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ABSTRACT

The perception-distortion (PD) tradeoff theory suggests that image restoration al-
gorithms must balance perceptual quality and fidelity. To achieve minimal dis-
tortion while maintaining perfect perceptual quality, Posterior-Mean Rectified
Flow (PMRF) proposes a flow-based approach where the source distribution is
minimal-distortion estimates. Although PMRF is shown to be effective, its pixel-
space modeling approach limits its ability to align with human perception. In
this work, we propose Latent-PMRF, which reformulates PMRF in the latent
space of a variational autoencoder (VAE), facilitating better alignment with hu-
man perception during optimization. By defining the source distribution on latent
representations of minimal-distortion estimates, we bound the minimum distor-
tion by the VAE’s reconstruction error. Moreover, we reveal that the design of
VAE is crucial, and our proposed Sim-VAE significantly outperforms existing
VAEs in both reconstruction and restoration. Extensive experiments on blind face
restoration demonstrate the superiority of Latent-PMRF, offering an improved PD-
tradeoff compared to existing methods, along with remarkable convergence effi-
ciency, achieving a 5.79× speedup over PMRF in terms of FID. Our code will be
publicly available.

1 INTRODUCTION

Face images are among the most common types of images, yet they often suffer from complex
degradations during formation, recording, processing, and transmission (Wang et al., 2022a). Typi-
cal degradations, such as blur (Zhang et al., 2022), noise (Elad et al., 2023), downsampling (Dong
et al., 2014; Luo et al., 2023; Liang et al., 2021), and JPEG compression (Jiang et al., 2021), can
significantly degrade visual quality. Perceptual face restoration aims to recover high-quality, visu-
ally pleasing face images from degraded inputs. The key challenge lies in enhancing perceptual
quality while maintaining fidelity. Recent studies show that generative models, particularly diffu-
sion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Li et al., 2022; Wang et al., 2024) and flow
matching models (Zhu et al., 2024; Ohayon et al., 2025), offer strong solutions for perceptual quality
by modeling the distribution of natural images. Although such posterior modeling approaches can
achieve perfect perceptual quality in theory, they do not guarantee minimal distortion under perfect
perceptual quality constraints (Blau & Michaeli, 2018; Freirich et al., 2021; Ohayon et al., 2025).
To minimize distortion, Posterior-Mean Rectified Flow (PMRF) (Ohayon et al., 2025) transports
minimum distortion estimation to the target distribution using a rectified flow model. This approach
can theoretically achieve minimal distortion (Freirich et al., 2021; Ohayon et al., 2025) under perfect
perceptual quality constraints.

In this work, we challenge the necessity of constructing PMRF in the pixel space. While perceptual
quality is formally defined as the statistical distance between the distributions of reconstructed and
original images (Blau & Michaeli, 2018), researchers have found that distances in feature space bet-
ter correlate with human perception (Heusel et al., 2017; Zhang et al., 2018; Szegedy et al., 2015;
Sauer et al., 2021; Kumari et al., 2022). For instance, the most widely used metric for evaluating
image generation models is the Fréchet Inception Distance (FID) (Heusel et al., 2017), which mea-
suring distribution difference within the feature space of the InceptionNet (Szegedy et al., 2015).
Additionally, many Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) define dis-
criminators in the feature spaces of pre-trained networks, such as EfficientNet (Sauer et al., 2021)
and CLIP (Kumari et al., 2022). These findings suggest that measuring distribution distances in

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

5.79x Speedup

Figure 1: Illustration of perception optimization efficiency in latent space. We train PMRF and
Latent-PMRF with the same compute budget. For VAEs with perceptual compression capabilities,
differences in their latent space align better with human perception than those in pixel space, making
latent space modeling more effective for perception optimization. Validation curves demonstrate the
superior perceptual quality achieved by Latent-PMRF, with a 5.79× speedup over PMRF in terms
of FID.

feature space is an effective approach. Motivated by this, we propose reformulating PMRF in the
latent space of a variational autoencoder (VAE) (Kingma, 2014), where perceptual quality can be
optimized more efficiently, as shown in Figure 1.

While the idea appears straightforward, its optimality in terms of distortion requires careful analysis.
Analogous to PMRF, we consider two distinct source distributions: (1) the posterior mean of latent
representations, and (2) the latent representations of the posterior mean. We show that the second
approach offers several advantages and is preferable. Most notably, it achieves minimal distortion
bounded by the VAE’s reconstruction error, which is not guaranteed by the first approach.

Overall, our Latent-PMRF can be understood as a rectified flow model (Liu et al., 2023b) in latent
space, where the source distribution consists of the latent representations of the posterior mean and
the target distribution consists of the latent representations of high-quality (HQ) images. While
extensive research has explored latent space models for restoration tasks (Wang et al., 2024; Yue
et al., 2023; Zhu et al., 2024; Lin et al., 2024; Gu et al., 2022; Liu et al., 2023a; Wang et al., 2022b),
a fundamental question remains: are the commonly used VAEs sufficient for image restoration? We
reveal that the VAEs employed in Stable Diffusion (SD) (Rombach et al., 2022), SDXL (Podell et al.,
2024), and FLUX (Esser et al., 2024) are suboptimal for this task, as shown in Table 1. Unlike image
generation, where increasing latent dimensionality often complicates optimization, restoration tasks
benefit from a more informative latent space, as it reduces reconstruction error and thus lowers the
minimal distortion bound.

To address this, we propose Sim-VAE, a simplified variant of SD-VAE, incorporating loss enhance-
ments and architectural improvements that significantly improve both the VAE’s reconstruction abil-
ity and the restoration performance of the final model. Our contributions are summarized as follows:

• Latent-PMRF achieves better alignment with human perception during optimization, re-
sulting in a 5.79× speedup over PMRF in terms of FID.

• The source distribution design of Latent-PMRF bounds the minimum distortion to the
VAE’s reconstruction error, and our improved Sim-VAE significantly boosts restoration
performance when integrated with Latent-PMRF.

