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Abstract
Score-based models, trained with denoising score
matching, are remarkably effective in generating
high dimensional data. However, the high vari-
ance of their training objective hinders optimisa-
tion. We attempt to reduce it with a control variate,
derived via a k-th order Taylor expansion on the
training objective and its gradient. We prove an
equivalence between the two and demonstrate em-
pirically the effectiveness of our approach on a
low dimensional problem setting; and study its
effect on larger problems.

1. Introduction
In the field of probabilistic generative models, we find sev-
eral established methods to model unknown data distribu-
tion, such as Variational Auto-Encoders (VAEs; Kingma
& Welling, 2019; Vincent, 2011), Energy-Based Models
(EBMs; Lecun et al., 2006; Grathwohl, 2021; Xie et al.,
2022; Du et al., 2023) and Normalising Flows (Papamakar-
ios et al., 2021). Each of these methods has been designed
to model and maximise the log-likelihood of the data. How-
ever, direct optimisation of the log-density incurs important
constraints on the design of these models: VAEs maximise
a lower bound (ELBO) of the log-likelihood, a bound that
is often not tight (Rainforth et al., 2019). EBMs address the
challenging task of estimating the partition function of the
density, and Normalising Flow can only train specialised
neural network architecture for which the inverse can be
computed. Score-based models emerge as an attractive al-
ternative that circumvents those challenges by modelling
the Stein score of the log-density, that is, the gradient of
the log-density (Hyvärinen, 2005; Vincent, 2011). In ad-
dition, it has been shown that training score-based models
is equivalent, under certain assumptions, to maximise the
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log-likelihood of the data (Huang et al., 2021; Song et al.,
2021a).

In practice, score-based models require no specialised ar-
chitecture and are trained via a score matching loss, such as
sliced score matching and denoising score matching (Song
et al., 2019; 2021b). Denoising score matching is a tech-
nique similar to denoising diffusion probabilistic models
(Ho et al., 2020; Luo, 2022), where the data is corrupted
with a varying amount of noise and a denoiser is trained
to recover the signal from the corrupted data. While very
effective, this solution suffers from high variance, making
optimisation challenging (Song & Kingma, 2021). We pro-
pose to use a popular variance reduction method, control
variate (Owen, 2013), to address this high variance. Con-
trol variate reduces the variance by leveraging an auxiliary
Monte Carlo integration problem that correlates with the
original one. Control variate for score-based model has
been originally introduced by Wang et al. (2020) through a
linearisation of the training objective for small noise level.

We propose to generalise their method to k-th order Taylor
approximation, which is designed for any noise value σ.
Our contributions include: (1) deriving a control variate
with an arbitrary order Taylor polynomial; (2) proving an
equivalence between controlling the training objectives and
its gradient; (3) empirically demonstrating the necessity of
having a regression coefficient; (4) demonstrating the ef-
fectiveness of control variate in a low dimensional problem
setting; (5) studying the impact of control variate in a high
dimensional case; (6) showing the limitation of Taylor based
control variate.

2. Related work
Score matching Hyvärinen (2005) originally introduced
score matching as a method to train EBMs (Lecun et al.,
2006; Grathwohl, 2021) through their Stein score, that is,
the gradient of their log-density. Modelling the Stein score
elegantly circumvented the need to approximate the normal-
ization constant, a notorious challenge in the EBM literature
(Grathwohl, 2021). The central idea in score matching is
that aligning the model’s gradients with those of the data
is sufficient to learn a model from which we can sample
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from. Different variants of that idea exist with the most no-
table ones being implicit score matching (Hyvärinen, 2005;
Kingma & Cun, 2010; Martens et al., 2012), sliced score
matching (Song et al., 2019) and denoising score matching
(Vincent, 2011; Song & Ermon, 2019; Song et al., 2021b).
Denoising score matching was originally introduced by Vin-
cent (2011). While there were initial attempts to scale it
(Kingma & Cun, 2010; Martens et al., 2012), it was not
until the work of Song & Ermon (2019; 2020); Song et al.
(2021b) that it has successfully scaled. Their successful
insight was to combine multiple denoising score-matching
objectives, each with a different amount of corruption. Con-
currently, diffusion models emerged (Ho et al., 2020; Yang
et al., 2023) as an equivalent method to score-based models.
Together, they have successfully been applied to various
data modalities of very high dimensions (Rombach et al.,
2022; Xu et al., 2022; Austin et al., 2023; Harvey et al.,
2022). In addition to this empirical success, Song et al.
(2021a); Huang et al. (2021); Albergo et al. (2023) have
laid a theoretical foundation for this learning procedure ex-
hibiting profound links to the variational framework and to
stochastic and ordinary differential equations.

