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ABSTRACT

Quantization with second-order information has shown strong promise for pre-
serving model quality under aggressive compression. Building on the recent
YAQA framework Tseng et al. (2025b), which employs Kronecker-factored ap-
proximations of the Hessian via a power-iteration technique, we propose an alter-
native approach that replaces this step with a more efficient Kronecker decomposi-
tion method from Chekalina et al. (2025). This formulation preserves the benefits
of second-order curvature-aware quantization while substantially reducing com-
putational cost.
We apply our method to LLaMA-2 7B, LLaMA-3 8B Instruct, Qwen 3 8B In-
struct and demonstrate that it achieves the same post-quantization model quality
as YAQA, but with significantly faster computational process — the Kronecker
factors which provide the required quality was obtained with 10 times fewer to-
kens and approximately a 10× speedup over the original work.

1 INTRODUCTION

Large language models (LLMs) have accelerated progress across a wide range of downstream appli-
cations. However, their size and computational demands remain prohibitive, making post-training
compression a critical research direction.

The standard post-training compression setting assumes that:

1. The model is already trained, and its parameters are at an optimum; therefore, the first-order
derivative of the loss is zero and carries no additional information.

2. The second-order derivative characterizes the curvature of the loss surface and highlights
the most important directions for compression in parameter space.

3. The goal is to select the most effective compression method from the set of all available
approaches.

Since the first-order derivative vanishes at the optimum, effectiveness of the compression must rely
on second-order information, i.e., the Hessian of the loss. Specifically, for a layer with weights
W⋆ ∈ Rm×n for the dataset D Hessian can be defined as:

∇2
W⋆L = IF (θ) =

1

|D|

|D|∑
i=1

vec(∇W⋆ℓ)vec(∇W⋆ℓ)T ∈ Rmn×mn (1)

Within this framework, we focus on quantization as the compression method. The post-training
quantization (PTQ) problem can be formulated as minimizing the second-order Taylor expansion of
the loss around the optimum:

arg min
W∈C

≈ 1

2
(W −W⋆)T

(
∇2

W⋆L
)
(W −W⋆) (2)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

where W denotes the obtained low-precision layer weights after quantization, W⋆ the original
high-precision weights, and C the set of possible quantization algorithms.

As shown in Chekalina et al. (2025), we assume that the layer weights follow a multivariate normal
(MVN) distribution. Under this assumption, the Fisher information IF —and consequently the Hes-
sian—can be expressed as a Kronecker product of the inverted row and column covariance matrices,
Σrow and Σcol.

∇2
W⋆L ≈ IF (θ) = Σ−1

col ⊗Σ−1
row = HI ⊗HO (3)

We build upon YAQA Tseng et al. (2025b), whose rounding algorithm incorporating second-order
information is given by:

W = Q(W⋆ + LO
⊤∆WLI + LO

⊤∆W +∆WLI) (4)
where ∆W = W⋆ −W, and LO and LI are the matrices obtained from the LDL decomposition
of HO and HI from Eq. 3, respectively. As can be seen, in second-order–based quantization the
overall procedure naturally decomposes into two parts: (i) the computation of factor matrices that
capture second-order information, and (ii) the rounding algorithm, which takes these matrices as
parameters.

The core quantization algorithm of YAQA is the QTIP algorithm (Tseng et al. (2025a)), which
improves efficiency by transforming model weights to behave like independent Gaussian variables
and then applying Gaussian source coding. This transformation not only enables more efficient
quantization, but also makes the Gaussian assumption underlying Eq. 3 more justified.

While the method achieves state-of-the-art results, the overall quantization procedure remains time-
consuming, primarily due to the second part – the computation of Kronecker factors. Obtaining
accurate Kronecker factors of the Fisher information has long been a challenge, as the Hessians of
LLM layers are prohibitively large. In YAQA, these factors are estimated using the power iteration
method. We propose replacing it with a Lanczos-based method, FastKron, originally introduced
in Chekalina et al. (2025). We show theoretically that FastKron converges faster than the power
iteration method, and empirically confirm this on modern LLMs, including LLaMA-2 7B, LLaMA-
3 8B, and Qwen-3 8B. In the context of second-order PTQ, we do the following:

• We are the first to apply FastKron for efficient computation of exact factors for post-training
quantization guided by Kronecker-factored curvature.

• We theoretically show that for LLMs this approach converges faster than the power iteration
method proposed in YAQA.

