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Abstract

We study the problem of preferential Bayesian
optimization (BO), where we aim to optimize a
black-box function with only preference feedback
over a pair of candidate solutions. Inspired by
the likelihood ratio idea, we construct a confi-
dence set of the black-box function using only
the preference feedback. An optimistic algorithm
with an efficient computational method is then
developed to solve the problem, which enjoys an
information-theoretic bound on the total cumula-
tive regret, a first-of-its-kind for preferential BO.
This bound further allows us to design a scheme
to report an estimated best solution, with a guar-
anteed convergence rate. Experimental results
on sampled instances from Gaussian processes,
standard test functions, and a thermal comfort
optimization problem all show that our method
stably achieves better or competitive performance
as compared to the existing state-of-the-art heuris-
tics, which, however, do not have theoretical guar-
antees on regret bounds or convergence.

1. Introduction
Bayesian optimization (BO) is a popular sample-efficient
black-box optimization method (Shahriari et al., 2015; Fra-
zier, 2018). It is widely applied to tuning hyperparameters
of machine learning models (Snoek et al., 2012), optimizing
the performance of control systems (Xu et al., 2022b), and
discovering new drugs (Negoescu et al., 2011), etc.

The main idea of BO is based on surrogate modeling. That
is, a learning algorithm (typically Gaussian process regres-
sion) is applied to learn the unknown black-box function
using historical samples, which then outputs a learned surro-
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gate together with uncertainty quantification. Then BO algo-
rithms, such as the popular Expected Improvement (Jones
et al., 1998) and GP-UCB algorithms (Srinivas et al., 2012),
use the information of this learned surrogate and uncertainty
quantification to choose the next sample point.

The conventional BO setting assumes each sample, which
typically corresponds to a round of real-world experiment or
software simulation in practice, returns a noisy scalar evalu-
ation of the black-box function. However, many human-in-
the-loop systems can not return such a scalar value, or it is
much more difficult to directly obtain such a scalar evalua-
tion from humans since humans are bad at sensing absolute
magnitude (Kahneman & Tversky, 2013). In contrast, it
is much easier for a human to compare a pair of solutions
and report which is preferred (Lichtenstein & Slovic, 1971;
Tversky & Kahneman, 1974; Kahneman & Tversky, 2013).

This gives rise to preferential Bayesian optimiza-
tion (González et al., 2017), where the scalar evaluation
of the black-box function is not available. But rather, we
can query an oracle to compare a pair of solutions, or the
so-called duels. Such settings arise widely in a broad range
of applications, such as visual design optimization (Koyama
et al., 2020), thermal comfort optimization (Abdelrahman &
Miller, 2022) and robotic gait optimization (Li et al., 2021).

Existing preferential Bayesian optimization methods are
mostly heuristic, without formal guarantees on cumulative
regret or convergence to the global optimal solution. For
example, (González et al., 2017) proposes several heuris-
tic acquisition strategies, including expected improvement
and Thompson sampling-based methods, for preferential
Bayesian optimization. (Mikkola et al., 2020) extends the
preferential Bayesian optimization to the projective setting.
(Takeno et al., 2023) proposes a Thompson sampling-based
method for practical preferential Bayesian optimization with
skew Gaussian process. (Astudillo et al., 2023) proposes a
decision theoretical acquisition strategy with a convergence
rate guarantee for a finite input set. However, as far as we
know, all the existing preferential Bayesian optimization
methods can not provide theoretical guarantees on cumu-
lative regret or global convergence with continuous input
space, partially due to the challenge of quantifying uncer-
tainty in a principled way.

Beyond preferential BO, optimization from preference feed-
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back has also been investigated in other contexts. In the
following, we first survey the related work other than pref-
erential BO and then highlight our unique contributions.

Dueling Bandits In dueling bandits (Yue et al., 2012), the
goal is to identify the best arm from a set of finite arms,
using only the noisy comparison feedback. It has also been
extended to adversarial (Gajane et al., 2015) and contex-
tual (Dudı́k et al., 2015; Saha & Krishnamurthy, 2022) set-
tings. One extension that is most related to this work is
kernelized dueling bandits (Sui et al., 2017; 2018). How-
ever, this line of research is typically restricted to the case
where the number of arms is finite, and the regret bound can
blow up to infinity when the number of arms goes to infin-
ity (e.g., Thm. 2 in (Sui et al., 2017)). A recent work (Mehta
et al., 2023) proposes an offline method with suboptimal-
ity bound by learning winning probability, which, however,
are not applicable to online learning problems due to linear
growth of regret over the randomly sampled compared point
sequences. In the existing literature, there is no cumulative
regret bound that depends on an inherent complexity met-
ric (such as covering number and maximum information
gain (Srinivas et al., 2012)) of the black-box function with
continuous input space.

Convex Optimization with Preference Feedback (Saha
et al., 2021; Yue & Joachims, 2009) consider the optimiza-
tion of convex functions, where only a comparison oracle
of function values over different points is available. The
proposed methods estimate the gradient from the preference
signals. However, this line of research restricts the function
to be convex, while in practice, the black-box function may
be non-convex. The proposed method may get stuck in
a local optimum and can be sample-inefficient since each
estimate of the gradient already needs several samples.

Reinforcement Learning from Human Feedback Rein-
forcement learning from human feedback (RLHF) (Chris-
tiano et al., 2017; Griffith et al., 2013) has recently become
very popular. It has found many successes in wide appli-
cations, including training robots (Hiranaka et al., 2023),
playing games (Warnell et al., 2018), and remarkably large
language models (Ouyang et al., 2022). On the theoretical
line of RLHF research, recent results analyze the offline
learning of the implicit reward function (Zhu et al., 2023)
and the model-based optimistic reinforcement learning from
human feedback (Wang et al., 2023). However, the existing
theoretical analysis either only deals with finite-dimensional
generalized linear models or highly relies on the complexity
measure of Eluder dimension (Osband & Van Roy, 2014).
The existing generic theoretical analysis for RLHF can not
be directly applied to the Bayesian optimization setting,
where the Eluder dimension of the infinite-dimensional re-
producing kernel Hilbert space is not well understood.

Optimistic Model-based Sequential Decision Making Op-

timism in the face of uncertainty is a widely adopted de-
sign principle for model-based sequential decision making
problems, such as in Bayesian optimization/reinforcement
learning (Wu et al., 2022; Xu et al., 2023; Pacchiano et al.,
2021; Curi et al., 2020; Liu et al., 2023). The optimism
principle has also been applied to RLHF (Wang et al., 2023)
recently. However, as far as we know, there is no existing
principled optimistic algorithm for preferential BO yet.

Our contributions. Guided by the optimism principle,
we design a preferential Bayesian optimization algorithm
that enjoys information-theoretic bounds on the cumulative
regret. Specifically, our contributions include:

• Algorithm design. Inspired by the recent work of
the confidence set based on optimistic maximum like-
lihood estimate (Liu et al., 2023) and the likelihood
ratio confidence set idea (Owen, 1990; Emmenegger
et al., 2023), we construct a confidence set by only
using the preference feedback. We then exploit the
principle of optimism in the face of uncertainty to
design a Principled Optimistic Preferential Bayesian
Optimization (POP-BO) algorithm, together with a
scheme of reporting an estimated best solution.

• Theoretical analysis. Under some mild regularity as-
sumptions, we prove an information-theoretic bound
on the cumulative regret of POP-BO algorithm, which
is first-of-its-kind 1 for preferential Bayesian optimiza-
tion. This is significant since previous information-
theoretic regret bounds typically assume the direct
scalar evaluations of black-box functions (Srinivas
et al., 2012) while the recent generic theoretical re-
sults for RLHF typically rely on Eluder dimension,
which is not well understood for RKHS.

• Efficient computations. The optimistic algorithm
needs to solve bi-level optimization problems with
the inner variable in an infinite-dimensional function
space. We leverage the representer theorem (Schölkopf
et al., 2001) to reduce the inner optimization prob-
lem to finite-dimensional space, which turns out to be
tractable via convex optimization. This further allows
efficient grid-free joint optimization.

• Empirical validations and toolbox. 2 Experimental
results show that POP-BO consistently achieves better
or competitive performance as compared to the state-
of-the-art heuristic baselines and more than 10 times
speed-up in computation as compared to the Thompson
sampling based method. We also provide a reusable
toolbox for future applications of our method.

1(Mehta et al., 2023) provides a bound on the partial cumulative
regret, which only captures the suboptimality of one point in each
compared duel. We consider stronger total cumulative regret over
both points in the compared duel. See Appendix Q for a detailed
discussion.

2Code link: https://github.com/PREDICT-EPFL/POP-BO
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2. Problem Statement
We consider the maximization of a black-box function f ,

max
x∈X

f(x), (1)

where X ⊂ Rd with d as the input dimension. We use
x ≻ x′ to denote the event that ‘x is preferred to x′’. In
contrast to the standard BO setup, we assume that we can
not directly evaluate the scalar value of f(x) but rather, we
have a comparison oracle that compares any two points x, x′

and returns a preference signal 1x≻x′ , which is defined as

1x≻x′ =

{
1, if x is preferred,
0, if x′ is preferred.

(2)

Before proceeding, we state a set of common assumptions.

Assumption 2.1. X is compact and nonempty.

Assumption 2.1 is reasonable because, in many applica-
tions (e.g., continuous hyperparameter tuning) of Bayesian
Optimization, we are able to restrict the optimization into
certain ranges based on domain knowledge. Regarding the
black-box function f , we assume that,

Assumption 2.2. f ∈ Hk, where k : Rd × Rd → R is a
symmetric, positive semidefinite kernel function and Hk is
the corresponding reproducing kernel Hilbert space (RKHS,
see (Schölkopf et al., 2001)). Furthermore, we assume
∥f∥k ≤ B, where ∥ · ∥k is the norm induced by the inner
product in the corresponding RKHS.

Assumption 2.2 requires that the function to be optimized is
regular in the sense that it has a bounded norm in the RKHS,
which is a common assumption (Chowdhury & Gopalan,
2017a; Zhou & Ji, 2022). For simplicity, we will use Bf to

denote the set
{
f̃ ∈ Hk|∥f̃∥k ≤ B

}
, which is a ball with

radius B in Hk.
Remark 2.3 (Choice of B). In practice, a tight norm bound
B might not be known beforehand. In the theoretical analy-
sis, we only assume that there is a finite bound B, possibly
unknown beforehand. In the practical implementation of
our algorithm, we can adapt B based on hypothesis test-
ing (Newey & McFadden, 1994). For example, we can
double B every time we detect a low likelihood value (See
more elaboration in Appendix G.).

Assumption 2.4. k(x, x′) ≤ 1,∀x, x′ ∈ X and k(x, x′) is
continuous on Rd × Rd.

Assumption 2.4 is a commonly adopted mild assumption
in the BO literature (Srinivas et al., 2012; Chowdhury &
Gopalan, 2017a). It holds for most commonly used kernel
functions after normalization, such as the linear kernel, the
Matérn kernel, and the squared exponential kernel.

Assumption 2.5. The random preference feedback 1x≻x′

from the comparison oracle follows the Bernoulli distri-
bution with P(1x≻x′ = 1) = px≻x′ = σ(y − y′), where
y = f(x), y′ = f(x′) and σ(u) = 1/(1+e−u)

3.

Assumption 2.5 equivalently assumes that,

P(1x≻x′ = 1) =
ef(x)

ef(x) + ef(x′)
, (3)

which can be observed to be the widely used Bradley-Terry-
Luce (BTL) model (Bradley & Terry, 1952) for pairwise
comparison. The intuition here is that the more advan-
tage f(x) has as compared to f(x′), the more likely x
is preferred. The same comparison model is also used
in, e.g., training large language models (Ouyang et al.,
2022). At step t, our algorithm queries the pair (xt, x

′
t)

and the comparison oracle returns the random preference
1xt≻x′

t
∈ {0, 1}. For the simplicity of notation, we use

1τ ∈ {0, 1} to denote the realization of the Bernoulli ran-
dom variable 1xτ≻x′

τ
when querying the comparison oracle

at step τ . Based on the historical comparison results

Dt := {(xτ , x′τ ,1τ )}tτ=1, (4)

the algorithm needs to decide the next pair of samples to
compare. Without further notice, all the theoretical results
in this paper are under the assumptions 2.1, 2.2, 2.4, 2.5,
and all the corresponding proofs are in the appendices.

