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Abstract

A common explanation for the failure of deep networks to generalize out-of-
distribution is that they fail to recover the “correct” features. We challenge this
notion with a simple experiment which suggests that ERM already learns sufficient
features and that the current bottleneck is not feature learning, but robust regres-
sion. Our findings also imply that given a small amount of data from the target
distribution, retraining only the last linear layer will give excellent performance.
We therefore argue that devising simpler methods for learning predictors on ex-
isting features is a promising direction for future research. Towards this end, we
introduce Domain-Adjusted Regression (DARE), a convex objective for learning
a linear predictor that is provably robust under a new model of distribution shift.
Rather than learning one function, DARE performs a domain-specific adjustment
to unify the domains in a canonical latent space and learns to predict in this space.
Under a natural model, we prove that the DARE solution is the minimax-optimal
predictor for a constrained set of test distributions. Further, we provide the first
finite-environment convergence guarantee to the minimax risk, improving over
existing analyses which only yield minimax predictors after an environment thresh-
old. Evaluated on finetuned features, we find that DARE compares favorably to
prior methods, consistently achieving equal or better performance. The full version
of this paper is available on arχiv at this https URL.

1 Introduction

The historical motivation for deep learning focuses on the ability of deep neural networks to automat-
ically learn rich, hierarchical features of complex data [21, 13]. Simple Empirical Risk Minimization
(ERM), with appropriate regularization, results in high-quality representations. Despite these suc-
cesses, the dominant focus is on the shortcomings of this approach: recent work points to the failure of
networks trained with ERM to generalize under even moderate distribution shift [30, 26]. A common
explanation for this phenomenon is reliance on “spurious correlations” or “shortcuts” [29, 12, 41].
Many proposed solutions implicitly assume that this problem is due to the entire neural network:
they suggest an alternate objective to be minimized over a deep network in an end-to-end fashion
[36, 11, 1]. These objectives are complex, poorly understood, and difficult to optimize. Though a
neural network is often viewed as a deep feature embedder with a final linear predictor applied to the
features, it is still unclear—and to our knowledge has not been directly asked or tested—whether
these issues are primarily because of (i) learning the wrong features or (ii) learning good features but
failing to find the best-generalizing linear predictor on top of them.

We begin with a simple experiment (Figure 1) to try to distinguish between these two possibilities:
we train a deep network with ERM on several domain generalization benchmarks, where the task is
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Figure 1: Accuracy via “cheating”: dagger (†) denotes access to test domain at train-time. Each letter
is a domain. Dark blue is approximate SOTA, orange is our proposed DARE objective, light grey
represents cheating while retraining the linear classifier only. All three methods use the same features,
attained without cheating. Dark grey is “ideal” accuracy, cheating while training the entire deep
network. Surprisingly, cheating only for the linear classifier rivals cheating for the whole network.
Cheating accuracy on pretrained features (light blue) makes clear that this effect is due to finetuning
on the train domains, and not simply overparameterization (i.e., a very large number of features).

to learn a predictor using a collection of distinct training domains and then perform well on a new,
unseen domain. After training, we freeze the features and separately learn a linear classifier on top
of them. Crucially, when training this classifier (i.e., retraining just the last linear layer), we give it
an unreasonable advantage by optimizing on both the train and test domains—henceforth we refer
to this as “cheating”. Since we use just a linear classifier, this process establishes a lower bound on
what performance we could plausibly achieve using standard ERM features. We then separately cheat
while training the full network end-to-end, simulating the idealized setting with no distribution shift.
Note that in neither case do we train on the test points; our cheating entails training on (different)
samples from the test domain, which are assumed unavailable in domain generalization.

Notably, we find that simple (cheating) logistic regression on frozen deep features learned via ERM
results in enormous improvements over current state of the art, on the order of 10-15%. In fact, it
usually performs comparably to the full cheating method—which learns both features and classifier
end-to-end with test domain access—sometimes even outperforming it. Put another way, cheating
while training the entire network rarely does significantly better than cheating while training
just the last linear layer. We also find that this cheating method does not ensure good performance
on pretrained features, which implies that we are not yet in the “universal approximation” regime and
that the effect we observe is indeed due to finetuning via ERM. These results suggest that features
learned by ERM may be “good enough” for out-of-distribution generalization in deep learning. For a
more detailed description of the experimental setup, see Appendices B & H.

Motivated by these findings, we propose a new objective, which we call Domain-Adjusted Regression
(DARE). DARE enjoys strong theoretical guarantees: under a new model of distribution shift we
precisely characterize the adversarial risk of the DARE solution against a natural perturbation set,
and we prove that this risk is minimax. We further provide the first finite-environment convergence
guarantee to the minimax risk, improving over existing results which merely demonstrate a threshold
in the number of observed environments at which the solution is discovered [31, 7, 40]. Evaluated
on finetuned features, we find that DARE compares favorably to existing methods, consistently
achieving equal or better performance. We hope these results will encourage going “back to basics”,
with future work focusing on simpler, easier to understand methods for robust prediction.

2 The Domain-Adjusted Regression Objective

The goal of many prior methods in deep domain adaptation or generalization is to learn a single
network which does well on all environments simultaneously, often by throwing away non-invariant
components [27, 1]. Instead, we reframe the problem by thinking of each training domain as a distinct
transformation from a shared canonical representation space. In this framing, we can “adjust” each
domain in order to undo these transformations, aligning the representations to learn a single robust
predictor in this unified space. Specifically, we propose to whiten each domain’s features to have zero
mean and identity covariance, which can be thought of as a “domain-specific batchnorm” but using
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the full feature covariance. DARE is similar to methods which learn separate batchnorm parameters
per domain over a deep network, possibly adjusting at test-time [35, 6, 34].

To begin, define E as the set of observed training environments, each of which is defined by a
distribution pe(x, y) over features x ∈ Rd and class labels y ∈ [k]. For each e ∈ E , denote the mean
and covariance of the features as µe,Σe. Our first step is to adjust the features via the whitening
transformation Σ

−1/2
e (x− µe). Unfortunately, we cannot undo the test transformation because we

have no way of knowing what the test mean will be. This is not a problem provided the predictor
satisfies a simple constraint. Suppose that the predictor’s output on the mean representation of each
environment is a multiple of the all-ones vector. This enforces that the environment mean has no
effect on the final probability distribution, and thus there is no need to adjust for the test-time mean.
Formally, the DARE objective finds a matrix β ∈ Rd×k which solves

min
β

∑
e∈E

Epe [`(βTΣ−1/2
e x, y)] subject to softmax

(
βTΣ−1/2

e µe

)
=

1

k
1. ∀e ∈ E , (1)

where ` is the multinomial logistic loss. Thus, the DARE objective explicitly regresses on the
adjusted features, while the constraint enforces that each environment mean has no effect on the
output distribution to encourage predictions to also be invariant to test-time transformations. We also
do not know precisely the correct whitening matrix for the test data—instead, we adjust using our
best guess for the test covariance: denoting this estimate as Σ̄, our prediction on a new sample x is
f(x;β) = softmax

(
βT Σ̄−1/2x

)
. We prove that this prediction is minimax so long as our guess is

“sufficiently close”, and in practice we find that simply averaging the training domain adjustments
performs well. Note that unlike prior methods, DARE does not enforce invariance of the features
themselves. Rather, it aligns the representations such that different domains share optimal predictors.
The appendix contains discussion of implementation of the DARE pipeline in practice, as well as
ablations of various design and constraint choices (Appendix I). Another benefit to our approach is
that the adjustments for each domain do not depend on labels, so given unlabeled samples from the
test domain we can often do even better. Theorem D.9 provides finite-sample risk bounds for the
DARE objective in this setting.

3 A New Model of Distribution Shift
The DARE objective is based on the intuition that all domains arise as unique transformation from
a joint representation space. To capture this, we model the joint distribution pe(ε, y) over latents
ε ∈ Rd and label y ∈ {0, 1}, along with an environment-specific transformation to observations
x ∈ Rd for each domain. In the fully general case, this transformation can take an arbitrary form
and can be written as x = Te(ε, y). Our primary assumption is that pe(y | ε) is constant for all
domains. Our goal is thus to invert each transformation Te such that we are learning an invariant
conditional p(y | T−1

e (x)) (throughout we assume Te is invertible). One can also view this model
as a generalization of covariate shift. Our finding that ERM features are good enough suggests that
modeling the learned features as a simple function of the “true latents” ε is not unreasonable. In other
words, we now consider x to represent the frozen features of the trained network, and we expect this
network to have already “undone” the majority of the complexity, resulting in observations which are
a simple function of the ground truth. Accordingly, we consider the following model:

ε = ε0 + be, y = 1{β∗T ε+ η ≥ 0}, x = Aeε. (2)
Here, ε0 ∼ pe(ε0), which we allow to be any domain-specific distribution; we assume only that its
mean is zero (such that E[ε] = be) and that its covariance exists. We fix β∗ ∈ Rd for all domains
and model η as logistic noise. Finally, Ae ∈ Rd×d, be ∈ Rd are domain-specific. For regression, we
model the same generative process for x, ε, while for the response, we have y ∈ R and η is zero-mean
independent noise: y = β∗T ε+ η.

Connection to Invariant Prediction. Statistical models of varying and invariant (latent) features
have recently become a popular tool for analyzing the behavior of deep representation learning
algorithms [31, 7, 39]. We see that Equation (2) can model such a setting by assuming, e.g., that a
subspace of the columnspan of Ae is constant for all e, while the remaining subspace can vary. In
such a case, the features x are expressed as the sum of a varying and an invariant component, and
any minimax representation must remove the varying component, throwing away potentially useful
information. Instead, DARE realigns these components so that we can use them at test-time. We
illustrate this with an example in Appendix C.
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4 Theoretical Analysis

Due to space constraints, we briefly list our theoretical results in this section. Results are stated fully
in Appendix D, along with a more involved discussion .

