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Abstract

The Mixture of Experts (MoE) for language001
models has been proven effective in augment-002
ing the capacity of models by dynamically rout-003
ing each input token to a specific subset of ex-004
perts for processing. Despite the success, most005
existing methods face a challenge for balance006
between sparsity and the availability of expert007
knowledge: enhancing performance through008
increased use of expert knowledge often results009
in diminishing sparsity during expert selection.010
To mitigate this contradiction, we propose Hy-011
perMoE, a novel MoE framework built upon012
Hypernetworks. This framework integrates the013
computational processes of MoE with the con-014
cept of knowledge transferring in multi-task015
learning. Specific modules generated based on016
the information of unselected experts serve as017
supplementary information, which allows the018
knowledge of experts not selected to be used019
while maintaining selection sparsity. Our com-020
prehensive empirical evaluations across multi-021
ple datasets and backbones establish that Hyper-022
MoE significantly outperforms existing MoE023
methods under identical conditions concerning024
the number of experts. We have anonymized025
our code and uploaded it into the supplemen-026
tary materials.027

1 Introduction028

The accelerated advancement of large lan-029

guage models (LLMs) has culminated in their030

widespread application across various domains, in-031

cluding healthcare, education, and social interac-032

tions (Brown et al., 2020; Achiam et al., 2023;033

Touvron et al., 2023). The remarkable capabilities034

of these models are attributed to the enhancements035

in their scale. Nevertheless, the scaling of dense036

models is often hampered by significant computa-037

tional demands, posing a challenge to developing038

the Natural Language Processing (NLP) commu-039

nity. In response, sparse activation models have040

emerged as a solution (Artetxe et al., 2022; Du041

Figure 1: A trade-off in MoE: (a) A lower number of
selectable experts can maintain sparsity but limits the
availability of expert knowledge. (b) Increasing the
number of selectable experts can improve performance
but decrease sparsity. (c) Transferring partial knowledge
from the unselected experts E2,3 to the selected experts
E1 can improve the availability of expert knowledge
while maintaining sparsity.

et al., 2022), activating only a subset of parameters 042

for different inputs, thus mitigating computational 043

costs. One of the most representative methods is the 044

Mixture of Experts (MoE, Shazeer et al. (2017)), 045

which routers different inputs to specific groups 046

of experts, thereby enlarging the model’s capacity 047

without increasing computational burdens. 048

The key to effectively reducing computational 049

costs lies in the sparsity of expert selection, with 050

the number of experts selected for each token being 051

kept at a lower level. In practical applications or ex- 052

periments, existing works (Roller et al., 2021a; Fe- 053

dus et al., 2022; Rajbhandari et al., 2022; Xue et al., 054

2023) usually select only one or two experts per 055

input. However, increasing the number of selected 056
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experts per token can enhance the availability of057

