N, O, S). Similarly QM9 is a subset of the GDB-17 database consisting of molecules with up to
nine heavy atoms. Learning methods using QM7 and QM9 are predicting the molecules electronic
properties given stable conformational coordinates.

QM7 figures
QM7 consists of 7165 molecule graphs. Each node is an atom with its 3D coordinates and atomic
number Z. The only edge feature is the entry of the Coulomb matrix. Each graph is thus fully
connected and has one regression target corresponding to its atomization energy.

QM9 figures
QM9 consists of 130831 molecule graphs of between 1 and 29 nodes with an average of 18 nodes
(see Figure 13). Each node is an atom with its 3D coordinates and its atomic number Z. Edges are
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Conf. category Conferences #Papers #Graphs
DBDM SIGMOD, VLDB, ICDE, EDBT,

PODS, DASFAA, SSDBM, CIKM,
DEXA, KDD, ICDM, SDM, PKDD,
PAKDD

20601 9530

CVPR ICCV, CVPR, ECCV, ICPR, ICIP,
ACM Multimedia, ICME

18366 9926

Table 8: DBLP_v1 details.

purely distance based and have no feature. Each graph is thus fully connected and has 12 regression
targets corresponding to diverse chemical electronic properties. In our implementation, all the targets
are recentered and rescaled by their standard deviation.
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Figure 13: Distribution of the number of nodes in a graph for QM9 dataset.

Benchmarks
On the QM7 dataset, Quantum Machine benchmark reached MAE of 3.5 and 9.9 (Montavon et al.,
2013).

The best models of the MoleculeNet benchmark (Wu et al., 2017) reached a test MAE of 2.86 ± 0.25
on QM7 and 2.4 ± 1.1 on QM9.

D.3 DBLP_V1 AND NODE CLASSIFICATION

Context
DBLP_v1 is a graph stream built out of the DBLP dataset (Pan et al., 2013) consisting of bibliography
data in computer science. To build a graph stream, a list of conferences from DBDM (database and
data mining) and CVPR (computer vision and pattern recognition) fields are selected (as shown in
Table 8). The papers published in these conferences are then used (in chronological order) to form
a binary-class graph stream where the classification task is to predict whether a paper belongs to
DBDM or CVPR field by using the references and the title of each paper.

Papers without references are filtered out. Then, the top 1000 most frequent words (excluding stop
words) in titles are used as keywords to construct the graph (see Figure 14).

Figures
DBLP_v1 consists of 19456 graphs evenly split between the two groups of conferences (the two
classes) from 2 to 39 nodes with an average of 10 nodes.
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Figure 14: Graph representation for a paper (P.100) in the DBLP_v1 dataset. The rectangles are paper
ID nodes and circles are keyword nodes from titles. The paper P.100 cites (connects) paper P.101 and
P.102, and P.100 has keywords Data, Stream, and Mining in its title. Paper P.101 has keyword Query
in its title, and P.102’s title include keywords Large and Batch. For each paper, the keywords in the
title are linked with each other

These graphs are actually local parts of a bigger graph. To perform node classification (on nodes
representing a paper), the local neighborhood of each graph is extracted and a graph classification
task is run.

There are 3 types of edges:

• 0: paper - paper
• 1: keyword - paper
• 2: keyword - keyword

Node features are only a unique ID to be identified between multiple graphs (cf P.100 in Figure 14
which will also appear in P.101 graph). There are 41325 unique IDs so keywords don’t have a single
keyword identifier among all graphs.

Benchmarks
DBLP_v1 (Pan et al., 2013) benchmarks show accuracy ranging between 0.55 and 0.80 in a chunked
graph stream classification setup.

Data augmentation
The map from IDs to topics and paper IDs is also provided and has been used to perform data
augmentation to provide node features. USing Stanford GloVe word embedding pre-trained on
Wikipedia 2014 and Gigaword 5 in a 50-dimension space, each topic node could be enriched with its
embedding. A boolean flag was also added to identify a node as a topic or not (a paper).

D.4 COMPUTER VISION: LETTERS AND GRAPH CLASSIFICATION

Context
Letters datasets (Riesen & Bunke, 2008) are 3 datasets of distorted letter drawings with low, medium
or high distorsion levels. Only the 15 capital letters of the Roman alphabet that consist of straight
lines (A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z) are represented. Distorted letter drawings are
converted into graphs by representing lines by undirected edges and ending points of lines by nodes.

Figures
Node attributes are their 2D positions and edges have no attribute. The graphs are uniformly
distributed over the 15 letters. We focused on the medium distorsion dataset consisting of 2250
graphs.

Benchmarks
Benchmark results from k-NN are given by (Riesen & Bunke, 2008): 99.6% (low), 94.0% (medium),
and 90.0% (high). The best classical algorithm we trained on this dataset was GraphSAGE with
results of 100% (low), 94.5% (medium), and 80% (high)).
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D.5 GRAPHCOVERS AND THE WEISFEILER-LEHMAN ISOMORPHISM TEST

Context
Graph Neural Networks expressivity is related to the Weisfeiler-Lehman (WL) test. Recent work has
been made to generate datasets of graphs undistinguishable by the WL test (Bamberger, 2022).

Figures
Using this work, we generated a small dataset of 6 non-isomorphic graphs of 21 nodes that can’t
be distinguished by MPNNs. These 6 graphs are then split in 3 arbitrary classes. The task at hand
consists in being able to correctly distinguish the classes on the train data.

Benchmarks
Even on the train data, as they can’t distinguish between the graphs, usual GNNs are not able to learn
as shown in (Bamberger, 2022).

33


	Introduction
	Related works
	Graph Transformers
	Positional and Structural Encoding
	Quantum Computing for Graph Machine Learning

	Methods and theory
	Quantum Graph Machine Learning
	Positional encodings with quantum features
	Static position encoding
	Learnable positional encodings

	GNN models with quantum aggregation
	Theoretical arguments for QRWs

	Experiments
	Experiments on RW models
	Experiments on learning the positional encoding
	Synthetic experiments
	Discussion

	Conclusion
	Methods and theory
	Learning positional encodings
	Data randomization
	Formal expression for the correlation matrix of the Ising Hamiltonian 

	Theory
	Proof of theorem 1
	State graphs


	Graph Transformer with Quantum Correlations
	Transition Matrix from Quantum Correlations
	Update mechanism
	Execution on a quantum device
	Spectral version of our model

	Experiments
	Experiments on quantum random walk
	Experiments on synthetic datasets
	Experiments on Ground state eigenvectors 
	Experiments on the model described in Appendix B
	Training on Graph Covers dataset
	Benchmark on graph classification and regression tasks


	Supplementary information about the datasets
	Datasets used in experiments on quantum random walks
	S-PATTERN
	C-LADDER

	QM7 and QM9 molecules and graph regression
	DBLP_v1 and node classification
	Computer vision: letters and graph classification
	GraphCovers and the Weisfeiler-Lehman isomorphism test


