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Abstract001

Human language use is robust to errors:002
comprehenders can and do mentally correct003
utterances that are implausible or anomalous.004
How are humans able to solve these problems005
in real time, picking out alternatives from an006
unbounded space of options using limited007
cognitive resources? And can language models008
trained on next-word prediction for typical009
language be augmented to handle language010
anomalies in a human-like way? Using a011
language model as a prior and an error model012
to encode likelihoods, we use Sequential013
Monte Carlo with optional rejuvenation014
to perform incremental and approximate015
probabilistic inference over intended sentences016
and production errors. We demonstrate that the017
model captures previously established patterns018
in human sentence processing, and that a019
trade-off between human-like noisy-channel020
inferences and computational resources falls021
out of this model. From a psycholinguistic022
perspective, our results offer a candidate algo-023
rithmic model of rational inference in language024
processing. From an NLP perspective, our025
results showcase how to elicit reasoning-like026
behavior from a relatively small LLM while027
controlling the amount of computation028
available during inference. Our model is029
implemented in the Gen.jl probabilistic pro-030
gramming language, and our code is available031
at https://osf.io/4zyd5/?view_only=032
54ebfb788ceb4f139f675130e7161111.033

1 Introduction034

A fundamental question in psycholinguistics is how035

comprehenders form interpretations of utterances036

that they hear or see. Of particular interest are037

cases where comprehenders form an interpretation038

despite the presence of errors or anomalies; these039

instances showcase the robustness of human lan-040

guage comprehension to noise, while simultane-041

ously posing a puzzle — when a comprehender042

observes an ill-formed or implausible utterance,043

but still derives a meaning from it, how exactly 044

are these alternative interpretations generated and 045

evaluated? 046

(1) a. The storyteller could turn any incident 047

into an amusing antidote. 048

b. The test of the devices were carried out 049

before packaging. 050

In Example 1a, from Ryskin et al. (2021), the 051

word antidote is incongruous in context, but is a 052

possible typo or malapropism for a more plausible 053

alternative, anecdote. In Example 1b, from Qian 054

and Levy (2023), there is an agreement mismatch 055

between subject and verb, but there is uncertainty 056

about what the correct intended message was be- 057

cause either the subject or verb could be corrected. 058

In all of these cases, comprehenders carry out some 059

form of error correction under uncertainty. 060

The noisy-channel theory of language process-
ing provides an explanation for human behavior
in terms of rational inference (Gibson et al., 2013;
Levy, 2008). According to this account, compre-
henders have a probabilistic model of how noise
can intervene on intended messages, and thus use
both the prior probability of messages and the error
likelihood when forming interpretations s from a
noisy utterance u, in line with Bayes’ Rule:

P (s | u) = P (u | s)P (s)∑
s′ P (u | s′)P (s′)

.

However, marginalizing over the space of possible 061

intended messages (the denominator) is typically 062

intractable, inviting the question of how humans 063

may form approximations to this probability distri- 064

bution. 065

Some prior work has considered whether large 066

language models (LLMs), given their strong per- 067

formance at language tasks in general, may ex- 068

hibit human-like “noisy-channel inference” behav- 069

ior (Cai et al., 2024). However, it is unclear whether 070
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language models trained on next-word prediction071

are the right model of this behavior; in particular,072

humans differ from autoregressive LMs in their073

ability to a) reanalyze previous material in light of074

new observations (Hanna and Mueller, 2024), b)075

explicitly model error operations to reason about076

alternative interpretations of utterances, and c) vary077

the amount of mental computation devoted to in-078

ference in a resource-rational way (Hoover et al.,079

2023).080

In this work, we model language comprehension081

as solving a probabilistic inference problem: given082

some noisy utterance u possibly containing errors,083

what is the probability distribution over intended084

sentences s and the errors that may have intervened085

on it? We leverage the existing framework of Se-086

quential Monte Carlo (SMC), which provides an087

incremental and approximate inference algorithm088

that is well suited to modeling the processing of089

sentences one word at a time. At the same time,090

motivated by non-linear, regressive reading behav-091

ior in humans (Frazier and Rayner, 1982; Wilcox092

et al., 2024), we implement a mechanism for reanal-093

ysis of previously processed material using MCMC094

rejuvenation within SMC. We investigate the re-095

lationship between noisy-channel inferences and096

algorithmic constraints, specifically computational097

resources (number of particles in SMC) and algo-098

rithmic inductive biases (the location and type of099

rejuvenation strategies). In the following sections,100

we introduce our model and inference algorithm,101

report two experiments where our model shows102

a trade-off between algorithmic constraints and103

noisy-channel behavior, and discuss implications104

for both cognitive science and NLP.105

2 Model106

Our model consists of a generative model, sub-107

divided into a language model prior and an error108

model, and an inference algorithm. The generative109

model (Figure 1) describes how “noisy” sentences110

may be generated, and places probability distri-111

butions over relevant random variables, while the112

inference algorithm solves the problem of invert-113

ing the generative model (Tenenbaum et al., 2011;114

Griffiths et al., 2010; Kersten et al., 2004).115

2.1 Language Model116

This module consists of an autoregressive language117

model (LM) whose role is to sample words from118

a vocabulary according to the statistics of typical119

Figure 1: Overview of random variables in the genera-
tive model.