First, we solve for the closed-form solution to the DARE objective under our model:
Theorem 4.1. Under model (2), the solution to the DARE population objective (5) for linear
regression is Π̂β∗. If ε is Gaussian, the solution for (1) is αΠ̂β∗ for some α ∈ (0, 1].

4.1 The Adversarial Risk of DARE

Next, under some natural assumptions on the strength of the adversary choosing the test distribution,
we solve for the exact risk of the DARE predictor. Further, we prove that this risk is minimax:
Theorem 4.2. Denote the set of possible test environments Aρ which contains all parameters
(Ae′ , be′) subject to Assumptions D.3 and D.5 and a bound on the mean: ‖be′‖ ≤ ρ. For logistic or
linear regression, let β̂ be the minimizer of the corresponding DARE objective as in Theorem D.2.
Then,

sup
(Ae′ ,be′ )∈Aρ

Re′(β̂) = (1 + ρ2)(‖β∗‖2 + 2B‖β∗
Π̂
‖‖β∗

I−Π̂
‖). (3)

Furthermore, the DARE solution is minimax:

β̂ ∈ arg min
β∈Rd

sup
(Ae′ ,be′ )∈Aρ

Re′(β). (4)

4.2 The Environment Complexity of DARE

An important new measure of domain generalization algorithms is their environment complexity,
which describes how the test risk behaves as a function of the number of (possibly random) domains
we observe. Prior methods exclusively give thresholds at which the optimal invariant predictor is
recovered, usually linear in the ambient dimension of the varying subspace. However, their behavior
when this threshold has not been reached is not well understood. Our next result demonstrates that
DARE achieves this same threshold, but we also prove the first finite-environment convergence
guarantee, quantifying how quickly the risk of the DARE predictor approaches that of the minimax-
optimal predictor.
Theorem 4.3 (Environment complexity of DARE). Define the smallest gap between consecutive
eigenvalues: ξ(Σ) := mini∈[d−1] λi − λi+1. Fix test parameters Ae′ , be′ and guess Σ̄. After seeing
E training domains:

1. If E ≥ rank(Σb) then DARE recovers the minimax-optimal predictor almost surely: β̂ = β∗Π.

2. Otherwise, if E ≥ r(Σb) then with probability ≥ 1 − δ, Re′(β̂) ≤ Re′(β∗Π) +

O
(
‖Σb‖
ξ(Σb)

(√
r(Σb)
E

+ max

{√
log 1/δ
E

, log 1/δ
E

}))
where O(·) hides dependence on ‖∆‖ and

r(Σ) := Tr(Σ)
‖Σ‖ is the effective rank.

Remark 4.4. Thus, DARE achieves the same threshold for minimax optimality. But we should expect
that if the shift in the test distribution is not too large then we can do better, and indeed Theorem D.7
shows that if the effective rank of Σb is sufficiently small, the risk of the DARE predictor will
approach that of the minimax predictor as O(E−1/2).

4.3 Applying DARE to JIT-UDA

Finally, we provide a finite-sample risk bound given access to unlabeled test data at test time, with no
retraining necessary. We’d expect that estimating the adjustment via unlabeled samples will improve
the performance. Prior works have extensively explored how to leverage access to unlabeled test
samples for improved generalization—but while some suggest ways of using unlabeled samples at test-
time, the advantages have not been formally quantified. Our final theorem investigates the provable
benefits of using the empirical moments instead of enforcing invariance, giving a finite-sample
convergence guarantee for the unconstrained DARE objective in the JIT-UDA setting:
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Theorem 4.5 (JIT-UDA, shortened). Let ΣS ,ΣT be the covariances of the source and target dis-
tributions, respectively. Define m(Σ) := λmax(Σ)

λ3
min(Σ)

. Assume we observe ns = Ω(m(ΣS)d2) source
samples and analogous nT target samples. Then after solving the DARE objective, with probability
at least 1 − 3d−1, the excess squared risk of our predictor on the new environment is bounded as
RT (β̂) = O

(
d2‖µT ‖2

(
m(ΣS)
nS

+ m(ΣT )
nT

))
.

5 Experiments

Dataset / Algorithm Mean Accuracy by Domain (± 90% CI)
Office-Home A C P R

ERM 61.4 ± 1.9 52.1 ± 1.6 74.6 ± 0.7 75.8 ± 1.9
IRM 62.1 ± 1.5 53.2 ± 1.7 75.2 ± 0.9 77.3 ± 0.8
GroupDRO 62.5 ± 0.5 53.1 ± 1.7 75.7 ± 0.5 77.7 ± 1.1
Reweighted ERM 62.5 ± 0.8 52.5 ± 2.3 75.7 ± 0.5 77.4 ± 0.8

DARE 64.7 ± 0.8 55.4 ± 1.1 77.5 ± 0.3 79.2 ± 0.5
PACS A C P S

ERM 84.3 ± 1.5 79.5 ± 1.9 96.7 ± 0.5 74.9 ± 3.7
IRM 83.6 ± 0.4 79.2 ± 0.5 97.1 ± 0.2 76.4 ± 2.3
GroupDRO 83.6 ± 1.0 79.1 ± 0.2 96.9 ± 0.3 76.8 ± 2.8
Reweighted ERM 83.6 ± 1.0 78.8 ± 0.2 97.1 ± 0.3 76.5 ± 2.3

DARE 85.6 ± 0.6 80.5 ± 1.0 96.6 ± 0.4 76.7 ± 2.0

Dataset / Algorithm Mean Accuracy by Domain (± 90% CI)
VLCS C L S V

ERM 97.6 ± 0.7 66.1 ± 0.6 71.9 ± 1.9 76.1 ± 2.3
IRM 98.6 ± 0.6 64.9 ± 0.9 72.9 ± 0.7 74.1 ± 2.1
GroupDRO 98.5 ± 0.7 65.0 ± 0.5 73.9 ± 1.0 75.1 ± 1.8
Reweighted ERM 98.6 ± 0.7 65.5 ± 0.5 73.4 ± 0.3 74.9 ± 1.7

DARE 98.5 ± 0.2 62.5 ± 1.6 74.3 ± 1.4 75.5 ± 1.4

DomainNet c i p q r s
ERM 57.6 ± 0.6 17.9 ± 0.6 44.7 ± 0.7 12.6 ± 0.9 59.0 ± 0.7 48.6 ± 0.3
IRM 60.9 ± 0.4 19.3 ± 0.2 47.6 ± 0.4 12.4 ± 0.4 61.9 ± 1.0 49.8 ± 0.6
GroupDRO 57.8 ± 0.7 18.8 ± 0.4 45.3 ± 0.4 11.9 ± 0.8 59.5 ± 1.0 47.9 ± 0.9
Reweighted ERM 61.0 ± 0.4 19.1 ± 0.4 47.4 ± 0.4 12.3 ± 0.6 61.8 ± 1.1 49.9 ± 0.5

DARE 61.7 ± 0.2 19.3 ± 0.1 47.4 ± 0.5 13.1 ± 0.7 61.2 ± 1.3 51.4 ± 0.3

Table 1: Performance of linear predictors on top of fixed features learned via ERM. Each letter is a
domain. Because all algorithms use the same set of features for each trial, results are not independent.
Therefore, bold indicates highest mean according to one-sided paired t-tests at p = 0.1 significance.
If not the overall highest, underline indicates higher mean than ERM under the same test.

Most algorithms implemented in the DOMAINBED benchmark are only applicable to deep networks;
many apply complex regularization to either the learned features or the network itself. We instead
compare to three popular algorithms which work for linear classifiers: ERM [37], IRM [1], and
GroupDRO [33]. We also discovered that simply rescaling ERM by downweighting each domain
proportionally to its size serves as a strong baseline. Concurrent work makes a similar observation,
exploring this baseline when training the whole network rather than just the last layer [17]. We denote
this method “Reweighted ERM”. We evaluate all approaches on four datasets: Office-Home [38],
PACS [22], VLCS [10], and DomainNet [27]. The features for each trial are the default hyperpa-
rameter sweep of DOMAINBED; for computational reasons, we used fewer random hyperparameter
choices per trial, meaning the reported accuracies are not directly comparable. Nevertheless, our
results are significant because they are consistently evaluated according to the same methodology.
Additional comparisons to other end-to-end methods can be found in Appendix I.

Results are reported in Table 1. We find that DARE consistently matches or surpasses prior methods.
All algorithms use the same set of features for each trial, so their performances are highly dependent.
To account for this, we perform a one-sided paired t-test between algorithms to determine the best
performers. The fact that DARE consistently bests ERM is somewhat surprising: it is intended to
guard against a worst-case distribution shift and depends on the quality of our guess Σ̄, so we would
in general expect worse performance on some datasets.

Prior methods now consistently outperform ERM. It is interesting that the previously observed
gap between ERM and alternatives disappears in this setting with a linear predictor. For example,
Gulrajani & Lopez-Paz [14] report IRM and GroupDRO performing much worse on DomainNet—
5-10% lower accuracy on some domains—but they surpass ERM when using frozen features. This
could be because they learn worse features, or perhaps they are just more difficult to optimize over a
deep network. This also implies that when these methods do work, it is most likely due to learning a
better linear classifier. This further motivates work on methods for learning simpler robust predictors.
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Limitations

Our experiments demonstrate that traditional training already learns excellent features for generalizing
to new distributions. This suggests that we should focus on methods learning to use these features, but
it also means that these features are likely to contain just as much spurious or sensitive information as
the original inputs. Thus, even if a method which uses frozen features performs better under shift
(such as on minority subpopulations), care must still be taken to account for possible biases in the
resulting classifier.
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A Related Work
A popular approach to domain generalization matches the domains in feature space, either by aligning
moments [36] or with an adversarial loss [11], though these methods are known to be inadequate in
general [43]. DARE differs from these approaches in that the constraint requires only that the feature
mean projection onto the vector β be invariant. Domain-invariant projections [2] were recently
analyzed by Chen & Bühlmann [8], though notably under fully observed features and only for domain
adaptation. They analyze other invariances as well, and we expect combining these methods with
domain adjustment can serve as a direction for future study.

