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Abstract

The sharpest known high probability excess risk bounds are up to O(1/n) for1

empirical risk minimization and projected gradient descent via algorithmic stability2

[Klochkov and Zhivotovskiy, 2021]. In this paper, we show that high probability3

excess risk bounds of order up to O(1/n2) are possible. We discuss how high prob-4

ability excess risk bounds reach O(1/n2) under strongly convexity, smoothness5

and Lipschitz continuity assumptions for empirical risk minimization, projected6

gradient descent and stochastic gradient descent. Besides, to the best of our knowl-7

edge, our high probability results on the generalization gap measured by gradients8

for nonconvex problems are also the sharpest.9

1 Introduction10

Algorithmic stability is a fundamental concept in learning theory [Bousquet and Elisseeff, 2002],11

which can be traced back to the foundational works of Vapnik and Chervonenkis [1974] and has12

a deep connection with learnability [Rakhlin et al., 2005, Shalev-Shwartz et al., 2010, Shalev-13

Shwartz and Ben-David, 2014]. It is not difficult for only providing in-expectation error bounds via14

stability arguments. However, high probability bounds are beneficial to understand the robustness of15

optimization algorithms [Bousquet et al., 2020, Klochkov and Zhivotovskiy, 2021] and are much16

more challenging [Feldman and Vondrak, 2019, Bousquet et al., 2020, Lv et al., 2021]. In this paper,17

our goal is to improve the high probability risk bounds via algorithmic stability.18

Let us start with some standard notations. We have a set of independent and identically distributed19

observations S = {z1, . . . , zn} sampled from a probability measure ρ defined on a sample space20

Z := X × Y . Based on the training set S, our goal is to build a model h : X 7→ Y for prediction,21

where the model is determined by parameter w from parameter space W ⊂ Rd. The performance of22

a model w on an example z can be quantified by a loss function f(w; z), where f : W ×Z 7→ R+.23

Then the population risk and the empirical risk of w ∈ W , respectively as24

F (w) := Ez [f(w; z)] , FS(w) :=
1

n

n∑
i=1

f(w; zi),

where Ez denotes the expectation w.r.t. z.25

Let w∗ ∈ argminw∈W F (w) be the model with the minimal population risk in W and w∗(S) ∈26

argminw∈W FS(w) be the model with the minimal empirical risk w.r.t. dataset S. Let A(S) be the27

output of a (possibly randomized) algorithm A on the dataset S. Let ∥ · ∥2 denote the Euclidean norm28

and ∇g(w) denote a subgradient of g at w.29

Traditional generalization analysis aims to bound the generalization error F (A(S))−FS(A(S)) w.r.t30

the algorithm A and the dataset S. Based on the technique developed by Feldman and Vondrak [2018,31
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2019], Bousquet et al. [2020] provide the sharpest high probability bounds of O (L/
√
n), where the32

loss function f(·, ·) is bounded by M . No matter how stable the algorithm is, the high probability33

generalization bound will not be smaller than O(L/
√
n). This is sampling error term scaling as34

O (1/
√
n) that controls the generalization error [Klochkov and Zhivotovskiy, 2021].35

A frequently used alternative to generalization bounds, that can avoid the sampling error, are the36

excess risk bounds. The excess risk of algorithm A w.r.t. the dataset S is F (A(S))− F (w∗), which37

is more essential because it considers both generalization error and optimization error. Recently,38

Klochkov and Zhivotovskiy [2021] provided the best high probability excess risk bounds of order39

up to O(log n/n) for empirical risk minimization (ERM) and projected gradient descent (PGD)40

algorithms via algorithmic stability.41

On the other hand, Zhang et al. [2017], Li and Liu [2021], Xu and Zeevi [2024] derived high42

probability excess risk bounds with O
(
1/n2

)
for ERM and stochastic gradient descent (SGD) via43

uniform convergence when the sample number satisfies n = Ω(d), which implied that the rate44

O
(
1/n2

)
is possible. However, the results obtained by the uniform convergence technique are related45

to the dimension d, which is unacceptable in high-dimensional learning problems. Since stability46

analysis can yield dimension-free bounds, we naturally have the following question:47

Can algorithmic stability provide high probability excess risk bounds with the rate beyond O(1/n)?48

The main results of this paper answers this question positively. We provides the first high probability49

bounds that are dimension-free with the rate O(1/n2) for ERM, PGD and SGD. Our framework can50

also be used to solve other stable algorithms.51

To this end, we develop the generalization gap measured by gradients. Our bounds under nonconvex52

setting are tighter than existing works based on both algorithmic stability [Fan and Lei, 2024] and53

uniform convergence [Xu and Zeevi, 2024]. This is why we can achieve dimension-free excess risk54

bounds of order O(1/n2). In fact, in nonconvex problems, optimization algorithms can only find55

a local minimizer and we can only obtain optimization error bounds for ∥∇FS(A(S))∥2 [Ghadimi56

and Lan, 2013]. Therefore, it is important to study the generalization behavior of A(S) measured by57

gradients. Under Polyak-Lojasiewicz condition, we also obtain sharper results for both generalization58

bounds of gradients and excess risk bounds. Our route to excess risk bounds can also be applied59

to various stable algorithms and complex learning scenarios. In this paper, we take ERM, PGD,60

and SGD as examples to explore the stability of stochastic convex optimization algorithms with61

strongly convex losses. We provide tighter high probability dimension-free excess risk bounds of62

up to O(1/n2) comapring with existing works based on both algorithmic stability [Klochkov and63

Zhivotovskiy, 2021, Fan and Lei, 2024] and uniform convergence [Zhang et al., 2017, Li and Liu,64

2021, Xu and Zeevi, 2024].65

Besides, to obtain tighter bounds, we obtain a tighter p-moment bound for sums of vector-valued66

functions by introducing the optimal Marcinkiewicz-Zygmund’s inequality for random variables67

taking values in a Hilbert space in the proof, which has more potential applications in vector-valued68

functional data.69

This paper is organized as follows. The related work is reviewed in Section 2. In Section 3, we70

present our main results for stability and generalization. We give applications to ERM, PGD and71

SGD in Section 4. The conclusion is given in Section 5. All the proofs and additional lemmata are72

deferred to the Appendix.73

2 Related Work74

Algorithmic stability. Algorithmic stability is a classical approach in generalization analysis, which75

can be traced back to the foundational works of [Vapnik and Chervonenkis, 1974]. It gave the76

generalization bound by analyzing the sensitivity of a particular learning algorithm when changing77

one data point in the dataset. Modern framework of stability analysis was established by Bousquet78

and Elisseeff [2002], where they presented an important concept called uniform stability. Since79

then, a lot of works based on uniform stability have emerged. On one hand, generalization bounds80

with algorithmic stability have been significantly improved by Feldman and Vondrak [2018, 2019],81

Bousquet et al. [2020], Klochkov and Zhivotovskiy [2021]. On the other hand, different algorithmic82

stability measures such as uniform argument stability [Liu et al., 2017, Bassily et al., 2020], on83

average stability [Shalev-Shwartz et al., 2010, Kuzborskij and Lampert, 2018], hypothesis stability84
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[Bousquet and Elisseeff, 2002, Charles and Papailiopoulos, 2018], hypothesis set stability [Foster85

et al., 2019], pointwise uniform stability [Fan and Lei, 2024], PAC-Bayesian stability [Li et al., 2020],86

locally elastic stability [Deng et al., 2021], collective stability [London et al., 2016] and uniform87

stability in gradients [Lei, 2023, Fan and Lei, 2024] have been developed. Most of them provided the88

connection on stability and generalization in expectation. Bousquet and Elisseeff [2002], Elisseeff89

et al. [2005], Feldman and Vondrak [2018, 2019], Bousquet et al. [2020], Klochkov and Zhivotovskiy90

[2021], Fan and Lei [2024] considered high probability bounds. However, only Fan and Lei [2024]91

developed vector-valued bounds (eg: generalization bounds of gradients), which can be the order at92

most O (M/
√
n) and remain improvement.93

Uniform convergence. Uniform convergence is another popular approach in statistical learning94

theory to study generalization bounds [Fisher, 1922, Vapnik, 1999, Van der Vaart, 2000]. The main95

idea is to bound the generalization gap by its supremum over the whole (or a subset) of the hypothesis96

space via some space complexity measures, such as VC dimension, covering number and Rademacher97

complexity. For finite-dimensional problem, Kleywegt et al. [2002] provided that the generalization98

error is O
(√

d/n
)

depended on the sample size n and the dimension of parameters d in high99

probability. In nonconvex settings, Mei et al. [2018] showed that the empirical of generalization error100

is O(
√

d/n). Xu and Zeevi [2024] developed a novel “uniform localized convergence” framework101

using generic chaining for the minimization problem and provided the localized generalization bounds102

in gradients O

(
max

{
∥w −w∗∥2, 1

n

}(√
d
n + d

n

))
, which is the optimal result when we only103

consider the order of n. However, uniform convergence results are related to the dimension d, which104

is unacceptable in high-dimensional learning problems.105

3 Stability and Generalization106

To derive sharper generalization bounds of gradients, we need to develop a novel concentration107

inequality which provide p-moment bound for sums of vector-valued functions. For a real-valued108

random variable Y , the Lp-norm of Y is defined by ∥Y ∥p := (E[|Y |p])
1
p . Similarly, let ∥ · ∥ denote109

the norm in a Hilbert space H. Then for a random variable X taking values in a Hilbert space, the110

Lp-norm of X is defined by ∥∥X∥∥p := (E [∥X∥p])
1
p .111

3.1 A Moment Bound for Sums of Vector-valued Functions112

Here we present our sharper moment bound for sums of vector-valued functions of n independent113

variables.114

Theorem 1. Let Z = (Z1, . . . , Zn) be a vector of independent random variables each taking values115

in Z , and let g1, . . . ,gn be some functions: gi : Zn 7→ H such that the following holds for any116

i ∈ [n]:117

• ∥E[gi(Z)|Zi]∥ ≤ M a.s.,118

• E
[
gi(Z)|Z[n]\{i}

]
= 0 a.s.,119

• gi satisfies the bounded difference property with β, namely, for any i = 1, . . . , n, the following120

inequality holds121

sup
z1,...,zn,z′

j

∥gi(z1, . . . , zj−1, zj , zj+1, . . . , zn)− gi(z1, . . . , zj−1, z
′
j , zj+1, . . . , zn)∥ ≤ β. (1)