• In modern LLMs, our method empirically achieves a speed increase of about 10× while
retaining downstream quality.

Our contribution is a drop-in improvement in second-order quantization pipelines: it retains strong
quantization algorithms while providing faster factor computation. This approach preserves accu-
racy and reduces the data- and compute-related burden of curvature estimation, making second-order
PTQ more practical at the LLM scale.

2 RELATED WORK

Post-training quantization (PTQ) has emerged as a practical approach to reducing the deployment
cost of large language models. Existing methods fall broadly into two categories: those that ex-
ploit curvature information to guide sensitivity-aware quantization and those that design stronger
quantizers through distributional transforms.

Gaussianization and high-dimensional quantizers. QuIP# Tseng et al. (2024) applies random-
ized Hadamard transforms to decorrelate and Gaussianize weight distributions, improving incoher-
ence and enabling more efficient use of lattice and TCQ codebooks. QTIP Tseng et al. (2025a)
combines a Gaussianization transform with a bit-shift–based codebook, making the weight distri-
bution more isotropic and better aligned with high-dimensional source coding assumptions. This

2
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allows efficient trellis-coded quantization (TCQ) at scale, significantly improving the rate–distortion
trade-off in post-training settings.

Second-order PTQ. Curvature-aware PTQ leverages Hessian/Fisher structure to predict sensi-
tivity. HAWQ and HAWQ-V2 Dong et al. (2020) allocate mixed precision by analyzing Hessian
spectra, BRECQ Li et al. (2021) reconstructs layer blocks using a second-order error model, and
GPTQ Frantar et al. (2022) shows that efficient blockwise approximations of the Fisher or Hessian
are sufficient for scaling PTQ to large transformers at 3–4 bits. YAQA Tseng et al. (2025b) pro-
vides an adaptive rounding rule that consumes Kronecker-factored layerwise Hessians defined w.r.t.
full-model KL divergence—but its dominant cost is computing accurate Kronecker factors.

Kronecker-factored curvature. The Hessians of LLM layers are computationally intractable,
which has always made obtaining accurate Kronecker factors of the Fisher information challenging.
Several approaches, such as K-FAC Martens & Grosse (2020) and FWSVD Hsu et al. (2022b), esti-
mate these factors using diagonal approximations. K-FAC approximates each layer’s Fisher matrix
as a Kronecker product of two smaller covariance matrices that capture input activations and out-
put gradients, allowing efficient inversion and updates Martens & Grosse (2015). EKFAC George
et al. (2018); Bae et al. (2018) refines the K-FAC approximation by re-expressing the Fisher matrix
in a Kronecker-factored eigenbasis—diagonalizing each factor and rescaling them using empirical
second-order statistics. FWSVD Hsu et al. (2022a) and TFWSVD Hua et al. (2022) adopt a diag-
onal approximation of the Fisher information for low-rank compression, aligning the factorization
objective with parameter importance. GFWSVD Chekalina et al. (2025) extends this approach by
exploiting Kronecker-factored Fisher structure and introducing an efficient Lanczos-based factor
computation, which we adapt here to produce Kronecker factors directly usable by YAQA/QTIP-
style PTQ. Models Eschenhagen et al. (2024) propose a fully optimization-driven approach for
estimating Kronecker factors, departing from traditional covariance-based estimators. Instead of
computing closed-form second-order statistics, the method treats the factor matrices themselves
as learnable parameters and updates them directly using stochastic gradient descent alongside the
model weights.

3 METHODOLOGY

We quantize LLMs using the YAQA pipeline. To incorporate second-order curvature information
from the loss surface, the original work Tseng et al. (2025b) defines the Hessian as:

(∇2
W⋆L)A = Ex∼D

[
xTx⊗ (∇yℓ)

T (∇yℓ)
]
, (5)

where x denotes the input activations and y denotes the corresponding output activations.

Following Loan & Pitsianis (1992), Kronecker factors can be defined as reshaped leading triplets of
the SVD of a permuted Fisher information matrix. Based on this formulation, Tseng et al. (2025b)
naturally assumes the use of the power iteration method (Golub & Van Loan (2013)) to obtain HI

and HO from Eq. 3 and proposes an algorithm called Sketch A. The iterative update at step i is
given by:

(HI)i ← Ex∼D
[
xTx (HO)i−1, (∇yℓ)

T (∇yℓ)
]
/ ∥(HO)i−1∥2F ,

(HO)i ← Ex∼D
[
(∇yℓ)

T (∇yℓ), (HI)i−1, x
Tx

]
/ ∥(HI)i−1∥2F .