There has been intense recent focus on invariant prediction, based on ideas from causality [28]
and catalyzed by IRM [1]. Though the goal of such methods is minimax-optimality under major
distribution shift, later work identifies critical failure modes of this approach [31, 18]. These methods
eliminate features whose information is not invariant, which is often overly conservative. DARE
instead allows for limited new variation by aligning the non-invariant subspaces, enabling stronger
theoretical guarantees.

Some prior works “normalize” each domain by learning separate batchnorm parameters but sharing
the rest of the network. Initially suggested for UDA [24, 4, 6], this idea has also been applied to
domain generalization [35, 34] but in a somewhat ad-hoc manner—this is problematic because deep
domain generalization methods were recently called into question when Gulrajani & Lopez-Paz [14]
gave convincing evidence that no method beats ERM when evaluated fairly. Our analysis provides an
initial justification for these methods, suggesting that this idea is worth exploring further.

B ERM Learns Surprisingly Useful Features

Our experiments are motivated by a simple question: is the observed failure of deep neural
networks to generalize out-of-distribution more appropriately attributed to inadequate feature
learning or inadequate robust prediction? Both could undoubtedly be improved, but we are
concerned with which currently serves as the primary bottleneck. It’s typical to train the entire
network end-to-end and then evaluate on a test distribution; in reality, this measures the quality of the
interaction of the features and the classifier, not of either one individually.

Using datasets and methodology from DOMAINBED [14], we finetune a ResNet-50 [15] with ERM
on the training domains to extract features. Next, we cheat while learning a linear classifier on top of
these frozen features by optimizing on both the train and test domains. We compare this cheating
linear classifier to a full cheating network trained on all domains end-to-end. If it is the case that
ERM learns features which do not generalize, we should expect that the cheating linear classifier will
not substantially improve over the current state of the art and will perform significantly worse than
cheating end-to-end, since the latter method can adapt the features to better suit the test domain.

Instead, we find that simply giving the linear predictor access to all domains while training makes
up the vast majority of the gap between current state of the art (ERM with heavy regularization)
and the ideal setting where we train a network on all domains. In other words, ERM produces
features which are informative enough that a linear classifier on top of these frozen features is—in
principle—capable of generalizing almost as well as if we had access to the test domain when training
the entire network.1 Figure 2 in the Appendix depicts the evaluation methodology described above,
along with a more detailed explanation. We conjecture that this phenomenon occurs more broadly:
our findings suggest that for many applications, existing features learned via ERM may be “good
enough” for out-of-distribution generalization in deep learning. Based on this idea, we posit that
future work would benefit from modularity, working to improve representation learning and robust
classification/regression separately. There are several distinct advantages to this approach:

• More robust comparisons and better reproducibility: Current methods have myriad degrees
of freedom which makes informative comparisons difficult; evaluating feature learning and robust
regression separately eliminates many of these sources of experimental variation.

• Less compute overhead: Training large networks to learn both features and a classifier is expen-
sive. Benchmarks could include files with the weights for ready-to-use deep feature embedders
trained with various objectives—these models can be much larger and trained on much more data
1On a few domains the linear method sees a gap of ∼5% accuracy from the idealized setting. We emphasize

that our use of a simple linear predictor serves as a lower bound on the achievable error using ERM features.
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than would be feasible for many. Using these features, academic researchers could thus make
faster progress on better classifiers with less compute.

• Modular theoretical guarantees: Conditioning on the frozen features, we can use more classical
analyses to provide guarantees for the simpler parametric classifiers learned on top of these
features. For example, Bansal et al. [3] derive a generalization bound for simpler classifiers which
is agnostic to the complexity of the features on which they are trained.

We conclude by emphasizing that while the predictor in our experiments is linear, future methods
need not be. Rather, we are highlighting that there may be no need for complex, expensive, highly
variable regularization of a deep network when much simpler approaches suffice.

C Example Comparing Invariant Prediction to DARE

Example 1 (Invariant Latent Subspace Recovery). Consider the model (2) with ε ∼ N (0, Id1+d2
).

Define Π := blockdiag(Id1
,0d2

) and assume Ae = blockdiag(Σ1/2,Σ
1/2
e ) for all e, where Σ ∈

Rd1×d1 is constant for all domains but Σe ∈ Rd2×d2 varies.

Here we have a simple latent variable model: the features have the decomposition x = Aeε =

Σ1/2Πε+ Σ
1/2
e (I −Π)ε, where the first component is constant across environments and the second

varies. It will be instructive at this point to analyze what an invariant prediction algorithm such
as IRM would do in this setting. Here, the IRM constraint would enforce learning a featurizer Φ
such that Φ(x) has an invariant relationship with the target. Under the above model, the solution is
Φ(x) = ΠA−1

e x = Σ1/2Πε, retainining only the component lying in span(Π). Crucially, removing
these features actually results in worse performance on the training environments—IRM only does
so because using these features could harm test performance in the worst case. However, projecting
out the varying component in this manner is unnecessarily conservative, as we may expect that for a
future distribution, Σe′ will not be too different from what we have seen before. Instead of projecting
out this component, DARE performs a more nuanced alignment of environment subspaces, and it is
thus able to take advantage of this additional informaton.

D Detailed Theoretical Results

Before we can analyze the DARE objective, we observe that there is a possible degeneracy in
Equation (2), since two identical observational distributions p(x, y) can have different regression
vectors β∗. We therefore begin with a simple non-degeneracy assumption:
Assumption D.1. Write the SVD of Ae as UeSeV Te . We assume Ve = V ∀e.

One special case where this holds is when Ae is constant for all domains; this is very similar to the
“additive intervention” setting of Rothenhäusler et al. [32], since only pe, be can vary. We assume
WLOG that V = I , as any other value can be subsumed by the other parameters. We further
let E[ε0ε

T
0 ] = I WLOG by the same reasoning. With Assumption D.1, we can uniquely recover

Ae = UeSe via the eigendecomposition of the covariance Σe = AeA
T
e = UeS

2
eU

T
e . We therefore

use the notation Σ
1/2
e to refer to Ae recovered in this way. We allow covariances to have zero

eigenvalues, in which case we write the matrix inverse to implicitly refer to the pseudoinverse. As
is standard in domain generalization analysis, unless stated otherwise we assume full distribution
access to the training domains, though standard concentration inequalities could easily be applied.

A remark on our assumptions. Assumption D.1 and the constraint in Equation (1) are not trivial.
Domain generalization is an exceptionally difficult problem, and showing anything meaningful
requires some assumption of consistency between train and test. Our assumptions are only as strong
as necessary to prove our results, but future work could relax them, resulting in weaker but possibly
still reasonable performance guarantees. Experiments in Appendix I demonstrate that our covariance
estimation is indeed accurate, and the fact that our method exceeds state of the art even with this
strong constraint (and does worse without the constraint, see Figure 4) is further evidence that our
assumptions are reasonable.

We begin by deriving the solution to Equations (1) and (5) . Recall that the DARE constraint requires
that the mean representation of each domain has no effect on our prediction. To enforce this, the
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DARE solution must project out the subspace in which the means vary. Given a set of E training
environments, define B as the d×E matrix whose columns are the environmental mean parameters be.
Throughout this section, we make use of the matrix Π̂, which is defined as the orthogonal projection
onto the nullspace of BT : Π̂ := I −BB† = UΠ̂SΠ̂U

T
Π̂
∈ Rd×d. This matrix projects onto the DARE

constraint set, and it turns out to be all that is necessary to state the solution:

Theorem D.2. (Closed-form solution to the DARE population objective). Under model (2), the
solution to the DARE population objective (5) for linear regression is Π̂β∗. If ε is Gaussian, then the
solution for logistic regression (1) is αΠ̂β∗ for some α ∈ (0, 1].

In Example 1, we saw how invariant prediction will discard a large subspace of the representation
and why this is undesirable. Instead, DARE undoes the environment transformation and regresses
directly on ε = T−1

e (x). Because we are performing a separate transformation for each environment,
we are aligning the varying subspaces rather than throwing them away, allowing us to make use of
additional information. Though the DARE solution also recovers β∗ up to a projection, it is using
the adjusted features; DARE therefore only removes what cannot be aligned. In particular, whereas
Π has rank d1 in Example 1, Π̂ = I would have full rank—this retains strictly more information.
Indeed, in the ideal setting where we have a good estimate of Σe′ (e.g., under mild distribution shift
or when solving JIT-UDA), we can make the Bayes-optimal prediction as E[y | x] = β∗TA−1

e′ x.
Thus we see a clear advantage that DARE enjoys over invariant prediction.

D.1 The Adversarial Risk of DARE

Moving forward, we denote the DARE solution β∗
Π̂

:= Π̂β∗, with β∗
I−Π̂

defined analogously. We
next study the behavior of the DARE solution under worst-case distribution shift. We consider the
setting where an adversary directly observes our choices of Σ̄, β̂ and chooses new environmental
parameters Ae′ , be′ so as to cause the greatest possible loss. Specifically, we study the square loss,
defining the excess test risk of a predictor asRe′(β̂) := Epe′ [(β̂

T Σ̄−1/2x− β∗T ε)2] (we leave the
dependence on Σ̄ implicit). For logistic regression we therefore analyze the squared error with respect
to the log-odds. With some abuse of notation, we also reference excess risk when only using a
particular subspace, i.e. RΠ

e′(β̂) := Epe′ [(β̂
T
ΠΣ̄−1/2x− β∗TΠ ε)2].