Notations. The probability, denoted as P(·), is taken over
the randomness of the preference feedback generated by
the comparison oracle and the randomness generated by the
algorithm. Let the filtration Ft capture all the randomness
up to step t. N (Bf , ϵ, ∥ · ∥∞) denotes the standard covering
number (Zhou, 2002) of the function space ball Bf with the
covering balls’ radius ϵ and the infinity norm ∥ · ∥∞. We
will also use [τ ] to denote the set {1, · · · , τ}.

3. High Confidence Set
3.1. Likelihood-based Confidence Set

We first introduce the function,

pf̂ (xτ , x
′
τ ,1τ ) :=1τσ(f̂(xτ )− f̂(x′τ ))+ (5)

(1− 1τ )
(
1− σ(f̂(xτ )− f̂(x′τ ))

)
,

which is the likelihood of f̂ over the event 1xτ≻x′
τ
= 1τ

under the Bernoulli preference model in Assumption 2.5.

We can then derive the likelihood function of a fixed function
3We mainly consider the widely used sigmoid function here.

Our result can be extended to more general σ under mild regularity
conditions.
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f̂ over the historical preference dataset Dt
4.

Pf̂ ((xτ , x
′
τ ,1τ )

t
τ=1) :=

t∏
τ=1

pf̂ (xτ , x
′
τ ,1τ ) (6)

Taking log gives the log-likelihood function,

ℓt(f̂) := logPf̂ ((xτ , x
′
τ ,1τ )

t
τ=1) =

t∑
τ=1

log pf̂ (xτ , x
′
τ ,1τ )

=

t∑
τ=1

log

(
ezτ1τ + ez

′
τ (1− 1τ )

ezτ + ez
′
τ

)
(7)

=

t∑
τ=1

(zτ1τ + z′τ (1− 1τ ))−
t∑

τ=1

log
(
ezτ + ez

′
τ

)
,

where zτ = f̂(xτ ), z
′
τ = f̂(x′τ ), 1τ ∈ {0, 1} is the data

realization of 1xτ≻x′
τ
, and the last equality can be checked

correct for either 1τ = 1 or 1τ = 0.

A common method for statistical estimation is by maxi-
mizing the likelihood. Hence, we introduce the maximum
likelihood estimator (MLE),

f̂MLE
t ∈ arg max

f̃∈Bf

logPf̃ ((xτ , x
′
τ ,1τ )

t
τ=1). (8)

With the maximum likelihood estimator introduced, the
posterior high confidence set can be derived as shown in
Thm. 3.1 using the maximum log-likelihood value.

Theorem 3.1 (Likelihood-based Confidence Set). ∀ϵ, δ >
0, let,

Bt+1
f := {f̃ ∈ Bf |ℓt(f̃) ≥ ℓt(f̂

MLE
t )− β1(ϵ, δ, t)}, (9)

where β1(ϵ, δ, t) :=

√
32tB2 log

π2t2N (Bf ,ϵ,∥·∥∞)
6δ +

CLϵt = O
(√

t log
tN (Bf ,ϵ,∥·∥∞)

δ + ϵt

)
, with CL a con-

stant independent of δ, t and ϵ. We have,

P
(
f ∈ Bt+1

f ,∀t ≥ 1
)
≥ 1− δ. (10)

Intuitively, the confidence set Bt+1
f includes the functions

with the log-likelihood value that is only ‘a little worse’
than the maximum likelihood estimator. It turns out that
by correctly setting the ‘worse’ level β1, the confidence
set Bt+1

f contains the ground-truth function f with high
probability. This is reasonable because the preference data
is generated with the ground-truth function, and thus the
likelihood of the ground-truth function will not be too much
lower than the maximum likelihood estimator.

4Note that Pf̂ (·) is the likelihood function in f̂ over the his-
torical data Dt, not the probability taken over the data/algorithm
randomness.

Remark 3.2 (Choice of ϵ). In Thm. 3.1, β1(ϵ, δ, t) also
depends on a small positive value ϵ, which is to be chosen. In
the theoretical analysis, it will be seen that ϵ can be selected
to be 1/T , where T is the algorithm’s running horizon.
Remark 3.3 (Likelihood Ratio Idea). The confidence set
Bt+1
f contains the functions f̃ that satisfy,

Pf̃ ((xτ , x
′
τ ,1τ )

t
τ=1)

Pf̂MLE
t

((xτ , x′τ ,1τ )tτ=1)
≥ e−β1(ϵ,δ,t), (11)

which is the likelihood ratio confidence set (Owen, 1990).
Remark 3.4. Surrogate-based black-box optimization with
kernel method is often referred to as Bayesian optimiza-
tion due to its close relations to Bayesian Gaussian process
model. Hence, we refer to our method as preferential BO.

Based on the confidence set in Thm. 3.1, we can derive the
pointwise confidence range for the black-box function.

inf
f̃∈Bt

f

f̃(x) ≤ f(x) ≤ sup
f̃∈Bt

f

f̃(x). (12)

Fig. 1 demonstrates the maximum likelihood estimate func-
tion and the confidence range with the ground truth function
sampled from a Gaussian process, random comparison in-
puts, and β1(ϵ, δ, t) set to be a constant 1.0. It can be seen
that the maximum likelihood estimate approximates the
ground truth better and better with the confidence range
shrinking, as we have more and more comparison data.

3.2. Bound Duel-wise Error

Thm. 3.1 gives a high confidence set based on the likelihood
function. However, it is not straightforward how the like-
lihood bounds lead to the error bounds on function value
differences over a compared pair (x, x′), which determines
the preference distribution. The following theorem further
gives such a bound over the historical samples.

Lemma 3.5 (Elliptical Bound). For any estimate f̂t+1 ∈
Bt+1
f that is measurable with respect to the filtration Ft, we

have, with probability at least 1− δ, ∀t ≥ 1,

t∑
τ=1

((
f̂t+1(xτ )− f̂t+1(x

′
τ )
)
− (f(xτ )− f(x′τ ))

)2
≤ β(ϵ, δ/2, t), (13)

and
f ∈ Bt+1

f , (14)

where β(ϵ, δ/2, t) = σ′2

Hσ
(β2(ϵ, δ/2, t) + 2β1(ϵ, δ/2, t)) =

O
(√

t log
tN (Bf ,ϵ,∥·∥∞)

δ + ϵt+ ϵ2t

)
, with β2(ϵ, δ, t) =

8Hσσ̄′2ϵ2t+2CLϵt+
√

8tB2
p log

π2t2N (Bf ,ϵ,∥·∥∞)
3δ and the

constants σ′, Hσ, σ̄′, Bp as defined in Appendix B.

4



Principled Preferential Bayesian Optimization

0 5 10

−2

0

2

4

x

y

5 samples

0 5 10

−2

0

2

4

x

y

10 samples

0 5 10

−2

0

2

4

x

y

15 samples

MLE function Ground Truth Confidence Range

Figure 1. Demonstration of the maximum likelihood function and the confidence set based on likelihood. The results are derived using
random sequential comparisons (that is, comparing xt to xt−1), where each xt is uniformly randomly sampled from the input set.

Lem. 3.5 highlights that with high probability, all the func-
tions in the confidence set have difference values over
the historical sample points that lie in a ball with the
ground-truth function difference value as the center and√
β(ϵ, δ/2, t) as the radius. Lem. 3.5 indicates that our

likelihood-based learning scheme can gradually learn the
function differences f(xτ ) − f(x′τ ) but not the absolute
value f(xτ ). This is reasonable since shifting f by a con-
stant will not change the distribution of preference feedback.

Furthermore, to derive an error bound over a new pair
(x, x′), we need to quantify the uncertainty of f̃(x)− f̃(x′),
where f̃ ∈ Bf . Since −f̃ ∈ Bf by the definition of Bf , it
can be seen that f̃(x)− f̃(x′) ∈ Bff ′ , where

Bff ′ := {F (x, x′) = f̃(x) + f̃ ′(x′)|f̃ , f̃ ′ ∈ Bf}. (15)

Indeed, Bff ′ is the ball with radius 2B in the
RKHS equipped with the additive kernel function
kff

′
((x, x′), (x̄, x̄′)) := k(x, x̄) + k(x′, x̄′), which we

term as the augmented RKHS here, and inner product
⟨f1 + f ′1, f2 + f ′2⟩kff′ := ⟨f1, f2⟩k + ⟨f ′1, f ′2⟩k. The read-
ers are referred to (Christmann & Hable, 2012; Kandasamy
et al., 2015) for more details of the additive kernel and the
corresponding RKHS. To quantify the uncertainty of a new
pair (x, x′), we further introduce the function,(
σff ′

t (ω)
)2

= kff
′
(ω, ω) (16)

−kff
′
(ω1:t−1, ω)

⊤
(
Kff ′

t−1 + λI
)−1

kff
′
(ω1:t−1, ω) ,

where ω := (x, x′), ω1:t−1 := ((xτ , x
′
τ ))

t−1
τ=1, Kff ′

t−1 :=

(kff
′
((xτ1 , x

′
τ1), (xτ2 , x

′
τ2)))τ1∈[t−1],τ2∈[t−1], and λ is a

positive regularization constant.
Theorem 3.6 (Duel-wise Error Bound). For any estimate
f̂t+1 ∈ Bt+1

f measurable with respect to Ft, we have, with
probability at least 1− δ, ∀t ≥ 1, (x, x′) ∈ X × X ,∣∣(f̂t+1(x)− f̂t+1(x

′))− (f(x)− f(x′))
∣∣

≤ 2
(
2B + λ−

1/2
√
β(ϵ, δ/2, t)

)
σff ′

t+1((x, x
′)). (17)

Remark 3.7. In preferential BO, we do not get the scalar
value of f(x)−f(x′). Hence, σff ′

t can not be interpreted as
the posterior standard deviation as in (Srinivas et al., 2012).
However, it turns out that σff ′

t , as a measure of uncertainty,
still accounts for a factor of the duel-wise error.

To characterize the complexity of this augmented RKHS, we
use the maximum information gain (Srinivas et al., 2012),

γff
′

T := max
Ω⊂X×X ;|Ω|=T

1

2
log
∣∣∣I + λ−1Kff ′

Ω

∣∣∣ , (18)

where Kff ′

Ω =
(
kff

′
((x, x′), (x̄, x̄′))

)
(x,x′),(x̄,x̄′)∈Ω

.

4. Algorithm
4.1. Principled Optimistic Algorithm

We are now ready to give the optimistic algorithm in Alg. 1.

Algorithm 1 Principled Optimistic Preferential Bayesian
Optimization (POP-BO).

1: Given the initial point x0 ∈ X and set B1
f = Bf .

2: for t ∈ [T ] do
3: Set the reference point x′t = xt−1.
4: Compute

xt ∈ argmax
x∈X

max
f̃∈Bt

f

(f̃(x)− f̃(x′t)),

with the inner optimal function denoted as f̃t.
5: Query the comparison oracle to get the feedback

result 1t and append the new data to Dt.
6: Update the maximum likelihood estimator f̂MLE

t and
the posterior confidence set Bt+1

f .
7: end for

The key to Alg. 1 is line 4. The idea is to maximize the
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optimistic advantage of f̃(x) as compared to f̃(x′t) with the
uncertainty of the black-box function f̃ ∈ Bt

f .

In line 3, we set the reference point x′t as the last generated
point xt−1. In practice, this may correspond to two possible
scenarios. In the first, each comparison requires one exper-
iment, such as image quality comparison. In this case, we
only need to set one of the compared pair as the last newly
generated solution. While in the other scenario, comparing
xt and x′t needs separate experiments for xt and x′t. For
example, when optimizing the building thermal comfort, the
occupants need to experience both thermal conditions to
report preference. If at step t, the oracle still has memory
about the experience with input xt−1, we can directly com-
pare xt and xt−1. In this case, setting x′t to be xt−1 saves
the experimental expense with x′t.

