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ABSTRACT

We present SMI-TED (SMILE Transformer Encoder Decoder), a large-scale foun-
dation model for materials and chemistry, trained on a massive dataset of 91 million
SMILES samples (4 billion molecular tokens) from PubChem using self-supervised
learning. Our encoder-decoder architecture enables a wide range of complex tasks,
including the prediction of quantum chemical properties and reaction yields. We
offer two model variants, with 289M and 8× 289M parameters, respectively, to
accommodate different use cases. Our model achieves state-of-the-art results across
multiple benchmark datasets, demonstrating its versatility and effectiveness. No-
tably, our model’s latent space exhibits compositionality and separability, essential
properties for higher-level reasoning tasks and few-shot learning capabilities. To
facilitate further research and applications, we make our model weights and source
code publicly available on HuggingFace and GitHub, respectively.

1 INTRODUCTION

Understanding molecular properties is crucial for accelerating discoveries in different fields, including
drug development and materials science Pan (2023). Traditional methods rely on labor-intensive trial-
and-error experiments, which are both costly and time-consuming Jablonka et al. (2024). However,
recent advances in deep learning have enabled the use of foundation models to predict molecular
properties and generate molecule candidates Flam-Shepherd et al. (2022); Wang et al. (2023); Wen
et al. (2023), marking significant progress in scientific exploration.

The introduction of large-scale pre-training methodologies for chemical language models (LMs)
represents a significant advancement in cheminformatics Sadybekov & Katritch (2023). These
methodologies have demonstrated impressive results in challenging molecular tasks such as predicting
properties and generating molecules Ross et al. (2022). The success of these models can be attributed
to their ability to learn contextualized representations of input tokens through self-supervised learning
on large unlabeled corpora Bommasani et al. (2021). This methodological approach typically involves
two phases: pre-training on unlabeled data followed by fine-tuning on specific downstream task
Yang et al. (2023). By reducing the reliance on annotated datasets, this approach has broadened our
understanding of chemical language representations Guo et al. (2023).

Simplified Molecular-Input Line Entry System, SMILES, provide natural graphs that encode the
connectivity information from the line annotations of molecular structures Li et al. (2022). SMILES
defines a character string representation of a molecule by performing a depth-first pre-order spanning
tree traversal of the molecular graph, generating symbols for each atom, bond, tree-traversal decision,
and broken cycles Wei et al. (2023). Therefore, the resulting character string corresponds to a
flattening of a spanning tree of the molecular graph. SMILES is widely adopted for molecular
property prediction as SMILES is generally more compact than other methods of representing
structure, including graphs Öztürk et al. (2020). There are billions of SMILES available on different
open-sources repositories Tingle et al. (2023). However, most SMILES sequences do not belong to
well-defined molecules Wigh et al. (2022). Alternative string-based representations exist, such as
SELFIES. However, focusing on molecular optimization tasks on the learned representation space,
suggested no obvious shortcoming of SMILES with respect to SELFIES in terms of optimization
ability and sample efficiency Gao et al. (2022). The quality of the pre-training data plays a more
important role on the outcome of the foundation model Wang et al. (2023); Takeda et al. (2023).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Towards this direction, we present a novel family of molecular encoder-decoder foundation models,
denoted as SMI-TED289M . Our SMI-TED289M encoder-decoder foundation model was obtained
using a transformer-based molecular tokens encoder model aligned with an encoder-decoder mecha-
nism trained on a large corpus of 91 million carefully curated molecules from PubChem Kim et al.
(2023), resulting in 4 billion molecular tokens. Our main contributions are:

• We pre-train a large-scale family of encoder-decoder molecular open-source foundation
models, denoted as SMI-TED289M , on over 91 million molecules carefully curated from
PubChem Kim et al. (2023), which is equivalent to 4 billion of molecular tokens.

• Our SMI-TED289M family of foundation models encompasses two distinct configurations:
base, which has 289 million parameters; and the Mixture-of-OSMI-Experts, MoE-OSMI,
characterized by a composition of 8× 289M parameters. Checkpoints for these models are
fully accessible on HuggingFace: suppressed for blind review. Moreover, the source code
is available at: suppressed for blind review.

• We perform extensive experimentation on several classification and regression tasks from 11
benchmark datasets, covering quantum mechanical, physical, biophysical, and physiological
property prediction of small molecules. We also evaluate the reconstruction capacity of our
SMI-TED289M considering the MOSES benchmarking dataset Polykovskiy et al. (2020).
We also conducted high-throughput experiments on Pd-catalyzed Buchwald–Hartwig C–N
cross-coupling reactions, predicting reaction yields. Furthermore, a study investigating the
embedding created by SMI-TED289M and few-shot learning is also provided, indicating
compositionality of the learned molecular representations.

Our results section demonstrates state-of-the-art performance of SMI-TED289M on different tasks,
molecular properties prediction, molecule reconstruction, and an efficient metric for molecular latent
space. Compositionality of the latent space suggests strong potential for chemical reasoning tasks.
The SMI-TED289M family consists of two main variants (289M, and 8× 289M ), offering flexibility
and scalability for different scientific applications.

2 OVERVIEW OF THE PROPOSED APPROACH

This section presents an overview of the proposed SMI-TED289M foundation model for small
molecules. Here, we outline the process of collecting, curating, and pre-processing the pre-train
data. Additionally, we describe the token encoder process and the SMILES encoder-decoder process.
Finally, we explain the Mixture-of-OSMI-Experts approach used to scale the base model. Fig. 1
illustrates the general architecture of the base model.

Figure 1: This figure illustrates the general architecture of the base SMI-TED289M model.

2.1 PRE-TRAINING DATA

The pretraining data originated from the PubChem data repository, a public database containing
information on chemical substances and their biological activities Kim et al. (2023). Initially,
113 million SMILES strings were collected from PubChem. These molecular strings underwent
deduplication and canonicalization processes to ensure uniqueness Heid et al. (2021). Subsequently,
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a molecular transformation was conducted to verify the validity of the molecules derived from the
unique SMILES strings, resulting in a set of 91 million unique and valid molecules.