Control variate Control variate (Owen, 2013) is a vari-
ance reduction technique for Monte Carlo integration prob-
lems that has been popular in various fields, such as in
variational inference (Blei et al., 2017). Ranganath et al.
(2014) use control variate to reduce the variance of varia-
tional objectives; in VI, Miller et al. (2017) mitigate the
variance of reparameterization gradients estimator with con-
trol variate, hence providing more reliable gradient and
getting faster and more stable convergence. In a similar
vein, Grathwohl et al. (2018) propose to control the variance
of gradients through a surrogate neural network, in which its
own gradients act as a control variate. Building on this idea,
Boustati et al. (2020) learn a linear control variate to con-
trol deep Gaussian processes’ variance. Geffner & Domke
(2020) offer a comprehensive review of control variate for
VI. In addition to VI, control variate is a popular tool in
reinforcement learning, such as controlling the gradient in
the REINFORCE algorithm (Williams, 1992), in advantage
actor-critic (Mnih et al., 2016) or in policy optimisation (Liu
et al., 2018).

3. Theory
Suppose an unknown data distribution pdata(x) and a dataset
consisting of i.i.d. samples {xi ∈ RD}Ni=1, sampled
from pdata. The Stein score, s : RD → RD, s(x) =
∇x log pdata(x), maps a data point to the gradient field of
its log-density; and it is sufficient to model it to asymp-
totically and approximately sample from pdata using, e.g.,
Langevin based methods (Song & Ermon, 2019; Hyvärinen,
2005). We use a neural network sθ to model the Stein score,

parameterised by θ, and train it with denoising score match-
ing, where we learn the score of a corrupted version of the
original data distribution (Vincent, 2011).

3.1. Denoising score matching

We follow the approach of Song & Ermon (2019) to learn
our score network sθ, parameterised by θ ∈ Rp using a
weighted denoising score matching objective Lθ(z,x,Σ),
and refer the reader to their work for the derivation of the
training objective:

Lθ(z,x,Σ)

= Eσ∼U(Σ)Epdata(x)Ez∼N (0,ID) [λ(σ)Lθ(z,x, σ)] ,
(1)

where

Lθ(z,x, σ) =
1

2

∥∥∥ z
σ
+ sθ(x+ σz)

∥∥∥2 (2)

and Σ = {σi}Lj=1 is an increasing geometric sequence,
σ ∼ U (Σ) is uniformly sampled from the sequence, and
λ is a positive function such that λ(σ)Lθ(z,x, σ) has ap-
proximately a constant magnitude across the different noise
levels. This training objective, unfortunately, suffers from
high variance (Song et al., 2021a; Song & Kingma, 2021;
Wang et al., 2020), which hinders the optimisation process.
We aim to reduce the variance of the Monte Carlo estimator
by constructing a control variate of that estimator.

3.2. Control variate

Control variate (Owen, 2013) is a technique to reduce
the variance of an estimator µ̂ = (1/N)

∑N
i=1 L(zi) of

a Monte Carlo integration problem, µ = Ez [L(z)], by us-
ing a similar known problem, γ = Ez [C(z)], where C is
the control variate. Using the control variate, we construct
an equivalent integration problem in Equation (3) and its
regression estimator µ̂CV,β ,

µ = Ez [L(z)− βC(z)] + βγ (3)

µ̂CV,β =
1

N

N∑
i=1

[L(zi)− βC(zi)] + βγ (4)

where β is the regression coefficient and controls the scale of
the control variate. When β = 0, µ̂CV,β equals the original
estimator µ̂. For any β, µ̂CV,β is an unbiased estimator,
that is Ez1,...,zN

[
µ̂CV,β

]
= Ez1,...,zN

[µ̂] = µ for all N .
There exists an optimal value βopt for which the reduction
in variance is maximised. To obtain it, we derive first the
variance of µ̂CV,β :

Var(µ̂CV,β) =
1

N
(Var(L(z))− 2βCov(L(z), C(z))

+ β2Var(C(z))
(5)
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By differentiating this expression with respect to β,
and zeroing it, we find the optimal value, βopt =
Cov(L(z), C(z))/Var(C(z)), for which the variance of
µ̂CV,βopt

is minimal. Intuitively, the “best” control variate
C equals the original function L, resulting in βopt = 1. To
gain more intuition into what a good control variate is, we
substitute βopt in Equation (5), yielding the variance of the
regression estimator

Var
[
µ̂CV,βopt

]
=

1

N
Var [µ̂]

(
1− Corr(L(z), C(z))2

)
.

(6)
Equation (6) shows that, given the optimal value βopt, any
function C that correlates to L (positively or negatively)
reduces the variance. The main challenge is finding an ap-
propriate function C. One approach, taken by Wang et al.
(2020), is to linearise the function L around a point and use
that as a control variate. We extend that approach by finding
a suitable polynomial approximation of L. Various polyno-
mial approximations exist (Cody, 1970), but one that makes
sense when using automatic differentiation mechanism is
the Taylor series (Duistermaat & Kolk, 2010).

3.3. Taylor series

A Taylor series represents a function s as a power series,
whose coefficients are successive derivatives of s, with an
additional remainder (Levi, 1967). Practically, a Taylor
series approximates any function (cf. Theorem 3.1) with a
polynomial, allowing control over the approximation quality
through the degree of the polynomial. Taylor series is widely
used in the context of perturbation theory (Holmes, 1998),
where we approximate a function at a perturbed point, s(x+
ϵ), which is also the context of denoising score matching.