For online applications, cumulative regret is more of our
interest. However, for an offline optimization setting, it may
be of more interest to identify one near-optimal solution to
report. Unlike in the scalar evaluation setting, where we
can directly use the scalar value to report the best observed
solution, we can not directly identify the best sampled solu-
tion in the preferential Bayesian optimization scenario. To
address this issue, we report the solution xt⋆ , where

t⋆ ∈ arg min
t∈[T ]

2
(
2B + λ−

1/2
√
β(ϵ, δ/2, t)

)
σff ′

t ((xt, x
′
t)).

(19)
The idea is that although the best sample may not be known,
we can derive a solution by minimizing the known term
2(2B+λ−1/2

√
β(ϵ, δ/2, t))σff ′

t ((xt, x
′
t)) to find a solution

xt⋆ to report. Indeed, this term upper bounds the uncertainty
of the optimistic advantage (as shown in Thm. 3.6). Hence,
the smaller it is, the more certain that f(xt) is close to
the ground-truth optimal value. At step t, we can report
the current estimated solution with index τ⋆(t) satisfying a
similar formula to Eq. (19).

4.2. Efficient Computations

Line 4 in Alg. 1 requires solving a nested optimization prob-
lem with inner variables in an infinite-dimensional function
space. The update of the maximum likelihood estimator also
requires solving an optimization problem with an infinite-
dimensional function as the decision variable. These are
in general not tractable in their current forms. Fortunately,
we can reduce the infinite-dimensional problems to finite-
dimensional ones, thanks to the structures of the problem
and the representer theorem (Schölkopf et al., 2001).

Maximum likelihood estimation. Since the log-likelihood
function

ℓt(f̃) = logPf̃ ((xτ , x
′
τ ,1τ )

t
τ=1) (20)

=

t∑
τ=1

(zτ1τ + z′τ (1− 1τ ))−
t∑

τ=1

log
(
ezτ + ez

′
τ

)
only depends on the function value (zτ , z

′
τ ) =

(f̃(xτ ), f̃(x
′
τ )), we only need to optimize over (zτ , z′τ ) sub-

ject to that they are functions in Hk with norm less or
equal to B. Furthermore, Alg. 1 sets x′τ = xτ−1 and thus
z′τ = zτ−1. So we can reduce the optimization variables to
only (zτ )

t
τ=0. Hence, Eq. (20) is reduced to the following

log-likelihood function that only depends on (zτ )
t
τ=0,

ℓ(Z0:t|Dt) (21)

:= Z⊤
1:t11:t + Z0:t−1

⊤(1− 11:t)−
t∑

τ=1

log (ezτ + ezτ−1) ,

where Z0:t := (zτ )
t
τ=0, Z1:t := (zτ )

t
τ=1, Z0:t−1 :=

(zτ )
t−1
τ=0 and 11:t = (1τ )

t
τ=1.

By the representer theorem (Schölkopf et al., 2001), the
maximum likelihood estimation problem can be solved via,

ℓt(f̂
MLE
t ) = max

Z0:t∈Rt+1
ℓ(Z0:t|Dt)

subject to Z⊤
0:tK

−1
0:t Z0:t ≤ B2,

(22)

where K0:t := (k(xτ1 , xτ2))τ1∈{0}∪[t],τ2∈{0}∪[t]. The con-
straint restricts that the function values need to come from
a function inside the function space ball Bf , where the left-
hand side is indeed the minimum norm square of the possi-
ble interpolant through {(xτ , zτ )}tτ=0 as shown in (Wend-
land, 2004). It can be checked that the maximization prob-
lem in Eq. (22) has a concave objective (as shown in Ap-
pendix A) with a convex feasible set. Thus, the problem in
Eq. (22) is tractable via convex optimization.

Generating new sample point. On the line 4 of Alg. 1, a
bi-level optimization problem needs to be solved, where the
inner-level part has an infinite-dimensional function variable.
The inner optimization problem has the form,

max
f̃

f̃(x)− f̃(xt)

subject to f̃ ∈ Bf ,

ℓt(f̃) ≥ ℓt(f̂
MLE
t )− β1(ϵ, δ, t),

(23)

where β1(ϵ, δ, t) is as given in Thm. 3.1. Similar to the
representer theorem, we have,

Lemma 4.1. Prob. (23) can be equivalently reduced to,

max
Z0:t∈Rt+1,z∈R

z − zt

subject to
[
Z0:t

z

]⊤
K−1

0:t,x

[
Z0:t

z

]
≤ B2,

ℓ(Z0:t|Dt) ≥ ℓt(f̂
MLE
t )− β1(ϵ, δ, t),

(24)
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where

K0:t,x =

[
K0:t (k(xτ , x))

t
τ=0

(k(xτ , x))
t
τ=0

⊤
k(x, x)

]
. (25)

Similarly, it can be checked that the Prob. (24) is convex.

For low-dimensional x, the outer-level problem can be
solved via grid search. For medium-dimensional problems,
we can optimize the inner/outer variables using a gradient-
based/zero-order optimization method. Alternatively, we
can jointly optimize x, Z0:t, and z by a nonlinear program-
ming solver from multiple random initial conditions. That
is, we add x as another optimization variable as shown in
the Prob. (26),

max
Z0:t∈Rt+1,z∈R,x∈X

z − zt

subject to Constraints of Prob. (24).
(26)

More details on this joint optimization approach is in Ap-
pendix H.
Remark 4.2. We add a matrix ϵKI toK0:t andK0:t,x before
inversion to avoid numerical issue, where ϵK > 0 is small.
Remark 4.3. In this paper, we mainly consider the setting
where in each step, the preference is queried over two can-
didate points. Our Alg. 1 and the efficient computation
schemes in this section can be easily extended to multiple-
choice setting, where in each step, the best or most preferred
point is queried over a batch of candidates. The detailed
discussion is in Appendix I.

5. Theoretical Analysis
We first introduce the performance metrics to use. As in the
scalar Bayesian optimization setting ((Srinivas et al., 2012)),
cumulative regret is used as defined in Eq. (27),

RT :=

T∑
t=1

(f(x⋆)− f(xt)) , (27)

where x⋆ ∈ argmaxx∈X f(x).
Remark 5.1. The cumulative regretRT as defined in Eq. (27)
does not explicitly consider the sub-optimality of the refer-
ence point x′t. However, since x′t = xt−1, the cumulative
regret of the reference points is the same as RT in Eq. (27),
up to the difference of the first/last term.

Cumulative regret is of interest in the online setting. In the
offline optimization setting, it is of more interest to analyze
the sub-optimality of the final reported solution, i.e.,

f(x⋆)− f(xt⋆), (28)

where xt⋆ is the final reported solution as defined in Eq. (19).

5.1. Regret Bound and Convergence Rate

Theorem 5.2 (Cumulative Regret Bound). With probabil-
ity at least 1− δ, the cumulative regret of Alg. 1 satisfies,

RT = O
(√

βT γ
ff ′

T T

)
, (29)

where

βT = β(1/T , δ, T ) = O

(√
T log

TN (Bf , 1/T , ∥ · ∥∞)

δ

)
.

Remark 5.3 (Differentiate from GP-UCB regret). Our
bound has a similar form as compared to the well-known
regret bound for standard GP-UCB type algorithms (Srinivas
et al., 2012; Chowdhury & Gopalan, 2017a). However,
the βT term here is significantly different from that in the
existing literature (e.g., in Thm. 3 in (Srinivas et al., 2012)).
It is derived specifically for the preferential BO and will
lead to a bit larger bound for specific kernels in Sec. 5.2.

We highlight that Thm. 5.2 provides the first-of-its-kind
information-theoretic bound on the cumulative regret of
preferential BO, which further allows us to derive a conver-
gence rate for the reported solution xt⋆ in Thm. 5.4.
Theorem 5.4 (Convergence Guarantee). Let t⋆ be defined
as in Eq. (19). With probability at least 1− δ,

f(x⋆)− f(xt⋆) ≤ O


√
βT γ

ff ′

T√
T

 . (30)

Thm 5.4 highlights that by minimizing the known term

2
(
2B+λ−1/2

√
β(ϵ, δ2 , t)

)
σff ′

t ((xt, x
′
t)), the reported final

solution xt⋆ has a guaranteed convergence rate.

5.2. Kernel-Specific Bounds and Rates

In this section, we show kernel-specific bounds for the regret
and convergence rate for the reported solution. The explicit
forms of the considered kernels are given in Appendix L.
Theorem 5.5 (Kernel-Specific Regret Bounds). Setting
ϵ = 1/T and running our POP-BO algorithm in Alg. 1,

1. If k(x, y) = ⟨x, y⟩, we have,

RT = O
(
T

3/4(log T )
3/4
)
. (31)

2. If k(x, y) is a squared exponential kernel, we have,

RT = O
(
T

3/4(log T )
3/4(d+1)

)
. (32)

3. If k(x, y) is a Matérn kernel, we have,

RT = O
(
T

3/4(log T )
3/4T

d
ν

(
1
4+

d+1

4+2(d+1)d/ν

))
,

(33)
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where ν is the smooth parameter of the Matérn kernel
that is assumed to be large enough such that ν >
d
4 (3 + d+

√
d2 + 14d+ 17) = Θ(d2).

Remark 5.6 (Comparison to GP-UCB with Scalar Feed-
back). Interestingly, as compared to the kernel-specific
bounds in the scalar evaluation-based optimization (Fig. 1
in (Srinivas et al., 2012)), the regret bound of preferen-
tial Bayesian optimization approximately has an additional
factor of T 1/4. This is reasonable since intuitively, scalar
evaluation can imply preference, but not vice versa. There-
fore, preference feedback contains less information and thus
may suffer from higher regret. Fig. 2 in Sec. 6.1 and Fig. 4
in Appendix N empirically verify our bounds here.

We then derive the kernel-specific convergence rates for the
reported solution xt⋆ , as shown in Tab. 3 in the Appendix O.

6. Experimental Results
In this section, we compare our method to the state-of-the-
art preferential BO methods on sampled instances from
Gaussian process, standard test functions, and a thermal
comfort optimization problem. The comparison outcome is
sampled as assumed in Assump. 2.5. We implement our al-
gorithm based on the Gaussian process package GPy (GPy,
since 2012). The optimization problems for MLE and
generating new samples are formulated and solved using
CasADi (Andersson et al., 2019) and Ipopt (Wächter &
Biegler, 2006). We compare our methods to three base-
line methods: dueling Thompson sampling (González et al.,
2017), skew-GP based preferential BO (Takeno et al., 2023),
and the qEUBO (Astudillo et al., 2023). The dueling Thomp-
son sampling method (González et al., 2017) derives the
next pair to compare by maximizing the soft-Copeland’s
score. The skew-GP based method (Takeno et al., 2023)
applies standard BO algorithms conditioned on the Thomp-
son sampling results on the historical sample points that
are consistent with the historical preference feedbacks. The
qEUBO (Astudillo et al., 2023) method uses the expected
utility of the best option as an acquisition function. More
experimental details and results on thermal comfort opti-
mization are put in the Appendix P.

6.1. Sampled Instances from Gaussian Process

In this section, we sample the black-box function f from
a Gaussian process with the squared exponential kernel as
shown in Appendix L where the variance parameter is 9.0
and the lengthscale is 1.0. We sampled 30 instances in total.

Fig. 2 shows the performance comparisons with baselines.
Our method achieves the lowest sublinear growth in cumula-
tive regret. It also achieves better/competitive convergence
speed for the reported solution as compared to the DTS
method, while outperforming the SGP.

However, our method only uses less than 10% of the compu-
tation time as compared to the DTS as shown in Tab. 1. The
SGP method gets stuck in local optimum because it overly
trusts the random preference feedback (hard constraint when
doing Thompson sampling). Although the qEUBO method
performs slightly better in the reported solution, it suffers
from more than 2.5 times the cumulative regret as com-
pared to ours. Similar to qEUBO (reporting posterior mean
maximizer), we can report the maximizer of the minimum-
norm f̂MLE

t (POP-BO max-MLE in Fig. 2) instead of xt⋆ in
Eq. (19), and achieves faster convergence than qEUBO.
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Figure 2. Cumulative regret and the suboptimality of the
reported solution, where the shaded areas represent
±0.1 standard deviation. qEUBO represents the method
in (Astudillo et al., 2023), which reports the solution that maxi-
mizes the expected objective value conditioned on the historical
samples. SGP represents the skew-GP based method (Takeno
et al., 2023), which reports the first point of the duel proposed
by the algorithm in the last step. DTS represents the dueling
Thompson sampling method in (González et al., 2017), which
reports the Condorcet winner.