Then, for any p ≥ 2, we have122 ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2(
√
2p+ 1)

√
nM + 4× 2

1
2p

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉ .
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Remark 1. The proof is motivated by Bousquet et al. [2020]. Under the same assumptions, Fan and123

Lei [2024] also established the following inequality1124 ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2(
√
2 + 1)

√
npM + 4(

√
2 + 1)npβ ⌈log2 n⌉ . (2)

It is easy to verify that our result is tighter than result provided by Fan and Lei [2024] for both the125

first and second term. Comparing Theorem 1 with (2), the larger p is, the tighter our result is relative126

to (2). In the worst case, when p = 2, the constant of our first term is 0.879 times tighter than (2),127

and the constant of our second term is 0.634 times tighter than (2). This is because we derive the128

optimal Marcinkiewicz-Zygmund’s inequality for random variables taking values in a Hilbert space129

in the proof.130

The improvement of this concentration inequality is meaningful. On one hand, we derive the optimal131

Marcinkiewicz-Zygmund’s inequality for random variables taking values in a Hilbert space. On the132

other hand, in Section 3.2, we will carefully construct vector-valued functions which satisfies all133

the assumptions in Theorem 1 and ensures M = 0 at the same time. Under this condition, we can134

eliminate the first term. When we use Theorem 1 instead of (2) in the whole proofs, at least 0.634135

times tighter bound can be obtained strictly.136

3.2 Sharper Generalization Bounds in Gradients137

Let S = {z1, . . . , zn} be a set of independent random variables each taking values in Z and S′ =138

{z′1, . . . , z′n} be its independent copy. For any i ∈ [n], define S(i) = {zi, . . . , zi−1, z
′
i, zi+1, . . . , zn}139

be a dataset replacing the i-th sample in S with another i.i.d. sample z′i. We introduce some basic140

definitions here and we want to emphasize that our main Theorem 2 and Theorem 3 do not need141

smoothness assumption and PL condition.142

Definition 1. Let g : W 7→ R. Let γ, µ < 0.143

• We say g is γ-smooth if144

∥∇g(w)−∇g(w′)∥2 ≤ γ∥w −w′∥2, ∀w,w′ ∈ W.

• Let g∗ = minw∈W g(w). We say g satisfies the Polyak-Lojasiewicz (PL) condition with145

parameter µ > 0 on W if146

g(w)− g∗ ≤ 1

2µ
∥∇g(w)∥22, ∀w ∈ W.

Then we define uniform stability in gradients.147

Definition 2 (Uniform Stability in Gradients). Let A be a randomized algorithm. We say A is148

β-uniformly-stable in gradients if for all neighboring datasets S, S(i), we have149

sup
z

∥∥∥∇f(A(S); z)−∇f(A(S(i)); z)
∥∥∥
2
≤ β. (3)

Remark 2. Gradient-based stability was firstly introduced by Lei [2023], Fan and Lei [2024] to150

describe the generalization performance for nonconvex problems. In nonconvex problems, we can151

only find a local minimizer by optimization algorithms which may be far away from the global152

minimizer. Thus the convergence does not make much sense in function values. Instead, the153

convergence of ∥∇FS(A(S))∥2 was often studied in the optimization community [Ghadimi and Lan,154

2013]. Since the population risk of gradients ∥∇F (A(S))∥2 can be decomposed as the convergence155

of ∥∇FS(A(S))∥2 and the generalization gap ∥∇F (A(S)) − ∇FS(A(S))∥2, the generalization156

analysis of ∥∇F (A(S))−∇FS(A(S))∥2 is important, which can be achieved by uniform stability157

in gradients.158

Theorem 2 (Generalization via Stability in Gradients). Assume for any S and any z,159

∥∇f(A(S); z)∥2 ≤ M . If A is β-uniformly-stable in gradients, then for any δ ∈ (0, 1), the160

1They assume n = 2k, k ∈ N. Here we give the version of their result with general n.
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following inequality holds with probability at least 1− δ161

∥∇F (A(S))−∇FS(A(S))∥2

≤2β +
4M

(
1 + e

√
2 log (e/δ)

)
√
n

+ 8× 2
1
4 (
√
2 + 1)

√
eβ ⌈log2 n⌉ log (e/δ).

Remark 3. Theorem 2 is a direct application via Theorem 1 where we denote gi(S) =162

Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
and find that gi(S) satisfies all the assumptions163

in Theorem 1. As a comparison, Fan and Lei [2024] also developed high probability bounds under164

same assumptions, but our bounds are sharper since our moment inequality for sums of vector-valued165

functions are tighter as we have discussed in Remark 1. Next, we derive sharper generalization bound166

of gradients under same assumptions.167

Theorem 3 (Sharper Generalization via Stability in Gradients). Assume for any S and any z,168

∥∇f(A(S); z)∥2 ≤ M . If A is β-uniformly-stable in gradients, then for any δ ∈ (0, 1), the following169

inequality holds with probability at least 1− δ170

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
4EZ [∥∇f(A(S);Z)∥22] log 6

δ

n
+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

Remark 4. Note that the factor in Theorem 2 before 1/
√
n is O

(
M
√
log (e/δ)

)
, which171

depends on the bound of ∥∇f(·, ·)∥2. However, the factor in Theorem 3 before 1/
√
n is172

O
(√

EZ [∥∇f(A(S);Z)∥22] log 1/δ + β log(1/δ)
)

, not involving the possibly large term M . As is173

known, optimization algorithms often provide parameters approaching the optimal solution, which174

make the term EZ [∥∇f(A(S);Z)∥22] much more smaller than M . We will give further reasonable175

results under more assumptions such as smoothness in Lemma 1 and Lemma 2.176

On the other hand, best high probability bounds based on uniform convergence [Xu and Zeevi, 2024]177

is178

∥∇F (A(S))−∇FS(A(S))∥2

≲

√
EZ [∇∥f(w∗;Z)∥22] log(1/δ)

n
+

log(1/δ)

n
+max

{
∥w −w∗∥2,

1

n

}(√
d

n
+

d

n

)
,

(4)

which is the optimal result when we only consider the order of n. However, uniform convergence179

results are related to the dimension d, which is unacceptable in high-dimensional learning problems.180

Note that (4) requires an additional smoothness-type assumption. As a comparison, when f is181

γ-smoothness, our result in Theorem 3 can be easily derived as182

∥∇F (A(S))−∇FS(A(S))∥2

≲β log n log(1/δ) +
log(1/δ)

n
+

√
EZ [∇∥f(w∗;Z)∥22] log(1/δ)

n
+ ∥A(S)−w∗∥

√
log(1/δ)

n
.

This result implies that when the uniformly stable in gradients parameter β is smaller than 1/
√
n, our183

bound is tighter than (4) and is dimension independent. Note that Theorem 3 holds in nonconvex184

problems, to the best of our knowledge, this is the sharpest upper bound in both uniform convergence185

and algorithmic stability analysis.186

Here we give the proof sketch of Theorem 3, which is motivated by the analysis in Klochkov and187

Zhivotovskiy [2021]. The key idea is to build vector functions qi(S) = hi(S) − ES{zi}[hi(S)]188

where we define hi(S) = Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
. These functions satisfy189

all the assumptions in Theorem 1 and ensure the factor M in Theorem 1 to 0. Then the term O(1/
√
n)190

can be eliminated.191
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Lemma 1. Let assumptions in Theorem 3 hold. Suppose the function f is γ-smooth and the population192

risk F satisfies the PL condition with parameter µ. Then for any δ ∈ (0, 1), when n ≥ 16γ2 log 6
δ

µ2 ,193

with probability at least 1− δ, we have194

∥∇F (A(S))−∇FS(A(S))∥2

≤∥∇FS(A(S))∥2 + 4

√
EZ [∥∇f(w∗;Z)∥22] log 6

δ

n
+ 2

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n

+
2M log 6

δ

n
+ 32× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 64

√
eβ ⌈log2 n⌉

√
log 3e/δ.

Remark 5. The following inequality can be easily derived using triangle inequality and Cauchy-195

Bunyakovsky-Schwarz inequality:196

F (A(S))− F (w∗) ≲ ∥∇FS(A(S))∥2 +
F (w∗) log (1/δ)

n
+

log2(1/δ)

n2
+ β2 log2 n log2(1/δ). (5)

Above inequality implies that excess risk can be bound by the optimization gradient error197

∥∇FS(A(S))∥2 and uniform stability in gradients β. Note that the assumption F (w∗) = O(1/n)198

is common and can be found in Srebro et al. [2010], Lei and Ying [2020], Liu et al. [2018], Zhang199

et al. [2017], Zhang and Zhou [2019]. This is natural since F (w∗) is the minimal population risk.200

On the other hand, we can derive that under µ-strongly convex and γ-smooth assumptions for the201

objective function f , uniform stability in gradients can be bounded of order O(1/n) for ERM and202

PGD. Thus high probability excess risk can be bounded of order up to O
(
1/n2

)
under these common203

assumptions via algorithmic stability. Comparing with current best related work [Klochkov and204

Zhivotovskiy, 2021], they are insensitive to the stability parameter being smaller than O(1/n) and205

their best rates can only up to O(1/n). Although we involve extra smoothness and PL condition206

assumptions, these assumptions are also common in optimization community and our work can fully207

utilize these assumptions.208

Besides, we discuss uniform stability in gradients for common algorithms such as ERM, PGD, and209

SGD in Section 4. Our results can be easily extended to other stable algorithms. Due to smoothness’s210

property to link the uniform stability in gradients with uniform argument stability, many works211

[Bassily et al., 2020, Feldman and Vondrak, 2019, Hardt et al., 2016] exploring uniform argument212

stability can also use our framework.213

Finally, the population risk of gradients ∥∇F (A(S))∥2 can be gracefully bounded by the empirical214

risk of gradients ∥∇FS(A(S))∥2 under strong growth condition (SGC), that connects the rates at215

which the stochastic gradients shrink relative to the full gradient Vaswani et al. [2019].216

Definition 3 (Strong Growth Condition). We say SGC holds if217

EZ

[
∥∇f(w;Z)∥22

]
≤ ρ∥∇F (w)∥22.