To construct the vocabulary, we employed the molecular tokenizer proposed by Schwaller et al.
(2019). All 91 million molecules curated from PubChem were utilized in the tokenization process,
resulting in a set of 4 billion molecular tokens. The unique tokens extracted from the resulting output
provided a vocabulary of 2988 tokens plus 5 special tokens. In comparison, MoLFormer, trained
on 1 billion samples with minimal curation, presented a vocabulary of 2362 tokens using the same
tokenization process Ross et al. (2022). This suggests an improvement in the vocabulary model due
to our curation process.

2.2 MODEL ARCHITECTURE

We conduct training for SMI-TED289M model employing a deep-bidirectional-transformers-based
encoder Devlin et al. (2019) for tokens and an encoder-decoder architecture to compose SMILES.
The hyper-parameters of SMI-TED289M base model are detailed in Table 1

Table 1: SMI-TED289M base architecture specificity.
Hidden size Attention heads Layers Dropout Normalization

768 12 12 0.2 LayerNorm

Vocab size # SMILES # Mol tokens # Encoder # Decoder Total params
2993 91M 4T 47M 242M 289M

To optimize the relative encoding through position-dependent rotations Rm of the query and keys at
position m, the SMI-TED289M uses a modified version of the RoFormer Su et al. (2021) attention
mechanism. These rotations can be implemented as pointwise multiplications and do not significantly
increase computational complexity as shown in Eq. (1).

Attentionm(Q,K, V ) =

∑N
n=1 ⟨φ(Rmqm), φ(Rnkn)⟩ vn∑N
n=1 ⟨φ(Rmqm), φ(Rnkn)⟩

(1)

where Q,K,V are the query, key, and value respectively, and φ is a random feature map.

We start with a sequence of tokens extracted from SMILES, each embedded in a 768-dimensional
space. The encoder-decoder layer is designed to process molecular token embeddings, represented
as x ∈ RD×L, where D denotes the maximum number of tokens and L represents the embedding
space dimension. We limited D at 202 tokens, as 99.4% of molecules in the PubChem dataset contain
fewer tokens than this threshold.

In encoder-only models, a mean pooling layer is typically employed to represent tokens as SMILES
in the latent space. However, this approach is limited by the lack of a natural inversion process
for the mean pooling operation. To overcome this limitation, we aim to construct a latent space
representation for SMILES by submersing the x in a latent space, denoted as z, as described in Eq. 2.

z = (LayerNorm (GELU (xW1 + b1)))W2, (2)

where z ∈ RL, W1 ∈ RD×L, b1 ∈ RL, W2 ∈ RL×L, with L denoting the latent space size
(specifically, L = 768) and D representing the original feature space size (namely, D = 202).
Subsequently, we can immerse z back by calculating Eq. 3.

x̂ = (LayerNorm (GELU (zW3 + b3)))W4 (3)

where x̂ ∈ RD×L, W3 ∈ RL×L, b3 ∈ RL, W4 ∈ RL×D.

A language layer (decoder) is used to process x̂, where it applies non-linearity and normalization,
and projects the resulting vector into a set of logits over the vocabulary, which can then be used to
predict the next token in the molecular Ferrando et al. (2023).
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2.3 PRE-TRAINING STRATEGIES

Pre-training of SMI-TED289M was performed for 40 epochs through the entire curated PubChem
dataset with a fixed learning rate of 1.6e-4 and a batch size of 288 molecules on a total of 24 NVIDIA
V100 (16G) GPUs parallelized into 4 nodes using DDP and torch run. It involves two distinct phases:
i) Learning of token embeddings through a masking process; ii) Subsequently, the token embeddings
are mapped into a common latent space that encapsulates the entire SMILES string. This latent space
not only facilitates the representation of the SMILES but also enables the reconstruction of both
individual tokens and complete SMILES strings. Consequently, the pre-training process involves
two separate loss functions: one for the token embeddings, which is based on the masking process,
and another for the encoder-decoder layer, which focuses on the reconstruction of tokens. Two
pre-training strategies are employed:

• In phase 1, the token encoder is initially pre-trained using 95% of the available samples,
while the remaining 5% is reserved for training the encoder-decoder layer. This partitioning
is necessary as the token embeddings may encounter convergence difficulties in the initial
epochs, which could adversely affect the training of the encoder-decoder layer.

• In phase 2, once the token embeddings layer has achieved convergence, the pre-training
process is expanded to utilize 100% of the available samples for both phases. This approach
leads to an enhancement in the performance of the encoder-decoder layer, particularly in
terms of token reconstruction.

For encoder pre-training we use the masked language model method defined in Devlin et al. (2019).
Initially 15% of the tokens are selected for possible learning. From that selection, 80% of the tokens
are randomly selected and replaced with the [MASK] token, 10% of the tokens are randomly selected
to be replaced with a random token, while the remaining 10% of the tokens will be unchanged.

The adoption of different pre-training strategies has proven instrumental in enhancing the efficiency
of our model, as evidenced by improvements observed in the loss functions. For detailed insights into
the loss functions and pre-training methodologies, refer to the Supplementary Materials.

2.4 MIXTURE-OF-OSMI-EXPERTS

Figure 2: Mixture-of-OSMI-Experts for downstream tasks.

The Mixture-of-OSMI-Experts, MoE-OSMI comprises a set of n “expert networks” labeled as
E1, E2, . . . , En, augmented through a gating network denoted as G, tasked with generating a sparse
n-dimensional embedding space optimized for a downstream task as illustrated by Fig. 2.

Here, we map each SMILES into tokens and then convert the input tokens to the latent space. A mean
pooling method is applied to all token embeddings in order to produce a meaningful embedding of
the molecule. The architecture is equipped with a router module responsible for determining the n
experts that will be activated, refining the adaptability and specialization of the system. Let G(x) and
Ei(x̂) denote the output of the gating network and the output of the i-th expert network, respectively,
for a given input x̂ of SMILES and x, which is the embeddings space, following a similar notation as
proposed in Shazeer et al. (2017). The resulting output y is defined as follows:

y =

n∑
i=1

G(x)iEi(x̂) (4)

The resulting embedding space y is used to train a task-specific feed-forward network, where the loss
function is chosen according to the studied downstream task. The optimization process refines the
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parameters of G(x). If the gating vector is sparse, we can use softmax over the Top-K logits of a
linear layer Shazeer et al. (2017).