Table 1. Computation time normalized against the DTS method.
DTS qEUBO SGP POP-BO (ours)
1.0 0.21 0.07 0.09

6.2. Test Function Optimization

In this section, we compare our method to several well-
known global optimization test functions (Dixon, 1978;
Molga & Smutnicki, 2005), which are divided by the stan-
dard deviation of samples over a grid. We run our method
multiple times from different random initial points. Tab. 2
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shows that POP-BO consistently finds better or comparable
solutions as compared to other baselines.

Table 2. Suboptimality for the final reported solution after 30 steps.
The results (mean ± standard deviation) are taken over 30 runs
with random starting points.

Problem DTS qEUBO SGP POP-BO (ours)

Beale 0.84± 0.52 0.15± 0.52 0.10± 0.19 0.008± 0.025
Branin 1.35± 1.16 0.71± 1.16 2.20± 0.81 0.31± 0.29
Bukin 1.45± 1.13 0.59± 1.20 1.27± 0.80 0.92± 0.54
Cross-in-Tray 1.56± 1.39 2.03± 1.82 1.79± 1.49 1.38± 0.97
Eggholder 3.08± 0.55 3.11± 0.55 1.87± 0.94 1.83± 0.96
Holder Table 3.21± 1.38 3.20± 1.38 1.56± 1.62 1.22± 1.01
Levy13 2.36± 1.22 1.06± 1.22 1.29± 1.00 0.35± 0.31

6.3. Scalability to Higher Dimension

To demonstrate the computational scalability of our joint
optimization approach (as shown in Prob. (26)), we con-
sider a set of higher dimensional problems. Due to space
limitation, we show the results for the optimization of 12-
dimensional black-box function sampled from a Gaussian
process with squared exponential kernel function. More
results can be found in Appendix P.1 and Appendix P.2.
The optimization domain is set to be [0, 10]12. We run 10
randomly sampled instances for 100 steps. The average
update time per step is only 18.0 seconds on a personal
computer with one Intel64 Family 6 Model 142
Stepping 12 GenuineIntel 1803 Mhz proces-
sor and 16.0 GB RAM. This is comparably very small
considering that each query to the comparison oracle can
be very expensive in practice (e.g., heating the room up to
a certain temperature to evaluate occupant comfort, which
may take tens of minutes). We compare our method to the
SGP baseline, which is one of the state-of-the-art computa-
tionally practical preferential Bayesian optimization method.
Fig. 3 shows the cumulative regret (in log scale) and the
suboptimality of the reported solution for the problem. It
can be seen that our algorithm still achieves sublinear regret
growth and good convergence for the suboptimality of the
reported solution within 100 steps in this 12-dimensional
problem. Fig. 3 also shows that our POP-BO has faster
convergence speed in higher dimensional problem and thus
scales better than the SGP method.

7. Conclusion and Future Work
In this paper, we have presented a principled optimistic
preferential Bayesian optimization algorithm, based on the
likelihood-based confidence set. An efficient computational
method is developed to implement the algorithm. We fur-
ther show an information-theoretic bound on the cumula-
tive regret, a first-of-its-kind for preferential BO. We also
design a scheme to report an estimated optimal solution,
with a guaranteed convergence rate. Experimental results
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Figure 3. Cumulative regret in log scale and the suboptimality of
the reported solution in linear scale for a 12-dimensional problem
sampled from Gaussian process. For reference purpose, we also
plot T in the cumulative regret plot in log scale, where the shaded
areas represent ±0.2 standard deviation.

show that our method achieves better or competitive perfor-
mance as compared to the state-of-the-art heuristics, which,
however, do not have theoretical guarantees on regret. Fu-
ture works include the extension to the safety-critical prob-
lem (Berkenkamp et al., 2016; Guo et al., 2023) and game
theoretical setting. The likelihood-based confidence set and
the error bound in Sec. 3 can also be applied to more sce-
narios with preference feedback.
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Without further notice, all the results shown in this appendix are under the assumptions 2.1, 2.2, 2.4, and 2.5.

A. Preliminaries
To prepare for the proofs of the main results shown in this paper, we first state several useful lemmas.

Lemma A.1. The function ψ(y, y′) = log(ey + ey
′
) is convex in (y, y′).

Proof. We calculate the Hessian of the function ψ and derive

∇2ψ =
ey+y′

(ey + ey′)2

[
1 −1
−1 1

]
≽ 0. (34)

Hence, ψ is convex.

Therefore, we can see ℓ(Z0:t|Dt) is concave in Z0:t.

Lemma A.2. ∀f̃ ∈ Bf , x ∈ X , f̃(x) ∈ [−B,B].

Proof. |f̃(x)| = |⟨f̃ , k(x, ·)⟩| ≤
∥∥∥f̃∥∥∥ ∥k(x, ·)∥ ≤ B

√
k(x, x) ≤ B, where the first inequality follows by Cauchy–Schwarz

inequality, the second inequality follows by Assump. 2.2, and the last inequality follows by Assump. 2.4.

B. Properties of the Function σ(·)

When applying the function σ to the difference of objective function f̃(x)− f̃(x′),∀f̃ ∈ Bf , we have the calculations by
single variable calculus,

u := f̃(x)− f̃(x′) ∈ [−2B, 2B],

σ(u) ∈ [σ, σ̄],

σ′(u) =
1

2 + eu + e−u
∈ [σ′, σ̄′],

where σ = 1/(1+e2B), σ̄ = 1/(1+e−2B) and σ′ = 1/(2+e2B+e−2B), σ̄′ = 1/4. We also introduce some constants Bp = σ̄
σ − σ

σ̄ ,
Hσ = 1

2σ̄2 and CL = 1 + 2
1+e−2B , which will be used in the proof.

C. Proof of Thm. 3.1
To prepare for the proof of the theorem, we first prove several lemmas.

Lemma C.1. For any fixed f̂ ∈ Bf , we have,

P
(
logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤

√
32tB2 log

1

δt

)
≥ 1− δt, (35)

where f is the ground-truth function.

Proof. We use yτ (y′τ resp.) to denote f(xτ ) (f(x′τ ) resp.). We use zτ (z′τ resp.) to denote f̂(xτ ) (f̂(x′τ ) resp.). And we
use pτ to denote σ(yτ − y′τ ).

P
(
logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤ ξ

)
=P

(
t∑

τ=1

((zτ − yτ )1τ + (z′τ − y′τ )(1− 1τ ))−
t∑

τ=1

log
(
ezτ + ez

′
τ

)
+

t∑
τ=1

log
(
eyτ + ey

′
τ

)
≤ ξ

)
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=P

(
t∑

τ=1

((zτ − yτ )1τ + (z′τ − y′τ )(1− 1τ ))−
t∑

τ=1

((zτ − yτ )pτ + (z′τ − y′τ )(1− pτ )) ≤ ξ′

)

where ξ′ = ξ +
∑t

τ=1 log
(
ezτ + ez

′
τ

)
−
∑t

τ=1 log
(
eyτ + ey

′
τ

)
−
∑t

τ=1 ((zτ − yτ )pτ + (z′τ − y′τ )(1− pτ )), and the
probability P is taken with respect to the randomness from the comparison oracle and the randomness from the algorithm.

It can be checked that ψτ (y, y
′) := log

(
ey + ey

′
)
− pτy − (1− pτ )y

′ is a convex function and ∇ψτ (yτ , y
′
τ ) = 0. This

implies that (yτ , y′τ ) achieves the minimum for the convex function ψτ . Therefore,

log
(
eyτ + ey

′
τ

)
− pτyτ − (1− pτ )y

′
τ ≤ log

(
ezτ + ez

′
τ

)
− pτzτ − (1− pτ )z

′
τ .

Rearrangement gives,

log
(
ezτ + ez

′
τ

)
− log

(
eyτ + ey

′
τ

)
− ((zτ − yτ )pτ + (z′τ − y′τ )(1− pτ )) ≥ 0.

Hence, ξ′ ≥ ξ. Therefore,

P
(
logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤ ξ

)
=P

(
t∑

τ=1

((zτ − yτ )1τ + (z′τ − y′τ )(1− 1τ ))−
t∑

τ=1

((zτ − yτ )pτ + (z′τ − y′τ )(1− pτ )) ≤ ξ′

)

≥P

(
t∑

τ=1

((zτ − yτ )1τ + (z′τ − y′τ )(1− 1τ ))−
t∑

τ=1

((zτ − yτ )pτ + (z′τ − y′τ )(1− pτ )) ≤ ξ

)

We further notice that

E[((zτ − yτ )1τ + (z′τ − y′τ )(1− 1τ ))− ((zτ − yτ )pτ + (z′τ − y′τ )(1− pτ )) |Fτ−1] = 0, (36)

and with probability one,

|((zτ − yτ )1τ + (z′τ − y′τ )(1− 1τ ))− ((zτ − yτ )pτ + (z′τ − y′τ )(1− pτ ))| = |(zτ − yτ − z′τ + y′τ )(1τ − pτ )| ≤ 4B.
(37)

We can thus apply the Azuma-Hoeffding inequality (see, e.g., (Lalley, 2013)). By Azuma–Hoeffding inequality,

P
(
logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤ ξ

)
≥P

(
t∑

τ=1

((zτ − yτ )1τ + (z′τ − y′τ )(1− 1τ ))−
t∑

τ=1

((zτ − yτ )pτ + (z′τ − y′τ )(1− pτ )) ≤ ξ

)

≥1− exp

{
− ξ2

32tB2

}
.

Set exp
{
− ξ2

32tB2

}
= δt. That is, ξ =

√
32tB2 log 1

δt
. We then get the desired result.

We then have the following high probability confidence set lemma.

Lemma C.2. For any fixed f̂ ∈ Bf that is independent of ((xτ , x′τ ,1τ )
t
τ=1), we have, with probability at least 1− δ,

logPf̂ ((xτ , x
′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤

√
32tB2 log

π2t2

6δ
, ∀t ≥ 1. (38)
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Proof. We use Et to denote the event logPf̂ ((xτ , x
′
τ ,1τ )

t
τ=1) − logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤

√
32tB2 log 1

δt
. We pick

δt = (6δ)/(π2t2) and have,

P
(
logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤

√
32tB2 log

1

δt
,∀t ≥ 1

)
=1− P

(
∩∞
t=1Et

)
=1− P

(
∪∞
t=1Et

)
≥1−

∞∑
t=1

P
(
Et
)

=1−
∞∑
t=1

(1− P (Et))

=1−
∞∑
t=1

(
1− P

(
logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤

√
32tB2 log

1

δt

))

≥1−
∞∑
t=1

δt

=1− 6δ

π2

∞∑
t=1

1

t2

=1− δ.

We then have a lemma to bound the difference of log likelihood when two functions are close in infinity-norm sense.

Lemma C.3. There exists an independent constant CL > 0, such that, ∀ϵ > 0, ∀f1, f2 ∈ Bf that satisfies ∥f1 − f2∥∞ ≤ ϵ,
we have,

logPf1((xτ , x
′
τ ,1τ )

t
τ=1)− logPf2((xτ , x

′
τ ,1τ )

t
τ=1) ≤ CLϵt. (39)

Proof. We use zi,τ (z′i,τ , resp.) to denote fi(xτ ) (fi(x′τ ), resp.), ∀i ∈ {0, 1}.

logPf1((xτ , x
′
τ ,1τ )

t
τ=1)− logPf2((xτ , x

′
τ ,1τ )

t
τ=1)

=

t∑
τ=1

(
(z1,τ − z2,τ )1τ + (z′1,τ − z′2,τ )(1− 1τ )

)
−

t∑
τ=1

log
(
ez1,τ + ez

′
1,τ

)
+

t∑
τ=1

log
(
ez2,τ + ez

′
2,τ

)
(40)

≤ϵt+
t∑

τ=1

max
z,z′∈[−B,B]

∥∥∥∇z,z′ log
(
ez + ez

′
)∥∥∥∥∥(z1,τ , z′1,τ )− (z2,τ , z

′
2,τ )
∥∥ (41)

≤ϵt+
t∑

τ=1

√
2

1 + e−2B

√
2ϵ (42)

=

(
1 +

2

1 + e−2B

)
ϵt, (43)

where the equality (40) follows by the definition of log-likelihood function, and the inequality (41) follows by the assumption
and the mean-value theorem. The conclusion follows by setting CL = 1 + 2

1+e−2B .