language usage (i.e., without explicitly modeling 120

errors). In this paper, we report results using the 121

GPT-2 model (Radford et al., 2019) from Hugging- 122

Face (Wolf et al., 2020). Within this framework, the 123

LM expresses a prior P (s) over intended sentences 124

but is not expected to capture noisy-channel behav- 125

ior on its own, thus we can use a relatively small 126

LM without specialized mechanisms aimed at elic- 127

iting reasoning-like behavior (Wei et al., 2023), so 128

long as the LM captures the statistics of typical 129

language well. GPT-2 has been shown to encode 130

predictability in a way that correlates strongly with 131

human reading times (Shain et al., 2024).1 132

The LM module assumes a fixed-size vocabulary 133

V . Since GPT-2 uses sub-word tokens, we create 134

custom functions to sample and score words using 135

the LM, subject to the constraint of membership in 136

V . This is achieved by iteratively extracting logits 137

from GPT-2, zeroing out the logits of tokens in- 138

compatible with any word in V , renormalizing the 139

probability distribution over tokens, and repeating 140

until a valid vocabulary word has been generated. 141

For the experiments reported below, we set V to 142

be the intersection of all words in the test suites 143

with the top 5000 most frequent words from the 144

SUBTLEX-US word frequency corpus (Brysbaert 145

and New, 2009). This method, known as locally 146

constrained decoding (LCD), distorts the original 147

GPT-2 distribution over strings (see Lipkin et al. 148

(2025); Loula et al. (2025) for a discussion). Em- 149

pirically, the correlation between GPT-2 surprisal 150

with and without LCD was 0.95 in a set of 500 151

sentences (see Appendix A for details). 152

1We use the llamppl library (Lew et al., 2023) for lan-
guage model caching to speed up inference.