Remark 6. There has been some related work that takes SGC into assumption Solodov [1998],218

Vaswani et al. [2019], Lei [2023]. Vaswani et al. [2019] has proved that the squared-hinge loss with219

linearly separable data and finite support features satisfies the SGC. Note that we only suppose this220

condition holds in Lemma 2.221

Lemma 2 (SGC case). Let assumptions in Theorem 3 hold and suppose SGC holds. Then for any222

δ > 0, with probability at least 1− δ, we have223

∥∇F (A(S))∥ ≲ (1 + η)∥∇FS(A(S))∥+ 1 + η

η

(
M

n
log

6

δ
+ β log n log

1

δ

)
.

Remark 7. Lemma 2 build a connection between the population gradient error and the empirical224

gradient error under Lipschitz, nonconvex, nonsmooth and SGC case and elucidate that the population225

gradient error can be bounded of up to O(1/n) under nonconvex problems.226

4 Application227

In this section, we analysis stochastic convex optimization with strongly convex losses. The most228

common setting is where at each round, the learner gets information on f through a stochastic229

gradient oracle [Rakhlin et al., 2012]. To derive uniform stability in gradients for algorithms, we230

firstly introduce the strongly convex assumption.231
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Definition 4. We say g is µ-strongly convex if232

g(w) ≥ g(w′) + ⟨w −w′,∇g(w′)⟩+ µ

2
∥w −w′∥22, ∀w,w′ ∈ W.

4.1 Empirical Risk Minimizer233

Empirical risk minimizer is one of the classical approaches for solving stochastic optimization (also234

referred to as sample average approximation (SAA)) in machine learning community. The following235

lemma shows the uniform stability in gradient for ERM under µ-strongly convexity and γ-smoothness236

assumptions.237

Lemma 3 (Stability of ERM). Suppose the objective function f is µ-strongly-convex and γ-smooth.238

For any w ∈ W and any z, suppose that ∥∇f(w; z) ≤ M∥. Let ŵ∗(S(i)) be the ERM of FS(i)(w)239

that denotes the empirical risk on the samples S(i) = {z1, ..., z′i, ..., zn} and ŵ∗(S) be the ERM of240

FS(w) on the samples S = {z1, ..., zi, ..., zn}. For any S(i) and S, there holds the following uniform241

stability bound of ERM:242

∀z ∈ Z,
∥∥∥∇f(ŵ∗(S(i)); z)−∇f(ŵ∗(S); z)

∥∥∥
2
≤ 4Mγ

nµ
.

Then, we present the application of our main sharper Theorem 3. In the strongly convex and smooth243

case, we provide a up to O
(
1/n2

)
high probability excess risk guarantee valid for any algorithms244

depending on the optimal population error F (w∗).245

Theorem 4. Let assumptions in Theorem 3 and Lemma 3 hold. Suppose the function f is nonnegative.246

Then for any δ ∈ (0, 1), when n ≥ 16γ2 log 6
δ

µ2 , with probability at least 1− δ, we have247

F (ŵ)− F (w∗) ≲
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

Furthermore, assume F (w∗) = O( 1n ), we have248

F (ŵ)− F (w∗) ≲
log2 n log2(1/δ)

n2
.

Remark 8. Theorem 4 shows that when the objective function f is µ-strongly convex, γ-smooth249

and nonnegative, high probability risk bounds can even up to O
(
1/n2

)
for ERM. The most related250

work to ours is Zhang et al. [2017]. They also obtain the O
(
1/n2

)
-type bounds for ERM by uniform251

convergence of gradients approach. However, they need the sample number n = Ω(γd/µ), which252

is related to the dimension d. Our risk bounds are dimension independent and only require the253

sample number n = Ω(γ2/µ2). Comparing with Klochkov and Zhivotovskiy [2021], we add two254

assumptions, smoothness and F (w∗) = O(1/n), but our bounds also tighter, from O(1/n) to255

O
(
1/n2

)
.256

4.2 Projected Gradient Descent257

Note that when the objective function f is strongly convex and smooth, the optimization error can be258

ignored. However, the generalization analysis framework proposed by Klochkov and Zhivotovskiy259

[2021] does not use smoothness assumption, which only derive high probability excess risk bound260

of order O(1/n) after T = O(log n) steps under strongly convex and smooth assumptions. In this261

subsection, we provide sharper risk bound under the same iteration steps, which is because our262

generalization analysis also fully utilized the smooth assumptions. Here we give the definition of263

PGD.264

Definition 5 (Projected Gradient Descent). Let w1 = o ∈ Rd be an initial point and {ηt}t be a265

sequence of positive step sizes. PGD updates parameters by266

wt+1 = ΠW (wt − ηt∇FS (wt)) ,

where ∇FS(wt) denotes a subgradient of F w.r.t. wt and ΠW is the projection operator onto W .267
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Lemma 4 (Stability of Gradient Descent). Suppose the objective function f is µ-strongly-convex268

and γ-smooth. For any w ∈ W and any z, suppose that ∥∇f(w; z)∥2 ≤ M . Let wi
t be the output of269

FS(i)(w) on t-th iteration on the samples S(i) = {z1, ..., z′i, ..., zn} in running PGD, and wt be the270

output of FS(w) on t-th iteration on the samples S = {z1, ..., zi, ..., zn} in running PGD. Let the271

constant step size ηt = 1/γ. For any S(i) and S, there holds the following uniform stability bound of272

PGD:273

∀z ∈ Z,
∥∥∥∇f(ŵ∗(S(i)); z)−∇f(ŵ∗(S); z)

∥∥∥
2
≤ 4Mγ

nµ
.

Remark 9. The derivations of Feldman and Vondrak [2019] in Section 4.1.2 (See also Hardt et al.274

[2016] in Section 3.4) imply that if the objective function f is γ-smooth in addition to µ-strongly275

convexity and M -Lipschitz property, then PGD with the constant step size η = 1/γ is
(

2M
nµ

)
-276

uniformly argument stable for any number of steps, which means that PGD is
(

2Mγ
nµ

)
-uniformly-277

stable in gradients regardless of iteration steps.278

Theorem 5. Let assumptions in Theorem 3 and Lemma 3 hold. Suppose the function f is nonnegative.279

Let {wt}t be the sequence produced by PGD with ηt = 1/γ. Then for any δ ∈ (0, 1), when280

n ≥ 16γ2 log 6
δ

µ2 , with probability at least 1− δ, we have281

F (w)− F (w∗) ≲

(
1− µ

γ

)2T

+
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

Furthermore, assume F (w∗) = O( 1n ) and let T ≍ log n, we have282

F (ŵ)− F (w∗) ≲
log2 n log2(1/δ)

n2
.

Remark 10. Theorem 5 shows that under the same assumptions as Klochkov and Zhivotovskiy [2021],283

our bound is O
(

F (w∗) log(1/δ)
n + log2 n log2(1/δ)

n2

)
. Comparing with their bound O

(
logn log(1/δ)

n

)
,284

we are sharper because F (w∗) is the minimal population risk, which is a common assumption285

towards sharper risk bounds Srebro et al. [2010], Lei and Ying [2020], Liu et al. [2018], Zhang et al.286

[2017], Zhang and Zhou [2019].287

4.3 Stochastic Gradient Descent288

Stochastic gradient descent optimization algorithm has been widely used in machine learning due to289

its simplicity in implementation, low memory requirement and low computational complexity per290

iteration, as well as good practical behavior. Here we give the definition of standard SGD.291

Definition 6 (Stochastic Gradient Descent). Let w1 = o ∈ Rd be an initial point and {ηt}t be a292

sequence of positive step sizes. SGD updates parameters by293

wt+1 = ΠW (wt − ηt∇f (wt; zit)) ,

where ∇f(wt; zit) denotes a subgradient of f w.r.t. wt and it is independently drawn from the294

uniform distribution over [n] := {1, 2, . . . , n}.295

Lemma 5 (Stability of SGD). Suppose the objective function f is µ-strongly-convex and γ-smooth.296

For any w ∈ W and any z, suppose that ∥∇f(w; z)∥2 ≤ M . Let wi
t be the output of FS(i)(w) on297

t-th iteration on the samples S(i) = {z1, ..., z′i, ..., zn} in running PGD and and wt be the output of298

FS(w) on t-th iteration on the samples S = {z1, ..., zi, ..., zn} in running SGD. For any S(i) and S,299

there holds the following uniform stability bound of SGD:300

∥∥∇f(wt; z)−∇f(wi
t; z)

∥∥
2
≤ 2γ

√
2ϵopt(wt)

µ
+

4Mγ

nµ
, ∀z ∈ Z,

where ϵopt(wt) = FS(wt)− FS(ŵ
∗(S)) and ŵ∗(S) is the ERM of FS(w).301

Next, we introduce a necessary assumption in stochastic optimization theory.302
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Assumption 1. Assume the existence of σ > 0 satisfying303

Eit [∥∇f(wt; zit)−∇FS(wt)∥22] ≤ σ2, ∀t ∈ N, (6)

where Eit denotes the expectation w.r.t. it.304

Remark 11. Assumption 1 is a standard assumption from the stochastic optimization theory [Ne-305

mirovski et al., 2009, Ghadimi and Lan, 2013, Ghadimi et al., 2016, Kuzborskij and Lampert, 2018,306

Zhou et al., 2018, Bottou et al., 2018, Lei and Tang, 2021], which essentially bounds the variance of307

the stochastic gradients for dataset S.308

Theorem 6. Let assumptions in Theorem 3 and Lemma 5 hold. Suppose Assumption 1 holds and the309

function f is nonnegative. Let {wt}t be the sequence produced by SGD with ηt = η1t
−θ, θ ∈ (0, 1)310

and η1 < 1
2γ . Then for any δ ∈ (0, 1), when n ≥ 16γ2 log 6

δ

µ2 , with probability at least 1− δ, we have311 (
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22

=


O
(

log2 n log3(1/δ)
T−θ

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ < 1/2

O
(

log2 n log3(1/δ)

T− 1
2

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ = 1/2

O
(

log2 n log3(1/δ)
T θ−1

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ > 1/2.