Because we guess Σ̄ before observing any data from this new distribution, ensuring success is
impossible in the general case. Instead, we consider a set of restrictions on the adversary which will
make the problem tractable. Define the error in our test domain adjustment as ∆ := Σ

1/2
e′ Σ̄−1/2 − I;

observe that if Σ̄ = Σe′ , then ∆ = 0. Our first assumption2 says that the effect of our adjustment
error with respect to the interaction between subspaces Π̂ and (I − Π̂) is bounded:

Assumption D.3. For a fixed constant B ≥ 0, ‖(I − Π̂)∆Π̂β̂‖ ≤ B‖Π̂β∗‖.
Remark D.4. To see specific cases when this would hold, consider the decomposition of ∆ ac-

cording to its components in the subspaces Π̂ and I − Π̂: UT
Π̂

∆UΠ̂ =

[
∆1 ∆12

∆21 ∆2

]
, where

∆1 ∈ Rrank(Π̂)×rank(Π̂). A few settings automatically satisfy Assumption D.3 with B = 0, due to the
fact that UT

Π̂
∆UΠ̂ will be block-diagonal. In particular, this will be the case if all domains share an

invariant subspace—e.g., if ΠAeΠ is constant as in Example 1. Below, we show that in this setting,
exact recovery of this subspace occurs once we observe rank(I −Π) environments—this matches
(actually, it is one less than) the linear environment complexity of most invariant predictors [31], and
therefore Assumption D.3 with B = 0 is no stronger than assuming a linear number of environments.
This will similarly occur if Ue is shared across all environments (e.g., under fixed Ae as described
above) and we use any sort of “averaging” guess of Σ̄.

Assumption D.5 (Bound on adjustment error in non-varying subspace). Using only covariates in the
non-varying subspace, the risk of the ground truth regressor β∗ is less than that of the trivial zero
predictor: RΠ̂

pe′
(β∗) < RΠ̂

pe′
(0).

2Though we label these as assumptions, they are properly interpreted as restrictions on an adversary—we
consider an “uncertainty set” comprising all possible domains subject to these requirements.
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The need for this restriction should be immediate—if our adjustment error were so large that this
did not hold, even the oracle regression vector would do worse than simply always predicting ŷ = 0.
Assumption D.5 is satisfied for example if ‖∆Π̂‖ < 1, which again is guaranteed if there is an
invariant subspace. Note that we make no restriction on the risk in the subspace I− Π̂—the adversary
is allowed any amount of variation in directions where we have already seen variation in the mean
terms be, but introduction of new variation is assumed bounded. This is a no-free-lunch necessity: if
we have never seen a particular type of variation, we cannot possibly know how to use it at test-time.

With these restrictions on the adversary, our main result derives the supremum of the excess test risk
of the DARE solution under adversarial distribution shift. Furthermore, we prove that this risk is
minimax: making no more restrictions on the adversary other than a global bound on the mean, the
DARE solution achieves the best performance we could possibly hope for at test-time:
Theorem D.6 (DARE risk and minimaxity). Denote the set of possible test environments Aρ which
contains all parameters (Ae′ , be′) subject to Assumptions D.3 and D.5 and a bound on the mean:
‖be′‖ ≤ ρ. For logistic or linear regression, let β̂ be the minimizer of the corresponding DARE
objective as in Theorem D.2. Then, sup(Ae′ ,be′ )∈AρRe′(β̂) = (1 + ρ2)(‖β∗‖2 + 2B‖β∗

Π̂
‖‖β∗

I−Π̂
‖).

Furthermore, the DARE solution is minimax: β̂ ∈ arg minβ∈Rd sup(Ae′ ,be′ )∈Aρ Re′(β).

A special case when our assumptions hold is when all domains share an invariant subspace and we
only predict using that subspace, but this is often too conservative. There are settings where allowing
for (limited) new variation can improve our predictions, and Theorem D.6 shows that DARE should
outperform invariant prediction in such settings.

D.2 The Environment Complexity of DARE

An important new measure of domain generalization algorithms is their environment complexity,
which describes how the test risk behaves as a function of the number of (possibly random) domains
we observe. In contrast to Example 1, for this analysis we assume an invariant subspace Π outside of
which both Ae and be can vary arbitrarily—we formalize this as a prior over the be whose covariance
has the same span as I −Π. Our next result demonstrates that DARE achieves the same threshold as
prior methods, but we also prove the first finite-environment convergence guarantee, quantifying how
quickly the risk of the DARE predictor approaches that of the minimax-optimal predictor.
Theorem D.7 (Environment complexity of DARE). Define the smallest gap between consecutive
eigenvalues: ξ(Σ) := mini∈[d−1] λi − λi+1. Fix test parameters Ae′ , be′ and guess Σ̄. Suppose we
minimize the DARE regression objective (5) on environments whose means be are Gaussian vectors
with covariance Σb, with span(Σb) = span(I −Π). After seeing E training domains:

1. If E ≥ rank(Σb) then DARE recovers the minimax-optimal predictor almost surely: β̂ = β∗Π.

2. Otherwise, if E ≥ r(Σb) then with probability ≥ 1− δ,

Re′(β̂) ≤ Re′(β∗Π) +O

(
‖Σb‖
ξ(Σb)

(√
r(Σb)

E
+ max

{√
log 1/δ

E
,

log 1/δ

E

}))
,

where O(·) hides dependence on ‖∆‖ and r(Σ) := Tr(Σ)
‖Σ‖ is the effective rank.

For coherence we present the first item as a probabilistic statement, but it holds deterministically so
long as there are rank(Σb) linearly independent observations of be.
Remark D.8. Prior analyses of invariant prediction methods only show a discontinuous threshold
where the minimax predictor is discovered after seeing a fixed number of environments—usually
linear in the non-invariant latent dimension But one should expect that if the variation is not too large
then we can do better, and indeed Theorem D.7 shows that if the effective rank of Σb is sufficiently
small, the risk of the DARE predictor will approach that of the minimax predictor as O(E−1/2).

D.3 Applying DARE to JIT-UDA

So far, we have only considered a setting with no knowledge of the test domain. As discussed in
Section 2, we’d expect that estimating the adjustment via unlabeled samples will improve performance.
Prior works have extensively explored how to leverage access to unlabeled test samples for improved
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generalization—but while some suggest ways of using unlabeled samples “just-in time” (i.e., only
at test-time), the advantages have not been formally quantified. Our final theorem investigates
the provable benefits of using the empirical moments instead of enforcing invariance, giving a
finite-sample convergence guarantee for the unconstrained DARE objective in the JIT-UDA setting:
Theorem D.9 (JIT-UDA, shortened). Let ΣS ,ΣT be the covariances of the source and target
distributions, respectively. Define m(Σ) := λmax(Σ)

λ3
min(Σ)

. Assume we observe ns = Ω(m(ΣS)d2) source
samples and analogous nT target samples. Then after solving the DARE objective, with probability
at least 1 − 3d−1, the excess squared risk of our predictor on the new environment is bounded as
RT (β̂) = O

(
d2‖µT ‖2

(
m(ΣS)
nS

+ m(ΣT )
nT

))
.

E Connection to Anchor Regression

The DARE objective for linear regression is written

min
β

∑
e∈E

Epe [(βTΣ−1/2
e (x− µe)− y)2] s.t. βTΣ−1/2

e µe = 0. ∀e ∈ E . (5)

The idea of adjusting for domain projections has similarities to Anchor Regression [32], an objective
which linearly regresses separately on the projection and rejection of the data onto the span of a set
of anchor variables. These variables represent some (known) measure of variability across the data,
and the resulting solution enjoys robustness to pointwise-additive shifts in the underlying SCM. If
we define the anchor variable to be a one-hot vector indicating a sample’s environment, the Anchor
Regression objective minimizes

1

|E|
∑
e∈E

Epe
[
`(βT (x− µe), y − µy,e) + γ`(βTµe, µy,e))

]
,

where ` is the squared loss and µy,e = Epe [y]. Here we see that Anchor Regression is “adjusting”
in a sense, by regressing on the residuals, though the objective also regresses the mean prediction
onto the target mean. Unfortunately, this requires access to the target mean, which is unavailable
in logistic regression due to the lack of a good estimator for E

[
log p(y=1|x)

p(y=−1|x)

]
. Nevertheless, if we

(i) assume the feature covariance is fixed for all environments and (ii) assume the target mean is
zero for all environments, we observe that the above objective becomes equivalent to the Lagrangian
form of DARE for linear regression (5). Alternatively, we could imagine combining the two by
keeping Anchor Regression’s use of separate target means while adding DARE’s feature covariance
whitening which would give

1

|E|
∑
e∈E

Epe
[
`(βTΣ−1/2

e (x− µe), y − µy,e) + γ`(βTΣ−1/2
e µe, µy,e)

]
,

However, this still requires us to estimate the target mean, so it is unclear if or how this objective
could be applied to the task of classification.

F Proofs of Main Results

F.1 Notation

We use capital letters to denote matrices and lowercase to denote vectors or scalars, where the latter
should be clear from context. ‖ · ‖ refers to the usual vector norm, or spectral norm for matrices. For a
matrix M , we use λmax(M) to mean its maximum eigenvalue—the minimum is defined analogously.
We write the pseudo-inverse as M†. For a collection of samples {xi}ni=1, we frequently make use
of the sample mean, µ̂ := 1

n

∑
xi, and the sample covariance, Σ̂ := 1

n

∑
(xi − µ̄)(xi − µ̄)T . The

notation . means less than or equal to up to constant factors.

F.2 Statement and proof of Lemma F.1, and discussion of related results

Lemma F.1. Assume our data follows a logistic regression model with regression vector β∗ and
covariates z ∼ N (0, I): log p(y=1|z)

p(y=−1|z) = β∗T z. Then the solution to the dimension-constrained
logistic regression problem
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arg min
β

Ez,y[− log σ(yβT z)] s.t. βSc = 0,

where S ⊆ [d] indexes a subset of the dimensions, is equal to αβ∗S for some α ∈ (0, 1].