Theorem 3.1. Let U be an open subset of Rd and s ∈
Cl(U,Rd) be a l-differentiable mapping taking value in U
to Rd. For k ≤ l and a point a ∈ U , we define the Taylor
polynomial T k

s,a, using a multi-index notation, such that:

T k
s,a(x) =

∑
|α|≤k

(x− a)α

α!
∂αs(a). (7)

Then the mapping (a, x) → Rk
s,a = s − T k

s,a is l − k

differentiable on U × U where Rk
s,a is called the remainder.

In addition, for every compact K ⊂ U and every δ > 0
there exists h > 0 such that

∥Rk
s,a(x)∥ ≤ δ∥x− a∥k if a,x ∈ K and ∥x− a∥ ≤ h

(8)

Remarks We can re-write the Taylor expansion such that
for x, z ∈ U we have

T k
s,x(x+ z) =

∑
|α|≤k

zα

α!
∂αs(x). (9)

Note that in multi-index notations zα = zα1
1 ×. . .×zαd

d ∈ R
, ∂α = ∂α1

1 · · · ∂αd

d and |α| = α1 + . . . + α2. We sample
z from N (0, I) and derive the expectation of the Taylor
expansion with respect to z. For that, we state in Lemma 3.2
a known result on the moments of a normal distribution
(Winkelbauer, 2014), that is, all the odd moments of a nor-
mal distribution equal zeros and all the even moments are
known in closed form.

Lemma 3.2. Let z be sampled from a standard Gaussian
distribution N (0, I), then all moments equal:

E [zα] = δα =

{
0 if |α| = 2p+ 1,∏

i ωαi if |α| = 2p,

where, ωαi
=

{
0 if αi = 2pi + 1
(2pi)!
2pi pi!

if αi = 2pi

(10)

In addition E[zαz] = (E[zαz1], . . . , (E[zαzd])T and
E[zαzk] =

∏
i ωαi+δik , where δik the Kronecker delta.

Theorem 3.3. Recalling notations from Theorem 3.1 and
Equation (9), we have

Ez

[
T k
s,x(x+ z)

]
=

∑
|α|≤k
|α|=2p

δα
α!

∂αs(x)
(11)

Theorem 3.3 provides a closed-form expectation for any
Taylor expansion where the perturbation is sampled from
a Gaussian distribution. As this is the case for denoising
score matching, we leverage this result to derive a control
variate of the training objective.

3.4. A control variate on the training objective

We recall the training objective Lθ(z,x, σ) =
1
2

∥∥ z
σ + sθ(x+ σz)

∥∥2 and approximate the score network
with a Taylor expansion of order k around the data point
x. We derive the approximation and the control variate in
Appendix B.1.1, and provide the result here:

Ck
θ (z,x, σ) =

∥z∥2 −D

2σ2

+
1

2

∑
|α|≤k
|ρ|≤k

σ|α|+|ρ|

α!ρ!

(
zα+ρ − δα+ρ

)
∂αsθ(x)

T∂ρsθ(x)

+
∑
|α|≤k

σ|α|−1

α!

(
zαzT − E[zαz]

)
∂αsθ(x).

(12)
Note that the control variate has zero expectation with re-
spect to z, by applying Theorem 3.3 and Lemma 3.2. In
addition, we introduce a regression coefficient β and the
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training objective Lk
θ,β , given by

Lcvl,k
θ,β (z,x, σ) = λ(σ)

(
Lθ(z,x, σ)− βCk

θ (z,x, σ)
)
.

(13)
For any β, Lk

θ,β equals L, so the training objective in ex-
pectation is maintained and only its variance is affected.
As we will show in the experiments, β greatly influences
the reduction in variance, and it is key to set it as close as
possible to the optimal value βopt. Note that this control
variate is a generalisation of the one derived by (Wang et al.,
2020), which we obtain by setting k = 0 and β = 1. In
Appendix B.2, we derive the control variate for k = 1 and
k = 2.

3.5. A control variate on the gradients

(Wang et al., 2013) shows that excessive variance in the
gradient estimator leads to longer convergence and thus
argues for reducing the variance of the gradients. Follow-
ing that line of thought, we derive a control variate on the
gradient of the training objective, ∂θLθ(z,x, σ), using the
same methodology as in Section 3.4. We begin by deriving
the gradient and approximate the score sθ(x+ σz) and its
gradient ∂θsθ(x+ σz) with Taylor expansions. We derive
the approximation and the control variate in Appendix B.2.1
and obtain the control variate for the gradient

Ck
g,θ(z,x, σ) =

∑
|ρ|≤k

σ|ρ|−1

ρ!
(zρz− E[zρz])T ∂ρ∂θsθ(x)

+
∑
|ρ|≤k
|α|≤k

σ|α|+|ρ|

α!ρ!