expert knowledge and improve the performance of058

downstream tasks (Yang et al., 2019; Shazeer et al.,059

2017; He et al., 2023). This scenario positions MoE060

model in a predicament akin to a zero-sum game: a061

choice between increasing the number of available062

experts to improve performance or preserving a063

lower level of available experts to ensure sparsity,064

as depicted in Figure 1.065

To mitigate this contradiction, one solution066

would be to use the knowledge of other experts to067

assist the sparsely selected experts. This is similar068

to multi-task learning, which transfers knowledge069

among related tasks. Some works (Karimi Ma-070

habadi et al., 2021; Ivison and Peters, 2022; Zhao071

et al., 2023) suggest using hypernetworks (Ha et al.,072

2017) to generate task-specific knowledge to en-073

hance positive transfer between tasks. Inspired by074

this, we aim to increase the availability of expert075

knowledge by transferring the knowledge of unse-076

lected experts while sparsely selecting experts.077

In this paper, we propose HyperMoE, a novel078

MoE framework built upon hypernetworks, which079

captures the information from every expert by lever-080

aging expert-shared hypernetwork while achieving081

positive expert transfer by generating conditioned082

modules individually. We refer to the informa-083

tion as cross-expert information. Specifically, a084

HyperMoE consists of HyperExperts, which are085

generated based on the information of unselected086

experts and serve as supplementary information for087

selected experts while maintaining sparsity.088

We further improve upon this by introducing the089

concept of cross-layer Hypernetworks: A hypernet-090

work is shared among all transformer layers, which091

enables information flow among MoEs in different092

layers. This brings additional efficiency in terms of093

parameters and computational costs: Despite the094

additional computation, our method only experi-095

enced a decrease1 of approximately 15% in training096

speed and 10% in inference speed compared to the097

standard MoE.098

We evaluate HyperMoE on 20 representative099

NLP datasets across diverse tasks: sequence classi-100

fication, extractive question answering, summariza-101

tion, and text generation. Extensive experimental102

results show that HyperMoE outperforms strong103

1The degree of decline in speed is related to the scale of
the Hypernetworks and the bottleneck size in the generated
HyperExpert (similar to r in LoRA). For various tasks, these
hyperparameters can be dynamically adjusted to control the
delay.

baselines, including Switch Transformer (Fedus 104

et al., 2022) with MoE architecture. This demon- 105

strates the effectiveness of our method in trans- 106

ferring knowledge to experts, which increases the 107

utilization of expert knowledge while keeping the 108

number of experts selected at a low level. 109

To summarise, our core contributions are: 110

• We propose a novel HyperMoE architecture 111

with HyperExpert for MoE framework, which 112

resolves the inherent tension between main- 113

taining sparse expert selection and ensuring 114

sufficient expert availability within MoE. 115

• HyperMoE outperforms strong baselines 116

based on Switch Transformer across a diverse 117

set of NLP tasks, confirming our approach’s 118

effectiveness. 119

• We show the relevance between selection em- 120

beddings, which are based on the context of 121

unselected experts, and selected experts, in- 122

dicating that the selection embeddings effec- 123

tively encode the information of knowledge 124

that the currently selected experts need. 125

2 Background 126

2.1 Mixture of Expert 127

A Mixture of Experts (MoE) typically consists of 128

two parts: the gate model G and a set of expert 129

models E1, E2, · · · , EN . The gate model is used 130

to dynamically select and combine the outputs of 131

the expert models based on the input x. As a result, 132

each input will be determined by the collective 133

participation of multiple expert models to obtain 134

the output y: 135

y =

N∑
i=1

G(x)iEi(x). (1) 136

The gate model G(·) is a Noisy Top-K Net- 137

work (Shazeer et al., 2017) with parameters Wg 138

and Wnoise. This gating method introduces ad- 139

justable noise and then retains the top-k values as 140

the final output: 141

G(x) =TopK (Softmax (xWg

+N (0, 1) Softplus (xWnoise ))) ,
(2) 142

where TopK(·) denotes selecting the largest K ele- 143

ments. 144

MoE allows for flexible adjustment of the con- 145

tribution of expert models in different input scenar- 146

ios, thereby improving the overall performance and 147

adaptability of the model. 148
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Figure 2: Overview of HyperMoE, with a case of one expert is selected. HyperExperts generated from the shared
hypernetwork benefit from the cross-expert knowledge within it. Conditional inputs can enhance positive transfer
between experts, generating independent modules containing knowledge relevant to the current expert. Taking the
figure as an example, the selection embedding is obtained by aggregating unselected experts S2,3’s embeddings.
This selection embedding is input into a hypernetwork, which is shared across all experts and all layers, to generate
a specific HyperExpert Ê that participates in the computation along with the selected experts E1. The experts E2

and E3 are not activated throughout the process.