2



2.2 Error Model153

Given a sentence s sampled from the LM, the er-154

ror model generates a possibly noisy utterance u155

one word at a time. At each time step t, an ac-156

tion at is sampled independently from a probability157

distribution over the following 6 actions: normal158

production, insertion, skip, and form-based, se-159

mantic, and morphological substitutions. This160

probability distribution over actions is drawn from161

a Dirichlet prior with concentration parameter 10162

for normal and 1 for each of the 5 errors. Because163

of insertions and deletions, the index of the current164

intended word within s may not be equal to t; we165

use the notation idx(t) to denote the index in s that166

should be produced at time t under normal.167

At time t, given sidx(t) and at, the error model168

generates the output word by applying symbolic169

rules. For the normal action, the output word will170

simply be sidx(t) itself. For skip, the output word171

will be sidx(t)+1. For form-based substitutions, the172

output word is sampled from a probability distri-173

bution over V where each word’s probability is174

monotonic decreasing in its Levenshtein distance,175

denoted Lev(·, ·), from sidx(t) (Levenshtein, 1965):176

P (a | b) ∝ βLev(a, b)
1 , where β1 ∼ Beta(2, 11) is177

a latent variable quantifying how peaked or flat178

the distribution is, and where P (a | b) is clamped179

to 0 for pairs where Lev(a, b) > 5 or if a = b.180

For semantic substitutions, the output word is181

sampled from a probability distribution over V182

where each token’s probability is monotonically183

decreasing in its cosine distance from sidx(t) in184

the GloVe semantic embedding space (Penning-185

ton et al., 2014): P (a | b) ∝ cosineSim(a, b)β2 ,186

where β2 ∼ Gamma(6, 1) is another latent vari-187

able governing the distribution’s peakedness, and188

where P (a | b) is clamped to 0 for items outside189

the 20 closest neighbors or if a = b. For inser-190

tions, the output word is sampled randomly from191

the unigram frequency distribution over V , indepen-192

dently of context. For morphological substitutions,193

we apply a grammatical number change to sidx(t),194

changing it from singular to plural or vice versa,195

assuming both forms are in V , e.g. kick→ kicks.196

2.3 Inference Algorithm: Sequential Monte197

Carlo198

Given an utterance u, we perform inference on la-199

tent variables using Sequential Monte Carlo (Naes-200

seth et al., 2024) with custom rejuvenation pro-201

posals (see Appendix B: Algorithms 1, 2, 3). We202

maintain a set of K particles, {x(i)t }, i = 1 . . .K, 203

each corresponding to a hypothesis about the model 204

state, i.e. the values of all latent random vari- 205

ables in the generative model up to the current time 206

step. Each particle is associated with a weight w(i)
t , 207

which, when normalized across particles, serves 208

as an approximation to the probability of the par- 209

ticle’s state given the observations (Chopin and 210

Papaspiliopoulos, 2020). We use the set of parti- 211

cles to infer the posterior distribution over states, 212

given a set of observations: P (xt | u1:t). At time 213

t, the algorithm samples a new extended state for 214

each particle, which expresses a hypothesis about 215

sidx(t) and at. In principle, each particle can now 216

be scored in terms of how well it explains the new 217

observation ut. 218

However, due to the symbolic rules in the error
model, new particle states randomly sampled from
the generative model are likely to be incompatible
with the observation, resulting in particles with a
probability of zero. We thus use a custom proposal
function q(·), which assigns sidx(t) heuristically, by
either setting it equal to ut, sampling a form-based
or semantic neighbor of ut, or sampling from the
LM-induced next-word distribution given the con-
text s1:idx(t)−1. Intuitively, this heuristic combines
three sources of information that a rational compre-
hender might use during inference: the context, the
observation itself, and set of items that resemble
the observation. The proposal function then sam-
ples an action from the set of actions with non-zero
probability of generating ut. We then apply an im-
portance weight correction in the weight update to
offset the bias introduced by this proposal function.
The new weight w(i)

t for particle x
(i)
t at time t is:

w
(i)
t = P (ut | x(i)t )

P (x
(i)
t | x

(i)
t−1)

q(x
(i)
t | x

(i)
t−1,ut)

This is calculated automatically in Gen based on the 219

specification of the generative function. Particles 220

are resampled at each time step, which resets their 221

weights to a uniform distribution. 222

We define surprisal as the negative log of the 223

mean particle probability, which itself approxi- 224

mates the conditional probability of an observation 225

in context: 226

P (ut | u1:t−1) =

∫
P (ut | xt)P (xt | u1:t−1)dxt 227

≈ 1

K

K∑
i=1

w
(i)
t 228
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Intuitively, surprisal is lowest when the current ob-229

servation is explainable as a high-probability con-230

tinuation in normal production.231

2.4 Rejuvenation232

While incremental processing is the default in our233

model, we also optionally include rejuvenation234

as an algorithmic operationalization of the reanal-235

ysis of earlier commitments. Rejuvenation for236

SMC refers to modifying the random choices of237

a particle in light of new observations (Gilks and238

Berzuini, 2001; Doucet et al., 2001; Andrieu et al.,239

2010). Without rejuvenation, each particle’s ran-240

dom choices are never revised; this is problematic241

in a setting with finite particles, where globally242

promising particles may be filtered out in favor243

of locally higher-scoring ones. We speculate that244

there is a cognitive significance to rejuvenation245

in the context of rational models of cognition —246

rejuvenation can bring the inferred posterior distri-247

bution closer to the target distribution, but comes at248

the cost of additional computation, thus providing249

a way to model a trade-off between the quality of250

inferences and cognitive effort.251

A given rejuvenation proposal function takes an
existing particle xt and returns a modified parti-
cle xt

′, which has different choices for some of
the random variables in the particle. One such
proposal function is the Form-based Neighbor
Proposal, which takes an existing particle and a
specific index t in u, and proposes a different in-
tended word sidx(t). We sample this word from
the form-based substitution distribution as defined
in the error model. The model also proposes a
change to the corresponding action at, flipping it
from normal to form-sub or vice versa. Once the
proposal function has generated x′t, we employ the
Metropolis-Hastings algorithm to accept or reject
this new particle with the following probability:

P (xt
′)

P (xt)
· g (xt | xt

′)

g (xt′ | xt)