G(x) := Softmax(TopK(x ·Wg)) (5)

where (TopK(ℓ))i := ℓi if ℓi is among the TopK coordinates of logits ℓ ∈ Rn and (TopK(ℓ))i :=
∞ otherwise. The router layer retains only the top k values, setting the remaining values to −∞
(which effectively assigns corresponding gate values as 0). This sparsity-inducing step serves to
optimize computational efficiency Jiang et al. (2024). Here, we define MoE-OSMI as n = 8 and
k = 2, which means that MoE-OSMI is composed by 8× SMI-TED289M models, which 2 models are
activated through the router each round.

3 EXPERIMENTS

To evaluate the effectiveness of our proposed methodology, we conducted experiments using a set
of 11 datasets sourced from MoleculeNet Wu et al. (2018) as demonstrated in Table 2. Specifically,
we evaluated 6 datasets for classification task and 5 datasets for regression tasks. To ensure an
unbiased assessment, we maintained consistency with the original benchmark by adopting identical
train/validation/test splits for all tasks Wu et al. (2018). We also conducted the experiments considered
10 different seeds for all the tests in other to guarantee the robustness of the approach. Details are
provided in the Supplementary Materials.

Table 2: Evaluated datasets description
Dataset Description # compounds # tasks Metric
BBBP Blood brain barrier penetration dataset 2039 1 ROC-AUC
HIV Ability of small molecules to inhibit HIV replication 41127 1 ROC-AUC

BACE Binding results for a set of inhibitors for β – secretase 1 1513 1 ROC-AUC
Clintox Clinical trial toxicity of drugs 1478 2 ROC-AUC
SIDER Drug side effect on different organ classes 1427 27 ROC-AUC
Tox21 Toxicity measurements on 12 different targets 7831 12 ROC-AUC
QM9 12 quantum mechanical calculations 133885 12 Average MAE
QM8 12 excited state properties of small molecules 21786 12 Average MAE
ESOL Water solubility dataset 1128 1 RMSE

FreeSolv Hydration free energy of small molecules in water 642 1 RMSE
Lipophilicity Octanol/water distribution coefficient of molecules 4200 1 RMSE

To assess the reconstruction/decoder capacity of SMI-TED289M we considered the MOSES bench-
marking dataset Polykovskiy et al. (2020). The MOSES dataset contains 1,936,962 molecular
structures. For experiments, we consider the split proposed by Polykovskiy et al. (2020), where the
dataset was divided into a training, test and scaffold test sets containing around 1.6M, 176k, and
176k molecules respectively. The scaffold test set contains unique Bemis-Murcko scaffolds that were
not present in the training and test sets. We use this set to assess how well the model can generate
previously unobserved scaffolds.

We also conducted high-throughput experiments on Pd-catalyzed Buchwald–Hartwig C–N cross-
coupling reactions, measuring the yields for each reaction as described in Ahneman et al. (2018).
The experiments utilized three 1536-well plates, covering a matrix of 15 aryl and heteroaryl halides,
four Buchwald ligands, three bases, and 23 isoxazole additives, resulting in a total of 3,955 reactions.
We employed the same data splits as in Ahneman et al. (2018) to assess our model’s performance
with training sets of varying sizes. An evaluation of the embedding space of SMI-TED289M is also
provided, it uses the compositional molecules to evaluate the capability of the model to generate
metric latent spaces.

4 RESULTS AND DISCUSSION

In this section, we present the analysis of results obtained using SMI-TED289M for different ex-
periments conducted with various versions of the base model. We include: i) A study comparing
frozen and fine-tuned versions of SMI-TED289M ; and a comparison with the State-of-the-Art (SOTA)
on different benchmarking datasets for classification and regression molecular prediction tasks; ii)
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An evaluation of MoE-OSMI for molecular properties prediction; iii) An evaluation of the Decoder
module considering the MOSES benchmarking dataset; iv) A study comparing the latent space of
SMI-TED289M based on compositional molecules metrics.

4.1 COMPARISON WITH SOTA ON BENCHMARKING TASKS

Results for classification tasks: The analysis investigates the comparative efficacy of SMI-
TED289M in its fine-tuned and frozen states versus state-of-the-art algorithms for molecular properties
classification, as demonstrated in Table 3.

Table 3: Methods and Performance for the classification tasks of MoleculeNet benchmark datasets
Method Dataset

BBBP ClinTox HIV BACE SIDER Tox21
GraphMVP Liu et al. (2021) 72.4 ± 1.6 79.1 ± 2.8 77.0 ± 1.2 81.2 ± 0.9 63.9 ± 1.2 75.9 ± 0.5
GEM Fang et al. (2022) 72.4 ± 0.4 90.1 ± 1.3 80.6 ± 0.9 85.6 ± 1.1 67.2 ± 0.4 78.1 ± 0.1
GROVERLarge Rong et al. (2020) 69.5 ± 0.1 76.2 ± 3.7 68.2 ± 1.1 81.0 ± 1.4 65.4 ± 0.1 73.5 ± 0.1
ChemBerta Chithrananda et al. (2020) 64.3 90.6 62.2 - - -
ChemBerta2 Ahmad et al. (2022) 71.94 90.7 - 85.1 - -
Galatica 30B Taylor et al. (2022) 59.6 82.2 75.9 72.7 61.3 68.5
Galatica 120B Taylor et al. (2022) 66.1 82.6 74.5 61.7 63.2 68.9
Uni-Mol Zhou et al. (2023) 72.9 ± 0.6 91.9 ± 1.8 80.8 ± 0.3 85.7 ± 0.2 65.9 ± 1.3 79.6 ± 0.5
MolFM Zhou et al. (2023) 72.9 ± 0.1 79.7 ± 1.6 78.8 ± 1.1 83.9 ± 1.1 64.2 ± 0.9 77.2 ± 0.7
MoLFormer Chang & Ye (2024) 73.6 ± 0.8 91.2 ± 1.4 80.5 ± 1.65 86.3 ± 0.6 65.5 ± 0.2 80.46 ± 0.2
SMI-TED289M (Frozen Weights) 91.46 ± 0.47 93.49 ± 0.85 80.51 ± 1.34 85.58 ± 0.92 66.01 ± 0.88 81.53 ±0.45
SMI-TED289M (Fine-tuned) 92.26 ± 0.57 94.27 ± 1.83 76.85 ± 0.89 88.24 ± 0.50 65.68 ± 0.45 81.85 ± 1.42

Table 3 displays the performance of different advanced methods on different benchmarking datasets
used for molecule classification tasks. SMI-TED289M consistently shows superior performance
in four out of six datasets. Interestingly, using SMI-TED289M with its initial settings provided
comparable results to SOTA methods available. However, fine-tuning SMI-TED289M further enhances
its performance across all datasets. This indicates SMI-TED289M ’ potential for accurate molecule
classification, with potential for further optimization through fine-tuning. Detailed results for all the
experiments are presented in the Supplementary Materials due to limit of pages.