2.2 HyperNetworks149

Hypernetwork (Ha et al., 2017) can generate pa-150

rameters to be used by target networks or modules.151

Specifically, a hypernetwork with independent pa-152

rameters ϕ denoted as hϕ, leverages an context in-153

formation z to generate the target parameters θ for154

the primary network fθ and the primary network155

with an input x is redefined as:156

output = fθ(x) = fhϕ(z)(x). (3)157

This method of flexibly adjusting the parameters158

of the target network to adapt to different in-159

put scenarios is widely used in multi-task learn-160

ing (Karimi Mahabadi et al., 2021; Üstün et al.,161

2022) and few-shot learning (Ponti et al., 2021).162

While generating condition-specific parameters,163

these parameters also benefit from shared knowl-164

edge (Pfeiffer et al., 2023).165

3 Method166

Overview. Taking inspiration from knowledge167

transferring between different tasks in multi-task168

learning, we propose HyperMoE. The key idea of169

HyperMoE is to enhance the availability of knowl-170

edge for the current input through positive knowl-171

edge transfer between experts. Through the con-172

dition input we designed, the relevant knowledge173

within the cross-expert information captured by the174

hypernetwork is encoded into HyperExpert, serv-175

ing as supplementary information for the currently176

selected experts. In this work, we introduce con- 177

ditional expert, in which we use shared hypernet- 178

works to generate the expert weights based on the 179

information of the unselected experts. The hyper- 180

networks capture information across experts and 181

transfer relevant knowledge to the selected experts 182

by conditional generation. 183

3.1 Conditional Expert 184

In the transformer model based on the MoE struc- 185

ture, the experts E1, E2, · · · , EN in MoE are typi- 186

cally denoted as a group of parallel FFNs. For an 187

input x ∈ Rh, the output y ∈ Rh can be calculated 188

by the FFN layer as follows: 189

y = FFN(x) = σ(xW1)W2, (4) 190

where W1 ∈ Rh×b and W2 ∈ Rb×h are weight 191

matrices. σ(·) denotes a non-linear activation func- 192

tion. 193

In our approach, the matrices W1 and W2 are 194

generated by a hypernetwork as described in Sec- 195

tion 3.2. In addition, we adopt a bottleneck struc- 196

ture for the conditional expert to improve parameter 197

efficiency inspired by the Adapter (Houlsby et al., 198

2019). Specifically, the bottleneck dimension b 199

satisfies b ≪ h in our method. 200

3.2 HyperExpert 201

These works (Karimi Mahabadi et al., 2021; He 202

et al., 2022; Phang et al., 2023; Ivison et al., 2023) 203
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indicate that hypernetworks can learn the parame-204