Main proof : We use N (Bf , ϵ, ∥ · ∥∞) to denote the covering number of the set Bf , with (f ϵi )
N (Bf ,ϵ,∥·∥∞)
i=1 be a set of

ϵ-covering for the set Bf . Reset the ‘δ’ in Lem. C.2 as δ/N (Bf ,ϵ,∥·∥∞) and applying the probability union bound, we have,
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with probability at least 1− δ, ∀f ϵi , t ≥ 1,

logPfϵ
i
((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤

√
32tB2 log

π2t2N (Bf , ϵ, ∥ · ∥∞)

6δ
. (44)

By the definition of ϵ-covering, there exists j ∈ [N (Bf , ϵ, ∥ · ∥∞)], such that,

∥f̂MLE
t − f ϵj ∥∞ ≤ ϵ. (45)

Hence, with probability at least 1− δ,

logPf̂MLE
t

((xτ , x
′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1)

= logPf̂MLE
t

((xτ , x
′
τ ,1τ )

t
τ=1)− logPfϵ

j
((xτ , x

′
τ ,1τ )

t
τ=1) + logPfϵ

j
((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1)

≤CLϵt+

√
32tB2 log

π2t2N (Bf , ϵ, ∥ · ∥∞)

6δ
,

where the inequality follows by Lem. C.3 and the inequality (44).

D. Proof of Lem. 3.5
We first have a lemma.

Lemma D.1. We have,

log p̂− log p ≤ 1

p
(p̂− p)−Hσ(p̂− p)2,∀p, p̂ ∈ [σ, σ̄], (46)

where Hσ = 1
2σ̄2 .

Proof. Let ζ(p̂) = log p̂− log p− 1
p (p̂− p) +Hσ(p̂− p)2,∀p, p̂ ∈ [σ, σ̄]. We have,

ζ ′(p̂) =
1

p̂
− 1

p
+ 2Hσ(p̂− p) = (p̂− p)

(
1

σ̄2
− 1

p̂p

)
,∀p̂ ∈ [σ, σ̄].

Since ∀p, p̂ ∈ [σ, σ̄], we have 1
σ̄2 − 1

p̂p ≤ 0. Hence, ζ ′(p̂) ≥ 0,∀p̂ ∈ [σ, p] and ζ ′(p̂) ≤ 0,∀p̂ ∈ [p, σ̄]. Therefore, ζ(p̂)
achieves the maximum over [σ, σ̄] at the point p. So ζ(p̂) ≤ ζ(p) = 0. Rearrangement then gives the desired result.

For any fixed function f̂ ∈ Bf , we use the notations p̂τ = σ(f̂(xτ )− f̂(x′τ )) ∈ [σ, σ̄] and pτ = σ(f(xτ )− f(x′τ )) ∈ [σ, σ̄].
We have,

logPf̂ ((xτ , x
′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1)

=

t∑
τ=1

(
log pf̂ (xτ , x

′
τ ,1τ )− log pf (xτ , x

′
τ ,1τ )

)
=

t∑
τ=1

(1τ (log p̂τ − log pτ ) + (1− 1τ ) (log (1− p̂τ )− log(1− pτ ))) .

Hence,

logPf̂ ((xτ , x
′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1)

=

t∑
τ=1

(1τ (log p̂τ − log pτ ) + (1− 1τ ) (log (1− p̂τ )− log(1− pτ )))

≤
t∑

τ=1

(
1τ

(
p̂τ − pτ
pτ

−Hσ (p̂τ − pτ )
2

)
+ (1− 1τ )

(
pτ − p̂τ
1− pτ

−Hσ (p̂τ − pτ )
2

))
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Rearrangement gives,

Hσ

t∑
τ=1

(p̂τ − pτ )
2
+ logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf ((xτ , x

′
τ ,1τ )

t
τ=1) ≤

t∑
τ=1

(
1τ
p̂τ − pτ
pτ

+ (1− 1τ )
pτ − p̂τ
1− pτ

)
.

(47)
We then have the following lemma,

Lemma D.2. For any fixed f̂ ∈ Bf and ∀t ≥ 1, we have, with probability at least 1− δt,

P

(
Hσ

t∑
τ=1

(p̂τ − pτ )
2 ≤ logPf ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1) +

√
2tB2

p log
1

δt

)
≥ 1− δt. (48)

Proof. Since E
[
1τ

p̂τ−pτ

pτ
+ (1− 1τ )

pτ−p̂τ

1−pτ
|Fτ−1

]
= E

[
pτ

p̂τ−pτ

pτ
+ (1− pτ )

pτ−p̂τ

1−pτ
|Fτ−1

]
= 0 and with probability

one, ∣∣∣∣1τ
p̂τ − pτ
pτ

+ (1− 1τ )
pτ − p̂τ
1− pτ

∣∣∣∣ ≤ 1τ

∣∣∣∣ p̂τ − pτ
pτ

∣∣∣∣+ (1− 1τ )

∣∣∣∣pτ − p̂τ
1− pτ

∣∣∣∣ (49)

= 1τ

∣∣∣∣ p̂τpτ − 1

∣∣∣∣+ (1− 1τ )

∣∣∣∣1− p̂τ
1− pτ

− 1

∣∣∣∣ (50)

≤ σ̄

σ
− σ

σ̄
= Bp, (51)

where the last inequality follows by that p̂τ , pτ , 1− p̂τ , 1− pτ ∈ [σ, σ̄]. Thus we can apply the Azuma–Hoeffding inequality.
By Azuma–Hoeffding inequality, we have,

P

(
t∑

τ=1

(
1τ
p̂τ − pτ
pτ

+ (1− 1τ )
pτ − p̂τ
1− pτ

)
≤ ξ

)
≥ 1− exp

{
− ξ2

2tB2
p

}
. (52)

We set exp
{
− ξ2

2tB2
p

}
= δt, and derive

P

(
t∑

τ=1

(
1τ
p̂τ − pτ
pτ

+ (1− 1τ )
pτ − p̂τ
1− pτ

)
≤
√
2tB2

p log
1

δt

)
≥ 1− δt. (53)

Combining the inequality (47) and the inequality (53), the desired result is derived.

Lemma D.3. For any fixed f̂ ∈ Bf , we have, with probability at least 1− δ,

Hσ

t∑
τ=1

(p̂τ − pτ )
2 ≤ logPf ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1) +

√
2tB2

p log
π2t2

6δ
, ∀t ≥ 1. (54)

Proof. We use Et 5 to denote the event Hσ

∑t
τ=1 (p̂τ − pτ )

2 ≤ logPf ((xτ , x
′
τ ,1τ )

t
τ=1) − logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1) +√

2tB2
p log

1
δt

and pick δt = (6δ)/(π2t2). We have,

P

(
Hσ

t∑
τ=1

(p̂τ − pτ )
2 ≤ logPf ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1) +

√
2tB2

p log
1

δt
,∀t ≥ 1

)
=1− P

(
∩∞
t=1Et

)
=1− P

(
∪∞
t=1Et

)
5With abuse of notation here. Et is only a local notation in this proof here.
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≥1−
∞∑
t=1

P
(
Et
)

=1−
∞∑
t=1

(1− P (Et))

=1−
∞∑
t=1

(
1− P

(
Hσ

t∑
τ=1

(p̂τ − pτ )
2 ≤ logPf ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1) +

√
2tB2

p log
1

δt

))

≥1−
∞∑
t=1

δt

=1− 6δ

π2

∞∑
t=1

1

t2

=1− δ.

Main Proof : Resetting the ‘δ’ in Lem. D.3 to be δ/N (Bf ,ϵ,∥·∥∞), we can guarantee the Eq. (54) holds for all the function in
an ϵ-covering of Bf with probability at least 1− δ, by applying the probability union bound.

For any f̂t+1 ∈ Bt+1
f ⊂ Bf , there exists a function in the ϵ-covering of Bf , which we set to be f̂ , such that ∥f̂t+1− f̂∥∞ ≤ ϵ.

We also use p̂t+1
τ to denote σ(f̂t+1(xτ )− f̂t+1(x

′
τ )). Thus, we have,

Hσ

t∑
τ=1

(
p̂t+1
τ − pτ

)2
(55)

≤2Hσ

t∑
τ=1

(
p̂t+1
τ − p̂τ

)2
+ 2Hσ

t∑
τ=1

(p̂τ − pτ )
2 (56)

≤2Hσσ̄′2
t∑

τ=1

(
(f̂t+1(xτ )− f̂t+1(x

′
τ ))− (f̂(xτ )− f̂(x′τ ))

)2
+ 2Hσ

t∑
τ=1

(p̂τ − pτ )
2 (57)

≤8Hσσ̄′2
t∑

τ=1

ϵ2 + 2Hσ

t∑
τ=1

(p̂τ − pτ )
2 (58)

≤8Hσσ̄′2ϵ2t+

√
8tB2

p log
π2t2N (Bf , ϵ, ∥ · ∥∞)

6δ
+ 2

(
logPf ((xτ , x

′
τ ,1τ )

t
τ=1)− logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1)

)
(59)

≤C(ϵ, δ, t) + 2
(
logPf̂MLE

t
((xτ , x

′
τ ,1τ )

t
τ=1)− logPf̂t+1

((xτ , x
′
τ ,1τ )

t
τ=1)

)
(60)

+ 2
(
logPf̂t+1

((xτ , x
′
τ ,1τ )

t
τ=1)− logPf̂ ((xτ , x

′
τ ,1τ )

t
τ=1

)
≤C(ϵ, δ, t) + 2CLϵt+ 2β1(ϵ, δ, t) (61)
=β2(ϵ, δ, t) + 2β1(ϵ, δ, t), (62)

where C(ϵ, δ, t) = 8Hσσ̄′2ϵ2t +
√
8tB2

p log
π2t2N (Bf ,ϵ,∥·∥∞)

6δ and β2(ϵ, δ, t) = C(ϵ, δ, t) + 2CLϵt. The inequality (56)

follows by the fact that (a + b)2 ≤ 2a2 + 2b2,∀a, b ∈ R. The inequality (58) follows because ∥f̂t+1 − f̂∥∞ ≤ ϵ. The
inequality (59) follows by Lem. D.3 (with reset of ‘δ’). The inequality (60) follows by that

logPf̂MLE
t

((xτ , x
′
τ ,1τ )

t
τ=1) ≥ logPf ((xτ , x

′
τ ,1τ )

t
τ=1).

The inequality (61) follows by the fact that f̂t+1 ∈ Bt+1
f and Lem. C.3.

Furthermore,
t∑

τ=1

(
p̂t+1
τ − pτ

)2
=

t∑
τ=1

(
σ
(
f̂t+1(xτ )− f̂t+1(x

′
τ )
)
− σ (f(xτ )− f(x′τ ))

)2
(63)
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≥
t∑

τ=1

σ′2
((
f̂t+1(xτ )− f̂t+1(x

′
τ )
)
− (f(xτ )− f(x′τ ))

)2
, (64)

where the inequality follows by mean value theorem. The conclusion then follows.

E. Proof of Thm. 3.6
Before we proceed to prove Thm. 3.6, we first conduct a black-box analysis in Sec. E.1 to bound the pointwise error for a
generic RKHS with a generic learning scheme, which we think can be of independent interest.

