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Abstract

In this study, we design novel probabilistic loss functions for training neural1

networks in an unsupervised way to tackle the CNF-SAT problem. In particular,2

we leverage the power of the Lovász Local Lemma (LLL) in obtaining satisfiability3

certificates to train models that achieve this in a differentiable manner. Given that4

the LLL provides provable discretization procedures, such as the Moser-Tardos5

algorithm, our approach leads to an end-to-end hybrid SAT solver.6

1 Introduction7

There is a recent line of work in the intersection of machine learning and combinatorial optimization8

[Karalias and Loukas, 2020, Yau et al., 2024, Karalias et al., 2022, Wang et al., 2019, Selsam et al.,9

2019]. Karalias and Loukas [2020] propose a principled unsupervised learning framework for tackling10

a large class of NP-hard problems defined on graphs. More specifically, the authors construct a loss11

function that is inspired by the Probabilistic Method and that guarantees the existence of high-quality12

discrete solutions. Such solutions can also be constructed deterministically in an efficient way. We13

apply this framework in the context of the CNF-SAT problem and present the loss function that arises14

naturally, which we refer to as the Union Bound loss. The CNF-SAT problem – a typical NP-complete15

problem with a wide variety of applications – asks for a boolean assignment x to a set of variables that16

appear in a CNF boolean formula ϕ (a conjunction of disjunctions) such that x satisfies all clauses of17

ϕ [Karp, 1972]. Using the symmetric and asymmetric versions of the Lovász Local Lemma (LLL)18

we propose new loss functions that are exploiting the instance structure in a more direct way [Erdős19

and Lovász, 1974, Alon and Spencer, 2016]. The LLL exhibits two appealing features: it provides20

nontrivial certificates of satisfiability and efficient algorithms for finding a satisfying assignment. The21

Moser-Tardos result showed that the simplest local search algorithm is efficient under the conditions22

of the LLL [Moser and Tardos, 2010]. We obtain the certificate in a differentiable manner that when23

combined with the efficient discretization step gives rise to an end-to-end hybrid SAT solver. The24

proposed framework can thus be thought of as a learnable stochastic local search algorithm and can25

be easily extended to tackle more general problems in the class of Constraint Satisfaction Problems26

(CSPs).27

In the context of SAT, one well-known supervised model is NeuroSAT, where a message passing28

neural network (MPNN) is trained to predict satisfiability in a supervised way [Selsam et al., 2019].29

SATNet introduces a differentiable maximum satisfiability (MAXSAT) solver that can be directly30

embedded in deep learning models, enabling them to incorporate logical reasoning [Wang et al.,31

2019]. Another way of incorporating neural methods in SAT solvers is to inject a neural network in a32

well-known heuristic. The authors in Yolcu and Poczos [2019] propose learning SAT solver heuristics33

from scratch using deep reinforcement learning. FourierSAT considers continuous extensions for34

SAT problems via Fourier analysis of Boolean functions and continuous optimization on the resulting35

multilinear polynomials [Kyrillidis et al., 2020].36
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We provide a conceptual motivation for the use of the LLL via the notion of entropy rate, and we37

hypothesize that satisfiability certificates that are effective for high-entropy distributions are amenable38

to continuous optimization algorithms. We experimented with different loss functions on a wide39

class of randomly generated CNF formulae. The results showed that in the low dependency degree40

regime, the symmetric LLL can outperform the Union Bound and there are other cases for which41

the asymmetric LLL works better than both of the other two losses. Furthermore, we propose a42

Graph Neural Network (GNN) parameterization (we refer to our model as GINGAT) on which we43

conducted experiments. The results obtained showed that the neural parameterization can typically44

lead to improved results (compared to the pure Adam-based approach) on the training set and in some45

cases on an unseen test set. We finally present interesting directions for future research.46