(
zα+ρ − δα+ρ

)
∂αsθ(x)

T∂ρ∂θsθ(x).

(14)
Note that each parameter of the network is individually
controlled. We introduce a regression coefficient βg to scale
the control variate for each parameter. If we set k = 0,
we recover the gradient of the objective’s control variate
derived by (Wang et al., 2020). This hints at an equivalence
between the control variate on the training objective and on
the gradients, which we prove in the following section

3.6. Controlling the training objective is equivalent to
controlling its gradient

The previous result suggests an equivalence between the
control variate of the objective and of the gradients. Indeed,
Theorem 3.4 proves this claim to any k-th order Taylor ap-
proximation. We prove (Appendix B.3) that controlling the
training objective is equivalent to controlling its gradients.
We derive the gradients of the objective’s control variate,
∂θC

k
θ (z,x, σ) and prove that it equals the gradient’s control

variate Ck,k
θ (z,x, σ):

Theorem 3.4. Let Ck
θ (z,x, σ) be the control variate on the

training objective and Ck
g,θ(z,x, σ) the control variate on

the training objective’s gradient, we have the equality:

∂θC
k
θ (z,x, σ) = Ck

g,θ(z,x, σ) (15)

This equality explains the benefits observed by (Wang et al.,
2020). However, the regression coefficient of the objec-
tive’s control variate is unrelated to that of the gradients.
Since this coefficient is decisive for the quality of the con-
trol variate, we cannot expect to control the variance of
the gradient through the objective alone. That comes as
an unfortunate cost. Indeed, computing the regression co-
efficient β for the training objective is inexpensive since
it only involves computing a batch of training loss values.
Conversely, computing the regression coefficient βg for the
gradients is expensive, as it requires the gradients in batches,
which is memory-intensive. In addition, we require a reli-
able estimate of βg, which necessitates a large batch size.

3.7. A control variate for large values of σ

We derived the previous control variate around the data
point x and considered σz to be the perturbation. While
that approach is valid for small values of σ, in score-based
modelling, σ ranges up to 100 (Song et al., 2021b). In such
cases, this assumption does not hold, and the Taylor expan-
sion is of poor quality, negatively impacting the training
(Song & Kingma, 2021). When ∥σz∥ ≥ ∥x∥, it is more ap-
propriate to derive the Taylor series around σz and consider
x to be the perturbation. We present the control variate on
the training objective

Ck
θ(z,x, σ) =

∑
|α|≤k

1

σα!

(
xα − µ|α|

)
zT∂αsθ(σz)

+
1

2

∑
|α|≤k
|ρ|≤k

1

α!ρ!

(
xα+ρ − µ|α|+|ρ|

)
∂αsθ(σz)

T∂ρsθ(σz)

(16)
and on the gradients of the training objective

Ck
g,θ(z,x, σ) =

∑
|ρ|≤k

1

σρ!

(
xρ − µ|ρ|

)
zT∂ρ∂θsθ(σz)

+
∑
|α|≤k
|ρ|≤k

1

α!ρ!

(
xα+ρ − µ|α|+|ρ|

)
∂αsθ(σz)

T∂ρ∂θsθ(σz)

(17)
and refer to Appendix B.4 for their derivation. Additionally,
we note µn the n-th moment of the data, µn = E[xn]. In
our experiments, we use k = 1 and normalise the data
such that µ1 = 0. Lastly, a similar derivation as the one
done in Section 3.6 shows that the gradients with respect
to the parameter of Ck

θ equals the control variate on the
gradients, ∂θCk

θ(z,x, σ) = Ck
g,θ(z,x, σ). This shows that

it is equivalent to controlling the training objective or its
gradients.
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4. Experiments
We are now equipped with two sets of control variate,
(Ck

θ , C
k
g,θ) and (Ck

θ , Ck
g,θ), and we study their ability to

reduce variance. We measure the reduction in variance
of the training objective as the ratio ρβ = Var(Lθ −
βCk

θ )/Var(Lθ), and similarly we measure the reduction in
the variance of the gradients and denotes it ρβ,g. A ratio
smaller than one indicates a reduction in variance, and lower
is better.

We consider three sets of experiments: (1) we explore vari-
ance reduction on a toy dataset and show a setup where
control variate enables convergence to the solution; (2) we
explore variance reduction on MNIST and show the lim-
itation of control variate in this setting; (3) we study the
variance reduction on an MLP of varying width and depth
and justify the limitation.

4.1. Control variate on a toy dataset

In the following set of experiments, we train an MLP on a
two-dimensional, bi-modal, Gaussian distribution generated
by p(x) = 1/5N (x;5, I) + 4/5N (x;−5, I). We (1) will
show the necessity to control the gradients with a regression
coefficient β; and (2) reduce the variance of the gradients for
σ ∈ [0.1, 90] using C1

g,θ and C1
g,θ; (3) present a setup where

control variate enables the convergence to the solution; (4)
compare C0

g,θ, C1
g,θ and C2

g,θ.