• Extensive experiments show that our Latent-PMRF achieves an improved PD-tradeoff and
produces visually appealing results with high consistency to the inputs.
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Table 1: Comparison of VAEs in CelebA-Test (Wang et al., 2021a). We evaluate the reconstruction
performance of various VAEs and their effectiveness as latent spaces for Latent-PMRF. Notably, our
Sim-VAE demonstrates significantly improved reconstruction capabilities and enhances the perfor-
mance of Latent-PMRF in restoration. The best results are denoted in bold, and the second-best
results are underlined. f8c4 denotes 8 × downsampling with 4 latent channels.

VAE Reconstruction Restoration
PSNR↑ LPIPS↓ MMDDINOv2 ↓ PSNR↑ LPIPS↓ MMDDINOv2 ↓

SD1.5-VAE f8c4 30.463 0.044 0.6931 25.875 0.231 1.0302
SD-XL-VAE f8c4 32.396 0.039 0.3973 26.481 0.263 1.0286
FLUX-VAE f8c16 38.763 0.008 0.0675 26.152 0.245 1.0565
SD-VAE f8c32 40.398 0.015 0.0986 25.265 0.222 0.8938

Sim-VAE f8c16 37.903 0.026 0.0966 26.441 0.219 0.8918
Sim-VAE f8c32 42.713 0.007 0.0511 26.382 0.224 0.8770

2 BACKGROUND

2.1 RECTIFIED FLOW

Rectified Flow (Liu et al., 2023b; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) is a gen-
erative modeling approach that constructs a probability path (pt)0≤t≤1 from a source distribution p0
to a target distribution p1. Sampling involves drawingX0 ∼ p0 and solving an Ordinary Differential
Equation (ODE) defined by a velocity field vt, which guides the transformation:

d

dt
ψt(x) = vt (ψt(x)) , ψ0(x) = x. (1)

The velocity field vt is parameterized by a neural network vθt and trained via regression to match the
conditional velocity field:

vt (xt | x0, x1) = x1 − x0, (2)

where Xt follows a linear interpolation between X0 ∼ p0 and X1 ∼ p1. The training objective is to
minimize the Conditional Flow Matching (CFM) loss:

LCFM (θ) = Et,Xt,X0,X1

∥∥vθt (Xt)− (x1 − x0)
∥∥2 . (3)

2.2 POSTERIOR-MEAN RECTIFIED FLOW

Let y denote a low-quality (LQ) image, which is a realization of a random vector Y with probability
density function pY , and let x denote a high-quality image, which is a realization of a random
vector X with probability density function pX . Posterior-Mean Rectified Flow (PMRF) is an image
restoration framework designed to minimize distortion while preserving perceptual quality. PMRF
achieves minimum distortion through two key stages:

1. Posterior Mean Estimation: A regression model is trained to estimate the posterior mean x∗ =
E[X|Y = y] given a LQ image y. This initial estimation step is theoretically optimal for minimizing
the expected distortion between the predicted and true high-quality images.

2. Rectified Flow: Subsequently, a rectified flow model transforms the posterior mean estimation
to match the true high-quality data distribution. This is achieved by learning a velocity field vθt (·)
that guides the transformation through time t, enabling the model to recover fine details and natural
variations present in the true data distribution.

The synergy between posterior mean estimation and flow-based modeling enables PMRF to achieve
superior performance in image restoration tasks. By combining a distortion-optimal initial estimate
with learned continuous transformations, PMRF successfully reconstructs high-fidelity images that
are both perceptually pleasing and faithful to the original content.

3
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Figure 2: Training Framework of Latent-PMRF. We first estimate the posterior mean
E [X|Y = y] from low-quality input y using a pretrained estimator fϕ (·). The posterior mean and
the high-quality input x are then encoded into latent representations z0 and z1. A flow network vθt (·)
is trained to predict the velocity field along their linear interpolation: zt = (1− t) z0 + tz1.

3 LATENT POSTERIOR-MEAN RECTIFIED FLOW

In this section, we introduce Latent Posterior-Mean Rectified Flow (Latent-PMRF), a frame-
work designed to achieve efficient perceptual quality optimization while preserving the distortion-
minimizing property of PMRF. We first illustrate the Latent-PMRF framework and its implemen-
tation. Then, we provide the theoretical underpinnings, analyzing how our method addresses both
perceptual quality and distortion. We prove that under ideal conditions, Latent-PMRF recovers the
theoretical optimum of PMRF, and in practice, its performance is directly linked to the VAE’s re-
construction fidelity.

3.1 THE LATENT-PMRF FRAMEWORK

The core idea of Latent-PMRF is to reframe image restoration as a transport problem in a learned
latent space. Let (E ,D) be the encoder and decoder of a pre-trained VAE, the latent representations
of posterior mean Z∗ = E(E[X|Y ]) is defined as source distribution, and Z = E(X) is defined as
target distribution. Then a rectified flow will be learned to transport Z∗ to Z as shown in Figure 2.
This simple framework is both efficient at perceptual quality optimization and able to achieve min-
imum distortion upper bounded by the reconstruction error of VAE, as illustrated in the following
sections.

3.2 ANALYSIS OF PERCEPTUAL QUALITY AND DISTORTION

We now analyze how the Latent-PMRF design addresses the dual objectives of high perceptual
quality and low distortion.

3.2.1 EFFICIENT PERCEPTUAL QUALITY OPTIMIZATION

Operating in the latent space is particularly advantageous for optimizing perceptual quality, as sup-
ported by several established practices in the field. First, perceptual metrics like LPIPS Zhang et al.
(2018), FID Heusel et al. (2017) typically measure differences in the feature space of pretrained
networks. Second, GAN-based image generation methods Sauer et al. (2021); Kumari et al. (2022)
successfully employ feature-space discriminators for improved visual quality. Furthermore, state-of-
the-art diffusion models Rombach et al. (2022); Podell et al. (2024); Esser et al. (2024); Labs (2024)
increasingly operate in VAE latent space, demonstrating the effectiveness of latent-space learning
for perceptual quality optimization.