Results for regression tasks: Next, we applied SMI-TED289M for prediction of chemical proper-
ties. The performance results across five challenging regression benchmarks, namely QM9, QM8,
ESOL, FreeSolv, and Lipophilicity, are summarized in Table 4.

Table 4: Methods and Performance for the regression tasks of MoleculeNet benchmark datasets.
Method Dataset

QM9 QM8 ESOL FreeSolv Lipophilicity
D-MPNN Yang et al. (2019) 3.241 ± 0.119 0.0143 ± 0.0022 0.98 ± 0.26 2.18 ± 0.91 0.65 ± 0.05
N-Gram Liu et al. (2019) 2.51 ± 0.19 0.0320 ± 0.003 1.074 ± 0.107 2.688 ± 0.085 0.812 ± 0.028
PretrainGNN Hu et al. (2019) - - 1.100 ± 0.006 2.764 ± 0.002 0.739 ± 0.003
GROVERLarge Rong et al. (2020) - - 0.895 ± 0.017 2.272 ± 0.051 0.823 ± 0.010
ChemBERTa-2 Ahmad et al. (2022) - - 0.89 - 0.80
SPMM Chang & Ye (2024) - - 0.818 ± 0.008 1.907 ± 0.058 0.692 ± 0.008
MolCLRGIN Wang et al. (2022) 2.357 ± 0.118 0.0174 ± 0.0013 1.11 ± 0.01 2.20 ± 0.20 0.65 ± 0.08
Hu et al. Hu et al. (2020) 4.349 ± 0.061 0.0191 ± 0.0003 1.22 ± 0.02 2.83 ± 0.12 0.74 ± 0.00
MoLFormer Chang & Ye (2024) 1.5894 ± 0.0567 0.0102 0.880 ± 0.028 2.342 ± 0.052 0.700 ± 0.012
SMI-TED289M (Frozen Weights) 7.4883 ± 0.0659 0.0179 ± 0.0004 0.7045 ± 0.0344 1.668 ± 0.0616 0.6499 ± 0.012
SMI-TED289M (Fine-tuned) 1.3246 ± 0.0157 0.0095 ± 0.0001 0.6112 ± 0.0096 1.2233 ± 0.0029 0.5522 ± 0.0194

Results presented in Table 4 indicates that SMI-TED289M presents superior results when compared
to the state-of-the-art, outperforming its competitors in all the 5 datasets considered. To fine-tune
SMI-TED289M is important to achieve state-of-the-art results in regression datasets, due to the
complexity of such tasks. Table 4 elucidates the superiority of SMI-TED289M over the QM9 dataset.
The QM9 dataset is composed by 12 tasks regarding to the quantum properties of molecules. A
detailed overview over the results for QM9 are depicted in the next subsection. Detailed results for
all experiments are in the Supplementary Materials of this paper.

A deeper analysis over the QM9 benchmark: In this subsection, we provide a deeper analysis
over the results for the QM9 dataset. Table 5 details the results of the SOTA approaches each property
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that composes QM9. Our comparative analysis extends to benchmarking the proposes encoder-
decoder foundation model against state-of-the-art models derived from three distinct categories:
(i) Graph-based, (ii) Geometry-based, and (iii) SMILES-based methodologies for prediction of
molecular properties. The included baselines models are: 123-gnn Morris et al. (2019), a multitask
neural net encoding the Coulomb Matrix (CM) Rupp et al. (2012), and its GNN variant as in the deep
tensor neural net (DTNN) Schütt et al. (2017).

Table 5: Comparing state-of-the-art models performance over the QM9 dataset. Blue and Orange
indicates best and second-best performing model, respectively.

Graph-based Geometry-based SMILES-based
Measure A-FP 123-gnn GC CM DTNN MPNN MoLFormer-XL This paper
α 0.49 0.27 1.37 0.85 0.95 0.89 0.33 0.27
Cv 0.25 0.09 0.65 0.39 0.27 0.42 0.14 0.12
G 0.89 0.05 3.41 2.27 2.43 2.02 0.34 0.11
gap 0.0052 0.0048 0.01126 0.0086 0.0112 0.0066 0.0038 0.0036
H 0.89 0.04 3.41 2.27 2.43 2.02 0.25 0.09
ϵhomo 0.0036 0.0034 0.0072 0.0051 0.0038 0.0054 0.0029 0.0027
ϵlumo 0.0041 0.0035 0.0092 0.0064 0.0051 0.0062 0.0027 0.0026
µ 0.451 0.476 0.583 0.519 0.244 0.358 0.361 0.384
⟨R2⟩ 26.84 22.90 35.97 46.00 17.00 28.5 17.06 14.72
U0 0.898 0.0427 3.41 2.27 2.43 2.05 0.3211 0.0850
U 0.89 0.111 3.41 2.27 2.43 2.00 0.25 0.0905
ZPVE 0.00207 0.0002 0.00299 0.00207 0.0017 0.00216 0.0003 0.0002
Avg MAE 2.6355 1.9995 4.3536 4.7384 2.3504 3.1898 1.5894 1.3246
Avg std MAE 0.0854 0.0658 0.1683 0.1281 0.1008 0.1108 0.0567 0.0157

Table 5 compares existing SOTA models in predicting quantum properties of molecules. The
evaluation demonstrates that the proposed encoder-decoder foundation model outperforms current
models in predicting 7 out of 12 quantum properties, and achieves either the best or second-best
results in 11 out of 12 tasks.

However, when comparing with MoLFormer-XL, a model showing the second-best average error rate,
it is noted that MoLFormer-XL’s performance is influenced by its results on a specific property ⟨R2⟩.
Although MoLFormer-XL performs well in average error rate, 123-gnn performs better in a larger
number of tasks. In comparison, the proposed SMI-TED289M maintains consistent performance
across all tasks, suggesting its robustness in predicting complex molecular properties.