E.1. Black-box Analysis on the Pointwise Inference Error in a Generic RKHS

Suppose we have a generic RKHS H̃ with a generic positive semidefinite kernel function k̃(·, ·). After obtaining some
information (preference information in this paper) on a sequence x̃1, x̃2, ·, x̃t−1, a learning scheme outputs a learnt
uncertainty set,

St = {h̃ ∈ B|
t−1∑
τ=1

(
h̃(x̃τ )− h(x̃τ )

)2
≤ β̃t}, (65)

where B is a function space ball with radius B̃ in H̃, h ∈ B is the ground truth function and β̃t quantifies the size of this
confidence set. Let X̃ denote the function input set, which is assumed to be compact. We introduce the function,

σ̃2
t (x̃) = k̃ (x̃, x̃)− k̃(x̃1:t−1, x̃)

⊤
(
K̃t−1 + λI

)−1

k̃ (x̃1:t−1, x̃) , (66)

where λ is a positive constant and K̃t−1 = (k̃(x̃i, x̃j))i∈[t−1],j∈[t−1]. We have the following theorem.

Theorem E.1. ∀h̃ ∈ St+1, x̃ ∈ X̃ , we have,

|h̃(x̃)− h(x̃)| ≤ 2(B̃ + λ−
1/2β̃

1/2
t+1)σ̃t+1(x̃). (67)

Proof. For simplicity, we use ϕ(x̃) to denote the function k̃(x̃, ·), where ϕ : Rd̃ → H̃ maps a finite dimensional point
x̃ ∈ Rd̃ to the RKHS H̃. For simplicity, we use h⊤1 h2 to denote the inner product of two functions h1, h2 from the RKHS H̃.
Therefore, h(x̃) = ⟨h, k̃(x̃, ·)⟩k̃ = h⊤ϕ(x̃) and k̃(x̃, ¯̃x) = ⟨k̃(x̃, ·), k̃(¯̃x, ·)⟩ = ϕ(x̃)⊤ϕ(¯̃x), ∀x̃, ¯̃x ∈ X̃ . We can introduce
the feature map

Φt :=
[
ϕ(x̃1)

⊤, . . . , ϕ(x̃t)
⊤]⊤ ,

we then get the kernel matrix K̃t = ΦtΦ
⊤
t = (k̃(x̃i, x̃j))i,j∈[t], k̃t(x̃) = Φtϕ(x̃) = (k̃(x̃, x̃i))i∈[t] for all x̃ ∈ X̃ and

h1:t = Φth.

Note that when the Hilbert space H̃ is finite-dimensional, Φt is interpreted as the normal finite-dimensional matrix. In
the more general setting where H̃ can be an infinite-dimensional space, Φt is the evaluation operator H̃ → Rt defined
as Φth := [h(x̃1), · · · , h(x̃t)]⊤,∀h ∈ H̃, with Φ⊤

t : Rt → H̃ as its adjoint operator. For the simplicity of notation, we
abuse the notation I to denote the identity mapping in both the RKHS H̃ and Rt. The specific meaning of I depends on the
context.

Since the matrices/operators (Φ⊤
t Φt + λI) and (ΦtΦ

⊤
t + λI) are strictly positive definite and

(Φ⊤
t Φt + λI)Φ⊤

t = Φ⊤
t (ΦtΦ

⊤
t + λI),

we have
Φ⊤

t (ΦtΦ
⊤
t + λI)−1 = (Φ⊤

t Φt + λI)−1Φ⊤
t . (68)

Also from the definitions above (Φ⊤
t Φt + λI)ϕ(x̃) = Φ⊤

t k̃t(x̃) + λϕ(x̃), and thus ϕ(x̃) = (Φ⊤
t Φt + λI)−1Φ⊤

t k̃t(x̃) +
λ(Φ⊤

t Φt + λI)−1ϕ(x̃). Hence, from Eq. (68) we deduce that

ϕ(x̃) = Φ⊤
t (ΦtΦ

⊤
t + λI)−1k̃t(x̃) + λ(Φ⊤

t Φt + λI)−1ϕ(x̃), (69)
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which gives
ϕ(x̃)⊤ϕ(x̃) = k̃t(x̃)

⊤(ΦtΦ
⊤
t + λI)−1k̃t(x̃) + λϕ(x̃)⊤(Φ⊤

t Φt + λI)−1ϕ(x̃), (70)

by multiplying both sides of Eq. (69) with ϕ(x̃)⊤. This implies

λϕ(x̃)⊤(Φ⊤
t Φt + λI)−1ϕ(x̃) = k̃(x̃, x̃)− k̃t(x̃)

⊤(K̃t + λI)−1k̃t(x̃) = σ̃2
t+1(x̃), (71)

where the second equality follows by the definition of σ̃t+1(x̃). Now observe that ∀h̃ ∈ B,

|h̃(x̃)− k̃t(x̃)
⊤(K̃t + λI)−1h̃1:t| (72)

=|ϕ(x̃)⊤h̃− ϕ(x̃)⊤Φ⊤
t (ΦtΦ

⊤
t + λI)−1Φth̃| (73)

=|ϕ(x̃)⊤h̃− ϕ(x̃)⊤(Φ⊤
t Φt + λI)−1Φ⊤

t Φth̃| (74)

=|ϕ(x̃)⊤(Φ⊤
t Φt + λI)−1(Φ⊤

t Φt + λI)h̃− ϕ(x̃)⊤(Φ⊤
t Φt + λI)−1Φ⊤

t Φth̃| (75)

=|λϕ(x̃)⊤(Φ⊤
t Φt + λI)−1h̃| (76)

≤
∥∥λ(ΦT

t Φt + λI)−1ϕ(x̃)
∥∥
k̃

∥∥∥h̃∥∥∥
k̃

(77)

=
∥∥∥h̃∥∥∥

k̃

√
λϕ(x̃)⊤(Φ⊤

t Φt + λI)−1λI(Φ⊤
t Φt + λI)−1ϕ(x̃) (78)

≤B̃
√
λϕ(x̃)⊤(Φ⊤

t Φt + λI)−1(Φ⊤
t Φt + λI)(Φ⊤

t Φt + λI)−1ϕ(x̃) (79)

=B̃ σ̃t+1(x̃), (80)

where the equality (74) uses Eq. (68), the inequality (77) is by Cauchy-Schwartz, the inequality (79) follows by the
assumption that ∥h̃∥k̃ ≤ B̃ and that Φ⊤

t Φt is positive semidefinite, and the equality (80) is from Eq. (71). We define
∆1:t = h̃1:t − h1:t,

|k̃t(x̃)⊤(K̃t + λI)−1∆1:t| (81)

=|ϕ(x̃)⊤Φ⊤
t (ΦtΦ

⊤
t + λI)−1∆1:t| (82)

=|ϕ(x̃)⊤(Φ⊤
t Φt + λI)−1Φ⊤

t ∆1:t| (83)

≤
∥∥∥(Φ⊤

t Φt + λI)−1/2ϕ(x̃)
∥∥∥
k̃

∥∥∥(Φ⊤
t Φt + λI)−1/2Φ⊤

t ∆1:t

∥∥∥
k̃

(84)

=
√
ϕ(x̃)⊤(Φ⊤

t Φt + λI)−1ϕ(x̃)
√
(Φ⊤

t ∆1:t)⊤(Φ⊤
t Φt + λI)−1Φ⊤

t ∆1:t (85)

=λ−1/2σ̃t+1(x̃)
√
∆⊤

1:tΦtΦ⊤
t (ΦtΦ⊤

t + λI)−1∆1:t (86)

=λ−1/2σ̃t+1(x̃)

√
∆⊤

1:tK̃t(K̃t + λI)−1∆1:t (87)

≤λ−1/2σ̃t+1(x̃)
√
∆⊤

1:t∆1:t (88)

≤λ−1/2β̃
1/2
t+1σ̃t+1(x̃) (89)

where the equality (83) is from Eq. (68), the inequality (84) is by Cauchy-Schwartz and the equality (86) uses both Eq. (68)
and Eq. (71). We can finally derive,∣∣∣h̃(x̃)− h(x̃)

∣∣∣ (90)

=
∣∣∣k̃t(x̃)⊤(K̃t + λI)−1(h̃1:t − h1:t)−

(
h(x̃)− k̃t(x̃)

T (K̃t + λI)−1h1:t

)
+
(
h̃(x̃)− k̃t(x̃)

⊤(K̃t + λI)−1h̃1:t

)∣∣∣ (91)

≤
∣∣∣k̃t(x̃)⊤(K̃t + λI)−1(h̃1:t − h1:t)

∣∣∣+ ∣∣∣h(x̃)− k̃t(x̃)
T (K̃t + λI)−1h1:t

∣∣∣+ ∣∣∣h̃(x̃)− k̃t(x̃)
⊤(K̃t + λI)−1h̃1:t

∣∣∣ (92)

≤
(
2B̃ + λ−1/2β̃

1/2
t+1

)
σ̃t+1(x̃), (93)

where the equality (91) follows by splitting, the inequality (92) follows by triangle inequality, the last inequality follows by
combining the inequality (80) and the inequality (89). The conclusion then follows.

Remark E.2. The proof idea is inspired by the proof of Thm. 2 in (Chowdhury & Gopalan, 2017b).
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E.2. Main Proof of Thm. 3.6

We set the generic RKHS H̃ to be the augmented RKHS with the additive kernel function kff
′
, the function space ball to be

Bff ′ , B̃ = 2B and the confidence set as,

St :=

{
f̃(x)− f̃(x′)|f̃ ∈ Bf ,

t−1∑
τ=1

(
(f̃(xτ )− f̃(x′τ ))− (f(xτ )− f(x′τ ))

)2 ≤ β(ϵ, δ/2, t− 1)

}
⊂ Bff ′ .

The desired result then follows by applying Thm. E.1.

F. Proof of Lem. 4.1
It suffices to prove that for any feasible solution of Prob. (23), we can find a corresponding feasible solution of Prob. (24)
with the same objective value and that the inverse direction also holds.

1. In this part, we first show that for any feasible solution of Prob. (23), we can find a corresponding feasible solution of
Prob. (24) with the same objective value. Let f̃ be a feasible solution of Prob. (23). We construct Z̃0:t = (f̃(xτ ))

t
τ=0

and z̃ = f̃(x). Consider the minimum-norm interpolation problem,

min
s∈Bf

∥s∥2

subject to s(xτ ) = z̃τ ,∀τ ∈ {0} ∪ [t],

s(x) = z̃.

(94)

By representer theorem, the Prob. (94) admits an optimal solution with the form α⊤k0:t,x(·), where k0:t,x :=
(k(w, ·))w∈{x0,··· ,xt,x}. So Prob. (94) can be reduced to

min
α∈Rt+2

α⊤K0:t,xα

subject to K0:t,xα =

[
Z̃0:t

z̃

]
.

(95)

Hence, by solving Prob. (95), we can derive the minimum norm square with interpolation constraints as[
Z̃0:t

z̃

]⊤
K−1

0:t,x

[
Z̃0:t

z̃

]
.

Since f̃ itself is an interpolant by construction of (Z̃0:t, z̃). We have[
Z̃0:t

z̃

]⊤
K−1

0:t,x

[
Z̃0:t

z̃

]
≤ ∥f̃∥2 ≤ B2.

And since the log-likelihood only depends on Z̃0:t, it holds that

ℓ(Z̃0:t|Dt) = ℓt(f̃) ≥ ℓt(f̂
MLE
t )− β1(ϵ, δ, t).

And the objectives satisfy,
z̃ − z̃t = f̃(x)− f̃(xt).

Therefore, (Z̃0:t, z̃) is a feasible solution for Prob. (24) with the same objective as f̃ for Prob. (23).

2. We then show that for any feasible solution of Prob. (24), we can find a corresponding feasible solution of Prob. (23)
with the same objective value. Let (Z0:t, z) be a feasible solution of Prob. (24). We construct

f̃z =

[
Z0:t

z

]⊤
K−1

0:t,xk0:t,x(·).
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Hence,

∥f̃z∥2 =

[
Z0:t

z

]⊤
K−1

0:t,x

[
Z0:t

z

]
≤ B2.