3.2.2 THEORETICAL BOUNDS ON DISTORTION

While optimizing for perception, maintaining low distortion is paramount. Our choice of the poste-
rior mean latent distribution p(E(E[X|Y ])) as the source is the key to achieving this. The posterior
mean E[X|Y ] is the optimal estimator under the MSE metric, establishing the theoretical lower
bound on distortion. By initiating the transport from the latent representation of this optimal esti-
mate, Latent-PMRF inherits this low-distortion property.
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The connection to the theoretical optimum is formalized by the following theorems. Theorem 1
establishes this link under ideal conditions.

Theorem 1 (Asymptotic Equivalence of Latent-PMRF and PMRF). Let (E ,D) be a VAE that forms
an isometry between the data space and the latent space. Then, the optimal estimator X̂lat =

D(Tlat(E(X∗))) derived from Latent-PMRF is identical to the optimal estimator X̂PMRF derived
from PMRF, thus achieving the theoretical minimum distortion D∗ +W 2

2 (pX∗ , pX).

Proof. The proof is provided in Appendix A.3.

Theorem 1 shows that PMRF is a special case of Latent-PMRF under a perfect, isometric VAE.
In practice, however, VAEs are imperfect and inevitably introduce reconstruction error. A natu-
ral question is how this imperfection affects the framework’s total distortion. We show that the
expected distortion decomposes into two terms: one inherent to the VAE’s reconstruction error,
and another governed by the transport process optimized by rectified flow. Consequently, reducing
Latent-PMRF’s distortion requires improving the VAE’s reconstruction fidelity, which directly mo-
tivates our proposal of Sim-VAE. In addition, our framework can exploit pre-trained image-space
estimators for the posterior mean, offering a practical advantage. See Appendix A.4 for details.

3.3 IMPROVED VARIATIONAL AUTOENCODER

For Latent-PMRF, the VAE not only sets the upper bound of restoration quality but also influences
flow optimization. To this end, we introduce Sim-VAE, a streamlined variational autoencoder de-
signed for high-fidelity reconstruction and better resolution generalization.

Sim-VAE departs from the widely used SD-VAE by: 1.Simplifying ResBlocks to remove redundant
normalization/activation layers. 2.Replacing group normalization with pixel-wise layer normal-
ization to avoid imbalanced feature activations. 3. Eliminating self-attention in middle layers,
improving resolution generalization. 4. Redistributing computation in resizing layers by combin-
ing resolution and channel adjustments for greater efficiency. Full architectural details, comparisons,
and training loss are provided in Appendix B.

4 EXPERIMENTS
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Figure 3: Convergence Efficiency of Latent-PMRF. We train both PMRF and Latent-PMRF using
Sim-VAE for 400k iterations on FFHQ with a batch size of 64. Latent-PMRF significantly accel-
erates convergence, achieving a 5.33× speedup in DISTS. It also outperforms PMRF in LPIPS,
MUSIQ, and CLIP-IQA, achieving scores that PMRF cannot achieve within training. Furthermore,
Latent-PMRF demonstrates strong performance even early in training, highlighting the importance
of optimizing in a well-structured latent space.

4.1 EXPERIMENT SETUP

Datasets. We use two primary datasets: LSDIR (Li et al., 2023), containing 84,991 high-quality
natural images, and FFHQ (Karras et al., 2019), which has 70,000 high-quality face images. For
preprocessing, we crop LSDIR images into 512 × 512 patches and filter them using Q-Align (Wu
et al., 2024) with a minimum score threshold of 3.5. FFHQ images are resized to 512× 512.
Implementation Details. Sim-VAE is trained on a combination of the filtered LSDIR dataset and
the first 10,000 images from FFHQ, using 256 × 256 image patches for 150,000 iterations with a
batch size of 64. The Adam optimizer (Kingma & Ba, 2015) with default parameters and a cosine
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Table 2: Impact of VAE architectures on CelebA-Test (Wang et al., 2021a). All VAEs use 32
channels. The results show that Sim-VAE significantly outperforms SD-VAE in both reconstruction
and restoration tasks. Replacing 3 × 3 convolutions with self-attention causes training instability,
making results unavailable.

VAE Reconstruction Restoration
PSNR↑ LPIPS↓ MMDDINOv2 ↓ PSNR↑ LPIPS↓ MMDDINOv2 ↓

Sim-VAE 42.7129 0.0073 0.0511 26.3823 0.2236 0.8770
- layernorm 43.0518 0.0063 0.0619 26.1698 0.2270 0.8928
- 3 × 3 conv N/A N/A N/A N/A N/A N/A
- interpolate 42.9766 0.0075 0.0556 26.2465 0.2245 0.8817
SD-VAE 40.3979 0.0145 0.0986 25.2646 0.2224 0.8938

Table 3: Impact of Latent Channels on CelebA-Test (Wang et al., 2021a). Latent-PMRF benefits
from richer latent representations, with 32 channels achieving a good balance across various metrics.

Channel Reconstruction Restoration
PSNR↑ LPIPS↓ MMDDINOv2 ↓ PSNR↑ LPIPS↓ Q-Align↑ MMDDINOv2 ↓

16 37.9034 0.0261 0.0966 26.4412 0.2191 4.1006 0.8918
24 40.8142 0.0116 0.0603 26.3911 0.2251 4.1934 0.8657
32 42.7129 0.0073 0.0511 26.3823 0.2236 4.2934 0.8770
48 45.0554 0.0033 0.0485 26.4600 0.2264 4.3055 0.8863

learning rate schedule is used, decaying from 10−4 to 10−6 after a 500-step warm-up at 10−5. We
set the latent channel to 32, unless specified otherwise.