(6)

In contrast, for Kronecker factor estimation we introduce FastKron, based on the Lanczos algo-
rithm (Lanczos (1950)), originally developed to incorporate second-order information into low-
rank pruning. Chekalina et al. (2025) showed that IF from Eq. 1 can be rewritten as ĨF =
1

|D|
∑|D|

i=1(∇W⋆ℓ)⊗ (∇W⋆ℓ)T .

By exploiting properties of the Kronecker product, this formulation reduces the Lanczos-based SVD
of the originally Hessian-sized matrix to matrix multiplications of the same size as a single linear
layer — a computation that is tractable on modern GPUs.

3
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The Lanczos-based FastKron algorithm to obtain the Kronecker factors is as follows:

Algorithm 1 FastKron

Require: List of gradients {∇W⋆ℓ}|D|
i=1, |D| – number of batches

1: IF ← 1
|D|

∑|D|
i=1 vec(∇W⋆ℓ)vec(∇W⋆ℓ)T

2: ĨF = RIF ← 1
|D|

∑|D|
i=1(∇W⋆ℓ)⊗ (∇W⋆ℓ)T

3: (u, σ,v⊤)← Leading singular triplet ▷ Truncated SVD
4: b← u · σ ▷ b = vec(HI)
5: a← v ▷ a = vec(HO)
6: HI ← reshape(b, (m,m))
7: HO ← reshape(a, (n, n))
8: return (HI,HO)

Both SVD-based algorithms — power iteration and Lanczos — have distinct advantages and limi-
tations, and their efficiency varies depending on the properties of the data to which they are applied.
A key parameter that influences convergence speed is the spectral gap, i.e., the relative magnitude
of the first singular value compared to the second. In the following section, we provide general
convergence estimates for each algorithm and analyze the extent to which real-world LLM data
(specifically, from LLaMA-2 7B) lie in the regime where one or the other method is more efficient.
Theorem 3.1. Consider a symmetric matrix A ∈ Rn×n with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0
and corresponding orthonormal eigenvectors u1, . . . ,un. The normalized spectral gap is defined
as q = λ2

λ1
, 0 < q < 1, q ∈ (0, 1) and characterizes the decay of the spectrum.

Suppose we seek the leading eigenpair (λ1,u1) starting from an initial vector v0 ∈ Rn with
⟨v0,u1⟩ ̸= 0. Then, for any q, the Lanczos method converges to u1 with a strictly smaller error
bound than power iteration under the same number of iterations.

Proof. We analyze the convergence properties of the power iteration and Lanczos algorithms by
estimating the error as the angle between the vector produced by each method and the true leading
eigenvector.

Step 1. Power iteration convergence. Let u1 be the true leading eigenvector of A corresponding
to λ1, and let v0 be the initial vector before any iterations. After k steps of power iteration, the
normalized iterate is

vk =
Akv0

∥Akv0∥
. (7)

Lemma 3.2. Express v0 in the eigenbasis of A as

v0 = α1u1 + α2u2 + · · ·+ αnun, α1 ̸= 0. (8)

Then,
Akv0 = α1λ

k
1u1 + α2λ

k
2u2 + · · ·+ αnλ

k
nun. (9)

After normalization, the relative weight of ui decays as qk, where q = λ2/λ1 < 1. It follows
from Golub & Van Loan (2013); Trefethen & Bau (1997) that the error satisfies

sin∠(vk,u1) ≤ C(v0)q
k, g(q) = q. (10)

Thus, power iteration corresponds to applying the polynomial filter pk(x) = xk, which separates λ1

from the rest of the spectrum poorly when the spectral decay is small.

Step 2. Lanczos convergence. The Lanczos method constructs approximations in the Krylov
subspace

Km(A,v0) = span{v0,Av0, . . . ,A
m−1v0}, (11)

which, at each step, introduces a new polynomial term of A applied to v0. The Ritz vectors are
defined as

wi = Qmyi, (12)

4
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(a) Distribution of spectral gaps.