And it can be checked that f̃z(xτ ) = zτ ,∀τ ∈ {0} ∪ [t] and f̃z(x) = z. So ℓt(f̃z) = ℓ(Z0:t|Dt) ≥ ℓt(f̂
MLE
t ) −

β1(ϵ, δ, t). And the objectives satisfy f̃z(x) − f̃z(xt) = z − zt. So it is proved that for any feasible solution of
Prob. (24), we can find a corresponding feasible solution of Prob. (23) with the same objective value.

The desired result then follows.

G. Elaboration on Remark 2.3
By assumption 2.2, we assume that there exists a large enough constant B that upper bounds the norm of the ground-truth
black-box function f . However, the exact value of this upper bound may be unknown to us in practice, while the execution
of our algorithm relies on the knowledge of B (in Problem (23), B is a key parameter). So we need to guess the value of B.
Suppose our guess is B̂. It is possible that B̂ is even smaller than the ground-truth function norm ∥f∥. To detect this wrong
guess, we observe that, with the correct setting of B such that B ≥ ∥f∥, we have that by Thm. 3.1 and the definition of
maximum likelihood estimate, with high probability,

ℓt(f̂
MLE
t|B ) ≥ ℓt(f) ≥ ℓt(f̂

MLE
t|B )− β1(ϵ, δ, t|B),

where f̂MLE
t|B is the maximum likelihood estimate function with function norm boundB and β1(ϵ, δ, t|B) is the corresponding

parameter as defined in Thm. 3.1 with norm bound B. We also have 2B is a valid upper bound on ∥f∥ and thus,

ℓt(f̂
MLE
t|2B ) ≥ ℓt(f) ≥ ℓt(f̂

MLE
t|2B )− β1(ϵ, δ, t|2B).

Hence,
ℓt(f̂

MLE
t|B ) ≥ ℓt(f) ≥ ℓt(f̂

MLE
t|2B )− β1(ϵ, δ, t|2B).

That is to say, ℓt(f̂MLE
t|B ) needs to be greater than or equal to ℓt(f̂MLE

t|2B )− β1(ϵ, δ, t|2B) when B is a valid upper bound on
∥f∥.

Therefore, we can use the heuristic: every time we find that

ℓt(f̂
MLE
t|B̂ ) < ℓt(f̂

MLE
t|2B̂ )− β1(ϵ, δ, t|2B̂),

we double the upper bound guess B̂.

H. Jointly Optimize x, Z0,t and z for the Problem (24).
For medium-dimensional problems (d > 4), we can jointly optimize x, Z0:t, and z by a nonlinear programming solver from
multiple random initial conditions. That is, we can also treat x in the problem (23) as an optimization variable. In this way,
we lose convexity but only need to solve the problem (23) for only once in each step t.

More specifically, we solve the optimization problem (96).

max
x∈Rd,Z0:t∈Rt+1,z∈R

z − zt

subject to
[
Z0:t

z

]⊤
K−1

0:t,x

[
Z0:t

z

]
≤ B2,

ℓ(Z0:t|Dt) ≥ ℓt(f̂
MLE
t )− β1(ϵ, δ, t),

(96)

The only constraint that involves x is [
Z0:t

z

]⊤
K−1

0:t,x

[
Z0:t

z

]
≤ B2. (97)
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Applying matrix inversion, we derive that the left-hand side is equal to,

Z⊤
0:tK

−1
0:t Z0:t +

1

k(x, x)− kt(x)⊤K
−1
0:t kt(x)

[
Z0:t

z

]⊤ [
K−1

0:t kt(x)
−1

] [
K−1

0:t kt(x)
−1

]⊤ [
Z0:t

z

]
, (98)

where kt(x) := (k(xτ , x))
t
τ=0.

We can then apply a nonlinear programming solver such as Ipopt to solve the problem (96) from randomly sampled initial
points. Then the best converged solution is set to be the next sample point xt.

I. Extension to the Multiple-Choice Setting
In this paper, we mainly consider the setting where human expresses preference over only two choices, because of its
low cognitive burden to the human user and simplicity of theoretical analysis. However, we can extend POP-BO to the
multiple-choice setting where human can compare multiple choices and express the favorite one.

Suppose that in each step τ , we aim to generate a batch of q points. Then we can mix the new batch with the old batch
generated in step τ − 1, and query the comparison oracle to report the favorite point among the 2q points.

Firstly, the confidence set of functions can be similarly constructed using the likelihood ratio idea and the multiple-choice
probabilistic preference model as in (Astudilo et al. 2023),

P (xr is the favorite) =
ef(xr)∑

x∈{last batch and the new batch} e
f(x)

. (99)

Secondly, to generate the new batch, the basic idea is that we can apply a ‘bootstrap’-type technique. More specifically,
we can sequentially generate the new batch x1, x2, · · · , xq. When generating the new point xr+1, we maximize its
corresponding optimistic advantage of zr+1 as compared to the maximum of zt−q+1:t, z

1, · · · , zr by solving a similar
problem to Problem (23). That is, we solve the Problem (100) to generate the new point xr+1 in the same batch,

max
x∈Rd,z∈R,z1:r∈Rr,Z0:t∈Rt+1

z −max{zt−q+1, · · · , zt, z1, · · · , zr}

subject to

 Z0:t

z1:r

z

⊤

K−1
0:t,x1:r,x

 Z0:t

z1:r

z

 ≤ B2,

ℓ(Z0:t|Dt) ≥ ℓt(f̂
MLE
t )− βt,

(100)

which is equivalent to

max
x∈Rd,z∈R,v∈R,z1:r∈Rr,Z0:t∈Rt+1

z − v

subject to

 Z0:t

z1:r

z

⊤

K−1
0:t,x1:r,x

 Z0:t

z1:r

z

 ≤ B2,

ℓ(Z0:t|Dt) ≥ ℓt(f̂
MLE
t )− βt,

v ≥ zt−i+1, i ∈ [q],

v ≥ zj , j ∈ [r],

(101)

by introducing an auxiliary variable v ∈ R. Problem (101) can be efficiently solved by the nonlinear programming solver
Ipopt.

J. Proof of Thm. 5.2
To prepare for the following analysis, we first give a useful lemma.
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Lemma J.1 (Lemma 4, (Chowdhury & Gopalan, 2017b)).

T∑
t=1

σff ′

t ((xt, x
′
t)) ≤

√
4(T + 2)γff

′

T , (102)

where σff ′

t is as defined in Eq. (16) and γff
′

T is as defined in Eq. (18).

Proof. Apply the Lemma 4 in (Chowdhury & Gopalan, 2017b) by setting the kernel function as kff
′
.

For convenience, we use βt to denote β(ϵ, δ/2, t). We can then analyze the regret of the optimistic algorithm.

RT =

T∑
t=1

[f(x⋆)− f(xt)]

=

T∑
t=1

[(f(x⋆)− f(x′t))− (f(xt)− f(x′t))]

≤
T∑

t=1

[(f̃t(xt)− f̃t(x
′
t))− (f(xt)− f(x′t))]

≤
T∑

t=1

2(2B + λ−
1/2β

1/2
t )σff ′

t ((xt, x
′
t)),

where the first inequality follows by the optimality of (xt, f̃t) for the optimization problem in line 4 of the Alg. 1, and the
second inequality follows by Thm. 3.6 (Note that β(ϵ, δ/2, t− 1) ≤ βt = β(ϵ, δ/2, t)). Hence,

RT ≤
T∑

t=1

2(2B + λ−
1/2β

1/2
t )σff ′

t ((xt, x
′
t))

≤2(2B + λ−
1/2β

1/2
T )

T∑
t=1

σff ′

t ((xt, x
′
t))

≤2(2B + λ−
1/2β

1/2
T )

√
4(T + 2)γff

′

T

=O
(√

βTTγ
ff ′

T

)
.

K. Proof of Thm. 5.4
We have

f(x⋆)− f(xt⋆) =(f(x⋆)− f(x′t⋆))− (f(xt⋆)− f(x′t⋆))

≤(f̃t⋆(xt⋆)− f̃t⋆(x
′
t⋆))− (f(xt⋆)− f(x′t⋆))

≤2(2B + λ−
1/2β

1/2
t⋆ )σff ′

t⋆ ((xt⋆ , x
′
t⋆)),

where σff ′

t⋆ is as given in Eq. (16) with the kernel function as kff
′
((x1, x

′
1), (x2, x

′
2)) = k(x1, x2) + k(x′1, x

′
2) and

βt⋆ = β(ϵ, δ/2, t⋆). Furthermore, by the definition of t⋆,

2(2B + λ−
1/2β

1/2
t⋆ )σff ′

t⋆ ((xt⋆ , x
′
t⋆)) ≤

1

T

T∑
t=1

2(2B + λ−
1/2β

1/2
t )σff ′

t ((xt, x
′
t))

≤ 2

T
(2B + λ−

1/2β
1/2
T )

T∑
t=1

σff ′

t ((xt, x
′
t))
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≤ 2

T
(2B + λ−

1/2β
1/2
T )

√
4(T + 2)γff

′

T

=O


√
βT γ

ff ′

T√
T

 .

The conclusion then follows.

L. Commonly Used Specific Kernel Functions
• Linear:

k(x, x̄) = x⊤x̄.

• Squared Exponential (SE):

k(x, x̄) = σ2
SE exp

{
−∥x− x̄∥2

l2

}
,

where σ2
SE is the variance parameter and l is the lengthscale parameter.

• Matérn:

k(x, x̄) =
21−ν

Γ(ν)

(√
2ν

∥x− x̄∥
ρ

)ν

Kν

(√
2ν

∥x− x̄∥
ρ

)
,

where ρ and ν are the two positive parameters of the kernel function, Γ is the gamma function, and Kν is the modified
Bessel function of the second kind. ν captures the smoothness of the kernel function.

M. Proof of Thm. 5.5
Recall that

β(ϵ, δ/2, t) =
σ′2

Hσ
(β2(ϵ, δ, t) + 2β1(ϵ, δ, t)) = O

(√
t log

tN (Bf , ϵ, ∥ · ∥∞)

δ
+ ϵt+ ϵ2t

)
.

We pick ϵ = 1/T , and can thus derive,

βT = β(T−1, δ/2, T ) = O

(√
T log

TN (Bf , T−1, ∥ · ∥∞)

δ

)
.

1. k is a linear kernel, then the corresponding RKHS is a finite-dimensional space and logN (Bf , T
−1, ∥ · ∥∞) =

O
(
log 1

ϵ

)
= O (log T ) (see, e.g., (Wu, 2017)). The corresponding kff

′
((x, x′), (y, y′)) = x⊤y + x′

⊤
y′ =

⟨(x, x′), (y, y′)⟩, which is also linear. Thus, by Thm. 5 in (Srinivas et al., 2012),

γff
′

T = O(log T ).

Hence,
RT = O

(
(T log T )1/4+1/2

)
= O

(
T

3/4(log T )
3/4
)
.

2. k is a squared exponential kernel, then logN (Bf , T
−1, ∥ · ∥∞) = O

(
(log 1

ϵ )
d+1
)
= O

(
(log T )d+1

)
(Example

4, (Zhou, 2002)). By Thm. 4 in (Kandasamy et al., 2015), we have,

γff
′

T = O((log T )d+1).

Hence,
RT = O

(
T

3/4(log T )
3/4(d+1)

)
.
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3. k is a Matérn kernel. Lem. 3 in (Bull, 2011) implies the equivalence between RKHS and Sobolev Hilbert space. We
can then apply the rich results on the bound of covering number of Sobolev Hilbert space (Edmunds & Triebel, 1996).
So logN (Bf , T

−1, ∥ · ∥∞) = O
(
( 1ϵ )

d/ν log 1
ϵ

)
= O

(
T d/ν log T

)
(by combing the lower bound in Thm. 5.1 (Xu et al.,

2022a) and the convergence rate in Thm. 1 (Bull, 2011)). By Thm. 4 in (Kandasamy et al., 2015), we have,

γff
′

T = O
(
T

d(d+1)
2ν+d(d+1) log T

)
.

Hence,

RT = O
(
T

3/4(log T )
3/4T

d
ν

(
1
4+

d+1

4+2(d+1)d/ν

))
≤ O

(
T

3/4(log T )
3/4T

1
4

d(d+2)
ν

)
.