Proof. The logistic regression model can be rewritten:

y | z = 1{β∗T z + ε > 0},
where ε is drawn from a standard logistic distribution. If we are restricted to not use zSc , we can see
that these can be modeled simply as an additional noise term. Thus, our new model is

y | z = 1{β∗TS zS + ε+ τ > 0},
where τ := β∗TSc zSc ∼ p is symmetric zero-mean noise, independent of zS . Because we are now
modeling the other dimensions as noise, moving forward we will drop the S subscript, writing simply
β∗T z. Define F, f as the CDF and PDF of the distribution of ε′ := ε+ τ . Then the MLE population
objective can be written

L(β) = −Ez[Eε′∼f(ε′)[1{β∗T z + ε′ > 0} log σ(βT z) + 1{−(β∗T z + ε′) > 0} log σ(−βT z)]].
For a fixed z, note that Eε′ [1{β∗T z+ε′ > 0}] = P(ε′ ≥ −β∗T z) = F (β∗T z) (since f is symmetric),
and therefore taking the derivative of this objective we get

∇βL(β) = −∇βEz[F (β∗T z) log σ(βT z) + F (−β∗T z) log σ(−βT z)]
= Ez[z ·

(
F (−β∗T z)σ(βT z)− F (β∗T z)σ(−βT z)

)
]

Because f is symmetric, we have F (z) = 1− F (−z), giving

∇βL(β) = Ez
[
z ·
(
σ(βT z)− F (β∗T z)

)]
.

Consider the directional derivative of the loss in the direction β∗, at the point β = αβ∗:

β∗T∇βL(αβ∗) = Ez
[
β∗T z ·

(
σ(αβ∗T z)− F (β∗T z)

)]
.

Because F is the CDF of a logistic distribution convolved with p, by Fubini’s theorem we have

F (z) =

∫ z

−∞
f(z) dz

=

∫ z

−∞

[∫ ∞
−∞

p(τ)σ′(z − τ) dτ

]
dz

=

∫ ∞
−∞

p(τ)

[∫ z−τ

−∞
σ′(ω) dω

]
dτ

=

∫ ∞
−∞

p(τ)σ(z − τ)

= Eτ∼p[σ(z − τ)].

Further, because p is symmetric, this is equal to 1
2 (Eτ∼p[σ(z − τ)] + Eτ∼p[σ(z + τ)]). Thus, we

have

β∗T∇βL(αβ∗) = Ez
[
β∗T z · Eτ∼p

[
σ(αβ∗T z)− 1

2

(
σ(β∗T z − τ) + σ(β∗T z + τ)

)]]
.

We first consider the case where α = 1. When β∗T z > 0, the term inside the expectation is positive
for all τ 6= 0, and vice-versa when β∗T z < 0 (this can be verified by writing the difference as a
function of β∗T z, τ , and observing that all the terms are non-negative except for a factor of eβ

∗T z−1).
It follows that at the point β = β∗, −β∗ is a descent direction. Furthermore, since the objective is
continuous in α, we can follow this direction by reducing α (that is, moving in the direction −β∗)
until the directional derivative vanishes.

Next, consider α = 0. Then the directional derivative is

β∗T∇βL(0) =
1

2
Ez
[
β∗T z · Eτ∼p

[
1− (σ(β∗T z − τ) + σ(β∗T z + τ))

]]
.
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Here, when β∗T z > 0 the inner term is negative, and vice-versa for β∗T z < 0, implying that the
directional derivative is now negative. Because the objective is convex, it follows that the optimal
choice for α lies in (0, 1], being equal to 1 when τ = 0 almost surely.

It remains to show that the optimal vector has no other component orthogonal to β∗—in other words,
that the solution is precisely αβ∗. For isotropic Gaussian z, we have for any δ perpendicular to β∗
that E[δT z|β∗T z] = 0. Therefore, the gradient in the direction δ is

Ez[δT z · (σ(αβ∗T z)− F (β∗T z))] = Eβ∗T z[EδT z|β∗T z[δT z](σ(αβ∗T z)− F (β∗T z))]

= 0.

Since β∗ and all orthogonal directions form a complete basis, it follows that ∇L(αβ∗) = 0 and
therefore that αβ∗ is the optimal solution.

Though we prove this lemma only for Gaussian z, we found empirically that the result approximately
holds whenever z is dimension-wise independent and symmetric about the origin. We believe this is
a consequence of the Central Limit Theorem: our proof relies on the conditional expectation of inner
products with z which converge to Gaussian in distribution as the dimensionality of z grows.

We observe that Li & Duan [23] prove a much simpler result under a general “linear conditional
expectation” condition which is similar to the property we exploit regarding zero-mean conditional
expectation of orthogonal inner products with isotropic Gaussians. Their result is more general, but
it allows for any value of α, including negative. In this case, we would actually be recovering the
opposite effects of the ground truth, which is clearly insufficient for test-time prediction. Heagerty
& Zeger [16] give an analytical closed-form for the solution under a probit model with Gaussian
noise; since this is not a logistic model, the Gaussian noise represents significantly less model
misspecification, which explains why the exact closed-form is recoverable.

F.3 Proof of Theorem D.2

Theorem D.2. (Closed-form solution to the DARE population objective). Under model (2), the
solution to the DARE population objective (5) for linear regression is Π̂β∗. If ε is Gaussian, then the
solution for logistic regression (1) is αΠ̂β∗ for some α ∈ (0, 1].

Proof. Observe that under the constraint, regressing on the centered observations is equivalent to
regressing on the non-centered observations (since the mean must have no effect on the output), so
the solutions to these two objectives must be the same and have the same minimizers. We therefore
consider the solution to the DARE objective but on non-centered observations.

It is immediate that the unconstrained solution to the DARE population objective on non-centered
data is β∗ for both linear and logistic regression. For linear regression, we observe that because
the adjusted covariates in each environment have identity covariance, the excess training risk of a
predictor β is exactly ‖β − β∗‖2. Therefore, the solution can be rewritten

min
β

‖β − β∗‖2

s.t. βTΣ−1/2
e µe = 0. ∀e ∈ E .

Recalling that Σ
−1/2
e µe = be, the constraint can be written in matrix form as BTβ = 0, and thus we

see that the solution is the `2-norm projection of β∗ onto the nullspace of BT (i.e., the intersection of
the nullspaces of the be). By definition, this is given by (I − BB†)β∗ = Π̂β∗.

To derive the closed-form for logistic regression, write the spectral decomposition B = UDV T , and
consider regressing on UT ε instead of ε. As the predictor only affects the objective through its linear
projection, the solution to this objective will be UT times the solution to the original objective (that
is, for all vectors v, (UTβ)TUT v = βT v). We will denote parameters for the rotated objective with
a tilde, e.g. ṽ := UT v.

The constraint in Equation (1) is equivalent to requiring that the mean projection is a constant vector
c1 and, with the inclusion of a bias term, we can WLOG consider c = 0. Thus, the constraint can be
written B̃T β̃ = V Dβ̃ = 0 ⇐⇒ Dβ̃ = 0. We can therefore see that this constraint is the same as
requiring that the dimensions of β̃ corresponding to the non-zero dimensions of D are 0.
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Noting that UT ε ∼ N (0, I), we now apply Lemma F.1 to see that the solution will be β̃ = α(I −
DD†)β̃∗ for some α ∈ (0, 1]. Finally, as argued above we can recover the solution to the original
objective by rotating back, giving the solution β = Uβ̃ = αU(I −DD†)UTβ∗ = αΠ̂β∗.

F.4 Proof of Theorem D.6

Theorem F.2 (Theorem D.6, restated). For any ρ ≥ 0, denote the set of possible test environments
Aρ which contains all parameters (Ae′ , be′) subject to Assumptions D.3 and D.5 and a bound on
the mean: ‖be′‖ ≤ ρ. For logistic or linear regression, let β̂ be the minimizer of the corresponding
DARE objective (1) or (5). Then,

sup
(Ae′ ,be′ )∈Aρ

Re′(β̂) = (1 + ρ2)(‖β∗‖2 + 2B‖β∗
Π̂
‖‖β∗

I−Π̂
‖).

Furthermore, the DARE solution is minimax:

β̂ ∈ arg min
β∈Rd

sup
(Ae′ ,be′ )∈Aρ

Re′(β).

Proof. Recall that in an environment e, Ee[y | x] = β∗TΣ
−1/2
e x. So, for an environment e′ and

predictor β̂, we have the following excess risk decomposition:

Re′(β̂) = Ee′ [(β̂T Σ̄−1/2x′ − β∗TΣ
−1/2
e′ x′)2]

=

T1︷ ︸︸ ︷
Ee′ [(β̂T Σ̄−1/2(x′ − µe′)− β∗TΣ

−1/2
e′ (x′ − µe′))2] +

T2︷ ︸︸ ︷
Ee′ [(β̂T Σ̄−1/2µe′ − β∗TΣ

−1/2
e′ µe′)

2] .

Observe that term T1 does not depend on the mean be′ .

Term T2 simplifies to

Ee′ [(β̂T Σ̄−1/2µe′ − β∗TΣ
−1/2
e′ µe′)

2] =

(

v︷ ︸︸ ︷
Σ

1/2
e′ Σ̄−1/2β̂ − β∗)T be′


2

,

and so we can write a supremum over T2 as

sup
Aρ

T2 = sup
Aρ

(vT be′)
2

= ρ2 sup
Aρ
‖v‖2.

Next, observe that T1 simplifies to

β̂T Σ̄−1/2Σe′Σ̄
−1/2β̂ + ‖β∗‖2 − 2β̂T Σ̄−1/2Σ

1/2
e′ β

∗ = ‖Σ1/2
e′ Σ̄−1/2β̂ − β∗‖2

= ‖v‖2.
So, returning to the full loss and recalling that T1 is independent of be′ , we have

sup
Aρ
Re′(β̂) = sup

Aρ
T1 + T2

= (1 + ρ2) sup
Aρ
‖v‖2.