4.1.1. β’S IMPACT

We will now demonstrate the importance of β and under-
score the need to control the gradients, not the training
objective. We control the variance of the training objec-
tive with C1

θ with and without the regression coefficient
β. In addition, we also measure the reduction in the vari-
ance of the gradients, while controlling the objective only.
Table 1 reports that using β is always beneficial, and not
using it drastically increases variance. Table 2 reports that
even though there is an equivalence between controlling the
objective and the gradients, the variance of the gradients
increases, regardless of the use of β. This increase comes
from the regression coefficient β being designed specifically
for the objective rather than its gradients. This evidence sup-
ports our argument of the necessity to control the gradients
and not the objective.

4.1.2. CONTROLLING THE OBJECTIVE’S GRADIENTS

We will now proceed to control the objective’s gradients
with the control variate C1

g,θ , and C1
g,θ and report our results

in Table 3. This experiment shows that either the former
or the latter control variate reduces the variance of the gra-
dients for any σ value in the range [0.1, 90], showing the
effectiveness of our approach in that problem setting.

Table 1: Reduction in the variance of the training objective
when using control variate, for the toy dataset. Without
a regression coefficient, the variances greatly increase for
σ > 1. This confirms the behaviour reported by (Song &
Kingma, 2021). On the contrary, using β always reduces
the variance regardless of σ.

σ 0.1 0.5 1 5 10

ρβ 0.00±0.00 0.05±0.01 0.33±0.06 0.81±0.08 0.82±0.07

ρβ=1 0.00±0.00 0.25±0.04 2.92±0.57 3.25±1.31 24.17±5.95

Table 2: Reduction in the variance of the training objective’s
gradient, for the toy dataset.

σ 0.1 0.5 1 5 10

ρg,β 0.01±0.00 0.27±0.03 0.63±0.05 1.25±0.18 1.17±0.10

ρg,β=1 0.01±0.00 0.31±0.04 1.09±0.13 7.07±1.11 25.77±6.74

4.1.3. ENABLING CONVERGENCE

In this experiment we control the gradients with C2
g,θ for

σ ∈ [0.01, 1] and set the batch size to equal ten. We observe
that the setup without control variate does not converge,
whereas the setup with control variate does. However, if we
increase the batch size to 1000, then both setups converge.
This indicates that in a small batch size regime, where we
expect high variance, and with good Taylor approximation,
the control variate enables the convergence to the solution.

Figure 1: Convergence with (right) and without control
variate (left)

4.1.4. COMPARING C0
G,θ , C1

G,θ AND C2
G,θ

We will now compare the three control variate C0
g,θ, C1

g,θ
and C2

g,θ . We observe an improvement in the variance reduc-
tion between k = 0 and k = 1 and a marginal one between
k = 1 and k = 2, Figure 2. This would suggest that the
MLP behaves loosely as a linear function.

4.2. Variance reduction on MNIST

In the previous experiments, we have shown in a simple
setting the benefit of using the control variate, when variance
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Table 3: Controlling the objective’s gradient with a regression coefficient βg always reduces the variance, at worst, has no
impact. The first row indicates the variance reduction across σ when using the control variate designed for small values of
σ. For σ < 1 there is a substantial decrease in variance, while for σ > 1, βg ensures no increase in variance. The third
row shows variance reduction when using control variate designed for large values of sigma. As expected the reduction is
limited for σ < 5, but for σ > 5 more than half of the variance is reduced.

σ 0.1 0.5 1 5 10 20 40 60 80 90

ρg small 0.02±0.00 0.25±0.03 0.56±0.04 0.82±0.02 0.84±0.02 0.86±0.02 0.89±0.02 0.91±0.02 0.93±0.02 0.94±0.02

βg 0.99±0.01 0.98±0.02 0.98±0.04 0.85±0.06 0.49±0.08 0.39±0.07 0.40±0.12 0.41±0.21 0.34±0.21 0.35±0.31

ρg large 0.70±0.04 0.87±0.04 0.91±0.03 0.80±0.02 0.47±0.04 0.26±0.05 0.30±0.10 0.49±0.13 0.60±0.13 0.59±0.14

βg 0.34±0.16 0.19±0.09 0.14±0.06 0.34±0.05 0.79±0.05 0.85±0.02 0.82±0.02 0.79±0.04 0.73±0.06 0.72±0.06

Figure 2: Variance reduction (right) and regression coeffi-
cient (left) for C0

g,θ, C1
g,θ and C2

g,θ

Figure 3: Variance reduction (right) and training loss (left)
on MNIST

is high. We will now proceed with a set of experiments on
a more challenging dataset and complex model. In this
experiment we control the gradients of a U-Net, training on
MNIST. We experiment with C1

g,θ and C0
g,θ. We observe

a better variance reduction when using k = 1 than k = 0
(Figure 3). However, the variance reduction is marginal and
yields no benefit on the convergence of the loss (Figure 3).
We suppose three explanations: (1) the variance reduction
is not beneficial and is something that might not need to
be addressed; (2) a Taylor approximation with k = 1 and
k = 2 is a poor approximation for large neural networks
such as a U-Net. We investigate further this hypothesis
in Section 4.3; (3) the optimiser used, Adam, already has
a variance reduction mechanism and deals with its most
harmful effect.