ter information of the main neural network under205

different input scenarios and efficiently adjust the206

parameters of the target network to adapt to this207

information.208

Consequently, we propose a novel design called209

HyperExpert, which captures beneficial knowledge210

from cross-expert through conditional generation211

to serve as auxiliary information for the selected212

experts involved in the computation, as shown in213

Figure 2. This also results in the extra parameters214

increasing sub-linearly with the number of layers,215

enhancing the parameter efficiency of the model.216

Selection Embedding. We define the selection em-217

bedding to encode the information of experts not218

selected for each token. Let pi ∈ Rt denote the se-219

lection embedding for i-th token and t denotes the220

dimension. To calculate the selection embedding221

efficiently and achieve better generalization, we222

introduce a group of expert embedding {Sm}Nm=1,223

where Sm ∈ Rt′ represents the m-th expert out of224

N experts. The computation process is as follows:225

Ẑi = I − Zi = I −G(xi), (5)226

227

pi = MLP(

N∑
j=1

Sj
zi,j∑N
j=1zi,j

), (6)228

where G(·) denotes Noisy Top-K Network as de-229

scribed in Section 2.1. The vector Zi ∈ R|N | repre-230

sents token-expert allocations: each element zi,j is231

a binary scalar indicating if the expert embedding232

Sj is active for the input token xi. I is an identity233

vector. MLP(·) is consisting of two feed-forward234

layers and a ReLU non-linearity.235

HyperExpert. We use a hypernetwork He(·) to236

construct HyperExpert Ê based on the conditional237

information of the unselected experts. To better238

share information across different layers and im-239

prove parameter efficiency, we share the hyper-240

network among all layers. Additionally, we de-241

fine the layer embeddings lτ ∈ Rt′ for the τ -th242

Transformer layer. After that, we feed a concatena-243

tion of selection embedding and layer embedding244

to a project network to acquire final embedding245

kiτ = h(pi, lτ ), which is the input to hypernetwork246

He(·) to generates the weight matrices Dτ
i and W τ

i247

for HyperExpert:248

(Dτ
i , U

τ
i ) = He(k

i
τ ) = (WD,WU )kiτ . (7)249

The weight matrices of hypernetworks WD/U250

are used to generate the down-projection matrix251

Dτ
i ∈ Rh×b and the up-projection matrix U τ

i ∈ 252

Rb×h in the HyperExpert Êi for i-th token at τ -th 253

transformer block. 254

Finally, we insert HyperExpert into the expert 255

layer of MoE in parallel and calculate the output of 256

i-th token as follows: 257

Êi(xi) = Relu(Dτ
i x)U

τ
i , (8) 258

259

yi =
N∑
r=1

G(xi)Er(xi) + Êi(xi). (9) 260

In this way, the hypernetwork acts as an informa- 261

tion capturer across experts, while the selection em- 262

beddings efficiently extract knowledge of experts 263

suitable for the current token selection from the 264

hypernetwork and generate HyperExpert to reduce 265

the transfer of negative knowledge in cross-expert 266

information. 267

4 Experiments 268

4.1 Datasets 269

We evaluate HyperMoE on 20 NLP datasets across 270

diverse tasks including sequence classification, 271

question answering, summarization, and text gen- 272

eration. GLUE (Wang et al., 2018) and Su- 273

perGLUE (Wang et al., 2019) benchmarks are 274

widely used evaluation datasets for assessing nat- 275

ural language understanding capabilities. Both 276

of them are a collection of text classification 277

tasks: sentence similarity (STS-B; Cer et al., 2017), 278

(MRPC; Dolan and Brockett, 2005), (QQP; Wang 279

et al., 2018), question-answering (BoolQ; Clark 280

et al., 2019), (MultiRC; Khashabi et al., 2018), 281

(RECORD; Zhang et al., 2018), sentiment anal- 282

ysis (SST-2; Socher et al., 2013), sentence ac- 283

ceptability (CoLA; Warstadt et al., 2019), natu- 284

ral language inference (MNLI; Williams et al., 285

2018), (QNLI; Demszky et al., 2018), (RTE; Gi- 286

ampiccolo et al., 2007), (CB; De Marneffe et al., 287

2019), word sense disambiguation (WIC; Pilehvar 288

and Camacho-Collados, 2019), coreference reso- 289

lution (WSC; Levesque et al., 2012) and sentence 290

completion (COPA; Roemmele et al., 2011). For 291

the question-answering task, we consider SQuAD 292

v1.1 (Rajpurkar et al., 2016), a collection of 293

question-answer pairs derived from Wikipedia arti- 294

cles, with each answer being a text span from the 295

corresponding reading passage. For the summariza- 296

tion task, we use Xsum (Narayan et al., 2018) and 297

CNN/Daily Mail(CNNDM) (Hermann et al., 2015) 298

to test the model’s ability to summarize articles. 299
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GLUE

Method CoLA SST-2 STS-B MRPC QQP MNLI QNLI RTE Avg

MoE 54.24 93.81 88.69 87.90 90.58 87.93 91.68 67.35 82.77
MoE-Share 53.98 94.27 88.38 89.21 90.51 87.95 92.25 67.52 83.01
HyperMoE (ours) 54.67 94.38 88.68 89.63 90.52 88.43 92.64 67.01 83.25

SuperGLUE

Method BoolQ CB MultiRC COPA ReCoRD RTE WIC WSC Avg

MoE 72.69 69.64 66.38 45.00 71.26 67.15 63.63 56.58 64.04
MoE-Share 72.11 67.85 66.71 45.00 71.91 67.87 65.36 56.84 64.21
HyperMoE (ours) 73.14 69.68 67.68 45.00 74.06 67.67 65.31 56.53 64.88

Table 1: Overall comparison on GLUE and SuperGLUE. Switch Transformer-base-8 is used as the PLM backbone
of all methods. For STS-B, we report Pearson Correlation. For MultiRC, we report F1. For ReCoRD, we report
Exact Match. For CoLA, we report Matthews correlation. For other tasks, we report accuracy. The best result on
each block is in bold.