4.2 MIXTURE-OF-OSMI-EXPERTS PERFORM STUDIES

This study compare the results of MoE-OSMI against single SMI-TED289M models (frozen and fine-
tuned). MoE-OSMI is composed by 8× 289M fine-tuned models for each specific task, we set k = 2,
which means that 2 models are activated every step. The results for this study are shown in Table 6,
which considers classification and regression tasks for molecular properties. Results refers to the best
run of each version.

Table 6: MoE-OSMI and single SMI-TED289M models for molecular properties prediction.
Method Dataset

BBBP↑ ClinTox↑ HIV↑ BACE↑ SIDER↑ Tox21↑ ESOL↓ FreeSolv↓ Lipo↓
SMI-TED289M -
Frozen

92.27 95.02 81.81 87.18 67.11 82.22 0.6784 1.5832 0.6311

SMI-TED289M -
Fine-Tuned

93.07 97.97 79.09 89.33 65.97 83.72 0.6024 1.2167 0.5413

MoE-OSMI 93.72 95.62 80.42 89.84 68.08 84.07 0.5566 1.1181 0.5376

Table 6 summarizes the performance metrics for each model across the different datasets. The results
from the study indicate that MoE-OSMI consistently achieves higher performance metrics compared
to single SMI-TED289M models (Frozen and Fine-Tuned) models across different tasks, especially
in regression tasks where it improved results in all scenarios. These findings suggest that the MoE
approach effectively leverages specialized sub-models to capture diverse patterns in the data, leading
to improved accuracy in molecular property predictions. The mixture-of-experts approach serves
as an efficient solution to scale single models and enhance performance for various tasks due to its
ability to allocate specific tasks to different experts, optimizing single model’s overall predictive
capabilities.
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4.3 REACTION-YIELD PREDICTION

Previously, we were able to show that the proposed SMI-TED289M model was able to perform
compared to single tasks transformer-based methods. Chemical reactions in organic chemistry
are described by writing the structural formula of reactants and products separated by an arrow,
representing the chemical transformation by specifying how the atoms rearrange between one or
several reactant molecules and one or several product molecules. Predicting outcomes of chemical
reactions, such as their yield based on data gathered in high-throughput screening, is an important
task in machine learning for chemistry.

We assessed this architecture against state-of-the-art methods using a high-throughput dataset of
Buchwald–Hartwig cross-coupling reactions, focusing on predicting reaction yields Ahneman et al.
(2018). This involves estimating the percentage of reactants converted into products. Our evaluation
adhered to the schema and data divisions outlined in Ahneman et al. (2018). Table 7 presents the
results for the SMI-TED289M model and compares its performance with existing state-of-the-art
approaches.

Subset/Split DFT Yield-BERT Yield-BERT (Aug) DRFP YieldGNN MSR2-RXN SMI-TED289M

Rand 70/30 0.92 0.95±0.005 0.97±0.003 0.95±0.005 0.96±0.005 0.94±0.005 0.9841 ±0.0007
Rand 50/50 0.9 0.92±0.01 0.95±0.01 0.93±0.01 - 0.93±0.01 0.982 ±0.0004
Rand 30/70 0.85 0.88±0.01 0.92±0.01 0.89±0.01 - 0.90±0.01 0.979 ±0.0013
Rand 20/80 0.81 0.86±0.01 0.89±0.01 0.87±0.01 - 0.87±0.01 0.976 ±0.0006
Rand 10/90 0.77 0.79±0.02 0.81±0.02 0.81±0.01 - 0.80±0.02 0.961 ±0.0023
Rand 5/95 0.68 0.61±0.04 0.74±0.03 0.73±0.02 - 0.69±0.03 0.912 ±0.0043

Rand 2.5/97.5 0.59 0.45±0.05 0.61±0.04 0.62±0.04 - 0.57±0.05 0.875 ±0.0044
Test 1 0.8 0.84±0.01 0.80±0.01 0.81±0.01 - 0.83±0.03 0.9832 ±0.0002
Test 2 0.77 0.84±0.03 0.88±0.02 0.83±0.003 - 0.83±0.01 0.9820 ±0.0005
Test 3 0.64 0.75±0.04 0.56±0.08 0.71±0.001 - 0.69±0.04 0.9827 ±0.0012
Test 4 0.54 0.49±0.05 0.43±0.04 0.49±0.004 - 0.51±0.04 0.9825 ±0.0008

Average 1-4 0.69 0.73 0.58±0.33 0.71±0.16 - 0.72±0.15 0.9826 ±0.0005

Table 7: Performance of SMI-TED289M compared with the state of the art in reaction-yield prediction
on experimentally determined yields of Buchwald–Hartwig reactions through HTEs.

The results presented in Table 7 demonstrate the superiority of the proposed SMI-TED289M foun-
dation model when benchmarked against state-of-the-art methods, including gradient-boosting and
fingerprint-based approaches (DRFP) Probst et al. (2022), a DFT-based random forest model (DFT)
Probst et al. (2022), and transformer-based models like Yield-BERT Schwaller et al. (2021) and
its augmented variant, Yield-BERT(aug.) Schwaller et al. (2021), and MSR2-RXN Boulougouri
et al. (2024). The performance of the Mamba-based model can be attributed to its pre-training on an
expansive dataset of 91 million curated molecules, which provides a robust foundation of chemical
knowledge that significantly enhances its predictive capabilities. This pre-training enables the model
to achieve high accuracy even with limited training data, as evidenced by its sustained performance
when trained on just 2.5% of the available samples—a scenario where task-specific models experience
a marked decline in accuracy. To ensure the robustness of our model, we conducted each experiment
with 10 different random seeds.

4.4 DECODER EVALUATION OVER MOSES BENCHMARKING DATASET

Next, we compared SMI-TED289M with different baseline models, such as the character-level
recurrent neural network (CharRNN) Polykovskiy et al. (2020), SMILES variational autoencoder
(VAE) Polykovskiy et al. (2020), junction tree VAE (JT-VAE) Jin et al. (2018), latent inceptionism on
molecules (LIMO) Eckmann et al. (2022), MolGen-7b Fang et al. (2023), and GP-MoLFormer Ross
et al. (2024). All baseline performances are reported on their corresponding test set consisting of
176k molecules. Standard metrics for evaluating model-generated molecules are reported in Table 8.
All metrics are computed using MOSES.