Figure 4: Variance reduction on toy dataset comparing
Adam and SGD

4.3. Studying the variance reduction with respect to the
irregularity of the network

The previous experiment showed poor variance reduction,
one possible explanation is that the Taylor expansion poorly
approximates the gradients of complex maps, such as a
U-Net. However, the variance reduction was significant
when using a small MLP, suggesting a faithful Taylor ap-
proximation. Thus, we hypothesise that the approximation
quality decreases with increased network capacity, which
we attempt to confirm in the following experiment.

(Telgarsky, 2015; 2016) proved that the irregularity of an
MLP increases exponentially with its depth and linearly
with its width. Thus, for a fixed number of parameters, a
deep and narrow MLP should be harder to approximate with
Taylor expansion than a shallow and wide one, and so the
variance reduction should be worse for the deep network
than the wide one. To test that, we report the variance re-
duction of various MLP with N parameters, MLPW,D(N),
allocated through different width and depth combination
(W,D). Figure 5 reports that MLPW,D1

(N + n) suffers
from worse variance reduction than MLPW1,D(N + n),
where W1 > W and D1 > D. This supports (Telgarsky,
2015; 2016)’s result, that MLPW,D1(N + n), is more ir-
regular than MLPW1,D(N + n), hinting that increasing the
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irregularity of the network makes it harder to approximate
with Taylor expansion; consequently reducing the variance
through Taylor based control variate becomes increasingly
hard when dealing with large networks with complicated
transformation.

To confirm furthermore this hypothesis, we smooth the loss
landscape, which should be easier to approximate, and mea-
sure the variance reduction. We apply to every linear layer
of the MLP spectral normalisation (Miyato et al., 2018),
which constrains its Lipschitz constant to one. When ap-
plied to every layer of an MLP with ReLU activation, the
Lipschitz constant of the MLP is also constrained to one.
In Appendix C, we prove that the remainder of the Taylor
approximation can be bounded by the Lipschitz constant
of the k-th derivative (assuming it exists), which motivates
this constraint. Figure 6 reports the variance reduction of
the same MLP as in Figure 5, and we observe improved
variance reduction, which supports the hypothesis that a
smoothed landscape is easier to control.

Figure 5: Average variance reduction for various MLP
configurations (lower is better). In each box the value is
the variance reduction and in parenthesis is the number
of parameters.

Figure 6: Average variance reduction for various MLP
configurations with spectral normalisation (lower is bet-
ter). In each box the value is the variance reduction and
in parenthesis is the number of parameters.

4.4. Optimiser

To study the effect of the optimiser, we train an MLP on
the same simple setting as earlier using both Adam and
SGD. As we can see in (Figure 4 we are able to reduce
more the variance when training with SGD; because more
variance is available to be reduced. The decrease in variance
reduction indicates that Adam suffers less from variance in
the objective.

4.5. Discussion

We have introduced a framework to derive arbitrarily precise
control variate for the training objective of a score-based
model and its gradient through Taylor expansions. We have
shown experimentally that in a simple controlled setting, the
benefit of using the control variate to reduce the variance.
Surprisingly, this benefit does not translate to the more com-
plicated datasets and models we have tried. This un-intuitive
result raises the question if the variance present in diffusion
models is actually harmful to the learning objective, or actu-
ally a benefit.

5. Conclusion
In this study, we introduced a framework to derive
arbitrarily precise control variate for the training objective
of a score-based model and its gradient through Taylor
expansions. In addition, we proved an equivalence between
controlling the training objective and its gradients, thereby
laying the foundation for future work on the relationship
between reducing the variance of a training objective and
its gradients. We show, theoretically and empirically that
despite this equivalence, it is necessary to control the
gradients variance, because of the regression coefficient that
scales the control variate and allows it to take effect only
when the estimator and the control variate are correlated.
In this initial investigation we have shown that the quality
of the control variate decreases with the complexity of
the network Section 4.3, and presented evidence that
higher-order expansion yields better variance reduction
Section 4.2. An avenue of research would be to study the
relationship between k and the variance reduction ratio ρ,
for any order.
We also proved an equivalence between controlling the
objective function and its gradients, with the equality:
∂θC

k
θ (z,x, σ) = Ck

θ(z,x, σ). However, their regression
coefficient β and βg differ, which is why we can not control
the gradient’s variance through the objective’s function. We
hypothesise that Wang et al. (2020) were able to achieve it
because their case happened to have β = 1, which happens
when the network and the dataset are simple enough, for
which most of the signal is included in the zero-th order
term of the Taylor expansion. Estimating βg poses a chal-
lenge, as it requires computing the variance of the gradients
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as well as the covariance between the gradients and their
control variate. This procedure can not be efficiently
addressed by automatic differentiation packages, and even
though partial solutions exist (Dangel et al., 2020), the
most effective approach remains to compute the gradients
as a batch and compute any statistics from it. The draw-
back of this approach is the excessive memory consumption.
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A. Appendix / supplemental material

B. Proof
B.1. Control variate for small σ

B.1.1. CONTROL VARIATE ON THE TRAINING OBJECTIVE

We provide hereafter the derivation of the control variate on the training objective.