Thus rejuvenation moves which result in particles252

with better scores under the generative model are253

more likely to be accepted, but rejuvenation pro-254

posal functions must be carefully designed to be255

reversible so that they assign non-zero probability256

to both transitions xt → xt
′ and xt

′ → xt (Neklyu-257

dov et al., 2020; Cusumano-Towner et al., 2020).258

We implement two distinct rejuvenation strate-259

gies, conditional rejuvenation and second-pass260

rejuvenation. Conditional rejuvenation is initiated261

probabilistically, with the probability of rejuvena- 262

tion depending on the surprisal of the most recently 263

observed word in context relative to its unigram 264

surprisal − logP uni: 265

δt = logP uni(ut)− log
1

K

K∑
i=1

exp(w
(i)
t ) 266

P rejuv = exp(δt)/(1 + exp(δt)) 267

The term δt above can be interpreted as an estimate 268

of the negative pointwise mutual information2 be- 269

tween the context and the observation ut: positive 270

values mean that it is more surprising in this partic- 271

ular context than would be expected based only on 272

its unigram frequency. We posit this as a plausible 273

signal that there may be an error somewhere in the 274

sentence. Conditional rejuvenation is parametrized 275

by a lookback parameter λ, which governs how far 276

back in the sentence to consider for reanalysis. At 277

each time step and for each particle, conditional 278

rejuvenation is triggered with probability P rejuv, 279

and the observations from time t − max(1, λ) to 280

t are targeted for rejuvenation. Higher values of 281

λ make it more likely that regions farther back in 282

the sentence are reanalyzed. Second-pass rejuve- 283

nation, meanwhile, is performed on all words in 284

the utterance after the entire utterance has been ob- 285

served, and is parametrized by an iters parameter, 286

governing how many iterations to perform. 287

3 Experiment 1: The role of particle 288

count in purely incremental inference 289

What is the relationship between computational 290

resources and the quality of inference, as mea- 291

sured by the ability to handle anomalous words 292

in a human-like way? 293

A context c induces some next-word proba- 294

bility distribution P LM(w | c) under some lan- 295

guage model LM. Under a LM trained on typi- 296

cal language, a word wA having high probability 297

P LM(wA | c) does not imply that, on average, word 298

wB with high error probability P err(wA → wB) 299

will have an elevated probability P LM(wB | c) 300

compared to other low-probability words, except 301

insofar as such errors wA → wB are well-attested 302

in the training data. However, there is evidence 303

that humans are less surprised by such errors, com- 304

pared to completely unrelated or unexplainable er- 305

rors (Ryskin et al., 2021; Li and Futrell, 2024a). 306

2Pointwise mutual information is defined as pmi(x; y) =
log p(x,y)

p(x)p(y)
= log 1

p(x)
− log 1

p(x|y)
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In particular, Ryskin et al. (2021) found a neural307

index of error correction using EEG data from par-308

ticipants reading linguistic stimuli belonging to one309

of four conditions (Table 1), in terms of the N400310

(Kutas and Hillyard, 1980; Kutas and Federmeier,311

2011) and P600 (Osterhout and Holcomb, 1992;312

Kaan et al., 2000; van Herten et al., 2005) event-313

related potentials. Errors from which recovery was314

possible showed a small N400 effect and high P600315

effect, while unrelated, difficult-to-repair errors in-316

duced a large N400 but smaller P600 effect.317

The storyteller could turn any incident
into an amusing [BLANK]
Condition Completion
Normal anecdote.
Ungrammatical anecdotes.
Neighbor antidote.
Unrelated hearse.

Table 1: Experiment 1 materials from Ryskin et al.
(2021).

Our generative model explicitly models errors,318

thereby decomposing the probability of observing319

such an error into the probability of the intended320

word in context and the probability of the error tak-321

ing place. Our inference algorithm approximates322

the distribution over these latent variables, such as323

the intended word and type of error, sampled using324

a set of K particles. Crucially, although SMC per-325

forms asymptotically correct inference as K →∞,326

in practice the constraint on number of particles327

impacts whether the choices that best explain the328

observation are sampled. Thus there may be cases329

where inference using a small K leads to qualita-330

tively different results than a larger K.331

We pass each sentence of the N=504 sentences332

from Ryskin et al. (2021) to our inference model.333

We perform SMC inference with K ranging from334

4 to 128 in powers of 2. For this experiment, we335

do not apply any rejuvenation, in order to evaluate336

purely incremental inference. For each sentence,337

we compute incremental surprisal from the noisy-338

channel model and from the baseline LM, which339

uses the same restricted-vocabulary generative pro-340

cess as the noisy-channel model, but lacks an error341

model or particle-based inference.342

3.1 Results343

Figure 2 shows the average noisy-channel surprisal344

of the critical word across items as a function of345

Figure 2: Surprisal from noisy-channel model compared
against baseline surprisal, as a function of condition and
number of particles. Small colored points denote indi-
vidual negative particle weights. Error bars and shaded
bands denote 95% confidence intervals. In the resolv-
able error conditions only, given sufficient computation,
noisy-channel surprisal is lower than baseline surprisal.