Of course, the ideal would be for a given environment e′ to set β̂ := Σ̄1/2Σ
−1/2
e′ β∗ =⇒ v = 0, but

we have to choose a single β̂ for all possible environments e′ parameterized by (Ae′ , be′) ∈ Aρ. We
will show that the choice of β̂ := αΠ̂β∗ is minimax-optimal under this set for any α ∈ (0, 1].

Leaving the supremum over adversary choices implicit, we can rewrite the squared norm of v as

vT v = ((∆ + I)β̂ − β∗)T ((∆ + I)β̂ − β∗)
= β̂T∆T∆β̂ + ‖β̂ − β∗‖2 + 2β̂T∆T (β̂ − β∗).
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By Lemma G.4, we can define an environment by defining the block terms of UΠ̂∆UT
Π̂

directly.

Consider the choice of ∆1 = λ
β̂I−Π̂β̂

T
I−Π̂

‖β̂I−Π̂‖2
,∆2 = ∆12 = ∆21 = 0. This choice is in Aρ for any

λ ∈ R since it is block-diagonal and ‖∆2‖ = 0. Now we can write

vT v = λ2‖β̂I−Π̂‖2 + ‖β̂ − β∗‖2 + 2λβ̂T
I−Π̂

(β̂I−Π̂ − β∗I−Π̂
)

≥ λ2‖β̂I−Π̂‖2 − 2λ‖β̂I−Π̂‖‖β̂ − β∗‖),

via Cauchy-Schwarz and the triangle inequality. So, taking λ→∞ means that the minimax risk is
unbounded unless β̂I−Π̂ = 0 ⇐⇒ β̂ = β̂Π̂. For the remainder of the proof we consider only this
case.

With this restriction, we have

‖v‖2 = ‖(∆ + I)β̂Π̂ − β∗‖2

= ‖(∆ + I)β̂Π̂ − β∗Π̂ − β
∗
I−Π̂
‖2

= ‖(∆ + I)β̂Π̂ − β∗Π̂‖
2 + ‖β∗

I−Π̂
‖2 − 2β∗T

I−Π̂
∆β̂Π̂.

Assumption D.3 implies that

|β∗T
I−Π̂

∆β̂Π̂| = |β∗TUΠ̂(I − SΠ̂)UT
Π̂

∆UΠ̂SΠ̂U
T
Π̂
β̂|

=

∣∣∣∣β∗TUΠ̂(I − SΠ̂)

[
∆1 ∆12

∆21 ∆2

]
SΠ̂U

T
Π̂
β̂

∣∣∣∣
≤ B‖β∗

Π̂
‖‖β∗

I−Π̂
‖,

Consider the DARE solution β̂ = αβ∗
Π̂

for α ∈ (0, 1]. Then using the equivalent supremized set
from Assumption D.5 and Lemma G.3, the worst-case risk of this choice is

sup
Aρ
Re′(β̂) = (1 + ρ2) sup

‖∆β∗
Π̂
‖2<‖β∗

Π̂
‖2

(‖(α∆ + (α− 1)I)β∗
Π̂
‖2 + ‖β∗

I−Π̂
‖2 + 2B‖β∗

Π̂
‖‖β∗

I−Π̂
‖)

(6)

= (1 + ρ2)(‖β∗
Π̂
‖2 + ‖β∗

I−Π̂
‖2 + 2B‖β∗

Π̂
‖‖β∗

I−Π̂
‖).

It remains to show that any other choice of β̂ results in greater risk. Observe that the second two
terms of (6) are constant with respect to ∆, so we focus on the first term. That is, we show that any
other choice results in sup‖∆β∗

Π̂
‖2<‖β∗

Π̂
‖2 ‖(∆ + I)β̂Π̂ − β∗Π̂‖

2 > ‖β∗
Π̂
‖2 (except for β̂ = 0, which

we address at the end).

For any choice of β̂Π̂, decompose the vector into its projection and rejection onto β∗
Π̂

as β̂Π̂ = αβ∗
Π̂

+δ,
with δTβ∗

Π̂
= 0. The adversary can choose ∆2 = λδδT , which lies in Aρ for any λ. Then taking

λ→∞ causes risk to grow without bound—it follows that we must have δ = 0.

Next, consider any choice α 6∈ (0, 1]. If α > 2 or α < 0, choosing ∆2 = 0 makes this term
(α− 1)2‖β∗

Π̂
‖2 > ‖β∗

Π̂
‖2. If 2 ≥ α > 1, choosing ∆2 = 1

αI makes this term α2‖β∗
Π̂
‖2 > ‖β∗

Π̂
‖2.

Finally, if α = 0 then this term is equal to ‖β∗
Π̂
‖2—however, this value is the supremum of the

adversarial risk of the DARE solution and it cannot actually be attained.

F.5 Proof of Theorem D.7

Theorem F.3 (Theorem D.7, restated). Fix test environment parameters Ae′ , be′ and our guess Σ̄.
Suppose we minimize the DARE regression objective (5) on environments whose means be are
Gaussian vectors with covariance Σb, with span(Σb) = span(I − Π). After seeing E training
domains:

1. If E ≥ rank(Σb) then DARE recovers the minimax-optimal predictor almost surely: β̂ = β∗Π.
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2. Otherwise, if E ≥ r(Σb) then with probability ≥ 1− δ,

Re′(β̂) ≤ Re′(β∗Π) +O
(
‖Σb‖
ξ(Σb)

(√
r(Σb)

E
+ max

{√
log 1/δ

E
,

log 1/δ

E

}))
,

where O(·) hides dependence on ‖∆‖.

Proof. Define Π̂E as the projection onto the nullspace of BT after having seen E environments. Item
1 is immediate, since as soon as we observe E = rank(Σb) linearly independent be we have that
span(B) = span(Σb) and therefore Π̂E = Π (this occurs almost surely for any absolutely continuous
distribution). To prove item 2, we will write the solution learned after seeing E environments as
β̂E := Π̂Eβ

∗. We can write the excess risk of the ground-truth minimax predictor β∗Π as

Re′(β∗Π) = E[(β∗TΠ Σ̄−1/2Σ
1/2
e′ ε− β∗T ε)2]

= E[(β∗TΠΣ̄−1/2Σ
1/2
e′ ε− β∗T ε)2],

and likewise we have

Re′(β̂E) = E[(β̂TEΣ̄−1/2Σ
1/2
e′ ε− β∗T ε)2]

= E[(β∗T Π̂EΣ̄−1/2Σ
1/2
e′ ε− β∗T ε)2].

Taking the difference,

R(β̂E)−R(β∗Π) = E[(β∗T Π̂E

:=v︷ ︸︸ ︷
Σ̄−1/2Σ

1/2
e′ ε−β∗T ε)2 − (β∗TΠΣ̄−1/2Σ

1/2
e′ ε− β∗T ε)2]

≤ ‖(Π− Π̂E)E[vvT ](2I −Π− Π̂E)‖+ 2‖(Π− Π̂E)E[vεT ]‖
≤ 2

[
‖(Π− Π̂E)E[vvT ]‖+ ‖(Π− Π̂E)E[vεT ]‖

]
.

Now we note that

E[vvT ] = E[(Σ̄−1/2Σ
1/2
e′ ε)(Σ̄

−1/2Σ
1/2
e′ ε)

T ]

= Σ̄−1/2Σe′Σ̄
−1/2

and

E[vεT ] = Σ̄−1/2Σ
1/2
e′ .

These matrices are bounded by ‖∆ + I‖2, ‖∆ + I‖ respectively and are constant with respect to the
training environments we sample. It follows that we can bound the risk difference as

R(β̂E)−R(β∗Π) . ‖Π̂E −Π‖,

and all that remains is to bound the term ‖Π̂E −Π‖.
Combining Theorems 4 and 5 from Koltchinskii & Lounici [20] with the triangle inequality, we have
that when r(Σb) ≤ E, with probability ≥ 1− δ,

‖Σ̄− Σb‖ . ‖Σb‖
(

max

{√
log 1/δ

E
,

log 1/δ

E

}
+ max

{√
r(Σb)

E
,
r(Σb)

E

})
.

Since r(Σb) ≤ E, the first term of the second max dominates. Further, Corrolary 3 of Yu et al. [42],
a variant of the Davis-Kahan theorem, gives us

‖Π̂E −Π‖ . ‖Σ̄− Σb‖
ξ(Σb)

.

Combining these facts gives the result.
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F.6 Proof of Theorem D.9

Theorem F.4 (Theorem D.9, fully stated). Assume the data follows model (2) with ε ∼ N (0, I).
Observing nS samples from a source distribution S with covariance ΣS , we use half to estimate Σ̂S
and the other half to learn parameters β which minimize the unconstrained (λ = 0), uncentered
DARE regression objective. At test-time, given nT samples {xi}nTi=1 from the target distribution T
with mean and covariance µT ,ΣT , we predict f(x;β) = βT Σ̂

−1/2
T x.

Define m(Σ) := λmax(Σ)
λ3

min(Σ)
, and assume nS = Ω(m(ΣS)d2), nT = Ω(m(ΣT )d2). Then with

probability at least 1− 3d−1, the excess squared error of our predictor on the new environment is
bounded as

RT (f) = O

(1 + ‖µT ‖2)

 E[η2]

1−O
(√

d
nS

) d

nS
+ d2

(
m(ΣS)

nS
+
m(ΣT )

nT

) .

Proof. We begin by bounding the error of our solution ‖β − β∗‖. Observe that with our estimate
Σ̂S of the source environment moments, we are solving linear regression with targets β∗T εi + ηi
and covariates x̂i = Σ̂

−1/2
S xi = Σ̂

−1/2
S ΣS

1/2εi. Thus, if we had access to the true gradient of the
modified least-squares objective (which is not the same as assuming nS →∞, because in that case
we would have Σ̂S → ΣS), the solution would be

E[x̂x̂T ]−1E[x̂y] =
(

Σ̂
−1/2
S ΣS

1/2(I + µTµT
T )ΣS

1/2Σ̂
−1/2
S

)−1 (
Σ̂
−1/2
S ΣS

1/2(I + µTµT
T )β∗

)
= Σ̂

1/2
S ΣS

−1/2β∗.