Lθ(z,x, σ) =
1

2

∥∥∥ z
σ
+ sθ(x+ σz)

∥∥∥2 (18)

=
1

2

∥∥∥ z
σ

∥∥∥2 + 1

2
∥sθ(x+ σz)∥2 +

〈 z

σ
|sθ(x+ σz)

〉
(19)

≃ Lk
θ(z,x, σ) =

1

2

∥∥∥ z
σ

∥∥∥2 + 1

2

∥∥T k
sθ,x

(x+ σz)
∥∥2 + 〈 z

σ
|T k

sθ,x
(x+ σz)

〉
(20)

=
1

2

∥∥∥ z
σ

∥∥∥2 + 1

2

〈 ∑
|α|≤k

σ|α|

α!
zα∂αsθ(x) |

∑
|ρ|≤k

σ|ρ|

ρ!
zρ∂ρsθ(x)

〉
+

〈
z

σ
|
∑
|α|≤k

σ|α|

α!
zα∂αsθ(x)

〉
(21)

=
1

2

∥∥∥ z
σ

∥∥∥2 + 1

2

∑
|α|≤k
|ρ|≤k

σ|α|+|ρ|

α!ρ!
zα+ρ∂αsθ(x)

T∂ρsθ(x) +
∑
|α|≤k

σ|α|−1

α!
zαzT∂αsθ(x) (22)

Taking the expectation of Lk
θ(z,x, σ) quantity yields:

Ez[L
k
θ(z,x, σ)] =

1

2

∥∥∥ z
σ

∥∥∥2 + 1

2

∑
|α|≤k
|ρ|≤k

σ|α|+|ρ|

α!ρ!
δα+ρ∂

αsθ(x)
T∂ρsθ(x) +

∑
|α|≤k

σ|α|−1

α!
E[zαzT ]∂αsθ(x) (23)

To conclude, we derive the control variate on the training objective as such:

Ck
θ (z,x, σ) = Lk

θ(z,x, σ)− Ez[L
k
θ(z,x, σ)]

=
∥z∥2 −D

2σ2
+

1

2

∑
|α|≤k
|ρ|≤k

σ|α|+|ρ|

α!ρ!

(
zα+ρ − δα+ρ

)
∂αsθ(x)

T∂ρsθ(x)

+
∑
|α|≤k

σ|α|−1

α!

(
zαzT − E[zαz]

)
∂αsθ(x)

(24)

B.2. Control variate for k = 1 and k = 2

In practice we use the control variate C1
g,θ(z,x, σ), that we get by deriving first C1

θ(z,x, σ) and differentiate it with
automatic differentiation to get a control variate on the gradients. We also derive the control variate on the training objective
for k = 2:

C1
θ(z,x, σ) =

∥z∥2 −D

2σ2
+

zT

σ
s(x) + zT

(
zT∂s(x)

)
− Tr(∂s(x)) (25)

+ σs(x)T
(
zT∂s(x)

)
+

σ2

2

(
∥zT∂s(x)∥2 − ∥∂s(x)∥2F

)
(26)
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C2
θ(z,x, σ) =

∥z∥2 −D

2σ2
+

zT

σ
s(x) + zT

(
zT∂s(x)

)
− Tr(∂s(x)) +

σ

2
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zT∂s(x)2z

)
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+ σs(x)T
(
zT∂s(x)
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2

(
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+

σ3
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)
(28)

+
σ4

8
∥zT∂s(x)z∥2 − 2Tr((∂2s(x))2)− Tr(∂2s(x))2 (29)

B.2.1. CONTROL VARIATE ON THE TRAINING OBJECTIVE’S GRADIENTS

∂θL(z,x, σ) =
( z

σ
+ sθ(x+ σz)

)T

∂θsθ(x+ σz)

≃ Gk(z,x, σ) =
( z

σ
+ T k
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(30)

We can now derive the expectation of Gk(z,x, σ) with respect to z and the control variate on the gradients Ck
g,θ(z,x, σ)

Ez[G
k(z,x, σ)] =

∑
|ρ|≤k

σ|ρ|−1

ρ!
E[zρz]T∂ρ∂θsθ(x) +

∑
|α|≤k
|ρ|≤k
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αsθ(x)
T∂ρ∂θsθ(x) (31)
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g,θ(z,x, σ) = Gk(z,x, σ)− Ez[G
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=
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T∂ρ∂θsθ(x) (32)

B.3. Proof of Theorem 3.4

We start by recalling the control variate on the training objective at order k:

Ck
θ (z,x, σ) =

∥z∥2 −D

2σ2
+

1

2

∑
|α|≤k
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σ|α|+|ρ|
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)
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(33)

We take it’s derivative with respect to the parameters θ:
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∂θC
k
θ (z,x, σ) = 0+

1
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We apply the product rule:
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|α|≤k
|ρ|≤k

σ|α|+|ρ|

α!ρ!