When compared to baselines, SMI-TED289M is equally performant in generating unique, valid,
and novel molecules that share high cosine similarity with the corresponding reference molecules
at the fragment (Frag) level, consistent with low Fréchet ChemNet Distance (FCD). At the same
time, SMI-TED289M generates molecules with high internal diversity (IntDiv), i.e., average pairwise
dissimilarity. The scaffold cosine similarity (Scaf) and similarity to the nearest neighbor in the test set
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Table 8: MOSES benchmarking dataset evaluation.
Metric Frag ↑ Scaf ↑ SNN ↑ IntDiv ↑ FCD ↓
CharRNN 0.9998 0.9242 0.6015 0.8562 0.0732
VAE 0.9984 0.9386 0.6257 0.8558 0.0990
JT-VAE 0.9965 0.8964 0.5477 0.8551 0.3954
LIMO 0.6989 0.0079 0.2464 0.9039 26.78
MolGen-7b 0.9999 0.6538 0.5138 0.8617 0.0435
GP-MoLFormer 0.9998 0.7383 0.5045 0.8655 0.0591
SMI-TED289M 0.9999 0.9999 0.9998 0.8565 1.1532

(SNN) of SMI-TED289M is superior to the baselines demonstrating that SMI-TED289M is effective
in generating molecules of varying structures and quality compared to baseline methods.

4.5 LATENT SPACE STUDY

We conducted an experiment to investigate the structure of the latent space created by Large Language
Models in the context of Chemistry. Molecular structures are composable from fragments, motifs,
and functional groups. The composability of structure often translates into compositionality of
structure-property relations, which is exemplified by powerful group contribution methods in chemical
sciences. Compositionality of the learnt representation, however, does not follow automatically from
the structure of the data and requires some combination of the learning architecture and learning
constraints to emerge. Our approach was to utilize simple chemical structures that can be easily
understood by humans, allowing us to anticipate relationships between elements, and examine the
latent space for similar patterns. We constructed a dataset consisting of six families of carbon
chains: F = {CC,CO,CN,CS,CF,CP}. For each family, we generated a sequence of molecules
by incrementally adding carbon atoms to the end of the SMILES string, up to a maximum of ten
carbon atoms. For example, the family CO consists of {CO,CCO, · · · , CCCCCCCCCCO}.
According to the domain expert’s intuition consistent with the theory of chemical structure, in a
metric space, such sequences should exhibit a hierarchical distance structure, where the distance
between consecutive elements is smaller than the distance between elements with a larger difference
in carbon count, i.e., |CnFi − Cn+1Fi| < |CnFi − Cn+2Fi|. Here, n represents the number of
carbon atoms, and SMILE denotes the projection of the SMILE string onto the embedding space.

First, we generated the embeddings for two different encoders, the MoLFormer and SMI-TED289M ,
and used the t-SNEvan der Maaten & Hinton (2008) projection technique to generate pictures (Fig. 3)
for visually inspecting the spaces. It is worth noting that the SMI-TED289M generated an embedding
space that creates a nice separation of each family and respects the hierarchical distance structure,
almost creating a linear relationship between each family. To quantify this relationship, we created a
dataset of triples of SMILES, T = {(CnFCC , CkFi, Cn+kFi) | 0 < n ≤ 4, 0 < k ≤ 5}, for the six
families Fi, resulting in six sub-datasets with 20 elements each, e.g., (CC,CCO,CCCCO) is one
element of the subset of type CO where n = 1, k = 2. Then, we randomly selected one triple from
each subset to feed a linear regression calculating α, β, and B0 such that α·CnFCC+β ·CkFi+B0 =
Cn+kFi. We validated the linearity using the remaining 114 elements. The linear regression on the
MoLFormer embeddings resulted in R2 = 0.55 and MSE = 0.237, while on our model embeddings,
it resulted in R2 = 0.99 and MSE = 0.002.

We evaluated our encoder-decoder model using a few-shot learning process, where we input a few
examples of triples, such as those mentioned earlier, to calculate α, β, and B0. We then use these
parameters to generate embeddings for subsequent SMILES pairs and recreate the SMILES strings. To
validate our approach, we tested the process on the same dataset of triples. We calculated the molecule
similarity between the expected and generated results using the Tanimoto score (TS) Lipkus (1999).
We repeated this test with different combinations of input triples, yielding similar results. For example,
when using the input triples [CC+CCCS = CCCCCS, CCCCC+CCCS = CCCCCCCCS]
and querying all pairs in our subsets, we obtained a mean TS of 0.52. The top two similar results
were CC + CCCCCS = CCCCCS with TS = 0.92 and CC + CCCCCO = CCCCCO with
TS = 0.92, while the bottom two results were CCCCC + CF = F [PH3+]F with TS = 0.06 and
CCCC + CF = F [PH3+]F with TS = 0.07.

Historically, group contribution was introduced in supervised learning context of structure-property
relations. Our simple tests indicate that SMI-TED289M derived an equivalent of group contribution
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Figure 3: The figure shows the t-SNE projection of 60 small molecule embeddings. Color distin-
guishes between families, and point size represents the number of carbon atoms in the chain. Left:
MoLFormer embeddings; Right: SMI-TED289M embeddings.

method purely from self-supervised learning of molecular structure. Signs of the emergence of
compositionality of the learned molecular representations suggest strong potential of SMI-TED289M

for reasoning applications. Further studies consistent with methodologies of compositionality analysis
in natural languages are required to make stronger statements.

5 CONCLUSION

This paper introduces the SMI-TED289M family of chemical foundation models, which are pre-
trained on a curated dataset of 91 million SMILES samples from PubChem, amounting to 4 billion
molecular tokens. The SMI-TED289M family includes two configurations: the base model with 289
million parameters and the MoE-OSMI model, which consists of 8× 289M parameters.

The performance of these models was evaluated through an extensive experimentation on different
tasks, including molecular properties classification and prediction. Our approach achieved state-
of-the-art results in most tasks, particularly in predicting molecular quantum mechanics, where it
achieved the best or second-best results in 11 out of 12 tasks of the QM9 dataset.