And finally, the WikiText-2 dataset (Merity et al.,300

2017) is used to measure the ability of long-range301

dependencies generation.302

4.2 Experiments Details303

Following (He et al., 2023), we fine-tune pre-304

trained MoE models on downstream tasks and305

report results from the last checkpoint. Unless306

otherwise specified, Our base model primarily307

uses Switch Transformer-base-8, which is an MoE308

model built on T5-base (Raffel et al., 2020) with 8309

available experts, having a total number of parame-310

ters of 620M. For the WikiText dataset, we employ311

GPT-2 small (Radford et al.) as the base model and312

expand it into the MoE structure by duplicating the313

weights of the feed-forward layer. In addition, we314

also use Switch Transformer-base-16/32 to explore315

the effect of expert numbers on our method. To316

achieve a fair comparison, all methods in our pa-317

per employ the same Top-1 routing and auxiliary318

loss. For different data scales, we grid-search the319

training epoch and batch size from {10, 15, 20},320

and {8, 16, 32, 64}, respectively. The learning321

rate is grid-search from {1e-5, 5e-5, 1e-4, 5e-4}322

with Adam optimizer and the first 10% warm-up323

steps. We set the maximum token length to 1024324

for WikiText datasets, 348 for SQuAD, and 256 for325

all other datasets except for the summarization task.326

For Xsum and CNNDM, we set the max length of327

source articles to be 1024 and the max length of the328

target summary to be 128. As for All experiments329

run for 3 times with different seeds and we report330

the average for each result.331

4.3 Baselines 332

Our approach is built upon Switch Transformer (Fe- 333

dus et al., 2022), a well-known MoE model using 334

Top-1 routing. Consequently, we primarily com- 335

pare our approach with the following baselines: (1) 336

MoE, fully finetuning switch transformer model. 337

(2) MoE-Share, as it is a relevant baseline that 338

does not exploit the inductive bias of the relation- 339

ship between selected and unselected experts in the 340

process of computation: add an MLP network that 341

is shared among all experts in the MoE layer of a 342

switch transformer, which has the same size as the 343

experts in MoE. 344

4.4 Results and Analysis 345

4.4.1 Main Results 346

GLUE and SuperGLUE. Table 1 shows the re- 347

sults of various methods applied to the tasks within 348

GLUE and SuperGLUE. Overall, our method im- 349

proves significantly compared to both MoE and 350

MoE-Share. Specifically, compared to MoE, our 351

method shows a +0.48% and +0.84% increase on 352

the GLUE and SuperGLUE benchmarks, respec- 353

tively. This enhancement underscores the advan- 354

tage of adopting expert knowledge transfer in im- 355

proving the performance of MoE models. It’s note- 356

worthy that MoE-Share is relevant to ours, but per- 357

forms worse than MoE on certain datasets such as 358

STS-B, CoLA, and BoolQ. A potential reason is 359

that the cross-expert information captured through 360

a shared network cannot achieve effective positive 361

transfer, adversely impacting MoE-Share’s effec- 362

tiveness on these datasets. In contrast, our method 363

maintains a lead on these datasets while also per- 364

forming well on most other datasets. This under- 365
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Method
Sum.Task QA.Task Modeling.Task

XSum CNNDM SQuAD WikiText

MoE 19.35 19.75 83.01 21.71
MoE-Share 19.41 19.80 82.87 21.63
HyperMoE 19.67 20.12 83.51 21.49

Table 2: Overall comparison on Xsum, CNNDM,
SQuAD, WikiText. For Xsum and CNNDM, we re-
port the Rouge-2 metric (↑). For SQuAD, we report
the Exact Match metric (↑). For WikiText, we report
the Perplexity metric (↓). All tasks are conducted on
the Switch Transformer, except for WikiText, which is
carried out on Bert with an MoE structure, as detailed
in Section 4.2.