Following PMRF, we utilize the posterior mean predictor trained by (Yue & Loy, 2024), and adopt
HDiT (Crowson et al., 2024) as the velocity model of Latent-PMRF. The patch size is set to 1, and
the transformer blocks are arranged as 2, 4, and 6 from high- to low-resolution. Depth-wise con-
volutions (Chollet, 2017) are incorporated into both the attention and feed-forward layers. Training
is performed on FFHQ for 400,000 iterations with a batch size of 64. LQ images are synthesized
following (Ohayon et al., 2025; Wang et al., 2021a). We use the Adam optimizer (Kingma & Ba,
2015) with β1 = 0.9, β2 = 0.95, and a fixed learning rate of 5× 10−4.
Evaluation Metrics. We evaluate our methods using a range of metrics grouped into four categories:

1. Reconstruction Fidelity: PSNR and MS-SSIM (Wang et al., 2003) assess reconstruction
accuracy. For face restoration, we also include identity-related metrics like Deg (ArcFace
embedding angle (Deng et al., 2019)) and landmark distance LMD (Yue & Loy, 2024).

2. Perceptual Similarity: LPIPS (Zhang et al., 2018) and DISTS (Ding et al., 2020) measure
perceptual similarity between two images.

3. Non-Reference Metrics: CLIP-IQA (Wang et al., 2023), MUSIQ (Ke et al., 2021) and
Q-Align (Wu et al., 2024) assess image quality without ground truth.

4. Statistical Distance: In addition to the commonly used FID (Heusel et al., 2017) for
measuring distributional differences, we also consider FIDDINOv2 (Stein et al., 2024) and
MMDDINOv2 (Jayasumana et al., 2024). These metrics improve alignment with human per-
ception using DINOv2 (Oquab et al., 2023) features, while MMDDINOv2 further enhances
sample efficiency using Maximum Mean Discrepancy (MMD) with an RBF kernel.

4.2 CONVERGENCE EFFICIENCY OF LATENT-PMRF

In this section, we demonstrate that constructing the PMRF in the latent space of Sim-VAE facilitates
perception optimization, thus significantly accelerating convergence. As shown in Figure 1 and
Figure 3, Latent-PMRF accelerates convergence by 5.79× in terms of FID and 5.33× in terms of
DISTS. It also achieves significantly better LPIPS, MUSIQ, and CLIP-IQA scores, outperforming
standard PMRF, which fails to reach similar performance within 400k training steps. The improved
convergence efficiency of Latent-PMRF allows us to achieve strong results using relatively fewer
computational resources during training.

4.3 IMPROVING LATENT-PMRF WITH BETTER VAE

Effects of Architecture Design. As illustrated in Section 3.3, we propose a series of architec-
tural modifications aimed at improving the learning ability of the VAE and boosting restoration

6
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Table 4: Quantitative comparisons on CelebA-Test (Wang et al., 2021a) benchmark. Our approach
achieves the best PD-tradeoff, significantly reducing distortion while preserving top-tier perceptual
quality. PMRF∗ denotes PMRF trained under the same compute budget as ours. Runtime is mea-
sured on NVIDIA A100. #Params (M) is reported as A + B, where A represents trainable parameters
and B denotes frozen parameters.

Method PSNR↑ MS-SSIM↑ LPIPS↓ DISTS↓ Deg.↓ LMD↓ MUSIQ↑ Q-Align↑ FID↓ FIDDINOv2 ↓ MMDDINOv2 ↓ Runtime(s) #Params(M)

GFP-GAN 24.9861 0.8640 0.2407 0.1720 34.5372 2.4509 75.2940 4.7009 14.8021 223.0202 1.1638 0.0218 86.4
RestoreFormer 24.6157 0.8443 0.2416 0.1639 30.9218 1.9389 73.8584 4.5320 13.4083 152.1276 1.0003 0.0402 72.7
CodeFormer 25.1464 0.8589 0.2271 0.1700 35.7124 2.1389 75.5546 4.5835 15.3959 184.0517 1.1041 0.0349 94.1
VQFR 23.7626 0.8278 0.2391 0.1683 40.9100 3.0436 73.8407 4.5285 13.6547 199.7024 1.1287 0.0621 83.5

DifFace 24.7964 0.8233 0.2723 0.1679 44.1442 2.7230 69.0060 4.0769 13.5138 184.1844 1.0441 3.7054 159.7 + 15.7
DiffBIR (v2) 25.3946 0.8668 0.2654 0.1911 31.2931 1.5646 76.1659 4.8782 20.9181 156.9969 1.0692 6.3952 363.1 + 1319.3
ResShift 26.0359 0.8734 0.2464 0.1692 32.2866 1.8718 67.9784 4.2413 19.1850 167.3501 1.0534 0.6230 118.9 + 77.0

FlowIE 24.8349 0.8505 0.2312 0.1585 32.2254 1.7757 74.1167 4.6108 17.5334 164.6910 1.0733 0.3877 398.6 + 1319.3
PMRF 26.3321 0.8740 0.2232 0.1476 29.4504 1.5138 70.4967 4.2227 10.7225 96.8752 0.7214 0.5247 159.8 + 15.7PMRF∗ 26.6431 0.8729 0.2407 0.1596 28.9294 1.3799 64.9143 3.7261 15.1663 140.6601 0.8578
Latent-PMRF 26.3887 0.8789 0.2207 0.1576 29.0961 1.5217 73.1496 4.3325 10.9447 110.4742 0.8108 0.5745 151.2 + 106.8

LQ GFP-GAN RestoreFormer DifFace FlowIE ResShift PMRF Latent-PMRF GT

Figure 4: Qualitative comparisons on CelebA-Test (Wang et al., 2021a) benchmark. Our method
produces visually appealing details while maintaining exceptionally high face identity preservation.

of Latent-PMRF. In this section, we demonstrate the practical implications of these modifications
through controlled experiments. As shown in Table 2, we progressively remove various modifica-
tions to assess their impact on the reconstruction ability of the VAE and the restoration performance
of Latent-PMRF trained on it. From the second row of the table, we observe that while replacing
layer normalization with group normalization improves VAE fidelity, it degrades distributional faith-
fulness, and more importantly, severely hampers the restoration performance of Latent-PMRF. This
suggests that group normalization negatively influences the learning of smooth features. The fourth
row shows that using non-optimal resizing layers leads to poorer reconstruction and, consequently,
worse restoration performance. Finally, when all modifications are removed, we obtain SD-VAE,
which, while achieving good LPIPS in restoration, performs poorly in all other aspects.
Impact of Latent Channels. It is well known that increasing latent channels enhances the latent
space representation and improves the VAE’s reconstruction ability. However, the effect of latent
channels on the restoration performance of Latent-PMRF remains unclear. As shown in Table 3,
Latent-PMRF benefits from a richer latent space, with Q-Align scores consistently improving as the
number of latent channels increases. We find that 32 channels strike a good balance across various
metrics, so we set the default to 32.