0.0 0.2 0.4 0.6 0.8 1.0
q

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Comparison of f(q) and g(q) for q (0, 1)
f(q), k = 1
g(q), k = 1
f(q), k = 5
g(q), k = 5
f(q), k = 10
g(q), k = 10
Int point = 0.29

(b) Comparison of f(q) and g(q).

Figure 1: (a) Histogram of spectral gaps across layers in LLaMA-2-7B. In more than half of the
layers, the spectral gap exceeds 0.29, and on these layers we observe that f(q) < g(q). (b) Curves
fk(q) and gk(q) for k ∈ {1, 5, 10}. As k increases, the curve fk(x) becomes tightly compressed
against the horizontal axis, causing the area under it to shrink rapidly.

where Qm is an orthonormal basis of Km(A,v0) and yi is an eigenvector of the projected tridiag-
onal matrix Tm = Q⊤

mAQm. These Ritz vectors lie in the Krylov subspace and approximate the
true eigenvectors ui of A.

Lemma 3.3. Let wm denote the Ritz vector obtained after m steps of the Lanczos algorithm, i.e.,
the approximation to u1 extracted from Km(A,v0). Then the error satisfies

sin∠(wm,u1) ≤ 2

(
1−√q
1 +
√
q

)m

, f(q) =
1−√q
1 +
√
q
, (13)

see, e.g., Parlett (1980); Saad (2003).

Step 3. Norm comparison. We now compare the convergence rates of the two methods by ana-
lyzing the L2 norms of their respective error functions over q ∈ (0, 1):

Ik = ∥fk∥2L2(0,1)
=

∫ 1

0

(
1−√q
1 +
√
q

)2k

dq, (14)

Jk = ∥gk∥2L2(0,1)
=

∫ 1

0

q2k dq =
1

2k + 1
. (15)

With the substitutions q = t2 and u = 1−t
1+t , we obtain

Ik = 4

∫ 1

0

u2k 1− u

(1 + u)3
du. (16)

Since 1
(1+u)3 ≤ 1 for u ∈ (0, 1), it follows that

Ik ≤
4

(2k + 1)(2k + 2)
=

2

k + 1

1

2k + 1︸ ︷︷ ︸
Jk

. (17)

Thus,

∥fk∥L2(0,1) ≤
√

2

k + 1
∥gk∥L2(0,1). (18)

Hence,
∥fk∥L2 − ∥gk∥L2 ≤ 0 ∀ k ≥ 1, (19)

and the difference between the two norms increases as k grows.

5
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We show that within the spectral gap regime, the Lanczos method exhibits faster norm convergence
compared to power iteration (Figure 1(b)). However, spectral gap statistics from real LLMs (Fig-
ure 1(a)) indicate that most values lie to the right of the intersection point of f(q) and g(q). This
implies that, for the majority of layers, Lanczos converges faster not only in the integral sense but
also pointwise.

4 EXPERIMENTS

We evaluated our approach using the YAQA pipeline, which consists of two stages: (1) estimation
of Kronecker factors of the full-layer Hessian, and (2) a rounding-based quantization algorithm that
leverages these factors.

Following the original YAQA work, for the second stage we adopted the QTIP quantization algo-
rithm without fine-tuning, using the quantlut sym decode mode with a bitshift codebook and the
hyperparameters provided in the official repository 1.

For the baseline, we employed the Sketch A decomposition algorithm from the YAQA repository.
In our method, we collected gradients on several minibatches of the calibration dataset and used the
implementation of Algorithm 1 (FastKron) from the GFWSVD repository 2 to obtain the Kronecker
factors.

We evaluated perplexity and zero-shot performance in downstream tasks for the LLaMA-2-7B,
LLaMA-3-8B (Instruct), and Qwen-3-8B (Instruct) models. For the LLaMA models, we used a
sequence length of 4096, and for Qwen — 2048. Runtime was measured using Python’s built-in
profiler, while the total number of tokens was computed as the product of the number of calibration
sequences and their context length.

We also carried out QTIP experiment with identity Kronecker factors (reported as No Hess in the
results), to demonstrate the advantage of incorporating second-order information for compression.

Table 1: Zero-shot accuracy for YAQA quantization of LLaMA-2-7B, comparing factors derived
via power iteration (Sketch A) and FastKron. Lower is better for used resourses (↓), higher is better
for accuracy (↑). “M” denotes millions and “K” denotes thousands of tokens.