One key observation is the model’s robustness across various data splits for reaction-yield prediction,
particularly in low-resource settings where only a small fraction of the dataset is used for training.
This underscores the importance of leveraging large-scale pre-training to encode generalized chemical
knowledge, which can then be fine-tuned for specific tasks like reaction yield prediction. In contrast,
models that are tailored specifically for a given task tend to overfit to the nuances of the training data
and struggle to generalize when the training set size is reduced, highlighting a critical limitation in
their design.

We also investigated the structure of the latent space created by these language-based foundation
models, using simple chemical structures for clarity. SMI-TED289M generated an embedding space
that creates a nice separation of each family and respects the hierarchical distance structure, almost
creating a linear relationship between each family. The encoder-decoder model’s capabilities in
few-shot learning were assessed by generating embeddings from a few example triples and using
them to recreate SMILES strings, achieving a Tanimoto score of 0.92 in the best case.

The family of chemical foundation models presented in this paper offers flexibility and scalability for
different scientific applications. Weights for the SMI-TED289M family of models are fully accessible
on HuggingFace: suppressed for blind review. The source code is available at: suppressed for
blind review.
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A APPENDIX

B SUPPLEMENTARY MATERIALS

B.1 DETAILED RESULTS - FROZEN WEIGHTS

Here, we provide the detailed results for every experiment conducted in this paper. First, we present
the detailed results for the experiments considering frozen weights of SMI-TED289M for both,
classification and regression tasks, considering the MoleculeNet benchmarking dataset. For SMI-
TED289M frozen weights, we considered XGBoost Chen et al. (2015) as learner, and Optuna Akiba
et al. (2019) for hyper-parameters optimization. Table 9 illustrates the results for the classification
tasks using for 10 different seeds, and considering frozen weights.

Table 9: Classification results for 10 different seeds considering SMI-TED289M frozen weights.
ROC-AUC ↑

SEED BBBP HIV BACE SIDER Clintox Tox21
0 91.66 81.68 85.05 67.46 93.62 80.90

10 91.17 79.66 84.59 66.43 93.92 81.15
20 91.30 81.69 84.56 66.21 94.40 82.00
30 91.33 81.81 86.02 64.79 93.73 81.55
40 91.22 81.00 85.51 65.88 92.85 82.00
50 91.89 81.80 86.68 64.99 95.02 82.22
60 90.67 80.21 84.72 66.18 92.03 81.68
70 91.94 79.69 86.26 65.86 92.99 81.18
80 91.19 77.69 85.25 65.05 92.95 81.60
90 92.27 79.91 87.18 67.11 93.41 81.04

Average 91.46 80.51 85.58 66.00 93.49 81.53
Std 0.47 1.34 0.92 0.88 0.85 0.45

Table 10 elucidates the results for the regression tasks using for 10 different seeds, and considering
frozen weights. Similar to the classification tasks, here we also use XGBoost as learner and Optuna
for hyper-parameters optimization.

Table 10: Regression results for 10 different seeds considering SMI-TED289M frozen weights.
RMSE↓ MAE↓

SEED ESOL FreeSolv Lipophilicity QM8 QM9
0 0.6846 1.6248 0.6681 0.0184 7.4126

10 0.6784 1.7022 0.6400 0.0180 7.4956
20 0.6886 1.5832 0.6528 0.0174 7.6201
30 0.6880 1.7418 0.6311 0.0177 7.4845
40 0.7100 1.6443 0.6603 0.0185 7.5486
50 0.6933 1.6495 0.6515 0.0181 7.5118
60 0.6793 1.6285 0.6477 0.0182 7.5056
70 0.6884 1.7482 0.6411 0.0177 7.4128
80 0.7746 1.7468 0.6410 0.0179 7.4774
90 0.7599 1.6104 0.6654 0.0174 7.4135

Average 0.7045 1.6680 0.6499 0.0179 7.4883
Std 0.0344 0.0616 0.0120 0.0004 0.0659
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B.2 DETAILED RESULTS - FINE-TUNING

To fine-tune SMI-TED289M , we used a fully connected network with 2 layers. Table 11 provides
a detailed overview of the hyper-parameters considered for the fine-tuning of SMI-TED289M . We
used a single V100 NVIDIA (16G) GPU for the task. Detailed results considering SMI-TED289M for
both, classification and regression tasks using the MoleculeNet benchmarking dataset are illustrated
in Table 12 and Table 13. We run each task for 10 different seeds to guarantee the robustness of the
results.

Table 11: SMI-TED289M fine-tuning architecture specificity.
Hidden size Attention heads Layers Dropout Normalization

768 12 12 0.2 LayerNorm

Learning rate # batch # epochs # tokens # GPUs Total params
3e-5 32 500 202 1 NVIDIA V100 (32G) 289M

Table 12 presents the results BBBP, HIV, BACE, SIDER, Clintox, Tox21 datasets. For these
classifications tasks, ROC-AUC has been defined as evaluation metric as in the MoleculeNet. We run
each seed for 500 epochs.

Table 12: Classification results for 10 different seeds considering SMI-TED289M fine-tuning.
ROC-AUC↑

SEED BBBP HIV BACE SIDER Clintox Tox21
0 92.42 76.76 88.02 65.88 96.55 81.87

10 92.20 76.89 87.82 66.12 91.86 82.20
20 92.48 75.72 88.63 65.05 94.95 80.58
30 92.17 76.52 87.82 65.97 97.97 83.72
40 91.94 77.01 88.32 65.30 92.90 83.08
50 91.29 79.09 88.63 66.51 93.95 83.27
60 93.07 76.49 89.33 65.49 94.32 80.26
70 92.84 76.52 87.91 65.22 93.41 79.41
80 92.74 76.33 87.80 65.71 92.85 81.44
90 91.49 77.20 88.08 65.59 93.96 82.65

Average 92.26 76.85 88.24 65.68 94.27 81.85
Std 0.57 0.89 0.50 0.45 1.83 1.42

Results for ESOL, FreeSolv, Lipophilicity, QM8, and QM9 are presented in Table 13. As for
classfication tasks, we also run each regression task for 10 different seeds, each one considering 500
epochs.