Moving forward we denote this solution to the modified objective as β̂ := Σ̂
1/2
S ΣS

−1/2β∗, and
further define ∆S := ΣS

1/2Σ̂
−1/2
S , with ∆T defined analogously. A classical result tells us that the

OLS solution is distributed as N
(
β̂,

σ2
y

nS
M−1

)
, where M is the modified covariance ∆T

S∆S and

σ2
y := E[η2]. To show a rate of convergence to the OLS solution, we need to solve for the minimum

eigenvalue λmin(M)—this will suffice since the above fact implies finite-sample convergence of the
OLS estimator to the population solution. The well-known bound for sub-Gaussian random vectors
tells us that with probability ≥ 1− δ1,

‖β − β̂‖ .
√
λmax(M−1)σ2

y

√ d

nS
+

√
log 1/δ1
nS

 .

and moving forward we condition on this event. Now let γS :=
√
d/nS , with γT defined analogously.

Since M � 0, it follows that

λmax(M−1) = λmin(∆T
S∆S)−1,

and further,

λmin(∆T
S∆S) ≥ 1− ‖∆T

S∆S − I‖.

By Lemma G.1, we have that with probability ≥ 1− d−1

‖∆T
S∆S − I‖ . γS .

This implies that our solution’s error can be bounded as

‖β − β∗‖ = ‖(β − β̂) + (β̂ − β∗)‖

≤
√

σ2
y

1−O(γS)

√ d

nS
+

√
log 1/δ1
nS

+ ‖Σ̂1/2
S ΣS

−1/2 − I‖‖β∗‖
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We assume ‖β∗‖ = 1 so we can avoid carrying it throughout the rest of the proof. Bounding the
second term with Lemma G.2 gives

‖β − β∗‖ .
√

σ2
y

1−O(γS))

√ d

nS
+

√
log 1/δ1
nS

+ γS
√
d m(ΣS).

On the target distribution, our excess risk with a predictor β is

Re′(β) = E[(βT Σ̂
−1/2
T x− β∗TΣT

−1/2x)2]

= E


(

∆T︷ ︸︸ ︷
ΣT

1/2Σ̂
−1/2
T β − β∗)T ε


2


= (∆Tβ − β∗)T (I + µTµT
T )(∆Tβ − β∗)

≤ (1 + ‖µT ‖2)‖∆Tβ − β∗‖2

Now, we have

‖∆Tβ − β∗‖ = ‖(∆Tβ −∆Tβ
∗) + (∆Tβ

∗ − β∗)‖
≤ ‖∆T (β − β∗)‖+ ‖(∆T − I)β∗‖
≤ (1 + ‖∆T − I‖)‖β − β∗‖+ ‖∆T − I‖.

Once again invoking Lemma G.2, with probability ≥ 1− d−1,

‖∆T − I‖ . γT
√
d m(ΣT ),

and using this plus the previous result, the triangle inequality, and (a+ b)2 ≤ 2(a2 + b2) gives

‖∆Tβ − β∗‖2 . (1 + ‖∆T − I‖)2‖β − β∗‖2 + ‖∆T − I‖2

. (1 + γT
√
d m(ΣT ))2‖β − β∗‖2 + (‖Σ1/2‖‖Σ−1‖3/2

√
dγT )2

. ‖β − β∗‖2 + γ2
T d m(ΣT ),

where the lower bound on nT enforces γT
√
d m(ΣT ) ≤ 1. It follows that the excess risk can be

bounded as

Re′ . (1 + ‖µT ‖2)‖∆Tβ − β∗‖2

. (1 + ‖µT ‖2)
(
‖β − β∗‖2 + γ2

T d m(ΣT )
)
.

Letting δ1 = 1/d, combining all of the above via union bound, and eliminating lower-order terms,
we get

Re′(β) . (1 + ‖µT ‖2)

(
σ2
y

1−O(γS)

d

nS
+ γ2

Sd m(ΣS) + γ2
T d m(ΣT )

)

= (1 + ‖µT ‖2)

 σ2
y

1−O
(√

d
nS

) d

nS
+ d2

(
m(ΣS)

nS
+
m(ΣT )

nT

)
with probability ≥ 1− 3d−1.

G Technical Lemmas

Lemma G.1. Suppose we observe n ∈ Ω(d + log 1/δ) samples X ∼ N (µ,Σ) with Σ � 0 and
estimate the inverse covariance matrix Σ−1 with the inverse of the sample covariance matrix Σ̄−1.
Then with probability ≥ 1− δ, it holds that

‖Σ̄−1/2ΣΣ̄−1/2 − I‖ .
√
d+ log 1/δ

n
.
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Proof. As Σ̄−1/2ΣΣ̄−1/2 and Σ1/2Σ̄−1Σ1/2 have the same spectrum, it suffices to bound the latter.
Observe that

‖Σ1/2Σ̄−1Σ1/2 − I‖ = ‖Σ1/2(Σ̄−1 − Σ−1)Σ1/2‖.
Now applying Theorem 10 of Kereta & Klock [19] with A = B = Σ1/2 yields the result.

Lemma G.2. Assume the conditions of Lemma G.1. Then under the same event as Lemma G.1, it
holds that

‖Σ1/2Σ̄−1/2 − I‖ . ‖Σ1/2‖
(
‖Σ−1‖3/2

√
dγ + ‖Σ−1‖2γ2

)
,

where γ =
√

d+log 1/δ
n . In particular, if δ = d−1, then

‖Σ1/2Σ̄−1/2 − I‖ .
√
‖Σ‖‖Σ−1‖3 d

2

n

Proof. We begin by deriving a bound for ‖Σ̄−1/2 − Σ−1/2‖. Define E = Σ̄−1 − Σ−1. Observe that

‖E‖ = ‖Σ−1/2Σ1/2EΣ1/2Σ−1/2‖
= ‖Σ−1/2(Σ1/2Σ̄−1Σ1/2 − I)Σ−1/2‖
≤ ‖Σ−1‖‖Σ1/2Σ̄−1Σ1/2 − I‖,

and now apply Lemma G.1 (since Σ̄−1/2ΣΣ̄−1/2 and Σ1/2Σ̄−1Σ1/2 have the same spectrum), giving
‖E‖ . ‖Σ−1‖γ.

Let UDUT be the eigendecomposition of Σ, and define the matrix [
√·, α]i,j = 1√

Dii+
√
Djj

as in

Carlsson [5]. The Daleckii-Krein theorem [9] tells us that

‖Σ̄−1/2 − Σ−1/2‖ = ‖U([
√
·, α] ◦ E)UT ‖+O(‖E‖2).

Note that maxi,j |[
√·, α]i,j | = 1/2

√
λmin(Σ) =⇒ ‖[√·, α]‖ ≤

√
d‖Σ−1‖, and therefore by

sub-multiplicativity of spectral norm under Hadamard product,

‖Σ̄−1/2 − Σ−1/2‖ .
√
d‖Σ−1‖‖E‖+ ‖E‖2

. ‖Σ−1‖3/2
√
dγ + ‖Σ−1‖2γ2.

Finally, noting that

‖Σ1/2Σ̄−1/2 − I‖ = ‖Σ1/2(Σ̄−1/2 − Σ−1/2)‖
≤ ‖Σ1/2‖‖Σ̄−1/2 − Σ−1/2‖

completes the main proof. To see the second claim, note that n ≥ 2‖Σ−1‖ implies ‖Σ−1‖3/2
√
d ≥

‖Σ−1‖2γ, meaning the first of the two terms dominates.

Lemma G.3. Let Σ̄ be fixed. Then Assumption D.5 is satisfied if and only if ‖∆β∗
Π̂
‖2 < ‖β∗

Π̂
‖2.

Proof. The claim follows by rewriting the risk terms. Recall that ∆ = Σ
1/2
e′ Σ̄−1/2 − I . Writing out

the excess risk of the ground truth β∗ in the subspace Π̂,

RΠ̂
pe′

(β∗) = Epe′
[
(β∗T

Π̂
Σ̄−1/2x− β∗T

Π̂
Σ
−1/2
e′ x)2

]
= Epe′

[
(β∗T Π̂Σ̄−1/2Σ

1/2
e′ ε− β∗T Π̂ε)2

]
= Epe′

[
(β∗T Π̂∆T ε)2

]
= ‖∆Π̂β∗‖2.

Next, the excess risk of the null vector β̂ = 0 in the same subspace is

RΠ̂
pe′

(0) = Epe′ [(β
∗T
Π̂

Σ
−1/2
e′ x)2]

= Epe′ [(β
∗T Π̂ε)2]

= ‖Π̂β∗‖2.
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Lemma G.4. For a fixed Σ̄, choosing an environmental covariance Σe′ is equivalent to directly
choosing the error terms ∆1,∆2,∆12,∆21.

Proof. For a fixed Σ̄, due to the unique definition of square root as a result of Assumption D.1, the
map Σe′ → Σ

1/2
e′ Σ̄−1/2 − I is one-to-one. Recall that we can write

UT
Π̂

∆UΠ̂ =

[
∆1 ∆12

∆21 ∆2

]
which defines a one-to-one map from ∆ to the error terms. Since the composition of bijective
functions is bijective, the claim follows.
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H Implementation Details

H.1 Evaluation pipeline

Test Domain Accuracy Cheat on Test Domain 
to Learn Features 

and Classifier

Training 
Domains

Training 
Domains

Learn Features 
and Classifier

Learn FeaturesCheat to Learn 
just Classifier

Figure 2: Depiction of evaluation pipeline. Standard training on train domains leads to poor perfor-
mance. Cheating while training the full network (features and classifier) does substantially better.
However, cheating on just the linear classifier does almost as well, implying that the features learned
without cheating are already good enough for massive improvements over SOTA.