scores the effectiveness of our conditional gener-366

ation strategy: selectively transferring knowledge367

by leveraging expert selection information during368

the computation process.369

Other Tasks. Table 2 displays the performance of370

various methods across question-answering tasks,371

summarization tasks, and text-generation tasks. In372

addition to achieving outstanding performance on373

Natural Language Understanding (NLU) tasks rep-374

resented by GLUE and SuperGLUE, our method375

also excels in Natural Language Generation (NLG)376

tasks. Experimental results show that our method377

outperforms baseline methods across all NLG tasks.378

Specifically, in extractive question-answering tasks,379

our method shows improvements of 0.50% and380

0.64% over MoE and MoE-Share, respectively.381

Like the NLU tasks, MoE-Share again underper-382

forms, indicating that the extra networks may not383

effectively learn information useful to experts with-384

out the expert selection inductive bias. Further-385

more, our method still performs well in summariza-386

tion tasks involving long-text inputs. This demon-387

strates that our method can still effectively enhance388

the availability of expert knowledge through knowl-389

edge transfer under complex input conditions, suit-390

able for tasks of various text lengths. Lastly, our391

method also achieves considerable improvement392

on Wikitext. These results demonstrate the effec-393

tiveness of HyperMoE in various tasks.394

4.4.2 Ablation Study395

We conduct an ablation study on the SQuAD to396

evaluate the effectiveness of the proposed modules.397

The embedding design is removed to verify the ef-398

fect of using external information as embeddings.399

As shown in Table 3 (row 1), when the embedding400

and hypernet are removed, our method is equiva-401

lent to MoE. Table 3 (row 2) omits the embedding402

Embedding Hypernet Exact Match

% % 83.01
% ! 82.92
W ! 83.33
P ! 83.51

Table 3: Ablation study on SQuAD. W represents the
use of expert weights as embeddings. P denotes the use
of our proposed selection embedding.

Figure 3: Performance comparison of MoE methods on
the SQuAD dataset with the increase in the number of
experts.

design, directly using the sample’s hidden state as 403

input to the hypernetwork. This results in a marked 404

decrease in performance, even falling below that of 405

MoE. This suggests that conditioning the hypernet- 406

work on the sample enlarges the parameter search 407

space and is difficult to optimize. In an additional 408

experiment, we use a depthwise separable convolu- 409

tional network (Howard et al., 2017) with kernels 410

of sizes 5×5 and 3×3 to compress and reduce the di- 411

mensions of the experts’ weights, obtaining expert 412

embeddings. More details are in Appendix A. The 413

selection embeddings are then computed and input 414

into the hypernetwork as described in Section 3.2. 415

Empirically, expert weights can better represent 416

the information of experts. However, as shown in 417

Table 3 (row 3), this strategy leads to a slight drop 418

in performance, defying expectations. A potential 419

explanation is the substantial information loss asso- 420

ciated with compressing expert weights, resulting 421

in a loss of specific information details. We leave 422

the exploration of this strategy to future work. 423

4.4.3 Performance in Scaling the Number of 424

Experts 425

To explore the impact of the variation in the num- 426

ber of experts on our method, we fine-tuned on the 427
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SQuAD dataset using Switch Transformer-base-428

16/32 as pre-trained models. These models pos-429

sess 16 and 32 experts in each MoE layer, respec-430

tively. As demonstrated in Figure 3, every method431

achieves performance enhancement across models432

featuring a diverse number of experts. Notably,433

our method exhibits consistent superior growth and434

outperforms the others. This indicates that the pro-435

posed conditional generation strategy can still ef-436

fectively benefit from knowledge transfer as the437

number of experts increases.438

Figure 4: Compare the performance of our method when
calculating selection embedding using the selected ex-
pert embeddings or the unselected expert embeddings,
respectively.