4.4 COMPARISONS WITH STATE-OF-THE-ART METHODS

We primarily compare our method with PMRF (Ohayon et al., 2025), as our goal is to con-
struct it in the latent space. Additionally, we compare with traditional approaches such as GFP-
GAN (Wang et al., 2021a), RestoreFormer (Wang et al., 2022b), CodeFormer (Liu et al., 2023a),
and VQFR (Gu et al., 2022), as well as recent diffusion-based methods like DifFace (Yue & Loy,
2024), ResShift (Yue et al., 2023; 2025), and DiffBIR (Lin et al., 2024). For a fair comparison, we
reproduce ResShift using their official code but exclude the LPIPS loss used in their journal ver-
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Figure 5: Comparisons on real-world datasets. Top: Qualitative results on the WIDER-Test (Zhou
et al., 2022) dataset. Bottom: Comparison on the ”distortion”-perception plane (IndRMSE vs. FID),
where IndRMSE represents the RMSE of each method (Ohayon et al., 2025). Our method outper-
forms all others in IndRMSE, while achieving perceptual quality on par with the state-of-the-art.

sion. While incorporating this additional loss term is feasible, we omit it as it is not the focus of
our work and requires computationally expensive VAE decoding during training. We also include
FlowIE (Zhu et al., 2024), which also utilizes flow models. Notably, both DiffBIR and FlowIE lever-
age facial priors from large-scale Stable Diffusion (Rombach et al., 2022), whereas other methods
use relatively smaller models.
Results on Synthetic Dataset. We evaluate our method on the CelebA-Test benchmark (Wang et al.,
2021a). As shown in Table 4, PMRF and Latent-PMRF strike the best balance between distortion
and perceptual quality. Specifically, only PMRF and Latent-PMRF achieve a PSNR above 26.3 dB
and demonstrate superior face identity preservation, as evaluated by Deg. and LMD. In terms of
statistical distance, PMRF, and our method learn more accurate distributions, outperforming others
in FID, FIDDINOv2 and MMDDINOv2. Notably, methods leveraging pretrained facial priors, such as
GFP-GAN, DiffBIR, and FlowIE, achieve higher non-reference metric scores but tend to produce
faces with lower faithfulness. In contrast, Latent-PMRF retains the high fidelity of PMRF while sur-
passing it in non-reference metrics. Moreover, Latent-PMRF demonstrates improved convergence
properties—when the compute budget is reduced to match ours (scaling down from a batch size 256
and 3850 epochs (Ohayon et al., 2025)), PMRF experiences a significant performance drop. Overall,
Latent-PMRF not only outperforms other methods but also converges much faster than PMRF.

We also present visual results in Figure 4. Compared to PMRF, our results generally exhibit better
perceptual quality, which is reflected in the higher non-reference metrics we achieve. In contrast to
other methods, which suffer from lower fidelity to the ground truth and consequently degrade face
identity, our method preserves fine facial details while maintaining strong perceptual quality.
Results on Real-world Datasets. We evaluate the generalizability of Latent-PMRF on real-world
datasets, including LFW (Huang et al., 2008; Wang et al., 2021a), WebPhoto (Wang et al., 2021a),
and WIDER (Zhou et al., 2022). Since these datasets lack ground truth, we follow Ohayon et al.
(2025) and use a pretrained posterior-mean estimator as a proxy for fidelity measurement. As
shown in Figure 5, both Latent-PMRF and PMRF significantly outperform other methods in terms
of fidelity, as indicated by IndRMSE. In terms of perceptual quality, Latent-PMRF outperforms
PMRF on LFW and WIDER, while maintaining comparable performance to other methods. Over-
all, Latent-PMRF achieves a better perception-distortion tradeoff, offering comparable perceptual
quality with superior distortion reduction. Visually, RestoreFormer produces poorly structured im-
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ages, and FlowIE with the Stable Diffusion backbone shows artifacts with overly sharp details. In
contrast, our method generates visually appealing images that remain consistent with the input.

5 RELATED WORK

Generative Models in Latent Space. Diffusion-based generative models (Ho et al., 2020; Dhariwal
& Nichol, 2021) achieve impressive image synthesis but are computationally expensive, particularly
for high-resolution images. Latent Diffusion (Rombach et al., 2022) mitigates this by learning dis-
tributions in a pretrained VAE’s latent space, retaining only perceptually important information to
enhance efficiency and scalability. Large-scale text-to-image models (Rombach et al., 2022; Podell
et al., 2024; Esser et al., 2024) follow this paradigm, with VAE design playing a crucial role. Esser
et al. (2024) show that increasing latent channels improves performance but requires larger gen-
erative models—for instance, even FLUX (12B parameters) (Labs, 2024) is limited to 16 latent
channels. However, our Latent-PMRF framework greatly benefits from a more powerful VAE, since
a stronger VAE enriches the source distribution with more information, thus alleviating the burden
on the restoration process.
Blind Face Restoration. Blind face restoration aims to recover high-quality facial details from im-
ages degraded by unknown and complex factors while maintaining fidelity. From a training objective
perspective, existing methods mainly fall into two categories: (1) GAN-based approaches (Wang
et al., 2021a; 2022b; Gu et al., 2022; Liu et al., 2023a) optimize a weighted combination of dis-
tortion losses (e.g., L1, L2) and perceptual losses (e.g., adversarial loss (Goodfellow et al., 2020),
perceptual loss (Johnson et al., 2016)), where the tradeoff between fidelity and perceptual quality is
controlled by loss weighting (Blau & Michaeli, 2018; Ledig et al., 2017). (2) Posterior sampling-
based methods (Lin et al., 2024; Zhu et al., 2024; Yue et al., 2023; Yue & Loy, 2024; Ohayon et al.,
2025; Chen et al., 2024), particularly diffusion models, model the conditional posterior distribution
of HQ images given degraded inputs. While these methods theoretically ensure superior perceptual
quality, they often lead to suboptimal distortion (Ohayon et al., 2025).