Remark 12. When θ < 1/2, we take T ≍ n2/θ. When θ = 1/2, we take T ≍ n4 and when θ > 1/2,312

we set T ≍ n2/(1−θ). Then according to Theorem 6, the population risk of gradient is bounded by313

O
(

log2 n log3(1/δ)
n2 + F (w∗) log2(1/δ)

n

)
. To the best of our knowledge, this is the first high probability314

population gradient bound ∥∇F(wt)∥2 for SGD via algorithmic stability.315

Theorem 7. Let Assumptions in Theorem 3 and Lemma 5 hold. Suppose Assumption 1 holds and the316

function f is nonnegative. Let {wt}t be the sequence produced by SGD with ηt =
2

µ(t+t0)
such that317

t0 ≥ max
{

4γ
µ , 1

}
. Then for any δ > 0, when n ≥ 16γ2 log 6

δ

µ2 and T ≍ n2, with probability at least318

1− δ, we have319

F (wT+1)− F (w∗) = O

(
log4 n log5(1/δ)

n2
+

F (w∗) log(1/δ))

n

)
.

Furthermore, assume F (w∗) = O( 1n ), we have320

F (wT+1)− F (w∗) = O

(
log4 n log5(1/δ)

n2

)
.

Remark 13. Theorem 7 implies that high probability risk bounds for SGD optimization algorithm321

can be up to O(1/n2) and the rate is dimension-free in high-dimensional learning problems. We322

compare Theorem 7 with most related work. For algorithmic stability, high probability risk bounds in323

Fan and Lei [2024] is up to O(1/n) when choosing optimal iterate number T for SGD optimization324

algorithm. To the best of knowledge, we are faster than all the existing bounds. The best high325

probability risk bounds of order O(1/n2) are given by Li and Liu [2021] via uniform convergence,326

which require the sample number n = Ω(γd/µ) depending on dimension d.327

5 Conclusion328

In this paper, we improve a p-moment concentration inequality for sums of vector-valued functions.329

By carefully constructing functions, we apply this moment concentration to derive sharper gener-330

alization bounds in gradients in nonconvex problems, which can further be used to obtain sharper331

high probability excess risk bounds for stable optimization algorithms. In application, we study three332

common algorithms: ERM, PGD, SGD. To the best of our knowledge, we provide the sharpest high333

probability dimension independent O(1/n2)-type for these algorithms.334
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A Additional definitions and lemmata441

Lemma 6 (Equivalence of tails and moments for random vectors [Bassily et al., 2020]). Let X be a442

random variable with443

∥X∥p ≤ √
pa+ pb

for some a, b ≥ 0 and for any p ≥ 2. Then for any δ ∈ (0, 1) we have, with probability at least 1− δ,444

|X| ≤ e

(
a

√
log
(e
δ

)
+ b log

e

δ

)
.

Lemma 7 (Vector Bernstein’s inequality [Pinelis, 1994, Smale and Zhou, 2007]). Let {Xi}ni=1 be445

a sequence of i.i.d. random variables taking values in a real separable Hilbert space. Assume446

that E[Xi] = µ, E[∥Xi − µ∥2] = σ2, and ∥Xi∥ ≤ M , ∀1 ≤ i ≤ n, then for all δ ∈ (0, 1), with447

probability at least 1− δ we have448 ∥∥∥∥∥ 1n
n∑

i=1

Xi − µ

∥∥∥∥∥ ≤

√
2σ2 log( 2δ )

n
+

M log 2
δ

n
.

Definition 7 (Weakly self-Bounded Function). Assume that a, b > 0. A function f : Zn 7→ [0,+∞)449

is said to be (a, b)-weakly self-bounded if there exist functions fi : Zn−1 7→ [0,+∞) that satisfies450

for all Zn ∈ Zn,451

n∑
i=1

(fi(Z
n)− f(Zn))2 ≤ af(Zn) + b.

Lemma 8 ([Klochkov and Zhivotovskiy, 2021]). Suppose that z1, . . . , zn are independent random452

variables and the function f : Zn 7→ [0,+∞) is (a, b)-weakly self-bounded and the corresponding453

function fi satisfy fi(Z
n) ≥ f(Zn) for ∀i ∈ [n] and any Zn ∈ Zn. Then, for any t > 0,454

Pr(Ef(z1, . . . , zn) ≥ f(z1, . . . , zn) + t) ≤ exp

(
− t2

2aEf(z1, . . . , zn) + 2b

)
.

Definition 8. A Rademacher random variable is a Bernoulli variable that takes values ±1 with455

probability 1
2 each.456

B Proofs of Section 3.1457

The proof of Theorem 1 is motivated by Bousquet et al. [2020], which need the Marcinkiewicz-458

Zygmund’s inequality for random variables taking values in a Hilbert space and the McDiarmid’s459

inequality for vector-valued functions.460

Firstly, we derive the optimal constants in the Marcinkiewicz-Zygmund’s inequality for random461

variables taking values in a Hilbert space.462

Lemma 9 (Marcinkiewicz-Zygmund’s Inequality for Random Variables Taking Values in a Hilbert463

Space). Let X1, . . . ,Xn be random variables taking values in a Hilbert space with E[Xi] = 0 for464

all i ∈ [n]. Then for p ≥ 2 we have465 ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2 · 2
1
2p

√
np

e

(
1

n

n∑
i=1

∥∥∥ ∥Xi∥
∥∥∥p
p

) 1
p

.

Remark 14. Comparing with Marcinkiewicz-Zygmund’s inequality given by Fan and Lei [2024],466

we provide best constants. Next, we give the proof of Lemma 9.467

The Marcinkiewicz-Zygmund’s inequality can be proved by using its connection to Khintchine-468

Kahane’s inequality. Thus, we introduce the best constants in Khintchine-Kahane’s inequality for469

random variables taking values from a Hilbert space here.470
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Lemma 10 (Best constants in Khintchine-Kahane’s inequality in Hilbert space [Latała and471

Oleszkiewicz, 1994, Luo and Zhang, 2020]). For all p ∈ [2,∞) and for all choices of Hilbert472

space H, finite sets of vectors Xi, . . . ,Xn ∈ X ∈ H, and independent Rademacher variables473

r1, . . . , rn,474 [
E

∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p] 1

p

≤ Cp ·

[
n∑

i=1

∥Xi∥2
] 1

2

,

where Cp = 2
1
2

{
Γ( p+1

2 )√
π

} 1
p

.475

Proof of Lemma 9. The symmetrization argument goes as follows: Let (r1, . . . , rn) be i.i.d. with476

P(ri = 1) = P(ri = −1) = 1/2 and besides such that r1, . . . , rn and (X1, . . . ,Xn) are independent.477

Then by independence and symmetry, according to Lemma 1.2.6 of De la Pena and Giné [2012],478

conditioning on (X1, . . . ,Xn) yields479

E

[∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p]

= 2pE

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p]

≤2pE

[
E

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p ∣∣∣∣∣X1, . . . ,Xn

]]
. (7)

As for the conditional expectation in (7), notice that by independence480

E

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p ∣∣∣∣∣X1 = x1, . . . ,Xn = xn

]
= E

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p]

(8)

According to Lemma 10, for vn-almost every x1, . . . ,xn ∈ Rn, where vn := P ◦ (X1, . . . ,Xn)
−1481

denotes the distribution of (X1, . . . ,Xn), we have482 [
E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p]

≤ C ·

[
n∑

i=1

∥xi∥2
] p

2

, (9)

where C = 2
p
2
Γ( p+1

2 )√
π

and C is optimal. This means that for any constant C ′ such that483 [
E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p]

≤ C ′ ·

[
n∑

i=1

∥xi∥2
] p

2

, (10)

for all n ∈ N and for each collection of vectors x1, . . . ,xn, it follows that C ′ ≥ C.484

From (8) and (9), we can infer that485

E

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p ∣∣∣∣∣X1 = x1, . . . ,Xn = xn

]
≤ C ·

[
n∑

i=1

∥Xi∥2
] p

2

.

Taking expectations in the above inequalities and (7) yield that486

E

[∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p]

≤ C · E

[
n∑

i=1

∥Xi∥2
] p

2

. (11)

To see optimality let the above statement hold for some constants C ′ in place of C. Then if we choose487

Xi := xiri, 1 ≤ i ≤ n with arbitrary reals vectors x1, . . . ,xn, it follows that488

E

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p]

≤ C ′ · E

[
n∑

i=1

∥xi∥2
] p

2

,

whence we can conclude from (10) that C ′ ≥ C. Thus we obtain that C ′ = C.489
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Notice that by Holder’s inequality490 [
n∑

i=1

∥Xi∥2
] p

2

≤ np/2−1
n∑

i=1

∥Xi∥p. (12)

Plugging (12) into (11), we have491

E

[∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p]

≤ C · 2pnp/2−1 · E

[
n∑

i=1

∥Xi∥p
]
,

where C = 2
p
2
Γ( p+1

2 )√
π

is a constant.492

Next, we use the following form of Stirling’s formula for the Gamma-function, which follows from493

(6.1.5), (6.1.15) and (6.1.38) in Davis [1972] to bound the constant C. For every x > 0, there exists a494

µ(x) ∈ (0, 1/(12x)) such that495

Γ(x) =
√
2πxx−1/2e−xeµ(x).

Thus496

C = 2
p
2
Γ
(
p+1
2

)
√
π

= g(p)
√
2e−p/2pp/2,

with g(p) =
(
1 + 1

p

)p/2
ev(p)−1/2, where 0 < v(p) < 1/(6(p+ 1)). By Taylor’s formula we have497

that498

log(1 + x) =

∞∑
m=1

1

m
(−1)m−1xm, ∀x ∈ (−1, 1],

and that for every k ∈ N0499

2k∑
m=1

1

m
(−1)m−1xm ≤ log(1 + x) ≤

2k+1∑
m=1

1

m
(−1)m−1xm,∀x ≥ 0.