condition and number of particles, with baseline 346

surprisal for comparison. As particle count in- 347

creases, noisy-channel surprisal of the observed 348

word tends to decrease, as expected. More inter- 349

estingly, comparing the value of noisy-channel and 350

baseline surprisal shows a dissociation between 351

recoverable errors (the Neighbor and Ungrammat- 352

ical conditions) compared to the other conditions 353

(Normal and Unrelated). For recoverable errors, 354

given sufficient particles (here more than 8), noisy- 355

channel surprisal was on average lower than base- 356

line surprisal, while for the other two conditions, 357

average noisy-channel surprisal asymptotically ap- 358

proached average baseline surprisal but never went 359

below it. For K = 128, noisy-channel surprisal 360

was on average 1 to 2 bits lower than baseline sur- 361

prisal. 362

An illustrative example of one sentence is shown 363

in Figure 3. For the word “inflection”, some 364

particles sample the much more contextually pre- 365

dictable “infection” as the intended word, corre- 366

sponding to a form-sub action. These particles 367

drive down the overall surprisal of this observation 368

in comparison to the baseline LM, whose surprisal 369

is well-approximated by particles that sampled the 370

normal action to explain the observed word. The 371

noisy-channel surprisal benefit can also extend to 372

following words or punctuation, as correcting the 373

error can allow better prediction of subsequent ma- 374

terial. 375

We also observe that the it is precisely the recov- 376

erable error conditions that exhibit a high posterior 377

probability of an error at the critical word (Figure 378

4, top panel). While it might initially seem surpris- 379

ing that the Unrelated condition does not induce a 380

high posterior of the action being an error, this is 381
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Figure 3: Example sentence containing a Neighbor
anomaly comparing noisy-channel and baseline sur-
prisal. Vertical axis is cropped to the range (0, 25)
for visual clarity.

because critical words in the Unrelated condition382

are not explainable within the generative model383

of errors; therefore, the model must simply treat384

them as low-probability continuations of the sen-385

tence. Interestingly, this pattern is analogous to386

that seem in EEG data from Ryskin et al. (2021),387

in which a strong P600 signal was observed in the388

recoverable error conditions but not the normal or389

unrelated error conditions. Turning to model infer-390

ences about the intended word, the mean posterior391

placed on the target word (i.e., the critical word in392

the Normal condition) increased monotonically as393

a function of particle count for the two recoverable394

error conditions, while it remained at zero in the395

Unrelated condition (Figure 4, bottom panel). This396

indicates that greater computational resources help397

the approximate inference algorithm to discover398

high-probability explanations for noisy sentences,399

but only if the error is explainable.400

4 Experiment 2: The role of algorithmic401

constraints in reanalysis of potential402

errors403

What is the role of algorithm parameters, in partic-404

ular those governing rejuvenation, on the similar-405

ity of model and human inferences, for sentences406

which invite reanalysis (as opposed to purely in-407

cremental processing)? We address this question408

using the materials of Qian and Levy (2023), where409

participants were asked to correct items with agree-410

ment errors (Table 2), such that either the subject411

of the verb could be edited to form a grammatical412

sentence. We considered a subset of N=120 items413

with singular subjects and plural verbs. We quan-414

tify the verb-edit preference for an item as the ratio415

of the probability of a verb edit to the probability416

of an edit at either subject or verb. Human partici-417

pants made edits to the verb 60% of the time, and418

edits to the subject 29% of the time, which could419

Figure 4: Mean posterior probability placed by the
model on the critical word being an error (top) and on
the intended word being the word from the Normal con-
dition (bottom), as a function of condition and number
of particles. Error bars denote the 95% confidence in-
terval, across items. For the resolvable error conditions,
more computation is associated with greater model con-
fidence that the critical word is an error, and higher
accuracy at retrieving the ‘correct’ intended word.

potentially indicate a bias towards editing more 420

recently processed material. Yet they a displayed 421

fine-grained sensitivity to items, making edits that 422

were broadly consistent across individuals, with a 423

mean split-half correlation of 0.81 (95% CI: 0.80- 424

0.81), computed across 500 random 50-50 splits of 425

participants.3 426

Condition Sentence
Sg Sg Pl The test of the device were car-

ried out before packaging.
Sg Pl Pl The test of the devices were car-

ried out before packaging.

Table 2: Experiment 2 materials from Qian and Levy
(2023). The condition name denotes whether each of
the subject, intervening noun, and verb are singular (Sg)
or plural (Pl).

We use our model to run inference on the experi- 427

mental items using either conditional rejuvenation 428

or second-pass rejuvenation, while systematically 429

varying two key algorithmic parameters. For con- 430

ditional rejuvenation, we vary the lookback param- 431

eter λ, which controls how far back the algorithm 432

proposes rejuvenation moves. For second-pass reju- 433

3The items with plural subjects and singular verbs had
considerably lower split-half reliability, at 0.65 (95% CI: 0.64-
0.65). These were not part of our analysis.