(
zα+ρ − δα+ρ

) (
∂α∂θsθ(x)

T∂ρsθ(x) + ∂αsθ(x)
T∂ρ∂θsθ(x)

)

+
∑
|α|≤k

σ|α|−1

α!
(zαz− E[zαz])T ∂α∂θsθ(x)

=
∑
|α|≤k
|ρ|≤k

σ|α|+|ρ|

α!ρ!

(
zα+ρ − δα+ρ

) (
∂α∂θsθ(x)

T∂ρsθ(x)
)

+
∑
|α|≤k

σ|α|−1

α!
(zαz− E[zαz])T ∂α∂θsθ(x)

= Ck
g,θ(z,x, σ)

(34)

Which concludes the proof.

B.4. Control variate for large σ

B.4.1. CONTROL VARIATE ON THE TRAINING OBJECTIVE

Lθ(z,x, σ) =
1

2

∥∥∥ z
σ
+ sθ(x+ σz)

∥∥∥2 (35)

=
1

2

∥∥∥ z
σ

∥∥∥2 + 1

2
∥sθ(x+ σz)∥2 +

〈 z

σ
|sθ(x+ σz)

〉
(36)

≃ 1

2

∥∥T k
sθ,σz

(x+ σz)
∥∥2 + 〈 z

σ
|T k

sθ,σz
(x+ σz)

〉
(37)

=
1

2

∑
|α|≤k
|ρ|≤k

xα+ρ

α!ρ!
∂αsθ(σz)

T∂ρsθ(σz) +
∑
|α|≤k

x|α|

σα!
zT∂αsθ(σz)

We take the expectation of the Taylor approximation with respect to the data x and subtract it to itself which yields the
control variate on the training objective:

Ck
θ (z,x, σ) =

1

2

∑
|α|≤k
|ρ|≤k

xα+ρ − µα+ρ

α!ρ!
∂αsθ(σz)

T∂ρsθ(σz) +
∑
|α|≤k

x|α| − µα

σα!
zT∂αsθ(σz)

13
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B.4.2. CONTROL VARIATE ON THE TRAINING OBJECTIVE’S GRADIENTS

∇θL(z,x, σ) =
( z

σ
+ sθ(x+ σz)

)T

∂θsθ(x+ σz) (38)

≃
( z

σ
+ T k1

sθ,σz
(x+ σz)

)T

T k
∂θsθ

(x+ σz) (39)

=

 z

σ
+

∑
|α|≤k1

xα

α!
∂αsθ(σz)

T  ∑
|α|≤k

xρ

ρ!
∂ρ∂θsθ(σz)

 (40)

=
∑
|α|≤k

xα

σα!
zT∂α∂θsθ(σz) +

∑
|α|≤k
|ρ|≤k

xα+ρ

α!ρ!
∂αsθ(σz)

T∂ρ∂θsθ(σz)

As before, we take the expectation with respect to the data x and subtract it to the approximation, which yields the k-th
order control variate on the gradients for large value of σ:

Ck
g,θ(z,x, σ) =

∑
|α|≤k

xα − µα

σα!
zT∂α∂θsθ(σz) +

∑
|α|≤k
|ρ|≤k

xα+ρ − µα+ρ

α!ρ!
∂αsθ(σz)

T∂ρ∂θsθ(σz)

C. Bounding the remainder of a Lipschitz continuous Taylor expansion
Let f : Rn → R be a k + 1-differentiable mapping, where each derivative Dkf is Lk-Lipschitz continuous. They Taylor
expansion of f at a ∈ Rn at order k is given by:

f(x) = Tk(x) +Rk(x)

where

Rk(x) =

∫ 1

0

(1− t)k

k!
Dk+1f(a+ t(x− a))(x− a)k+1dt

We bound the remainder as follows:

|Rk(x)| ≤
∫ 1

0

(1− t)k

k!
Lk+1∥x− a∥k+1dt

|Rk(x)| ≤
Lk+1

k!
∥x− a∥k+1

∫ 1

0

(1− t)kdt

|Rk(x)| ≤
Lk+1

k!
∥x− a∥k+1 · 1

k + 1

|Rk(x)| ≤
Lk+1∥x− a∥k+1

(k + 1)!

Thus, the remainder is bounded by the Lipschitz constant of the k+1-derivative, which motivates constraining the Lipschitz
constant of the function and its successive derivative.

D. Experiments details
In Section 4.1, unless, specified otherwise, we train an MLP of two layers and 128 neurons per hidden layer with Adam,
with a learning rate of 0.001 and the defaults parameters.
In Section 4.2, we train a U-Net of approximately 2M parameters with Adam and its defaults parameters. The backbone is a
sequence of convolutions and max pooling of [32, 64, 128, 256, 256] channels. We trained the U-Net on a single A100 for
k = 0 and two A100 for k = 1.
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