Figure 2 depicts the overall pipeline for evaluation of the different approaches we describe in
Appendix B. Our baselines are three distinct pipelines, each slightly different:

1. The first pipeline (dark blue in Figure 2) is the standard method of evaluating ERM on a new
domain. We train the entire network (the combination of a feature embedder comprising all
layers except the last linear layer, and the last layer linear classifier) end-to-end on the training
domains, simultaneously learning the features and the linear classifier on the training domains via
backpropagation. When evaluated on a new domain, this achieves state-of-the-art accuracy [14],
but it still performs quite poorly.

2. The second pipeline (red) is very similar to the first, but we include the test domain among the
domains on which the network is trained end-to-end. Because this means that the test distribution
is one of the training domains, this simulates an “ideal” setting where no distribution shift occurs
from train-time to test-time. As such, it is unsurprising that this approach performs substantially
better (though it still leaves a bit to be desired—this raises a separate question about failures of
in-distribution learning with multiple domains). As this approach requires cheating, it is completely
unrealistic to expect current methods to even begin to approach this baseline, but it gives a good
sense of what would be the best performance to hope for.

3. The final pipeline (grey) is our main experimental contribution. Here, the features (all but the
last layer) are learned without cheating, as in the first pipeline. Next, we freeze the features and
cheat only while learning a linear classifier on top of these features. Not only does this method do
significantly better than the first baseline, it actually performs almost as well as—and sometimes
better than—the second pipeline. Thus, we find that standard features learned via ERM without
cheating are already good enough for generalization and that the main bottleneck to reaching
the accuracy of the second baseline is in learning a good linear classifier only. This has several
important advantages to current methods which attempt to change the entire end-to-end process,
which we explicate in Appendix B in the main body.

H.2 Code details

All features were learned by finetuning a ResNet-50 using the default settings and hyperparameter
sweeps of the DOMAINBED benchmark [14]. We extracted features from 3 trials, with 5 random
hyperparameter choices per trial, picking the one with the best training domain validation accuracy.
We used the default random splits of 80% train / 20% test for each domain.

Using frozen features, the cheating linear classifier was trained by minimizing the multinomial
logistic loss with full-batch SGD with momentum for 3000 steps. We did not use a validation set.

For the main experiments, all algorithms were trained using full-batch L-BFGS [25]. We used the
exact same optimization hyperparameters for all methods; the default learning rate of 1 was unstable
when optimizing IRM, frequently diverging, so we lowered the learning rate until IRM consistently
converged (which occurred at a learning rate of 0.2). Since the IRM penalty only makes sense with
both a feature embedder and a classification vector, we used an additional linear layer for IRM,
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making the objective non-convex. Presumably due to their convexity for linear classifiers, all other
methods were unaffected by this change. For all methods, we halted optimization once 20 epochs
occurred with no increase in training domain validation accuracy; the maximum validation accuracy
typically occurred within the first 5 epochs.

For stability when whitening (and because the number of samples per domain was often less than the
feature dimension), in estimating Σ̂e for each environment we shrank the sample covariance towards
the identity. Specifically, we define Σ̂e = (1− ρ) 1

n

∑n
i=1 xix

T
i + ρI , with ρ = 0.1, and ρ = 0.01 for

DomainNet due to its much larger size. We found that increasing λ beyond ∼1 had little-to-no effect
on the accuracy, loss, or penalty of the DARE solution (see Appendix I for ablations). However,
we did observe that choosing a very large value for λ (e.g., 105 or higher) could result in poor
conditioning of the objective, with the result being that the L-BFGS optimizer took several epochs
for the loss to begin going down.

I Additional Experiments

Here we present additional experimental results. All reported accuracies represent the mean of three
trials, and all error bars (where present) display 90% confidence intervals calculated as ±1.645 σ̂√

n
.

Note though that the results are not independent across methods, so simply checking if the error
bars overlap is overly conservative in identifying methods which perform better.

I.1 Accuracy of the Test Covariance Whitener

As we do not have access to the true test-time covariance, we estimate the adjustment with the
average of the train-time adjustments. Table 2 reports the normalized squared Frobenius norm of
our estimate’s error to the sample covariance adjustment, defined as ‖Ŵ−W‖

2
F

‖W‖2F
, where W := Σ̂

−1/2
e′

is the sample covariance adjustment and Ŵ := 1
|E|
∑
e∈E Σ

−1/2
e is our averaging estimate. We find

that this normalized error is consistently small, meaning our estimated adjustment is reasonably
close to the “true” adjustment, relative to its spectrum (we put “true” in quotation marks because
the best we can do is estimate it via the sample covariance). This helps explain why our averaging
adjustment performs so well in practice, though we expect future methods could improve on this
estimate (particularly on the last domain of PACS).

Dataset Normalized Error
Office-Home

A 0.033
C 0.040
P 0.022
R 0.019

PACS
A 0.052
C 0.016
P 0.025
S 0.217

VLCS
C 0.094
L 0.039
S 0.051
V 0.029

Table 2: Mean normalized adjustment estimation error for each dataset and each train-domain/test-
domain split.
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I.2 Alignment of Domain-Specific Optimal Classifiers

As discussed in Section 2, DARE does not project out varying subspaces but rather aligns them such
that the adjusted domains have similar optimal classifiers simultaneously. To verify that this is actually
happening, we learn the optimal linear classifier for each domain individually and evaluate the inter-
domain cosine similarity for these vectors for each class. We see that without adjustment, different
domains’ optimal linear decision boundaries have normals with small alignment on average, which
explains why trying to learn a single linear classifier which does well on all domains simultaneously
performs poorly in most cases. After alignment, the individually optimal classifiers are more aligned,
which allows a single classifier to perform better on all domains. Furthermore, this is done without
throwing away the varying component (as would be done by invariant prediction [28]), allowing
DARE to use more information and resulting in higher test accuracy.

Dataset With Adjustement Without Adjustement
Office-Home

A 0.693 0.596
C 0.710 0.691
P 0.695 0.636
R 0.642 0.590

PACS
A 0.903 0.863
C 0.896 0.776
P 0.905 0.827
S 0.903 0.791

VLCS
C 0.598 0.200
L 0.723 0.436
S 0.674 0.231
V 0.591 0.210

Table 3: Mean cosine similarity between linear classification vectors which are individually optimal
for their respective domains (learned via logistic regression). For each dataset and each train-
domain/test-domain split we report the average similarity across all class normal vectors and all
domain pairs.

I.3 Results on Additional End-to-End Methods

Though ERM represents approximate state-of-the-art accuracy, for completeness we include a few
additional end-to-end methods to confirm that this fact still holds under our experimental conditions.

We also include additional results on ColoredMNIST:
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Dataset / Algorithm Mean Accuracy by Domain (± 90% CI)
Office-Home A C P R

ERM 61.4 ± 1.9 52.1 ± 1.6 74.6 ± 0.7 75.8 ± 1.9
Fish 61.2 ± 1.0 50.1 ± 1.7 75.1 ± 1.0 76.5 ± 0.2
CORAL 61.1 ± 0.7 52.4 ± 1.1 75.2 ± 0.7 77.0 ± 0.3

PACS A C P S
ERM 84.3 ± 1.5 79.5 ± 1.9 96.7 ± 0.5 74.9 ± 3.7
Fish 83.8 ± 2.6 76.4 ± 0.6 96.6 ± 1.2 75.6 ± 3.8
CORAL 82.4 ± 1.0 78.6 ± 1.3 96.7 ± 0.4 73.0 ± 2.9

VLCS C L S V
ERM 97.6 ± 0.7 66.1 ± 0.6 71.9 ± 1.9 76.1 ± 2.3
Fish 98.8 ± 0.4 63.6 ± 0.6 72.0 ± 1.6 78.6 ± 1.6
CORAL 97.7 ± 0.3 64.0 ± 2.0 72.2 ± 1.8 74.0 ± 0.7

Table 4: Performance of other algorithms under our experimental conditions. Our results confirm that
ERM remains approximate state of the art among end-to-end methods.

Dataset / Algorithm Mean Accuracy by Domain (± 90% CI)
ColoredMNIST 90% 80% 10%

ERM 71.2 ± 0.8 72.8 ± 0.2 10.1 ± 0.2
IRM 71.3 ± 0.6 72.6 ± 0.3 10.1 ± 0.1
GroupDRO 71.2 ± 0.5 72.6 ± 0.3 10.1 ± 0.1

DARE 71.4 ± 0.3 72.9 ± 0.1 10.1 ± 0.1

Table 5: Performance on ColoredMNIST.

I.4 Ablations

Figure 3: Demonstration of the effect of whitening. NoSigmaDARE is the exact same algorithm
as DARE but with no covariance whitening. In almost all cases, covariance whitening + guessing
at test-time results in better performance. We expect under much larger distribution shift that this
pattern may reverse.
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Figure 4: Effect of penalty term λ on the two algorithms which use it. λ = 0 corresponds to no
constraint, and the lower performance demonstrates that this invariance requirement is essential to the
quality of the learned classifier. For λ 6= 0, DARE accuracy is extremely robust, effectively constant
for all λ ≥ 1; in practice we also found the penalty term itself to always be ∼0. In contrast, IRM
accuracy appears to decrease with increasing λ, implying that the observed benefit of IRM primarily
comes from the domain reweighting as in our GroupERM method.

Figure 5: Effect of final feature bottleneck dimensionality on cheating accuracy. Reducing the
dimensionality reduces accuracy of all methods to varying degrees, though in some cases it actually
increases test accuracy. We observe that the main pattern persists, though the gap between cheating
on finetuned features and traditional ERM shrinks as the dimensionality is reduced substantially. To
reduce dimensionality of the pretrained features we use a random projection; unsurprisingly, the
quality dramatically falls as the number of dimensions is reduced.
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