6



venation, the iters parameter controls how many434

iterations of rejuvenation are performed after the435

first incremental pass through the sentence. We in-436

terpret model results for each sentence as follows:437

at each of the subject and verb, we compute the438

posterior probability that the word is an error (i.e., a439

non-normal action). We define the model verb-edit440

preference as P (averb = error | u)/(P (averb =441

error | u) + P (asubject = error | u)), and compare442

this to the verb-edit preference across participants443

for the same item.444

4.1 Results445

Figure 5a shows model verb-edit preferences using446

second-pass rejuvenation, plotted against human447

verb-edit preferences. Pearson’s r is shown for448

each value of iters. Compared to the baseline of449

0 rejuvenation iterations, adding rejuvenation con-450

sistently improved the fit to the human data, with451

the greatest correlation when iters = 2. This in-452

dicates that up to a point, performing additional453

iterations of rejuvenation (at the cost of computa-454

tional resources) yields inferences about error lo-455

cation that more closely resemble those of humans.456

Figure 5b compares different values of λ within457

conditional rejuvenation. Pearson’s r is shown for458

each value of λ. Values of λ ≥ 2 fit the human data459

better than purely incremental inference. However,460

our results also indicate that even the best model461

correlation with human inferences is lower than462

the mean split-half human correlation of 0.81, thus463

the model does not fully capture all features that464

humans may use to infer intended meanings (see465

Limitations).466

5 Discussion467

Noisy-channel language processing refers to how468

comprehenders may interpret anomalous utterances469

inferentially, rather than literally. While this phe-470

nomenon is well-studied empirically, there are open471

questions surrounding what algorithms people may472

use to arrive at noisy-channel inferences, what ef-473

fect constraints on computational resources may474

have on these inferences, and how biases such475

as incrementality (Altmann and Mirković, 2009;476

Williams, 2006; Cho et al., 2017; Kamide et al.,477

2003), recency (Gibson, 1990; Bartek et al., 2011),478

or resource-rationality (Griffiths et al., 2015; Lieder479

and Griffiths, 2020) may explain patterns of human480

comprehension. For example, in Experiment 2,481

purely incremental inference would be biased to-482

(a) Second-pass rejuvenation

(b) Conditional rejuvenation

Figure 5: Model verb-edit preference plotted against
human verb-edit preference, across items, for second-
pass rejuvenation (a) and conditional rejuvenation (b).
Darker hues indicate more iterations of rejuvenations.
Shaded bands denote 95% confidence intervals. Scat-
terplot shows datapoints when iters = 3 and when
λ = 6.

wards correcting subject-verb agreement errors by 483

editing the verb, which is when the error becomes 484

apparent, while reanalysis of earlier parts of the 485

sentence might find better edits. 486

From the perspective of cognitive science 487

and psycholinguistics, our framework provides 488

an implemented algorithmic model of resource- 489

rationality in noisy-channel language processing. 490

Our results demonstrate that qualitatively differ- 491

ent patterns of surprisal and inferences emerge by 492

changing the value of parameters that govern com- 493

putational limitations and reanalysis scope. Pre- 494

vious work has considered computational mod- 495

els of the time-course and neural correlates of 496

noisy-channel inferences (Li and Futrell, 2024b; Li 497
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and Ettinger, 2023), or Bayesian models of word498