Table 13: Prediction results for 10 different seeds considering SMI-TED289M fine-tuning.
RMSE↓ MAE↓

SEED ESOL FreeSolv Lipophilicity QM8 QM9
0 0.6110 1.2258 0.5426 0.0092 1.2814

10 0.6110 1.2230 0.5375 0.0095 1.3371
20 0.6024 1.2230 0.5561 0.0094 1.3245
30 0.6124 1.2258 0.5472 0.0095 1.3291
40 0.6024 1.2258 0.5435 0.0095 1.3338
50 0.6024 1.2230 0.5413 0.0096 1.3302
60 0.6355 1.2167 0.5611 0.0099 1.3265
70 0.6116 1.2230 0.5513 0.0094 1.3293
80 0.6124 1.2258 0.5381 0.0095 1.3290
90 0.6110 1.2212 0.6029 0.0094 1.3249

Average 0.6112 1.2233 0.5522 0.0095 1.3246
Std 0.0096 0.0029 0.0194 0.0002 0.0157
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QM9 and QM8 datasets contains 12 different metrics referring to the quantum properties of the
molecules. Table 14 presents the results for the QM9 metrics: α, Cv, G, gap, H , ϵhomo, ϵlumo,
µ, ⟨R2⟩,U0, U , ZPV E. Table 14 also show the avg MAE and avg std MAE. For each seed we
considered 500 epochs.

Table 14: Prediction results over SMI-TED289M fine-tuning for QM9 dataset considering 10 different
seeds.

QM9
SEED α Cv G gap H ϵhomo ϵlumo µ ⟨R2⟩ U0 U ZPV E Average

0 0.2266 0.0893 0.1503 0.0035 0.0873 0.0025 0.0024 0.3859 14.2478 0.0919 0.0890 0.0002 1.2814
10 0.2898 0.1283 0.1276 0.0037 0.1126 0.0027 0.0025 0.3850 14.7824 0.1005 0.1093 0.0007 1.3371
20 0.2826 0.1226 0.0937 0.0036 0.0871 0.0026 0.0025 0.3846 14.7603 0.0737 0.0804 0.0005 1.3245
30 0.2827 0.1249 0.1270 0.0036 0.1088 0.0026 0.0026 0.3842 14.7041 0.1010 0.1069 0.0010 1.3291
40 0.2880 0.1351 0.1219 0.0043 0.1099 0.0035 0.0032 0.3853 14.7624 0.0935 0.0971 0.0019 1.3338
50 0.2832 0.1241 0.1042 0.0036 0.0816 0.0027 0.0025 0.3845 14.8141 0.0794 0.0814 0.0007 1.3302
60 0.2835 0.1263 0.0964 0.0036 0.0870 0.0027 0.0025 0.3850 14.7702 0.0785 0.0819 0.0007 1.3265
70 0.2873 0.1284 0.1014 0.0036 0.0864 0.0026 0.0027 0.3845 14.7972 0.0758 0.0810 0.0006 1.3293
80 0.2866 0.1270 0.0844 0.0036 0.0843 0.0027 0.0025 0.3842 14.8097 0.0752 0.0875 0.0007 1.3290
90 0.2829 0.1257 0.0957 0.0036 0.0874 0.0027 0.0025 0.3848 14.7414 0.0809 0.0907 0.0006 1.3249

Average 0.2793 0.1232 0.1103 0.0037 0.0932 0.0027 0.0026 0.3848 14.7190 0.0850 0.0905 0.0008 1.3246
Std 0.0187 0.0124 0.0205 0.0002 0.0120 0.0003 0.0002 0.0005 0.1688 0.0106 0.0107 0.0004 0.0157

Table 15 illustrates the results for the QM8 metrics: E1-CAM, E1-CC2, E1-PBE0, E2-CAM, E2-
CC2, E2-PBE0, f1-CAM, f1-CC2, f1-PBE0, f2-CAM, f2-CC2, f2-PBE0. We also show the results
for the average MAE and average std MAE. For both tasks, QM8 and QM9, our proposed SMI-
TED289M demonstrated better results when compared to the state-of-the-art methods. To demonstrate
the robustness and reliability of our approach we extensively evaluated it over 10 different seeds,
considering 500 epochs for each seed.

Table 15: Prediction results over SMI-TED289M fine-tuning for QM8 dataset considering 10 different
seeds.

QM8
SEED E1-CAM E1-CC2 E1-PBE0 E2-CAM E2-CC2 E2-PBE0 f1-CAM f1-CC2 f1-PBE0 f2-CAM f2-CC2 f2-PBE0 Average

0 0.0040 0.0037 0.0037 0.0041 0.0050 0.0046 0.0081 0.0097 0.0078 0.0188 0.0226 0.0182 0.0092
10 0.0040 0.0039 0.0038 0.0043 0.0051 0.0053 0.0085 0.0100 0.0083 0.0195 0.0231 0.0186 0.0095
20 0.0040 0.0038 0.0037 0.0042 0.0050 0.0051 0.0084 0.0100 0.0082 0.0194 0.0231 0.0183 0.0094
30 0.0040 0.0038 0.0038 0.0043 0.0051 0.0053 0.0085 0.0100 0.0083 0.0195 0.0229 0.0185 0.0095
40 0.0041 0.0039 0.0039 0.0042 0.0051 0.0052 0.0084 0.0100 0.0081 0.0194 0.0230 0.0185 0.0095
50 0.0040 0.0039 0.0039 0.0043 0.0051 0.0053 0.0086 0.0100 0.0084 0.0195 0.0231 0.0185 0.0096
60 0.0043 0.0042 0.0042 0.0046 0.0054 0.0056 0.0091 0.0103 0.0085 0.0200 0.0235 0.0189 0.0099
70 0.0040 0.0038 0.0037 0.0042 0.0050 0.0050 0.0083 0.0101 0.0081 0.0193 0.0230 0.0186 0.0094
80 0.0040 0.0038 0.0038 0.0043 0.0051 0.0053 0.0084 0.0100 0.0083 0.0197 0.0230 0.0187 0.0095
90 0.0040 0.0038 0.0038 0.0042 0.0051 0.0051 0.0085 0.0101 0.0082 0.0194 0.0228 0.0183 0.0094

Average 0.0040 0.0039 0.0038 0.0043 0.0051 0.0052 0.0085 0.0100 0.0082 0.0194 0.0230 0.0185 0.0095
Std 0.0001 0.0001 0.0002 0.0001 0.0001 0.0003 0.0003 0.0001 0.0002 0.0003 0.0002 0.0002 0.0001
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