Method Steps Arc c ↑ Boolq ↑ Piqa ↑ Arc e ↑ HSwag ↑ AVG ↑ GPU/h ↓ Tokens ↓
16 bit – 0.4325 0.7767 0.7774 0.7617 0.5721 0.6640 – –

4 bit Sketch A 4096 0.4274 0.7688 0.7752 0.7613 0.5672 0.6599 50 16 M
4 bit FastKron 75 0.4283 0.7792 0.7802 0.7610 0.5660 0.6629 5 712 K
4-bit No Hess – 0.4352 0.7875 0.7742 0.7609 0.5628 0.6641 – –

2 bit Sketch A 4096 0.3805 0.7333 0.7562 0.7192 0.5227 0.6223 50 16 M
2 bit FastKron 150 0.3843 0.7510 0.7600 0.7112 0.5139 0.6240 6 1400 K
2-bit No Hess – 0.2210 0.6355 0.6306 0.5152 0.3422 0.4689 – –

Table 2: Zero-shot accuracy for YAQA quantization of LLaMA-3-8B, comparing factors derived
via power iteration (Sketch A) and FastKron. Lower is better for used resourses (↓), higher is better
for accuracy (↑).

Method Steps Arc c ↑ Boolq ↑ Piqa ↑ Arc e ↑ HSwag ↑ AVG ↑ GPU/h ↓ Tokens↓
16 bit - 0.5171 0.8409 0.7986 0.8177 0.5908 0.7131 – —
4-bit Sketch A 4096 0.5136 0.8443 0.7997 0.8198 0.5865 0.7127 92 16 M
4-bit FastKron 75 0.5116 0.8438 0.8025 0.8207 0.5863 0.7129 9.5 712 K
4-bit No Hess – 0.5119 0.8415 0.7959 0.8097 0.5859 0.7112 – –
2-bit Sketch A 4096 0.4312 0.7567 0.7647 0.7391 0.5259 0.6435 92 16 M
2-bit FastKron 100 0.4277 0.7646 0.7661 0.7468 0.5159 0.6442 11.5 950 K
2-bit No Hess – 0.2363 0.6336 0.6554 0.5108 0.3620 0.5094 – –

1https://github.com/Cornell-RelaxML/qtip
2https://github.com/sayankotor/FisherKronecker/
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Table 3: Zero-shot accuracy for YAQA quantization of Qwen3-8B, comparing factors derived power
iteration (Sketch A) and FastKron. Lower is better for used resourses (↓), higher is better for accu-
racy (↑).

Method Steps Arc c ↑ Boolq ↑ Piqa ↑ Arc e ↑ HSwag ↑ AVG ↑ GPU/h ↓ Tokens↓
16 bit - 0.5563 0.8682 0.7677 0.8354 0.5708 0.7197 — —
4-bit Sketch A 4096 0.5503 0.8611 0.7612 0.8324 0.5601 0.7132 84 8 M
4-bit FastKron 150 0.5469 0.8667 0.7601 0.8287 0.5637 0.7132 42 712 K
4-bit No Hess – 0.5467 0.8675 0.7622 0.8312 0.5585 0.7132 – –
2-bit Sketch A 4096 0.4536 0.7782 0.7435 0.7797 0.4611 0.6432 84 8 M
2-bit FastKron 150 0.4616 0.8416 0.7334 0.7702 0.4853 0.6584 42 712 K
2-bit No Hess – 0.3993 0.8675 0.7743 0.7003 0.4758 0.6434 – –

5 RESULTS

The results for zero-shot downstream tasks are in the Tables 1, 2, 3. The results show that accuracy
degradation under 4-bit quantization is negligible: for LLaMA-2 7B, the task average decreases
by 0.41% when factors are estimated via Sketch A, and by only 0.11% with FastKron. For 2-bit
quantization, the average drop is around 4%.

For the instruction-tuned LLaMA-3 8B model, 4-bit quantization leads to a 0.05% drop with Sketch
A and 0.02% with FastKron, while 2-bit quantization is substantially more challenging, yielding
drops of about 9.7% in both cases.

In both settings, FastKron achieves comparable or better accuracy while converging with roughly
10× lower compute budget (e.g., 5 vs. 50 GPU hours, or 9–11 vs. 90 GPU hours). Moreover, it
consistently yields several tens of percent higher accuracy compared to Sketch A. Calibration with
FastKron requires only ≈1M tokens (the exact number depends on the number of microbatches),
while Sketch A requires 16M.