PMRF (Ohayon et al., 2025) is the first approach to ensure optimal distortion under a perfect per-
ceptual quality constraint. It first predicts the posterior mean (minimum distortion estimation) and
then transports it to the HQ image distribution. However, we argue that distribution discrepancy in
pixel space does not faithfully align with human perception. To address this, we propose construct-
ing PMRF in the latent space of a VAE, which better optimizes perceptual quality. Furthermore, we
design the source distribution to preserve PMRF’s distortion-minimum properties in latent space.
Concurrent works. ELIR (Cohen et al., 2025) independently extends PMRF to the latent space
of VAE. However, their focus is on improving testing-time efficiency via Consistency Flow Match-
ing (Yang et al., 2024), while we aim to enhance optimization efficiency for perceptual quality.
Furthermore, they use the posterior mean of latent representations as the source distribution, which,
as discussed in Appendix A.2, is suboptimal. This choice leads to significant fidelity degradation in
their model, whereas our Latent-PMRF preserves the high fidelity of PMRF.

6 CONCLUSION

We propose Latent-PMRF, which retains the minimal distortion property of PMRF while achieving
better perceptual quality optimization. Our theoretical analysis shows that the latent representation
of the posterior mean achieves a minimum distortion determined by the VAE’s reconstruction error.
Based on this insight, we introduce our Sim-VAE, with a series of modifications to enhance the
reconstruction capability of the VAE, leading to a notable performance boost for Latent-PMRF.
Latent-PMRF demonstrates remarkable convergence efficiency, achieving a 5.79× speedup over
PMRF in FID convergence. Furthermore, Latent-PMRF exhibits a better PD-tradeoff compared to
existing methods in blind face restoration, with improved perceptual quality compared to PMRF.
Although Latent-PMRF achieves strong performance, we observe a slight decrease in test speed
compared to PMRF (see Table 4). This is because, while the velocity prediction in the latent space is
faster, the encoding and decoding processes of the VAE are inherently slow. Improving the efficiency
of the VAE could be a potential area for further enhancement.
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A THEORETICAL ANALYSIS OF LATENT-PMRF

A.1 PRELIMINARIES: THE DISTORTION-PERCEPTION TRADE-OFF

Our theoretical analysis is situated within the distortion-perception (DP) framework, using Mean
Squared Error (MSE) as the distortion metric. We begin by defining the key random variables and
the theoretical optimum for an ideal estimator.

• Let X ∼ pX be the ground-truth image from the true data distribution.
• Let Y be the corresponding degraded observation.

• Let X̂ be an estimator for X , produced by a restoration model.
• Let X∗ = E[X|Y ] be the posterior mean estimate. X∗ is the optimal estimator of X given
Y in the MSE sense, as it minimizes E[∥X − X̂∥2] over all possible functions of Y .

The total MSE distortion of any estimator X̂ can be decomposed using the orthogonality principle
of the posterior mean:

E[∥X − X̂∥2] = E[∥X −X∗∥2] + E[∥X∗ − X̂∥2] (4)
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The first term, D∗ = E[∥X −X∗∥2], is the irreducible error. It represents the minimum possible
distortion achievable by any estimator that only has access to the observation Y and is independent
of our specific choice of model for X̂ . The second term, E[∥X∗ − X̂∥2], is the optimizable error,
which our model aims to minimize.

We are interested in the case of perfect perceptual quality, where the distribution of the estimator’s
outputs must match the true data distribution, i.e., pX̂ = pX . As shown by Theorem 2 of Freirich
et al. (2021), the problem of finding the minimum optimizable error under this constraint is equiva-
lent to solving the optimal transport problem between the distributions pX∗ and pX . This minimum
value is, by definition, the squared Wasserstein-2 distance, W 2

2 (pX∗ , pX).

Therefore, the theoretical minimum total distortion for any estimator that satisfies the perfect per-
ception constraint is given by:

D(0) = D∗ +W 2
2 (pX∗ , pX) (5)

This value serves as the gold standard against which we evaluate our Latent-PMRF framework under
ideal conditions.

A.2 DETERMINING OF SOURCE DISTRIBUTION

When extending PMRF into the latent space, two natural candidates for the source distribution arise:

1. Mean of latent codes: Z∗
opt1 = E[E(X)|Y = y]

2. Latent code of the mean: Z∗
opt2 = E(E[X|Y ]) = E(X∗)

In our Latent-PMRF framework, we adopt the latter, Z∗ = E(X∗). The motivation is straight-
forward: decoding this choice yields the posterior mean X∗ up to the VAE’s reconstruction error,
thereby anchoring the transport process to the distortion-minimizing reference.

Specifically, the deviation introduced by Option 2 is simply

∥D(E(X∗))−X∗∥2,

which corresponds exactly to the Inherent Reconstruction Error in Theorem 2. Under a perfect
isometric VAE (1), this error vanishes, and the source distribution coincides with the posterior mean.

By contrast, Option 1 introduces an additional, unavoidable error due to the nonlinearity of D.
Because

D(E[E(X)|Y ]) ̸= E[D(E(X))|Y ],

even a perfect VAE would yield a non-zero deviation

∥D(E[E(X)|Y ])− E[X|Y ]∥2,

preventing the recovery of the theoretical optimum D(0) guaranteed by Theorem 1.

Thus, choosing Z∗ = E(X∗) cleanly isolates the VAE’s reconstruction error as the only source of
initial distortion—an error that is both theoretically principled and practically manageable. More-
over, this choice enables us to directly leverage powerful pre-trained estimators of the posterior mean
in image space (X∗), eliminating the need to separately estimate latent posterior means.