recognition under noise for children’s speech (Mey-499

lan et al., 2023). Work in the predictive coding500

paradigm has also modeled differences between501

predictable words, neighbors of predicted words,502

and other errors (Nour Eddine et al., 2024; Laszlo503

and Federmeier, 2009), while the effect of memory504

constraints on the processing of syntactic garden505

paths has been modeled with approximate SMC506

inference with varying numbers of particles (Levy507

et al., 2008). Our model complements such work508

by showing how an approximate sampling-based al-509

gorithm can discover and evaluate alternative inter-510

pretations of an utterance; under this model, quali-511

tatively different patterns emerge for recoverable512

and non-recoverable errors (Experiment 1), similar513

to the dissociation found by Ryskin et al. (2021).514

Additionally, our work extends earlier models by515

incorporating a plausible algorithmic account of516

reanalysis of earlier material, which we show in-517

creases the fit of model inferences to human infer-518

ences compared to purely incremental inference519

(Experiment 2). Finally, our model provides a way520

to instantiate the notion of resource-rationality in521

noisy-channel processing at a fine-grained level522

by varying particle count and iterations of reju-523

venations. Future work may consider processing524

policies where computational resources can dynam-525

ically adapt to the difficulty of inference (Hoover526

et al., 2023), and can evaluate whether experimen-527

tal manipulations such as speeded judgments or528

incentives can elicit human behavioral profiles that529

match inference with varying computational re-530

sources.531

From the perspective of NLP practitioners, our532

framework of constructing a generative model of533

errors and performing approximate inference yields534

a method for eliciting reasoning-like behavior from535

relatively small LLMs like GPT-2. By implement-536

ing an error model as a generative function, this537

approach allows for customizing the error model538

based on domain-specific prior knowledge about539

the types of errors one expects in the world. Our540

framework also implements customizable infer-541

ence, where the amount of computation can be542

scaled using parameters for the number of parti-543

cles and the amount of lookback during rejuvena-544

tion; these parameters allow a user to navigate the545

tradeoff between computational resources and the546

exactness of inference. Previous work has con-547

sidered the role of SMC algorithms in controlled548

generation from language models (Lew et al., 2023;549

Lipkin et al., 2025; Loula et al., 2025), but here we 550

show how such approaches, combined with an error 551

model informed by domain knowledge, can model 552

human rational inferences and provide robustness 553

against noise. Other work bridging NLP and cog- 554

nitive science has shown how probabilities from 555

LLMs can be adapted based on alternatives to bet- 556

ter model human cognitive processes (Giulianelli 557

et al., 2025; Meister et al., 2024). 558

6 Conclusion 559

In this work, we introduce an implemented model 560

of noisy-channel language comprehension using 561

generative functions, probabilistic programming, 562

and Sequential Monte Carlo inference. The model 563

is modular and customizable, allowing different 564

assumptions to be encoded via choice of language 565

model, implementation of the error model, and pa- 566

rameters of the inference algorithm. This allows 567

our model to instantiate varying hypotheses about 568

the computational resource constraints available 569

during inference, which we can manipulate to as- 570

sess their influence on noisy-channel inferences. 571

Our results indicate that resource constraints can 572

affect whether or not an inferential interpretation 573

of a given anomalous utterance is discovered, and 574

show that augmenting a purely incremental pro- 575

cessing algorithm with reanalytical rejuvenation 576

moves can improve fit . Our model offers a candi- 577

date algorithmic-level account of rational inference 578

in language processing, and can be used to inter- 579

rogate open questions in the field, such as what 580

explains the variation between individuals and be- 581

tween items in whether inferential interpretations 582

are formed. 583

Limitations 584

We acknowledge some limitations of this work. 585

Our proposed error model is limited in its expres- 586

sive power, leaving out some purported basic error 587

operations such as word exchanges (Poppels and 588

Levy, 2016). While it can generate a wide range 589

of plausible transformations of a given intended 590

sentence, the probabilities it assigns to these trans- 591

formations are not calibrated to the actual statis- 592

tics of production errors (for example, our model 593

treats the erroneous pluralization of a singular word 594

as equally likely as the singularization of a plural 595

word). Some sources of uncertainty are encoded 596

as latent variables and included in the inference 597

problem (e.g., the parameters β1 and β2 governing 598

8



the distributions over form-based and semantic sub-599

stitutions). Other model choices, such as the use of600

GloVe embeddings or the concentration parameters601

for the Dirichlet prior, are fixed properties of the602

model. We leave further exploration of the space of603

error models, and calibration of its free parameters,604

to future work.605

Another limitation is our language model. We606

use a single LM as our prior P (s) in our model,607

but have not thoroughly investigated the sensitivity608

of inference to different choices of language model609

or different prompts given to the model. Addition-610

ally, we employ token masking to restrict the model611

vocabulary to a predefined set of frequent words,612

so the LM does not assign probability mass to the613

potentially long tail of low-probability utterances614

in English (Loula et al., 2025; Lipkin et al., 2025).615

The iterative process of token masking and sam-616

pling at each step also creates a slowdown, which617

could in theory be addressed by utilizing an LM618

which natively produces probability distributions619

over words, rather than tokens. The choice of En-620

glish as the language of our experiments is also a621

limitation – while English is relatively morphologi-622

cally simple, thus making it amenable to inference623

over discrete words, it would be non-trivial to adapt624

our model to morphologically complex languages625

where errors might be more readily analyzed at the626

morpheme level.627

Finally, our approach to rejuvenation contains628

limitations. Our inference algorithm uses heuristics629

to propose reanalyses of earlier material. However,630

it still resembles brute force search in that it pro-631

poses changes across a wide range of word posi-632

tions, dependent on the algorithmic parameter λ.633

An alternative would be to first identify the most634

likely positions of errors, then focus rejuvenation635

effort on those locations, thus reducing unneces-636

sary computation. In either case, our inference637

algorithm is an approximate inference algorithm –638

in the limit of infinite particles, the inferred distri-639

bution approaches the target distribution, but this640

cannot be taken as a guarantee that model results641

match human intuitions.642

We do not foresee any novel risks introduced by643

our work, due to our use of existing and publicly644

accessible datasets and models.645
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A Appendix: Locally Constrained 896

Decoding vs. Base Model 897

To investigate the degree of distortion of sur- 898

prisal values introduced by performing locally con- 899

strained decoding (LCD) to enforce a restricted 900

vocabulary, we compare word-level surprisal val- 901

ues from GPT-2 with and without LCD applied. For 902

GPT-2 without LCD, we sum sub-word token sur- 903

prisals to calculate word-level surprisals. Surprisals 904

were computed for 504 sentences from Ryskin et al. 905

(2021). The restricted vocabulary was set to be 906

the union of the 5000 most frequent words in the 907

SUBTLEX-US dataset (Brysbaert and New, 2009) 908

and the vocabulary used in the experimental items. 909

Figure 6 shows that surprisal values obtained via 910

LCD have a correlation of 0.95 with the original 911

surprisal values. Qualitatively, LCD has a slight 912

tendency to underestimate surprisal compared to 913

the base model, due to eliminating the long tail 914

of low-frequency possible completions. Based on 915

manual inspection, LCD is most likely to underes- 916

timate surprisal for low-frequency words. 917

B Appendix: Inference Algorithm 918

Algorithm 1 shows pseudocode for the Sequen- 919

tial Monte Carlo inference algorithm used in our 920

model. The abbreviation MH denotes a Metropolis- 921

Hastings accept-reject step, implemented via the 922
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Figure 6: Comparison of surprisal values from locally
constrained decoding (LCD) and the GPT-2 base model.