A comparison with the QTIP-based method without second-order information (No Hess) shows
that, for 4-bit quantization, the absence of second-order terms has little impact — and can even
lead to slightly better results. However, with 2-bit precision, they become critical, leading to a
12–13% reduction in accuracy compared to factor-based approaches. This result further demon-
strates that second-order information becomes increasingly important under more aggressive quan-
tization regimes, making efficient factor computation highly relevant in such settings.

For Qwen 3, experiments were conducted at half the sequence length, resulting in a smaller speedup
of about 2× at comparable budgets. The average downstream accuracy remains nearly unchanged
at 4-bit, while at 2-bit the drop is about 6% and 5%, respectively.

Perplexity results (Table 4) follow the same trend as zero-shot accuracy, with the exception that
FastKron-based methods yield several percent lower perplexity than Sketch A.

The corresponding code will be provided in the supplementary material, and links to the released
checkpoints will be included in the final version.

6 CALIBRATION TOKEN COUNT AND PERFORMANCE

Table 4: Perplexity (lower ↓ is better) on WikiText and C4 for three models.

Method LLaMA-2-7B LLaMA-3-8B Qwen3-8B

Wiki↓ C4 ↓ Wiki↓ C4 ↓ Wiki↓ C4 ↓
16 bit 5.11 6.63 6.00 8.40 8.99 12.48

4-bit Sketch A 5.17 6.69 6.88 9.96 9.29 12.72
4-bit FastKron 5.18 6.71 6.89 10.02 9.16 12.66

2-bit Sketch A 6.18 8.00 8.98 12.79 16.04 18.21
2-bit FastKron 6.40 8.31 9.11 12.98 13.35 16.86

7
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Figure 2: Average zero-shot validation performance as
a function of calibration token count for 4-bit and 2-
bit quantization of the LLaMA-2 7B model. The red
dashed line shows the average accuracy of the uncom-
pressed model, while the blue and green lines corre-
spond to Sketch A computed on 16M tokens.

In the previous section, we showed that
FastKron achieves the same downstream
quality with a substantially smaller bud-
get. Increasing the number of calibration
tokens results in a larger number of mi-
crobatches, thereby reducing the variance
of the estimates and yielding more sta-
ble Kronecker factors for the compression
method. This naturally raises the question:
How sensitive is FastKron’s downstream
performance to the number of tokens used
during calibration?

To isolate the effect of the calibration
token budget, we varied the number
of gradient-collection steps between 75
and 200, while keeping all other com-
ponents of the FastKron pipeline fixed.
For each configuration, Kronecker factors
were computed from the collected calibra-
tion data and then used in the quantization
pipeline.

The complete results for the perplexity and zero-shot validation are provided in Appendix A, and
Figure 2 shows the average zero-shot validation performance as a function of the number of tokens.

We expected downstream performance to improve with a larger number of microbatches, but Fig-
ure 2 shows that for 4-bit quantization, the performance remains nearly constant, with a small local
maximum at 712K tokens (75 steps). For 2-bit quantization, the performance is more variable,
peaking at 1.4M tokens (150 steps), but the difference never exceeds 1.5%. This stability further
underscores the practicality of FastKron for large-scale deployment.

7 CONCLUSION

We investigated second-order post-training quantization for large language models and proposed
FastKron, a practical replacement for the Kronecker-factor estimation step in YAQA.

Our empirical evaluation on LLaMA-2-7B, LLaMA-3-8B (Instruct), and Qwen-3-8B (Instruct)
demonstrates that incorporating second-order information consistently improves PTQ robustness.
FastKron achieves the same downstream accuracy as the power iteration baseline — nearly the
same quality at 4-bit compression and a 5–6% drop under 2-bit quantization — while reducing
factor-computation time by up to 10× and requiring orders of magnitude fewer calibration tokens.
The experiments also show that incorporating second-order information becomes crucial under more
extreme quantization: with factor-aware methods, we observe similar quality at 4-bit precision and
up to 12–13% higher accuracy at 2-bit precision.

Overall, FastKron is a drop-in, second-order Kronecker factor estimator that makes curvature-aware
PTQ feasible at LLM scale. It maintains quantization accuracy, reduces computation and token
requirements, and ensures stable performance across reasonable calibration budgets. By bridging
the gap between theoretical efficiency and practical scalability, FastKron brings second-order PTQ
closer to becoming a deployable tool for compression and inference of billion-parameter language
models.