A.3 PROOF OF THEOREM 1: ASYMPTOTIC EQUIVALENCE

Theorem 1 (Asymptotic Equivalence of Latent-PMRF and PMRF). Let (E ,D) be a VAE that forms
an isometry between the data space and the latent space. Then, the optimal estimator X̂lat =

D(Tlat(E(X∗))) derived from Latent-PMRF is identical to the optimal estimator X̂PMRF derived
from PMRF, thus achieving the theoretical minimum distortion D∗ +W 2

2 (pX∗ , pX).
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Proof. The proof proceeds by establishing the theoretical minimum distortion under the perfect
perception constraint and then showing that the Latent-PMRF estimator achieves this minimum.
An isometry implies that the encoder E is a distance-preserving bijection with inverse D, such that
D(E(x)) = x and ∥x1 − x2∥ = ∥E(x1) − E(x2)∥. The Latent-PMRF estimator is defined as
X̂lat = D(Tlat(E(X∗))), where Tlat is the optimal transport map between the latent distributions
pZ∗ = pE(X∗) and pZ = pE(X).

We first analyze the optimizable error term for this estimator, E[∥X∗ − X̂lat∥2]. By applying the
properties of the isometry, we can translate this pixel-space distortion into the equivalent transport
cost in the latent space:

E[∥X∗ − X̂lat∥2] = E[∥X∗ −D(Tlat(E(X∗)))∥2]
= E[∥D(E(X∗))−D(Tlat(E(X∗)))∥2] (Since D(E(X∗)) = X∗)

= E[∥E(X∗)− Tlat(E(X∗))∥2] (Since D is an isometry)

= E[∥Z∗ − Tlat(Z∗)∥2]
=W 2

2 (pZ∗ , pZ) (By definition of Tlat)

(6)

This is, by definition, the cost minimized by the optimal transport map Tlat in the latent space,
which equals W 2

2 (pZ∗ , pZ). Furthermore, because the isometry preserves the cost function for
transport, the Wasserstein distance itself is preserved between the spaces, meaning W 2

2 (pZ∗ , pZ) =
W 2

2 (pX∗ , pX).

Combining these results, the optimizable distortion of the Latent-PMRF estimator is equal to the
theoretical minimum, W 2

2 (pX∗ , pX). Therefore, the total distortion achieved by Latent-PMRF is
E[∥X − X̂lat∥2] = D∗ +W 2

2 (pX∗ , pX) = D(0). This demonstrates that under the ideal condition
of an isometric VAE, Latent-PMRF achieves the theoretical optimum distortion-perception trade-off.

A.4 PROOF OF THEOREM 2: THE INHERENT RECONSTRUCTION ERROR

Theorem 2 (The Inherent Reconstruction Error in Latent-PMRF). Let (E ,D) be any VAE and X̂ =
D(Tlat(E(X∗))) be the estimator from Latent-PMRF. The total expected distortion (omit constant
D∗) with respect to the posterior mean can be decomposed as:

E[∥X∗ − X̂∥2] = E[∥X∗ −D(E(X∗))∥2]︸ ︷︷ ︸
Inherent Reconstruction Error

+E[∥D(E(X∗))− X̂∥2] + 2E[⟨. . . ⟩]︸ ︷︷ ︸
Transport-Related Error

Proof. The proof is based on an algebraic decomposition of the total error, which isolates the con-
tribution of the VAE’s reconstruction infidelity from the contribution of the transport process.

We define an intermediate term, X̃ = D(E(X∗)), which represents the direct, non-transported
reconstruction of the posterior mean. The optimizable error vector, X∗− X̂ , is then decomposed by
adding and subtracting this term:

X∗ − X̂ = (X∗ − X̃) + (X̃ − X̂) (7)

The vector (X∗ − X̃) represents the error introduced solely by the VAE’s imperfect reconstruction.
The vector (X̃ − X̂) represents the change introduced by the transport process, viewed in the pixel
space.

We compute the expected squared norm of the total error vector. Applying the identity ∥A+B∥2 =
∥A∥2 + ∥B∥2 + 2⟨A,B⟩ and the linearity of expectation, we obtain:

E[∥X∗ − X̂∥2] = E[∥(X∗ − X̃) + (X̃ − X̂)∥2]
= E[∥X∗ − X̃∥2] + E[∥X̃ − X̂∥2] + 2E[⟨X∗ − X̃, X̃ − X̂⟩]

(8)
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Substituting the definitions of X̃ and X̂ yields the expression in the theorem. This identity proves
the decomposition. The first term, the Inherent Reconstruction Error, is non-negative and de-
pends only on the VAE and the distribution p(X∗); it is independent of the transport map T and
strictly positive for any imperfect VAE. The remaining terms constitute the Transport-Related Er-
ror, as they depend on the final estimator X̂ and thus on the transport map T . This decomposition
shows that the VAE’s reconstruction fidelity imposes a fundamental component to the total distor-
tion, which cannot be eliminated by the subsequent transport model. This concludes the proof.
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Figure 6: Comparison of ResBlock designs between SD-VAE and Sim-VAE. Sim-VAE simplifies
the ResBlock architecture by removing redundant components.

B IMPROVED VARIATIONAL AUTOENCODER

In this section, we detail the design of Sim-VAE. For the Latent-PMRF model, the VAE not only
defines the upper bound for restoration performance but also affects the optimization of flow model.
We first outline several architectural improvements aimed at enhancing both the reconstruction abil-
ity of the VAE and the distortion lower bound of Latent-PMRF. Next, We overview our training
loss, where we propose eliminating the adversarial loss when VAE is strong enough, simplifying the
training procedure.