2 Conceptual motivation47

We want to design an unsupervised learning framework for solving Clause CSPs (where each48

constraint forbids a single assignment to some subset of the variables). More specifically, we want49

to define loss functions that are derived from probabilistic statements implying the satisfiability of50

a given CSP instance. Moreover, we want the probabilistic statements to also provide us with an51

efficient procedure for actually finding such a satisfying assignment. To simplify our discussion, we52

will focus on the search version of the CNF-SAT problem, in which we are given a CNF boolean53

formula ϕ on n variables x1, . . . , xn and m clauses C1, . . . , Cm (where each clause is the disjunction54

of some number of literals) and the goal is to find an assignment x ∈ {0, 1}n to the variables such that55

every clause evaluates to True. We work with product measures on [n], i.e. we consider only marginal56

vectors p = (p1, . . . , pn) such that P (Xi = True) = pi, and the random variables Xi ∼ Ber(pi) are57

mutually independent.58

We write x ∼ p to mean that we sample an assignment x according to distribution p. For every59

j ∈ [m], define the event Bj = “clause j is false (under x)”. Given some ϕ, we want to find60

conditions on p ∈ [0, 1]n that imply Px∼p

(
∩j∈[m]Bj

)
> 0, in which case a satisfying assignment61

exists (by the probabilistic method). We will write ϕ ∈ SAT to mean that ϕ is satisfiable. When62

looking for sufficient conditions for satisfiability, probably the simplest condition is the one that63

follows from the Union Bound:64 ∑
j∈[m]

Px∼p (Cj(x) = 0) < 1 =⇒ ϕ ∈ SAT. (1)

Denote the set of vectors p that satisfy the antecedent of 1 with PUB(ϕ). To simplify notation, we65

define fj(p) := Px∼p (Cj(x) = 0) , ∀j ∈ [m]. Since the variables Xi’s are independent (from our66

setup), we have that fj(p) =
∏

i∈C−
j
pi ·

∏
i∈C+

j
(1− pi), where C−

j is the set of variables appearing67

in clause Cj negatively and C+
j is the set of variables appearing in clause Cj positively. Now, it68

is easy to see that given some p ∈ PUB(ϕ), a satisfying assignment can be found efficiently using69

the method of conditionals expectations. Thus, a natural choice for the loss function to be used is70

LUB(p, ϕ) :=
∑

j∈[m] fj(p). We will refer to LUB as the Union Bound loss function.71

The Union Bound loss function presented above uses a worst case bound in which all events are72

mutually independent. In practice, clauses will share variables which introduces dependencies73

between them. Hence, we will investigate loss functions that take into account this dependency74

structure. To this end, we will consider the Lovász Local Lemma (LLL), which leverages the75

dependency structure of the clauses to certify satisfiability. Specifically, the symmetric version of the76

(variable) LLL, yields the following:77

∀j ∈ [m], fj(p) ≤
1

e(d+ 1)
=⇒ ϕ ∈ SAT, (2)

where d is the maximum degree across the vertices in the dependency graph of ϕ (vertices correspond78

to clauses and we draw an edge between two vertices if the corresponding clauses share a variable).79

The asymmetric version of the LLL provides the following80

∃µ : [m] → [0, 1) : ∀j ∈ [m], fj(p) ≤ µ(j) ·
∏

j′∈N(j)

(1− µ(j′)) =⇒ ϕ ∈ SAT, (3)
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where N(j) denotes the set of clauses that share some variable with clause Cj . Denote the set of81

vectors p that satisfy the antecedent of 2 with PLLL(ϕ) and the set of vectors p and µ that meet 3 with82

PGLLL(ϕ). Note that for the LLL, we have point-wise inequalities that need to hold for every clause83

(unlike the global sum of the Union Bound).84

We define the loss functions as follows. For the symmetric LLL, we have85

LLLL(p, ϕ) :=
∑
j∈[m]

ReLU (fj(p)− 1/(e(d+ 1))) .

For the asymmetric LLL, the loss is given by86

LGLLL(p, µ, ϕ) :=
∑
j∈[m]

ReLU

fj(p)− µ(j) ·
∏

j′∈N(j)

(1− µ(j′))

 ,

where ReLU(x) = max(x, 0).87

Altogether, we have three different loss functions and a condition on each that implies the satisfiability88

of the given CNF: LUB(p, ϕ) < 1,LLLL(p, ϕ) = 0 and LGLLL(p, µ, ϕ) = 0.89

The premise of this work is that the integrality of predicted solutions can play an important role in90

the success of the model. Consider the loss in (1). If our algorithm produces p which leads to a91

constant probability of violation for each clause, then naturally as the number of clauses increases92

then the union bound will be harder to satisfy. Hence, the probability of clause violation will have93

to decrease as the number of clauses grows p. A natural way for this to occur is if p tends to an94

integral assignment as the formula grows. Our goal is to investigate this and propose losses that could95

overcome this challenge. To clarify this idea, we perform the following simple test which gives us96

an indication of the “effective entropy” of the Union Bound and the symmetric LLL. We construct97

random k-CNFs ϕn,i for some given density. For a CNF ϕ, a satisfying assignment x of ϕ, a function98