4.4.4 Investigating of Selection Embedding.439

The unselected expert embeddings are more440

informative than selected expert embeddings.441

Empirically, by conditioning on the information442

of unselected experts, specific knowledge can be443

extracted from cross-expert knowledge, which se-444

lected experts do not possess, thereby aiding the445

selected experts. To verify this idea, we input em-446

beddings of both selected and unselected experts447

into a hypernetwork, comparing their performance448

on the Xsum and CNNDM datasets. As shown449

in Figure 4, using unselected expert information450

as conditional input can achieve comparable re-451

sults. This implies that the conditional information452

of unselected experts can generate more beneficial453

knowledge for the selected experts through a shared454

hypernetwork.455

Expert embeddings and the selection embed-456

dings have a corresponding relationship. In addi-457

tion, to explore whether the embeddings encode the458

information in our proposed method, we provide459

visualizations of the expert embeddings and com-460

puted selection embeddings within the final MoE461

layer of Switch Transformer-base-8 learned on CN-462

NDM. Figure 5 reveals that both sets of embed- 463

dings exhibit sparse distributions, suggesting that 464

the embeddings encode some specific non-relevant 465

information. We also observe a correlation between 466

the distances among selection embeddings and the 467

distances among expert embeddings, such as be- 468

tween 4-5-6, 1-2-8, 7-3. This correlation implies 469

that the information of the unselected experts en- 470

coded by the selection embeddings depends on the 471

information of the selected experts, further illus- 472

trating that the selection embeddings effectively 473

capture the information of the knowledge the cur- 474

rently selected experts need. 475

Figure 5: t-SNE visualizations for expert embeddings
(right) and selection embeddings (left). selection i de-
notes calculated using all expert embeddings except for
the i-th expert embedding.

4.4.5 Impact of Additional Computation 476

Although our method achieves significant perfor- 477

mance improvements compared to the original 478

MoE structure, it introduces additional networks, 479

which inevitably slightly reduces the inference 480

speed of HyperMoE. We evaluate the number of 481

samples per second that our method can train/infer 482

based on Switch Transformer-base-8. The methods 483

in each task employ the same batch size. As shown 484

in Table 4, our method’s training/inference speed is 485

only reduced by about 15% and 10% compared to 486

MoE, respectively. This suggests that our approach 487

can enhance the availability of expert knowledge 488

more effectively without significantly increasing 489

computational costs while maintaining sparsity dur- 490

ing expert selection. 491

5 Related Work 492

5.1 Mixture of Expert 493

Shazeer et al. (2017) introduces Mixture-of-Expert 494

layers for LSTM language modeling and machine 495

translation. These layers are inserted between the 496

standard layers of the LSTM model. Subsequent 497
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Method
Sum.Task QA.Task

XSum CNNDM SQuAD

MoEtrain 76.31 77.20 89.56
HyperMoEtrain 65.69 65.95 75.38

MoEeval 5.42 5.99 78.43
HyperMoEeval 4.78 5.32 67.73

Table 4: The number of samples trained/evaluated per
second.