Gen mh() function. Algorithm 2 shows pseu-923

docode for the Form-Based Neighbor Proposal.924

The function formSubProbs() denotes a function925

which returns a probability distribution over the926

vocabulary based on form-based similarity, as de-927

scribed in the main paper. The Semantic Neighbor928

Proposal and Morphological Error Proposal are929

highly similar and are thus omitted, simply using930

functions that return probability distributions based931

on semantic similarity and morphological similar-932

ity, respectively. Algorithm 3 shows pseudocode933

for the Insertion/Deletion Proposal.934

In Algorithms 2 and 3, the notation x[·] denotes935

accessing the value of a random choice stored by936

a particle x. Algorithm 3 omits some of the low-937

level bookkeeping involved in inserting or deleting938

a word from the intended sentence, which needs939

to be done carefully to ensure that the resulting940

sentence still has non-zero probability under the941

generative model.942

C Appendix: Use of Artifacts and Models943

We utilize the GPT-2 language model, which has944

137M parameters and which is available on Hug-945

gingface via the MIT license. Experiments were946

run on CPUs on our institution’s compute cluster.947

We also utilize existing datasets from Ryskin948

et al. (2021) (unknown license) and Qian and Levy949

(2023) (CC-By Attribution 4.0 International li-950

cense), which are publicly available via OSF. We 951

use this data purely for evaluating the psycholin- 952

guistic explanatory power of our model, and not for 953

training new models or any commercial purposes. 954

We make our code available to scientific re- 955

searchers for non-commercial use. 956

We acknowledge the use of ChatGPT for help 957

with debugging code. 958
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Algorithm 1 Sequential Monte Carlo with Rejuve-
nation

1: Inputs: Observations u1:T , number of par-
ticles K, Lookback parameter λ, Iterations
iters

2: Initialize: For i = 1, . . . ,K, sample x
(i)
0 ∼

P (x0) and set w(i)
0 = 0

3: for t = 1 to T do
4: Propagate: x(i)t ∼ q(xt | x(i)t−1,ut)

5: Weight: w
(i)
t ← P (ut | x

(i)
t )P (x

(i)
t |

x
(i)
t−1)/q(x

(i)
t | x

(i)
t−1,ut)

6: Convert weights to normalized probabilities:

w̃
(i)
t ←

exp(w
(i)
t )∑K

j=1 exp(w
(j)
t )

7: Resample: For i = 1, . . . ,K, draw ancestor
index a

(i)
t ∼ Categorical(w̃(1)

t−1, . . . , w̃
(K)
t−1);

x
(i)
t ← x

(a
(i)
t )

t

8: // Conditional Rejuvenation
9: prejuv ← σ(log 1

K

∑
iw

(i)
t − P uni(ut))

10: for i = 1 . . .K do
11: if not Bernoulli(prejuv) then
12: continue
13: end if
14: for t′ in shuffle(max(1, t− λ) . . . t) do
15: x

(i)
t′ ← MH(x

(i)
t′ ,Form Proposal)

16: x
(i)
t′ ← MH(x

(i)
t′ ,Semantic Proposal)

17: x
(i)
t′ ← MH(x

(i)
t′ ,Morpho Proposal)

18: x
(i)
t′ ← MH(x

(i)
t′ , Ins/Del Proposal)

19: end for
20: end for
21: end for
22: // Second-Pass Rejuvenation
23: for j = 1 . . . iters do
24: for i = 1 . . .K do
25: for t′ = 1 . . . T do
26: x

(i)
t′ ← MH(x

(i)
t′ ,Form Proposal)

27: . . . (other proposals)
28: x

(i)
t′ ← MH(x

(i)
t′ , Ins/Del Proposal)

29: end for
30: end for
31: end for
32: Output: Approximate posterior distribution
{x(i)t , w

(i)
t }Ki=1 for each t = 1, . . . , T

Algorithm 2 Form-Based Neighbor Proposal

1: Inputs: Original particle xt, Target timestep τ

2: ps = formSubProbs(sidx(τ), xt[β])
3: v ∼ Categorical(V, ps)
4: x′t[sidx(τ)] = v
5: Output: New particle x′t

Algorithm 3 Insertion/Deletion Proposal

1: Inputs: Original particle xt, Target timestep τ

2: stemp ← xt[s]
3: insert ∼ bernoulli(0.5)
4: if insert then
5: word ∼ P LM(· | xt[s1:idx(τ)−1])
6: insert(stemp, idx(τ),word)
7: else
8: delete(stemp, idx(τ))
9: end if

10: x′t[s]← stemp
11: Output: New particle x′t
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