Therefor we obtain with k = 1 that500

log g(p) =
p

2
log(1 +

1

p
) + v(p)− 1

2
≤ − 1

4p
+

1

6p2
+

1

6(p+ 1)
≤ − 1

18p
,

where the last equality follows from elementary calculus. Similarly,501

log g(p) =
p

2
log(1 +

1

p
) + v(p)− 1

2
≥ − 1

4p
+ v(p) ≥ − 1

4p
,

Thus, we have502

e−
1
4p

√
2e−p/2pp/2 < C < e−

1
18p

√
2e−p/2pp/2,

which implies that C is strictly smaller than
√
2e−p/2pp/2 for all p ≥ 2.503

Since C = 1
g(p)

√
2e−p/2pp/2 and g(p) ≥ e−

1
4p , we can obtain that the relative error between C and504

√
2e−p/2pp/2 is equal to505

1

g(p)
− 1 ≤ e−

1
4p − 1 ≤ 1

4p
e

1
4p

using Mean Value Theorem. This implies that the corresponding relative errors between C and506 √
2e−p/2pp/2 converge to zero as p tends to infinity.507

The proof is complete.508

509
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Then we introduce the McDiarmid’s inequality for vector-valued functions. We firstly consider510

real-valued functions, which follows from the standard tail-bound of McDiarmid’s inequality and511

Proposition 2.5.2 in Vershynin [2018].512

Lemma 11 (McDiarmid’s Inequality for real-valued functions). Let Zi, . . . , Zn be indepen-513

dent random variables, and f : Zn 7→ R such that the following inequality holds for any514

zi, . . . , zi−1, zi+1, . . . , zn515

sup
zi,z′

i

|f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ β,

Then for any p > 1 we have516

∥f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)∥p ≤
√
2pnβ.

To derive the McDiarmid’s inequality for vector-valued functions, we need the expected distance517

between f(Z1, . . . , Zn) and its expectation.518

Lemma 12 ([Rivasplata et al., 2018]). Let Zi, . . . , Zn be independent random variables, and519

f : Zn 7→ H is a function into a Hilbert space H such that the following inequality holds for520

any zi, . . . , zi−1, zi+1, . . . , zn521

sup
zi,z′

i

∥f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)∥ ≤ β,

Then we have522

E [∥f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)∥] ≤
√
nβ.

Now, we can easily derive the p-norm McDiarmid’s inequality for vector-valued functions which523

refines from Fan and Lei [2024] with better constants.524

Lemma 13 (McDiarmid’s inequality for vector-valued functions). Let Zi, . . . , Zn be independent525

random variables, and f : Zn 7→ H is a function into a Hilbert space H such that the following526

inequality holds for any zi, . . . , zi−1, zi+1, . . . , zn527

sup
zi,z′

i

∥f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)∥ ≤ β, (13)

Then for any p > 1 we have528

∥∥f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)∥∥p ≤ (
√
2p+ 1)

√
nβ.

Proof of Lemma 13. Define a real-valued function h : Zn 7→ R as
h(z1, . . . , zn) = ∥f(z1, . . . , zn)− E[f(Z1, . . . , Zn)]∥.

We notice that this function satisfies the increment condition. For any i and z1, . . . , zi−1, zi+1, . . . , zn,529

we have530

sup
zi,z

′
i

|h(z1, . . . , zi−1, zi, zi+1, . . . , zn)− h(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)|

= sup
zi,z

′
i

|∥f(z1, . . . , zn)− E[f(Z1, . . . , Zn)]∥ − ∥f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)− E[f(Z1, . . . , Zn)]∥|

≤ sup
zi,z

′
i

|∥f(z1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)∥ ≤ β.

Therefore, we can apply Lemma 11 to the real-valued function h and derive the following inequality531

∥h(Z1, . . . , Zn)− E[h(Z1, . . . , Zn)]∥p ≤
√
2pnβ.

According to Lemma 12, we know the following inequality E[h(Z1, . . . , Zn)] ≤
√
nβ. Combing the532

above two inequalities together and we can derive the following inequality533

∥∥f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)∥∥p
≤∥h(Z1, . . . , Zn)− E[h(Z1, . . . , Zn)]∥p + ∥E[h(Z1, . . . , Zn)]∥p
≤(
√

2p+ 1)
√
nβ.

The proof is complete.534

535
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Proof of Theorem 1. For g(Z1, . . . , Zn) and A ⊂ [n], we write ∥∥g∥∥p(ZA) = (E [∥f∥p ZA])
1
p .536

Without loss of generality, we suppose that n = 2k. Otherwise, we can add extra functions equal to537

zero, increasing the number of therms by at most two times.538

Consider a sequence of partitions P0, . . . ,Pk with P0 = {{i} : i ∈ [n]},Pk with Pn = {[n]}, and539

to get Pl from Pl+1 we split each subset in Pl+1 into two equal parts. We have540

P0 = {{1}, . . . , {2k}}, P1 = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}, Pk = {{1, . . . , 2k}}.

We have |Pl| = 2k−l and |P | = 2l for each P ∈ Pl. For each i ∈ [n] and l = 0, . . . , k, denote by541

P l(i) ∈ Pl the only set from Pl that contains i. In particular, P 0(i) = {i} and PK(i) = [n].542

For each i ∈ [n] and every l = 0, . . . , k consider the random variables543

gl
i = gl

i(Zi, Z[n]\P l(i)) = E[gi|Zi, Z[n]\P l(i)],

i.e. conditioned on zi and all the variables that are not in the same set as Zi in the partition Pl. In544

particular, g0
i = gi and gk

i = E[gi|Zi]. We can write a telescopic sum for each i ∈ [n],545

gi − E[gi|Zi] =

k−1∑
l=1

gl
i − gl+1

i .

Then, by the triangle inequality546 ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi

∥∥∥∥∥
∥∥∥∥∥
p

≤

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

E[gi|Zi]

∥∥∥∥∥
∥∥∥∥∥
p

+

k−1∑
l=0

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gl
i − gl+1

i

∥∥∥∥∥
∥∥∥∥∥
p

. (14)

To bound the first term, since ∥E[gi|Zi]∥ ≤ M , we can check that the vector-valued function547

f(Z1, . . . , Zn) =
∑n

i=1 E[gi|Zi] satisfies (13) with β = 2M , and E[E[gi|Zi]] = 0, applying Lemma548

13 with β = 2M , we have549 ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

E[gi|Zi]

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2(
√
2p+ 1)

√
nM. (15)

Then we start to bound the second term of the right hand side of (14). Observe that550

gl+1
i (Zi, Z[n]\P l+1(i)) = E

[
gl
i(Zi, Z[n]\P l(i))

∣∣Zi, Z[n]\P l+1(i)

]
,

where the expectation is taken with respect to the variables Zj , j ∈ P l+1(i)\P l(i). Changing any551

Zj would change gl
i by β. Therefore, we apply Lemma 13 with f = gl

i where there are 2l random552

variables and obtain a uniform bound553 ∥∥∥∥gl
i − gl+1

i

∥∥∥∥
p
(Zi, Z[n]\P l+1(i)) ≤ (

√
2p+ 1)

√
2lβ, ∀p ≥ 2,

Taking integration over (Zi, Z[n]\P l+1(i)), we have
∥∥∥∥gl

i − gl+1
i

∥∥∥∥
p
≤ (

√
2p+ 1)

√
2lβ as well.554

Next, we turn to the sum
∑

i∈P l gl
i − gl+1

i for any P l ∈ Pl. Since gl
i − gl+1

i for i ∈ P l depends555

only on Zi, Z[n]\P l , the terms are independent and zero mean conditioned on Z[n]\P l . Applying556

Lemma 9, we have for any p ≥ 2,557 ∥∥∥∥∥∥
∥∥∥∥∥∥
∑
i∈P l

gl
i − gl+1

i

∥∥∥∥∥∥
∥∥∥∥∥∥
p

p

(Z[n]\P l) ≤

(
2 · 2

1
2p

√
2lp

e

)p
1

2l

∑
i∈P l

∥∥∥∥gl
i − gl+1

i

∥∥∥∥p
p
(Z[n]\P l).

Integrating with respect to (Z[n]\P l) and using
∥∥∥∥gl

i − gl+1
i

∥∥∥∥
p
≤ (

√
2p+ 1)

√
2lβ, we have558 ∥∥∥∥∥∥

∥∥∥∥∥∥
∑
i∈P l

gli − gl+1
i

∥∥∥∥∥∥
∥∥∥∥∥∥
p

≤

(
2 · 2

1
2p

√
2lp

e

)
1

2l
× 2l(

√
2p+ 1)

√
2lβ

=21+
1
2p

(√
p

e

)
(
√

2p+ 1)2lβ.
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Then using triangle inequality over all sets P l ∈ Pl, we have559 ∥∥∥∥∥∥
∥∥∥∥∥∥
∑
i∈[n]

gl
i − gl+1

i

∥∥∥∥∥∥
∥∥∥∥∥∥
p

≤
∑

P l∈Pl

∥∥∥∥∥∥
∥∥∥∥∥∥
∑
i∈P l

gl
i − gl+1

i

∥∥∥∥∥∥
∥∥∥∥∥∥
p

≤2k−l × 21+
1
2p

(√
p

e

)
(
√
2p+ 1)2lβ

≤21+
1
2p

(√
p

e

)
(
√

2p+ 1)2kβ.

Recall that 2k ≤ n due to the possible extension of the sample. Then we have560

k−1∑
i=0

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gl
i − gi+1

i

∥∥∥∥∥
∥∥∥∥∥
p

≤ 22+
1
2p

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉ .

We can plug the above bound together with (15) into (14), to derive the following inequality561 ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2(
√
2p+ 1)

√
nM + 22+

1
2p

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉ .

The proof is completed.562

563

C Proofs of Section 3564

Proof of Theorem 2. Let S = {z1, . . . , zn} be a set of independent random variables each taking565

values in Z and S′ = {z′1, . . . , z′n} be its independent copy. For any i ∈ [n], define S(i) =566

{zi, . . . , zi−1, z
′
i, zi+1, . . . , zn} be a dataset replacing the i-th sample in S with another i.i.d. sample567

z′i. Then we can firstly write the following decomposition568

n∇F (A(S))− n∇FS(A(S))

=

n∑
i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi).

We denote that gi(S) = Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
, thus we have569

∥n∇F (A(S))− n∇FS(A(S))∥2

=

∥∥∥∥∥
n∑

i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi)

∥∥∥∥∥
2

≤ 2nβ +

∥∥∥∥∥
n∑

i=1

gi(S)

∥∥∥∥∥
2

,

(16)
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where the inequality holds from the definition of uniform stability in gradients.570

According to our assumptions, we get ∥gi(S)∥2 ≤ 2M and571

Ezi [gi(S)] = EziEz′
i

[
EZ

[
∇f(A(S(i));Z)

]
−∇f(A(S(i)); zi)

]
= Ez′

i

[
EZ

[
∇f(A(S(i));Z)

]
− Ezi

[
∇f(A(S(i)); zi)

]]
= 0,

where this equality holds from the fact that zi and Z follow from the same distribution. For any572

i ∈ [n], any j ̸= i and any z′′j , we have573 ∥∥gi(z1, . . . , zj−1, zj , zj+1, . . . , zn)− gi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)

∥∥
2

≤
∥∥∥Ez′i

[
EZ

[
∇f(A(S(i));Z)

]
−∇f(A(S(i)); zi)

]
− Ez′i

[
EZ

[
∇f(A(S

(i)
j );Z)

]
−∇f(A(S

(i)
j ); zi)

]∥∥∥
2

≤
∥∥∥Ez′i

[
EZ

[
∇f(A(S(i));Z)−∇f(A(S

(i)
j );Z)

]]∥∥∥
2
+

∥∥∥Ez′i

[
EZ

[
∇f(A(S(i));Z)

]
−∇f(A(S

(i)
j ); zi)

]∥∥∥
2

≤2β,

where S(i) = {zi, . . . , zi−1, z
′
i, zi+1, . . . , zn}. Thus, we have verified that three conditions in574

Theorem 1 are satisfied for gi(S). We have the following result for any p > 2575 ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi(S)

∥∥∥∥∥
∥∥∥∥∥
p

≤ 4(
√

2p+ 1)
√
nM + 8× 2

1
4

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉ .

We can combine the above inequality and (16) to derive the following inequality576

n ∥∥∇F (A(S))− n∇FS(A(S))∥∥p

≤2nβ + 4(
√
2p+ 1)

√
nM + 8× 2

1
4

(√
p

e

)
(
√
2p+ 1)nβ ⌈log2 n⌉ .

According to Lemma 6 for any δ ∈ (0, 1), with probability at least 1− δ, we have577

n∥∇F (A(S))−∇FS(A(S))∥2

≤2nβ + 4
√
nM + 8× 2

3
4
√
enβ ⌈log2 n⌉ log (e/δ) + (4e

√
2nM + 8× 2

1
4
√
enβ ⌈log2 n⌉)

√
log e/δ.

This implies that578

∥∇F (A(S))−∇FS(A(S))∥2

≤2β +
4M

(
1 + e

√
2 log (e/δ)

)
√
n

+ 8× 2
1
4 (
√
2 + 1)

√
eβ ⌈log2 n⌉ log (e/δ).

The proof is completed.579

Proof of Theorem 3. We can firstly write the following decomposition580

n∇F (A(S))− n∇FS(A(S))

=

n∑
i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi).
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We denote that hi(S) = Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
, we have581

n∇F (A(S))− n∇FS(A(S))−
n∑

i=1

hi(S)

=

n∑
i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi),

which implies that582 ∥∥∥∥∥n∇F (A(S))− n∇FS(A(S))−
n∑

i=1

hi(S)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi)

∥∥∥∥∥
2

≤ 2nβ,

(17)

where the inequality holds from the definition of uniform stability in gradients.583

Then, for any i = 1, . . . , n, we define qi(S) = hi(S) − ES{zi}[hi(S)]. It is easy to verify that584

ES\{zi}[qi(S)] = 0 and Ezi [hi(S)] = Ezi [qi(S)]−EziES\{zi}[qi(S)] = 0−0 = 0. Also, for any585

j ∈ [n] with j ̸= i and z′′j ∈ Z , we have the following inequality586

∥qi(S)− qi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2

≤∥hi(S)− hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2

+ ∥ES\{zi}[hi(S)]− ES\{zi}[hi(1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)]∥2.

For the first term ∥hi(S)−hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2, it can be bounded by 2β according587

to the definition of uniform stability. Similar result holds for the second term ∥ES\{zi}[hi(S)] −588

ES\{zi}[hi(1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)]∥2 according to the uniform stability. By a combina-589

tion of the above analysis, we get ∥qi(S) − qi(1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2 ≤ ∥hi(S) −590

hi(1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2 ≤ 4β.591

Thus, we have verified that three conditions in Theorem 1 are satisfied for qi(S). We have the592

following result for any p ≥ 2593 ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

qi(S)

∥∥∥∥∥
∥∥∥∥∥
p

≤ 24+
1
4

(√
p

e

)
(
√
2p+ 1)nβ ⌈log2 n⌉ . (18)

Furthermore, we can derive that594

n∇F (A(S))− n∇FS(A(S))−
n∑

i=1

hi(S) +

n∑
i=1

qi(S)

=n∇F (A(S))− n∇FS(A(S))−
n∑

i=1

ES\{zi}[hi(S)]

=n∇F (A(S))− n∇FS(A(S))− nES′ [∇F (A(S′))] + nES [∇F (A(S))].
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Due to the i.i.d. property between S and S′, we know that ES′ [∇F (A(S′))] = ES [∇F (A(S))].595

Thus, combined above equality, (17) and (18), we have596

∥∥n∇F (A(S))− n∇FS(A(S))− nES [∇F (A(S))] + nES′ [∇FS(A(S′))]∥∥p

≤

∥∥∥∥∥
∥∥∥∥∥n∇F (A(S))− n∇FS(A(S))−
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hi(S)

∥∥∥∥∥
∥∥∥∥∥
p
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∥∥∥∥∥
∥∥∥∥∥

n∑
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hi(S)− nES [∇F (A(S))] + nES′FS [A(S′)]

∥∥∥∥∥
∥∥∥∥∥
p

=

∥∥∥∥∥
∥∥∥∥∥n∇F (A(S))− n∇FS(A(S))−

n∑
i=1

hi(S)

∥∥∥∥∥
∥∥∥∥∥
p

+

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

qi(S)

∥∥∥∥∥
∥∥∥∥∥
p

≤2nβ + 24+
1
4

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉
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3
4

(√
1

e

)
pnβ ⌈log2 n⌉+ 32

(√
1

e

)
√
pnβ ⌈log2 n⌉ .

According to Lemma 6 for any δ ∈ (0, 1), with probability at least 1− δ/3, we have597

∥∇F (A(S))−∇FS(A(S))∥2
≤∥ES′ [∇FS(A(S′))]− ES [∇F (A(S))]∥2

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

(19)

Next, we need to bound the term ∥ES′ [∇FS(A(S′))] − ES [∇F (A(S))]∥2. There holds that598

∥ESES′ [∇FS(A(S′))]∥2 = ∥ES [∇F (A(S))]∥2. Then, by the Bernstein inequality in Lemma 7, we599

obtain the following inequality with probability at least 1− δ/3,600

∥∥ES′ [∇FS(A(S′))]− ES [∇F (A(S))]
∥∥
2
≤

√
2Ezi [∥ES′∇f(A(S′); zi)∥22] log 6

δ

n
+

M log 6
δ

n
. (20)

Then using Jensen’s inequality, we have601

Ezi [∥ES′∇f(A(S′); zi)∥22] ≤ EziES′∥∇f(A(S′); zi)∥22
= EZES′∥∇f(A(S′);Z)∥22
= EZES∥∇f(A(S);Z)∥22.

(21)

Combing (19), (20) with (21), we finally obtain that with probability at least 1− 2δ/3,602

∥∇F (A(S))−∇FS(A(S))∥2
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√
2EZES∥∇f(A(S);Z)∥22 log 6

δ

n
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M log 6
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n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

(22)

Next, since S = {zi, . . . , zn}, we define p = p(z1, . . . , zn) = EZ [∥∇f(A(S);Z)∥22] and pi =603

pi(z1, . . . , zn) = supzi∈Z p(zi, . . . , zn). So there holds pi ≥ p for any i = 1, . . . , n and any604
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{z1, . . . , zn} ∈ Zn. Also, there holds that605

n∑
i=1

(pi − p)2

=

n∑
i=1

(
sup
zi∈Z

EZ [∥∇f(A(S′);Z)∥22]− EZ [∥∇f(A(S);Z)∥22]
)2

≤
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[
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])2
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∥∇f(A(S′);Z)∥2 − ∥∇f(A(S);Z)∥2
)(

sup
zi∈Z
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(
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∥∇f(A(S);Z)∥2 + sup

zi∈Z
∥∇f(A(S);Z)∥2

])2

≤nβ2 (2EZ [∥∇f(A(S);Z)∥2 + β])2

≤8nβ2p+ 2nβ4,
(23)

where the first inequality follows from the Jensen’s inequality. The second and third inequalities606

follow from the definition of uniform stability in gradients. The last inequality holds from that607

(a+ b)2 ≤ 2a2 + 2b2.608

From (23), we know that p is (8nβ2, 2nβ4) weakly self-bounded. Thus, by Lemma 8, we obtain that609

with probability at least 1− δ/3,610

EZES [∥∇f(A(S);Z)∥22]− EZ [∥∇f(A(S);Z)∥22]

≤
√
(16nβ2ESEZ [∥∇f(A(S);Z)∥22] + 4nβ4) log(3/δ)

=

√
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1

4
β2)16nβ2 log(3/δ)

≤1

2
(ESEZ [∥∇f(A(S);Z)∥22] +

1

4
β2) + 8nβ2 log(3/δ),

where the last inequality follows from that
√
ab ≤ a+b

2 for all a, b > 0. Thus, we have611

EZES [∥∇f(A(S);Z)∥22] ≤ 2EZ [∥∇f(A(S);Z)∥22] +
1

4
β2 + 16nβ2 log(3/δ). (24)

Substituting (24) into (22), we finally obtain that with probability at least 1− δ612
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δ
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(25)

According to inequality
√
a+ b =

√
a+

√
b for any a, b > 0, with probability at least 1− δ, we have613
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)
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The proof is complete.614

615
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Proof of Remark 4. According to the proof in Theorem 3, we have the following inequality that with616

probability at least 1− δ617
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√
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(26)

Since f(w) is γ-smooth, we have618

EZ [∥∇f(A(S);Z)∥22]
≤EZ [∥∇f(A(S);Z)−∇f(w∗;Z)∥22 + ∥∇f(w∗;Z)∥22]
≤γ2∥A(S)−w∗∥22 + EZ [∥∇f(w∗;Z)∥22]

(27)

Plugging (27) into (26), we have619
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(28)

where the second inequality holds because
√
a+ b+

√
a+

√
b for any a, b > 0, which means that620
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n
.