work primarily builds on Transformers, where ex-498

pert layers often replace dense layers. Lepikhin499

et al. (2021) first introduces MoE layers into Trans-500

formers and studies them in the context of machine501

translation. With the release of Gshard (Lepikhin502

et al., 2021) and Switch Transformer (Fedus et al.,503

2022), MoE models are scaled up to new heights504

by introducing thousands of small-scale experts.505

In terms of routing, Shazeer et al. (2017) use rout-506

ing to the top k experts out of k > 1. Hazimeh507

et al. (2021) propose DSelect-k, a smoothed ver-508

sion of the top-k routing algorithm that improves509

upon standard top-k routing. Fedus et al. (2022),510

Clark et al. (2022) and Xue et al. (2023) demon-511

strate that top-1 routing can also achieve competi-512

tive results. Hash Layer (Roller et al., 2021b) and513

StableMoE (Dai et al., 2022) employ fixed rout-514

ing strategies for more stable routing and training.515

Zhou et al. (2022) propose an expert selection rout-516

ing strategy where each token can be assigned to517

a different number of experts. Rajbhandari et al.518

(2022) and Dai et al. (2024) isolate general knowl-519

edge from experts using shared experts from engi-520

neering and algorithm perspectives, respectively, to521

promote expert specialization.522

In contrast to previous work, our work mainly523

focuses on the knowledge transfer between experts524

in MoE. This provides a solution for improving525

the availability of expert knowledge in MoE while526

maintaining sparsity.527

5.2 HyperNetwork528

Hypernetworks (Ha et al., 2017) are widely used in529

multi-task learning due to their ability to avoid530

negative interference of corresponding modules531

by soft parameter sharing and generating mod-532

ule parameters conditioned on the shared pa-533

rameters. The most common approach usually534

takes task (Karimi Mahabadi et al., 2021; Zhao535

et al., 2023) or language embeddings (Üstün et al.,536

2020; Baziotis et al., 2022) as contextual infor-537

mation to generate corresponding module param- 538

eters, such as adapter layers (Üstün et al., 2020; 539

Ansell et al., 2021; Karimi Mahabadi et al., 2021), 540

classifier heads (Ponti et al., 2021), and contin- 541

uous prompts (He et al., 2022). In addition, 542

hypernetwork-based approaches have also been 543

very successful in zero-shot and few-shot scenar- 544

ios (Deb et al., 2022; Phang et al., 2023; Ivison 545

et al., 2023). 546

In the field of NLP, hypernetworks are mainly 547

used to improve the generalization (Volk et al., 548

2022; Zhang et al., 2023) and applicability (Wul- 549

lach et al., 2022; He et al., 2022; Tan et al., 2023) 550

of dense models. Our work explores the integration 551

of hypernetworks with sparse MoE. We propose to 552

input the expert selection status of tokens as infor- 553

mation into the hypernetwork and generate module 554

parameters that correspond to the respective to- 555

kens. To the best of our knowledge, this is the first 556

time that hypernetworks have been introduced in 557

the MoE structure, which extends the application 558

scope of hypernetworks and provides new insights 559

for knowledge transferring in MoE. 560

6 Conclusion 561

In this work, we introduce HyperMoE, a novel Mix- 562

ture of Experts (MoE) architecture. Inspired by the 563

concept of knowledge transfer in multi-task learn- 564

ing, we propose a method to facilitate knowledge 565

transfer between experts through conditional gen- 566

eration. Our method enhances expert knowledge 567

availability while maintaining expert selection’s 568

sparsity. We show the effectiveness of our approach 569

across a wide range of NLP tasks. Experimental 570

results demonstrate that our method exhibits ex- 571

cellent performance compared to the conventional 572

MoE. Furthermore, our analysis shows that without 573

any measures, there could be negative knowledge 574

transfer across experts when transferring knowl- 575

edge to specific experts. Our approach mitigates 576

this issue by capturing the contextual information 577

of experts. We explore the feasibility of knowl- 578

edge transfer between experts in MoE, providing a 579

new perspective for future improvements in MoE 580

architectures. 581

Limitations 582

Despite our work has demonstrated strong experi- 583

mental results, there are several limitations: (1) In 584

this work, we utilize end-to-end training to learn 585

expert embeddings. Incorporating prior knowledge, 586

8



such as expert weights, into the embedding learning587

process may improve efficiency and performance.588

We will improve upon this in future work. (2) We589

insert HyperExpert into the expert layer of MoE590

in parallel. This incurs additional computational591

overhead. Mitigating this issue could be achieved592

by employing some parameter-efficient methods593

(such as LoRA (Hu et al., 2022) and (IA)3 (Liu594

et al., 2022)) to insert HyperExpert into MoE. (3)595

Current experiments mainly focus on fine-tuning596

the pre-trained MoE model. Utilizing our proposed597

method to train a large-scale MoE from scratch will598

be the emphasis of our future work.599
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A Depthwise Separable Convolutional984

Networks Details985

For every expert weight in each MoE layer, we986

use the same convolutional network to reduce its987

dimensionality. First, we stack them so that their988

dimensional form is three-dimensional, similar to989

images. Then, we perform convolution on them.990

Our experiments used depthwise separable convolu-991

tions, with specific parameters as shown in Table 5.992

Type/Stride Filter Shape Input Size

Conv dw / s5 5× 5× 2 dw 8× 2× 3072× 768
Conv / s1 1× 1× 2× 32 8× 2× 614× 153

Avg Pool / s(16, 6) Pool(16,6) 8× 32× 614× 153
Conv dw / s3 3× 3× 32 dw 8× 32× 38× 25

Conv / s1 1× 1× 32× 128 8× 32× 12× 8
Avg Pool / s8 Pool(8,8) 8× 128× 12× 8

Output – 8× 128× 1× 1

Table 5: Specific parameters and structure of depthwise
separable convolutions.

The compressed expert weights are used as ex-993

pert embeddings in subsequent computations as994

described in Section 3.2.995
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