B.1 ARCHITECTURE IMPROVEMENTS

Our VAE architecture builds upon the classical VQGAN Esser et al. (2021), which has been widely
adopted in numerous influential works Rombach et al. (2022); Podell et al. (2024); Esser et al.
(2024); Labs (2024). We refer to this architecture as SD-VAE, reflecting its widespread adoption
since Stable Diffusion. The encoder and decoder share a symmetric architecture, so we focus on
describing the encoder, as the decoder follows an analogous structure in reverse.
Simplified ResBlock: Inspired by recent efficient convnet designs Liu et al. (2022); Chen et al.
(2022), we propose a simplified ResBlock He et al. (2016) (Figure 6) that uses only one activation
function and one normalization layer per block, improving efficiency without sacrificing perfor-
mance.
Pixel-wise Layer Norm: The SD-VAE has been shown to produce imbalanced feature representa-
tions, where certain regions in intermediate feature maps exhibiting disproportionately high magni-
tudes Sadat et al. (2024); drhead (2024), as illustrated in Figure 8. While these local outliers in the
feature maps serve to preserve global information drhead (2024), they may complicate latent diffu-
sion model training. Inspired by Sadat et al. (2024); Karras et al. (2020), we propose replacing group
normalization Wu & He (2018) with pixel-wise layer normalization Lei Ba et al. (2016); Chen et al.
(2022), which normalizes each spatial location independently and promotes more balanced feature
representations.
Removing Self-Attention in Middle Layers: SD-VAE uses self-attention Vaswani et al. (2017)
in middle layers to capture global context, but this introduces a key limitation: resolution gen-
eralization issues. VAEs are usually trained on fixed low-resolution inputs, and global operators
like self-attention often struggle to maintain performance across different resolutions during infer-
ence Press et al. (2022); Gao et al. (2025). While fine-tuning on high-resolution data is a common
solution Sadat et al. (2024); Chen et al. (2025), it complicates training with additional optimization
stages. To address this, we propose a simple modification: replacing self-attention with standard
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Figure 7: Illustration of the resizing layer design. Sim-VAE redistributes computation to ensure that
channel dimension adjustments occur immediately with resolution changes.

(a) Group Norm (b) Layer Norm (c) Group Norm (d) Layer Norm

Figure 8: Two examples of the latent representations. Using pixel-wise layer normalization instead
of group normalization allows the model to learn more balanced feature maps.

3× 3 convolutional layers, which offer better generalization across different resolutions.
Redistribute Parameters between Resizing Layers: In SD-VAE, resizing layers are responsible
handling stage transitions, but the original design separates resolution changes from channel adjust-
ments (Figure 7a): resizing layers maintain channel dimensions, while later convolutional layer han-
dle channel modifications. This creates bottlenecks during downsampling and retains inefficiently
high-dimensional features during upsampling. We propose integrating channel adjustments directly
into the resizing layers—expanding channels during downsampling and reducing them during up-
sampling. This change improves information preservation and computational efficiency without
increasing parameter count or complexity.

B.2 TRAINING LOSS

The training objective for autoencoders typically comprises three components Esser et al. (2021):
a reconstruction loss Lrecon(D(E(x)), x) that measures the similarity between input and recon-
structed images, a regularization term Lreg(E(x)) that constrains the latent space, and an adversarial
loss Goodfellow et al. (2020) Ladv that encourages photorealistic reconstructions by discriminating
between real images x and their reconstructions D(E(x)). We observe that with sufficient model
capacity, the adversarial loss becomes unnecessary without compromising performance, as also ob-
served in Qwen-Image Wu et al. (2025). Thus, the training loss simplifies to:
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Ltrain = Lrecon + λreg Lreg (9)

The reconstruction loss Lrecon combines ℓ1 distance with perceptual loss Johnson et al. (2016),
following the weighting scheme of Real-ESRGAN Wang et al. (2021b). For regularization, we use
the Kullback-Leibler (KL) divergence as Lreg, with λreg set to 10−6 as in Rombach et al. (2022).

C FURTHER EXPERIMENTS

To further validate the convergence of our Sim-VAE, we directly compare latent-PMRF (based on
FLUX-VAE) and and Latent-PMRF (based on Sim-VAE). As shown in Figure 9, even with the same
number of latent channels (aligned computational cost), Sim-VAE exhibits superior convergence
property.

In addition, we conduct comparative experiments on real-world datasets. As shown in Figure 10,
Latent-PMRF achieves significantly better results than PMRF, while attaining comparable MUSIQ
scores and substantially improved IndRMSE compared to state-of-the-art methods.
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Figure 9: Convergence comparison of VAEs.
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Figure 10: Comparisons on real-world datasets.

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In adherence to the ICLR 2026 submission guidelines, this section details the use of a Large Lan-
guage Model (LLM) assistant during the preparation of this manuscript. The LLM, acting as a
research and writing co-pilot, played a significant role in refining the manuscript’s structure, lan-
guage, and presentation. The authors maintained full intellectual control throughout the process and
take complete responsibility for all content.

The precise role of the LLM can be categorized as follows:

• Manuscript Writing and Polishing: The authors wrote the initial drafts for all sections
of the paper, providing the key technical details, experimental results, and core arguments.
The LLM was then used extensively as an interactive writing assistant to:

– Enhance Clarity and Conciseness: Rephrasing long or complex sentences to im-
prove readability and flow.
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– Improve Academic Tone: Suggesting more formal and professional vocabulary and
sentence structures appropriate for a top-tier conference submission.

– Correct Grammar and Syntax: Performing comprehensive proofreading to identify
and correct grammatical errors, typos, and awkward phrasing.

– Suggest Alternative Phrasing: Providing multiple options for expressing a single
idea to avoid repetitive language).

• Technical Formalization: For complex mathematical sections, such as the derivation of
the Theorem 1,2, the authors provided the core mathematical steps and overall idea. The
LLM assisted in translating these steps into a clear, well-structured narrative and formatting
them professionally in LaTeX. The LLM did not generate novel mathematical proofs but
rather helped in their presentation.

Throughout this collaborative process, every suggestion and piece of text generated by the LLM was
critically reviewed, edited, and approved by the human authors. The authors are solely responsible
for the scientific validity, originality, and all claims made in this paper. The LLM is not considered
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