The proof is complete.621

622

Proof of Lemma 1. Inequality (28) implies that623
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When F (w) satisfies the PL condition, there holds the following error bound property (refer to624

Theorem 2 in Karimi et al. [2016])625

∥∇F (A(S))∥2 ≥ µ∥A(S)−w∗∥2.
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Thus, we have626

µ∥A(S)−w∗∥2 ≤ ∥∇F (A(S))∥2
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When n ≥ 16γ2 log 6
δ

µ2 , we have 2γ

√
log 6
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n ≤ µ
2 , then we can derive that627
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This implies that628

∥A(S)−w∗∥2
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(29)

Then, substituting (29) into (28), when n ≥ 16γ2 log 6
δ

µ2 , with probability at least 1− δ629
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The proof is complete.630

Proof of Remark 5. Here we briefly prove the results given in Remark 5. Since F satisfies the PL631

condition with µ, we have632

F (A(S))− F (w∗) ≤ ∥∇F (A(S))∥2

2µ
, ∀w ∈ W. (30)

So to bound F (A(S))− F (A(S)), we need to bound the term ∥∇F (A(S))∥2. And there holds633

∥∇F (A(S))∥22 = 2 ∥∇F (A(S))−∇FS(A(S))∥2 + 2∥∇FS(A(S))∥22. (31)
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From Lemma 1, if f is M -Lipschitz and γ-smooth and F satisfies PL condition with µ, for any δ > 0,634

when n ≥ 16γ2 log 6
δ

µ2 , with probability at least 1− δ, there holds635
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where C is a positive constant and the last inequality follows from Lemma 4.1 of Srebro et al. [2010]636

when f is nonegative and γ-smooth (see (44)).637

Combing above inequality with (30), (31), we can derive that638

F (A(S))− F (w∗) ≲ ∥∇FS(A(S))∥2 +
F (w∗) log (1/δ)

n
+
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n2
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The proof is complete.639

640

Proof of Lemma 2. According to the proof in Theorem 3, we have the following inequality with641

probability at least 1− δ642
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(32)

Since SGC implies that EZ [∥∇f(w;Z)∥22] ≤ ρ∥∇F (w)∥22, according to inequalities
√
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η b643

and
√
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least 1− δ645

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
2
(
2ρ∥∇F (A(S))∥22 + 1

4β
2 + 16nβ2 log(3/δ)

)
log 6

δ

n

+
M log 6

δ

n
+ 16× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ

≤

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

η

1 + η
∥∇F (A(S))∥+ 1 + η

η

4ρM log 6
δ

n

+
M log 6

δ

n
+ 16× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

which implies that646

∥∇F (A(S))∥2 ≤ (1 + η)∥∇FS(A(S))∥2 + C
1 + η

η

(
M

n
log

6

δ
+ β log n log

1

δ

)
.

The proof is complete.647
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D Proofs of ERM648

Proof of Lemma 3. Since FS(i)(w) = 1
n

(
f(w; z′i) +

∑
j ̸=i f(w, zj)

)
, we have649

FS(ŵ
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n
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where the first inequality follows from the fact that ŵ∗(S(i)) is the ERM of FS(i) and the second650

inequality follows from the Lipschitz property. Furthermore, for ŵ∗(S(i)), the convexity of f and651

the strongly-convex property of FS imply that its closest optima point of FS is ŵ∗(S) (the global652

minimizer of FS is unique). Then, there holds that653
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which implies that ∥ŵ∗(S(i))− ŵ∗(S)∥2 ≤ 4M
nµ . Combined with the smoothness property of f we655
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∀z ∈ Z,
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2
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.

The proof is complete.657

Proof of Theorem 4. Since F is µ-strongly convex, we have658

F (w)− F (w∗) ≤
∥∇F (w)∥22

2µ
, ∀w ∈ W. (33)

So to bound F (ŵ∗)− F (w∗), we need to bound the term ∥∇F (ŵ∗)∥22. And there holds659

∥∇F (ŵ∗)∥22 = 2 ∥∇F (ŵ∗)−∇FS(ŵ
∗)∥22 + 2∥∇FS(ŵ

∗)∥22. (34)

From Lemma 1, if f is M -Lipschitz and γ-smooth and FS is µ-strongly convex, for any δ > 0, when660

n ≥ 16γ2 log 6
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µ2 , with probability at least 1− δ, there holds661
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(35)
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where the last inequality follows from Lemma 4.1 of Srebro et al. [2010] when f is nonegative (see662

(44)) and γ-smooth and β̂ = ∥∇f(ŵ∗(S); z)−∇f(ŵ∗(S′); z)∥2. C is a positive constant.663

From Lemma 3, we have ∥∇f(ŵ∗(S); z)−∇f(ŵ∗(S′); z)∥2 ≤ 4Mγ
nµ . Since ∇FS(ŵ

∗) = 0, we664

have ∥∇FS(ŵ
∗)∥2 = 0, then we can derive that665

F (w)− F (w∗) ≲
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

666

E Proofs of PGD667

Proof of Theorem 5. According to smoothness assumption and η = 1/γ, we can derive that668

FS(wt+1)− FS(wt)

≤⟨wt+1 −wt,∇FS(wt)⟩+
γ

2
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2
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According to above inequality and the assumptions that FS is µ-strongly convex, we can prove that669
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2
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which implies that670
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According to the property for γ-smooth for FS and the property for µ-strongly convex for FS , we671

have672

1
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which means that µ
γ ≤ 1.673

Then If ηt = 1/γ, 0 ≤ 1− µηt < 1, taking over T iterations, we get674

FS(wt+1)− FS(ŵ
∗) ≤ (1− µηt)
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∗)). (36)

Combined (36), the smoothness of FS and the nonnegative property of f , it can be derive that675
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(1− µ

γ
)T
)
.

Furthermore, since F is µ-strongly convex, we have676
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∥∇F (w)∥22

2µ
, ∀w ∈ W. (37)

So to bound F (wT+1)− F (w∗), we need to bound the term ∥∇F (wT+1)∥22. And there holds677

∥∇F (wT+1)∥22 = 2 ∥∇F (wT+1)−∇FS(wT+1)∥22 + 2∥∇FS(wT+1)∥22. (38)
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From Lemma 1, if f is M -Lipschitz and γ-smooth and FS is µ-strongly convex, for any δ > 0, when678

n ≥ 16γ2 log 6
δ

µ2 , with probability at least 1− δ, there holds679

∥∇F (wT+1)−∇FS(wT+1)∥2

≤ ∥∇FS(wT+1)∥2 + C

√2EZ [∥∇f(w∗;Z)∥22] log 6
δ

n
+

M log 6
δ

n
+ eβ ⌈log2 n⌉ log (3e/δ)


≤ ∥∇FS(wT+1)∥2 + C

√8γF (w∗) log 6
δ

n
+

M log 6
δ

n
+ eβ ⌈log2 n⌉ log (3e/δ)

 ,

(39)
where the last inequality follows from Lemma 4.1 of Srebro et al. [2010] when f is nonegative and680

γ-smooth (see (44)) and β = ∥∇f(wT+1(S); z)−∇f(wT+1(S
′); z)∥2. C is a positive constant.681

From Lemma 4, we have β = ∥∇f(wT+1(S); z)−∇f(wT+1(S
′); z)∥2 ≤ 2Mγ

nµ . Since682

∥∇FS(wT+1)∥2 = O
(
(1− µ

γ )
T
)

, then we can derive that683

F (w)− F (w∗) ≲

(
1− µ

γ

)2T

+
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

Let T ≍ log n, we have684

F (w)− F (w∗) ≲
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

The proof is complete.685

F Proofs of SGD686

We first introduce some necessary lemmata on the empirical risk.687

Lemma 14 ([Lei and Tang, 2021]). Let {wt}t be the sequence produced by SGD with ηt ≤ 1
2γ for688

all t ∈ N. Suppose Assumption 1 hold. Assume for all z, the function w 7→ f(w; z) is M -Lipschitz689

and γ-smooth. Then, for any δ ∈ (0, 1), with probability at least 1− δ, there holds that690

t∑
k=1

ηk∥∇FS(wk)∥22 = O

(
log

1

δ
+

t∑
k=1

η2k

)
.

Lemma 15 ([Lei and Tang, 2021]). Let {wt}t be the sequence produced by SGD with ηt =
2

µ(t+t0)
691

such that t0 ≥ max{ 4γ
µ , 1} for all t ∈ N. Suppose Assumption 1 hold. Assume for all z, the function692

w 7→ f(w; z) is M -Lipschitz and γ-smooth and assume FS satisfies PL condition with parameter µ.693

Then, for any δ ∈ (0, 1), with probability at least 1− δ, there holds that694

FS(wT+1)− FS(ŵ
∗) = O

(
log(T ) log3(1/δ)

T

)
.