N. Empirical Evidence for the Order of The Cumulative Regret
Fig. 4 shows the cumulative regret of POP-BO algorithm. The experimental conditions are the same as in Sec. 6.1. Note that
both horizontal and vertical axes in Fig. 4 are in log scale, and thus the slope of the curve roughly represents the power of
the cumulative regret. It can be clearly seen that the order of the cumulative regret is between

√
T and T (indeed, close to

T
3
4 by checking the slope in log scale), which verifies our theoretical results in Thm. 5.5.
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Figure 4. Cumulative regret of our algorithm in log scale. For reference purpose, we also plot
√
T and T in log scale.

O. Kernel-Specific Convergence Rate
Similar to the bounds in the Appendix M, we can plug in the kernel-specific covering number and maximum information
gain to derive the kernel-specific convergence rate in Tab. 3.

Table 3. Kernel-specific convergence rate for xt⋆ .
Kernel Linear Squared Exponential Matérn

(
ν > d

4 (3 + d+
√
d2 + 14d+ 17) = Θ(d2)

)
f(x⋆)− f(xt⋆) O

(
(log T )

3/4

T 1/4

)
O
(

(log T )
3/4(d+1)

T 1/4

)
O

(
(log T )

3/4T
d
ν

(
1
4
+ d+1

4+2(d+1)d/ν

)
T 1/4

)

P. More Experimental Results and Details
Selection of Hyperparameters. Three key hyperparameters that influence the performance of POP-BO are the kernel
lengthscale, the norm bound and the confidence level term β as shown in Thm. 3.1. We set β = β0

√
t, where β0 is set to 1.0

by default. For the sampled instances from Gaussian processes, the lengthscale is set to be the ground truth and the norm
bound is set to be 1.1 times the ground truth. For the test function examples, we choose the lengthscale by maximizing the

26



Principled Preferential Bayesian Optimization

likelihood value over a set of randomly sampled data and set the norm bound to be 6 by default (with the test functions all
normalized).

Details on Sampled Instances from Gaussian Process. Specifically, we randomly sample some knot points from a
joint Gaussian distribution marginalized from the Gaussian process, and then construct its corresponding minimum-norm
interpolant (Maddalena et al., 2021) as the ground truth function.

Empirical Method for Reporting a Solution. In the experiment of test function optimization, we report the point that
maximizes the minimum norm maximum likelihood estimator f̂MLE

t , which achieves better empirical performance.

Solution Report Method for Baselines. The approach to reporting a solution is the same as in the original paper of the
baseline algorithm if it is mentioned. Therefore, for the baseline qEUBO (Astudillo et al., 2023), we report the solution that
maximizes the expected objective value conditioned on the historical samples. For the baseline SGP (Takeno et al., 2023),
we report the first point of the duel proposed by the algorithm in step t. For the baseline DTS (González et al., 2017), we
report the Condorcet winner.

Effect of Hyperparameters. We conducted more experiments to assess the effect of hyperparameters. We observe that the
hyperparameters with most influence are the norm bound B and the confidence level βt. The larger the norm bound B is,
the more variance the estimate function has. If B is set too large, the convergence for the suboptimality of the reported
solution tends to be slower. βt can be set to be β0

√
t in practice and determines the level of exploration, where β0 is a fixed

constant. The larger β0 is, the more explorative the algorithm is and may have higher cumulative regret. But setting β0 to be
very small may also cause weak exploration and make the suboptimality of the reported solution converge slower.

P.1. Experimental Results for Higher-Dimensional Problems

Higher-Dimensional Problems Sampled from Gaussian Process. We consider the optimization of 7-dimensional
black-box function sampled from a Gaussian process with kernel function as shown in Eq. (103),

k(x, x̄) = σ2
SE exp

{
−∥x− x̄∥2

l2

}
(103)

where σ2
SE = 9.0 and l = 5

√
7. The optimization domain is set to be [0, 10]7. We run 20 randomly sampled instances for 100

steps. The average update time for each step t is only 11.0 seconds on a personal computer with one Intel64 Family
6 Model 142 Stepping 12 GenuineIntel 1803 Mhz processor and 16.0 GB RAM. This is comparably
very small considering that each query to the comparison oracle can be very expensive in practice (e.g., heating the room up
to a certain temperature to evaluate occupant comfort, which may take tens of minutes). We compare our method to the SGP
baseline.
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Figure 5. Cumulative regret in log scale and the suboptimality of the reported solution in linear scale for a 7-dimensional problem sampled
from Gaussian process. For reference purpose, we also plot T in the cumulative regret plot in log scale, where the shaded areas represent
±0.2 standard deviation.
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Fig. 5 shows the cumulative regret (in log scale) and the suboptimality of the reported solution for our POP-BO algorithm,
where the reported solution is derived by maximizing the maximum likelihood estimate function. It can be clearly seen that
our algorithm achieves both sublinear regret growth and fast convergence for the suboptimality of the reported solution in
this 7-dimensional problem. Interestingly, the suboptimality of SGP converges similarly to our method before 50 steps,
but get even worse after 50 steps. This is because SGP ignores the randomness in the preference feedback, which leads
to misbelief in the function difference value, and such misbelief is more significant when the function difference value is
small.

Higher-Dimensional Test Problem. In this section, we further consider the optimization of the 6-dimensional Ackley
function as shown in (Astudillo et al., 2023). For this problem, we compare POP-BO algorithm to the qEUBO algorithm
proposed in (Astudillo et al., 2023). Fig. 6 shows the cumulative regret and the suboptimality of the reported solution. In this
particular problem, qEUBO performs better than our POP-BO algorithm in terms of cumulative regret, while our POP-BO
algorithm performs slightly better than qEUBO in terms of the suboptimality of the reported solution.
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Figure 6. Cumulative regret and the suboptimality of the reported solution for the 6-dimensional Ackley function optimization problem,
where the shaded areas represent ±0.5 standard deviation.

P.2. Occupant Thermal Comfort Optimization

Two-Dimensional Comfort Optimization. An accurate model of human thermal comfort is crucial for improving occupants’
comfort while saving energy in buildings. However, establishing such a model has proven to be a complex and challenging
task (Zhang et al., 2024) and standard offline models ignore the individual differences among occupants. In this section,
we consider the real-world problem of maximizing occupant thermal comfort directly from thermal preference feedback.
To emulate real human thermal sensation, we use the well-known and widely adopted Predicted Mean Vote (PMV)
model (Fanger et al., 1970) as the ground truth and generate the preference feedback according to the Bernoulli model
as assumed in Assumption 2.5. We optimize the indoor air temperature and air speed, which are the two major factors
that influence thermal comfort and are controllable by HVAC (Heating, Ventilation, and Air Conditioning) systems and
fans. Indeed, tuning these two factors has been proven effective in providing thermal comfort while minimizing energy
consumption (Lyu et al., 2023). The result is shown in Fig. 7 where the mean is taken over 30 instances of simulation. It
can be seen that our method stably achieves superior performance in optimizing human thermal comfort, which implies its
potential to deal with preferential feedback in real-world applications. It is also noticeable that although qEUBO achieves
slightly better performance in terms of the convergence of the reported solution, the cumulative regret of qEUBO is almost
twice of POP-BO’s cumulative regret. This means our method is more favorable in applications where online performance
during the optimization is also critical, such as online tuning of HVAC systems.

Scalability to Higher Dimension. Additionally, to demonstrate the scalability of POP-BO in this real-world comfort
optimization problem, we additionally tune the mean radiant temperature and relative humidity, which results in a four-
dimensional black-box optimization problem. The result is shown in Fig. 8. It can be observed that increasing the
dimensionality does not drastically decrease the convergence rate of our method. Furthermore, the baseline method qEUBO
can decrease the objective value very fast in the initial steps, but seems to be still very oscillatory after 10 steps. In contrast,
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Figure 7. Cumulative regret and the suboptimality of the reported solution of different algorithms for thermal comfort optimization.

our method converges faster than SGP without the oscillation issue like qEUBO.
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Figure 8. Cumulative regret and the suboptimality of the reported solution of different algorithms for the four-dimensional thermal comfort
optimization problem.

P.3. Details About the Results in Tab. 2

The cumulative regret and evolution of suboptimality for the different test problems in Tab. 2 are shown in Fig. 9. Since
the considered problems only have 2-dimensional input and in the applications of Bayesian optimization, it is typically
desired to obtain a set of solution with objective value as close to the optimal value as possible. So we only consider 30 steps
here. Other baselines can make limited progress in terms of the suboptimality of the reported solution within only 30 steps
(partially also due to the ‘adversarial’ property of the test functions, i.e., severe non-convexity and multiple local maxima) as
shown in Tab. 2. To the sharp contrast, our POP-BO algorithm makes significant progress in reducing the suboptimality of
the reported solution by balancing exploration and exploitation, and estimating the best solution in a principled way.

To provide more insights into POP-BO’s performance across different settings, we compare our algorithm’s evolution of
cumulative regret and suboptimality to other baseline methods for each test problem in Fig. 10 and Fig. 11. It can be
observed that our method may perform slightly worse than some baselines in certain problems. For example, our method
performs slightly worse than qEUBO in the Bukin problem in terms of suboptimality. However, our method performs stably
and is consistently one of the best in all the test problems in terms of the suboptimality.

Q. Additional Contributions as Compared to (Mehta et al., 2023)
Notably, (Mehta et al., 2023) proposes Borda-AE algorithm, which directly learns the winning probability function using
kernel ridge regression. This key design allows the authors to derive an information-theoretic convergence rate and efficient
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Figure 9. Cumulative regret and the suboptimality of the reported solution of POP-BO algorithm for the different test problems in Tab. 2.

computation method without diving into the learning of the underlying reward function.

However, (Mehta et al., 2023) has key limitations and our paper makes additional contributions in the following two aspects.

1. Cumulative regret bound. There are two possible ways to define cumulative regret. One way is that we can define the
(partial) cumulative regret as the summation of the suboptimality of only xt (that is,

∑T
t=1(f(x

⋆) − f(xt))). With
this (partial) cumulative regret definition, Borda-AE algorithm can provide a sublinear (partial) cumulative regret
bound, although it has linear growth in the cumulative regret of the compared point sequence {x′t}Tt=1. However, in
many practical online learning applications, it is desired to control the suboptimality of both xt and x′t sequences. For
example, when tuning the thermal/visual comfort of room occupants, we require the occupants to experience both xt
and x′t conditions for comparison purposes and the suboptimality (links to discomfort) caused by both xt and x′t need
to be managed.

Therefore, it is more practically relevant to define (total) cumulative regret as the total cumulative suboptimality of both
xt and x′t sequences (that is,

∑T
t=1(f(x

⋆)− f(xt)) +
∑T

t=1(f(x
⋆)− f(x′t))). Interestingly, since x′t = xt−1 by the

design of our POP-BO algorithm, this (total) cumulative regret bound reduces to 2
∑T

t=1(f(x
⋆)− f(xt)), for which

we provide our sublinear cumulative regret bound. As such, the (total) cumulative regret bound provided by our paper
is stronger than the (partial) cumulative regret bound that could be obtained by (Mehta et al., 2023).

2. Applicability to online learning problem. Following the last point, (Mehta et al., 2023) is not applicable to the online
learning problem since in line 6 of the Borda-AE algorithm, a′t is uniformly sampled from the action space, which
leads to a linear growth of cumulative regret. This means Borda-AE has very poor online performance and can not be
applied to an online learning problem. For example, in building thermal comfort tuning, we also want to control the
discomfort caused during the tuning process. In contrast, our POP-BO algorithm has good online performance with
both a theoretical bound on cumulative regret (Thm. 5.2) and empirical evidence on small cumulative regret (Fig. 2).
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Figure 10. Cumulative regret and the suboptimality of the reported solution of different algorithms for the test problems Beale, Branin,
Bukin, and Cross-in-Tray in Tab. 2.
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Figure 11. Cumulative regret and the suboptimality of the reported solution of different algorithms for the test problems Eggholder, Holder
Table, and Levy13 in Tab. 2.
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