ETHICS STATEMENT

This work focuses on methods for improving the efficiency and practicality of post-training quan-
tization of large language models. Our research does not involve human subjects, personally iden-
tifiable information, or sensitive data. All experiments are conducted on publicly available models
(LLaMA, Qwen) and benchmarks (ARC, BoolQ, PIQA, HellaSwag, WikiText, C4), ensuring re-
producibility and transparency. We do not release any new datasets containing personal or private
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data. The proposed methods are intended for reducing the computational cost and energy consump-
tion of deploying large models, which we view as a positive contribution to sustainability. We are
not aware of any direct negative societal impacts, though—as with any model compression tech-
nique—improved efficiency could indirectly facilitate the deployment of large models in settings
where misuse is possible. We encourage responsible use of these methods in accordance with the
ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that our results are fully reproducible. The implementation of
the proposed method is provided in the supplementary materials. All theoretical assumptions and
proofs are included in the main text. Links to the baseline repositories required to reproduce our
experiments are provided in Section 4. Additionally, all model checkpoints used in our experiments
will be released publicly in the camera-ready version of the paper.
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A APPENDIX A

We report extended quantization results for Token Count ablation in Tables 5, 6.

Table 5: Perplexity and zero-shot accuracy for 4-bit YAQA quantization of LLaMA-2-7B, compar-
ing factors derived via power iteration (Sketch A) and GFWSVD. Lower is better for Perplexity (↓),
higher is better for accuracy (↑).

Method Wiki↓ C4↓ Arc c↑ Boolq↑ Piqa↑ Arc e↑ HSwag↑ AVG↑ Steps Tokens

16 bit 5.11 6.63 0.4325 0.7767 0.7774 0.7617 0.5721 0.6640 – –

4 bit Sketch A 5.17 6.69 0.4274 0.7688 0.7752 0.7613 0.5672 0.6599 – 16M
4 bit FastKron 5.19 6.71 0.4241 0.7697 0.7780 0.7579 0.5674 0.6594 35 330K
4 bit FastKron 5.19 6.71 0.4291 0.7764 0.7780 0.7601 0.5676 0.6622 50 475K
4 bit FastKron 5.18 6.71 0.4283 0.7792 0.7802 0.7610 0.5660 0.6629 70 712K
4 bit FastKron 5.19 6.72 0.4197 0.7776 0.7780 0.7615 0.5661 0.6605 100 950K
4 bit FastKron 5.18 6.72 0.4257 0.7737 0.7786 0.7622 0.5670 0.6614 150 1400K
4 bit FastKron 5.18 6.71 0.4266 0.7776 0.7780 0.7605 0.5666 0.6618 200 1900K

B APPENDIX B: LLM USAGE STATEMENT

We used large language models (LLMs) only as a general-purpose writing assistant for grammar
checking and text polishing. The research ideas, implementation, analysis, and conclusions are
entirely our own.
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Table 6: Perplexity and zero-shot accuracy for 2-bit YAQA quantization of LLaMA-2-7B, compar-
ing factors derived via power iteration (Sketch A) and GFWSVD. Lower is better for Perplexity (↓),
higher is better for accuracy (↑).

Method Wiki↓ C4↓ Arc c↑ Boolq↑ Piqa↑ Arc e↑ HSwag↑ AVG↑ Steps Tokens

16 bit 5.11 6.63 0.4325 0.7767 0.7774 0.7617 0.5721 0.6640 – –

2 bit Sketch A 6.18 8.00 0.3805 0.7333 0.7562 0.7192 0.5227 0.6223 – 16M
2 bit FastKron 6.59 8.49 0.3899 0.7232 0.7573 0.7034 0.5176 0.6182 35 330K
2 bit FastKron 6.44 8.40 0.3658 0.7152 0.7568 0.7032 0.5135 0.6109 50 475K
2 bit FastKron 6.44 8.30 0.3720 0.7320 0.7579 0.7112 0.5137 0.6173 70 712K
2 bit FastKron 6.43 8.36 0.3677 0.7393 0.7578 0.7128 0.5127 0.6180 100 950K
2 bit FastKron 6.40 8.31 0.3843 0.7510 0.7600 0.7112 0.5139 0.6240 150 1400K
2 bit FastKron 6.47 8.39 0.3618 0.7486 0.7540 0.7115 0.5091 0.6190 200 1900K
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