Lemma 16 ([Lei and Tang, 2021]). Let e be the base of the natural logarithm. There holds the695

following elementary inequalities.696

• If θ ∈ (0, 1), then
∑t

k=1 k
−θ ≤ t1−θ/(1− θ);697

• If θ = 1, then
∑t

k=1 k
−θ ≤ log(et);698

• If θ > 1, then
∑t

k=1 k
−θ ≤ θ

θ−1 .699

Proof of Lemma 5. We have known that FS(i)(w) = 1
n

(
f(w; z′i) +

∑
j ̸=i f(w; zj)

)
. We denote700

ŵ∗(S(i)) be the ERM of FS(i)(w) and ŵ∗
S be the ERM of FS(w). From Lemma 3, we know that701

∀z ∈ Z,
∥∥∥∇f(ŵ∗(S(i)); z)− f(ŵ∗(S); z)

∥∥∥
2
≤ 4Mγ

nµ
.
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Also, for wt, the convexity of f and the strongly-convex property implies that its closest optima point702

of FS is ŵ∗(S) (the global minimizer of FS is unique). Then, there holds that703

µ

2
∥wt − ŵ∗(S)∥22 ≤ FS(wt)− FS(ŵ

∗(S)) = ϵopt(wt).

Thus we have ∥wt − ŵ∗(S)∥2 ≤
√

2ϵopt(wt)
µ . A similar relation holds between ŵ∗(S(i)) and wi

t.704

Combined with the Lipschitz property of f we obtain that for ∀z ∈ Z , there holds that705 ∥∥∇f(wt; z)−∇f(wi
t; z)

∥∥
2

≤ ∥∇f(wt; z)−∇f(ŵ∗(S); z)∥2 +
∥∥∥∇f(ŵ∗(S); z)−∇f(ŵ∗(S(i)); z)

∥∥∥
2

+
∥∥∥∇f(ŵ∗(S(i)); z)−∇f(wi

t; z)
∥∥∥
2

≤ γ∥wt − ŵ∗(S)∥2 +
4Mγ

nµ
+ γ∥ŵ∗(S(i))−wi

t∥2

≤ γ

√
2ϵopt(wt)

µ
+

4Mγ

nµ
+ γ

√
2ϵopt(wi

t)

µ
.

According to Lemma 15, for any dataset S, the optimization error ϵopt(wt) is uniformly bounded by706

the same upper bound. Therefore, we write
∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2
≤ 2γ

√
2ϵopt(wt)

µ + 4Mγ
nµ707

here.708

The proof is complete.709

Now We begin to prove Lemma 6.710

Proof of Lemma 6. If f is L-Lipschitz and γ-smooth and FS is µ-strongly convex. According to711

Lemma 1, we know that for all w ∈ W and any δ ∈ (0, 1), with probability at least 1− δ/2, when712

n >
16γ2 log 6

δ

µ2 , we have713 (
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22

≤16

(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇FS(wt)∥22 +
4C2L2 log2 6

δ

n2
+

8C2EZ [∥∇f(w∗;Z)∥22] log
2 6

δ

n

+

(
T∑

t=1

ηt

)−1 T∑
t=1

ηtC
2e2β2

t ⌈log2 n⌉
2
log2 (3e/δ),

(40)

where βt =
∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2

and C is a positive constant.714

From Lemma 5, we have
∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2
≤ 2γ

√
2ϵopt(wt)

µ + 4Mγ
nµ , thus715

β2
t =

∥∥∇f(wt; z)−∇f(wi
t; z)

∥∥2
2

≤

(
2γ

√
2ϵopt(wt)

µ
+

4Mγ

nµ

)2

≤16γ2(FS(wt)− FS(ŵ
∗(S)))

µ
+

32M2γ2

n2µ2

≤8γ2∥∇FS(wt)∥22
µ2

+
32M2γ2

n2µ2
,

(41)

where the second inequality holds from Cauchy-Bunyakovsky-Schwarz inequality and the second716

inequality satisfies because FS is µ-strongly convex.717
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Plugging (41) into (40), with probability at least 1− δ/2, when n >
16γ2 log 6

δ

µ2 , we have718 (
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22

≤

(
16 +

8γ2C2e2 ⌈log2 n⌉
2
log2 (6e/δ)

µ2

)(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇FS(wt)∥22

+
4C2L2 log2 12

δ

n2
+

8C2EZ [∥∇f(w∗;Z)∥22] log
2 12

δ

n
+

32L2γ2C2e2 ⌈log2 n⌉
2
log2 (6e/δ)

n2µ2
,

(42)

When ηt = η1t
−θ, θ ∈ (0, 1), with η1 ≤ 1

2β and Assumption 1, according to Lemma 14 and Lemma719

16, we obtain the following inequality with probability at least 1− δ/2,720

(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇FS(wt)∥2 =


O
(

log(1/δ)
T−θ

)
, if θ < 1/2

O
(

log(1/δ)

T− 1
2

)
, if θ = 1/2

O
(

log(1/δ)
T θ−1

)
, if θ > 1/2.

(43)

On the other hand, when f is nonegative and γ-smooth, from Lemma 4.1 of Srebro et al. [2010], we721

have722

∥∇f(w∗; z)∥22 ≤ 4γf(w∗; z),

which implies that723

EZ [∥∇f(w∗;Z)∥22] ≤ 4γEZf(w
∗;Z) = 4γF (w∗). (44)

Plugging (44), (43) into (42), with probability at least 1− δ, we derive that724 (
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22

=


O
(

log2 n log3(1/δ)
T−θ

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ < 1/2

O
(

log2 n log3(1/δ)

T− 1
2

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ = 1/2

O
(

log2 n log3(1/δ)
T θ−1

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ > 1/2.

When θ < 1/2, we set T ≍ n
2
θ and assume F (w∗) = O( 1n ), then we obtain the following result725

with probability at least 1− δ726 (
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22 = O

(
log2 n log3(1/δ)

n2

)
.

When θ = 1/2, we set T ≍ n4 and assume F (w∗) = O( 1n ), then we obtain the following result with727

probability at least 1− δ728 (
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22 = O

(
log2 n log3(1/δ)

n2

)
.

When θ > 1/2, we set T ≍ n
2

1−θ and assume F (w∗) = O( 1n ), then we obtain the following result729

with probability at least 1− δ730 (
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22 = O

(
log2 n log3(1/δ)

n2

)
.

The proof is complete.731

732
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Proof of Theorem 7. Since F is µ-strongly convex, we have733

F (w)− F (w∗) ≤
∥∇F (w)∥22

2µ
, ∀w ∈ W. (45)

So to bound F (wT+1)− F (w∗), we need to bound the term ∥∇F (wT+1)∥22. And there holds734

∥∇F (wT+1)∥22 = 2 ∥∇F (wT+1)−∇FS(wT+1)∥2 + 2∥∇FS(wT+1)∥22. (46)

From Lemma 1, if f is L-Lipschitz and γ-smooth and FS is µ-strongly convex, for all w ∈ W and735

any δ > 0, when n ≥ 16γ2 log 6
δ

µ2 , with probability at least 1− δ/2, there holds736

∥∇F (wT+1)−∇FS(wT+1)∥2

≤ ∥∇FS(wT+1)∥2 + C

√2EZ [∥∇f(w∗;Z)∥22] log 12
δ

n
+

M log 12
δ

n
+ eβ ⌈log2 n⌉ log (6e/δ)


≤ ∥∇FS(wT+1)∥2 + C

√8γF (w∗) log 12
δ

n
+

M log 12
δ

n
+ eβ ⌈log2 n⌉ log (6e/δ)

 ,

(47)
where the last inequality follows from Lemma 4.1 of Srebro et al. [2010] when f is nonegative and737

γ-smooth (see (44)) and C is a positive constant. Then we can derive that738

∥∇F (wT+1)−∇FS(wT+1)∥22

≤4∥∇FS(wT+1)∥22 +
32C2γF (w∗) log 12

δ

n
+

4M2C2 log2 12
δ

n2
+ 4e2β2

T+1 ⌈log2 n⌉
2
log2 (6e/δ).

(48)

From Lemma 5, we have
∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2
≤ 2γ

√
2ϵopt(wt)

µ + 4Mγ
nµ , thus739

β2
t =

∥∥∇f(wt; z)−∇f(wi
t; z)

∥∥2
2

≤

(
2γ

√
2ϵopt(wt)

µ
+

4Mγ

nµ

)2

≤16γ2(FS(wt)− FS(ŵ
∗(S)))

µ
+

32M2γ2

n2µ2

≤8γ2∥∇FS(wt)∥22
µ2

+
32M2γ2

n2µ2
,

(49)

where the second inequality holds from Cauchy-Bunyakovsky-Schwarz inequality and the second740

inequality satisfies because FS is µ-strongly convex.741

Plugging (49) into (48), with probability at least 1− δ/2, when , we have742

∥∇F (wT+1)−∇FS(wT+1)∥22

≤
(
4 + 32e2 ⌈log2 n⌉

2
log2 (6e/δ)

)
∥∇FS(wT+1)∥22 +

32C2γF (w∗) log 6
δ

n

+
4L2C2 log2 12

δ

n2
+

128M2γ2e2 ⌈log2 n⌉
2
log2 (6e/δ)

n2µ2
.

(50)

According to the smoothness property of FS and Lemma 15, it can be derived that with propability at743

least 1− δ/2744

∥∇FS(wT+1)∥22 = O

(
log T log3(1/δ)

T

)
. (51)
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Substituting (51), (50) into (46), we derive that745

∥∇F (wT+1)∥22

=O

(
⌈log2 n⌉

2
log T log5(1/δ)

T

)
+O

(
⌈log2 n⌉

2
log2(1/δ)

n2
+

F (w∗) log(1/δ)

n

)
.

(52)

Further substituting (52) into (45) and choosing T ≍ n2, we finally obtain that when n, with746

probability at least 1− δ747

F (wT+1)− F (w∗) = O

(
log4 n log5(1/δ)

n2
+

F (w∗) log(1/δ)

n

)
.

748
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