L and a small constant δ, we denote with T δ the smallest factor of δ perturbation we need to add to99

the all 1/2 vector in the direction of x so that we get an element p ∈ PL,ϕ (this measures some notion100

of “satisfiability threshold” for the function under consideration). In Figure 3a, we show the average101

T δ value for each value of n, where n is the number of variables in random 3-CNFs of density 2.5.102

similarly, Figure 3b shows the same phenomenon for density 3.5. For both cases, we can see that the103

symmetric LLL kicks in with distributions that are away from binary while the union bound threshold104

converges to 0.5.105

In what follows, we formalize this phenomenon by looking at the sequence of maximum average106

entropy values of marginal vectors that satisfy the LLL condition as we consider larger and larger107

CNF formulas coming from an infinite family. We define the analogous quantity for the case of the108

Union Bound, we then compare the two and show that there are CNF families for which the LLL is109

effective with joint distributions of higher per-variable entropy. We note that we will only consider110

satisfiable SAT formulas so that the sets PUB,PLLL and PGLLL are non-empty.111

Definition 1 For p ∈ [0, 1]n, the entropy of p is defined as H(p) :=
∑

i∈[n] H(pi) :=112

−
∑

i∈[n](pi log(pi) + (1 − pi) log(1 − pi)). This is the joint entropy of n independent Ber(pi)113

variables. Furthermore, define the average entropy of p as H(p) := 1
nH(p).114

Definition 2 Let Φ = {ϕz}z∈N be an infinite satisfiable CNF family and let L ∈ {UB,LLL,GLLL}.115

We define the L-entropy-rate of Φ as: H∞
L (Φ) := lim supz→∞ supp∈PL(ϕz) H(p).116

We start our discussion by showing that there exists an infinite family Φ1 with d = O(1), H∞
UB(Φ1) =117

0 and H∞
LLL(Φ1) ≥ 1

3 , where d is the maximum degree in the clause dependency graph. We start by118

considering an easy-to-construct family, every CNF of which admits a unique satisfying assignment.119

Claim 1 (proof in Appendix A) Let ϕ be a k-CNF that admits a unique satisfying assignment120

p∗ ∈ {0, 1}n. For simplicity, assume that n = kz, for some z ∈ N. Then ϕ can be equivalently121

written as a k-CNF on n variables and (2k − 1)z clauses.122

We consider the constant-degree infinite family of 3-CNFs described in the proof of Claim 1 (i.e. we123

fix k = 3) with unique satisfying assignment p∗ = 1n. Denote the CNF family with Φ1.124
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Claim 2 (proof in Appendix A) Let Φ1 be the infinite family constructed above. Then, H∞
LLL(Φ1) =125

1
3 and H∞

UB(Φ1) = 0.126

We now show how to get a constant entropy rate for the symmetric LLL with a CNF family having a127

linear maximum degree.128

Claim 3 (proof in Appendix A) There exists an infinite family Φ2 such that H∞
LLL(Φ2) = 1.129

We now separate the asymmetric LLL from the Union Bound function and the symmetric LLL. More130

specifically, we construct an infinite family Φ3 with d = O(m), H∞
UB(Φ3) = H∞

LLL(Φ3) = 0 and131

H∞
GLLL(Φ3) ≥ 1

4 .132

Claim 4 (proof in Appendix A) There exists an infinite family Φ3 such that: H∞
UB(Φ3) =133

0, H∞
LLL(Φ3) = 0,H∞

GLLL(Φ3) ≥ 1
4 .134

The families of synthetic instances discussed above serve as motivating examples for our discussion.135

We conjecture that more powerful theoretical tools will be required to establish the benefits of the136

LLL for realistic data distributions.137

3 Methodology138

We first present the different CNF generators used and the different loss functions considered. We139

then explain the implementation that we used for optimizing the loss functions. In this work, we140

primarily focus on minimizing the loss by directly optimizing the assignment in the hypercube using141

first order methods (i.e., Adam). By removing the model, we can make consistent observations about142

the loss that do not depend on a specific neural net architecture.143

CNF generation We consider different classes (types) of CNF formulas, each encoding a different144

combinatorial problem. We use an established CNF generation library for the following CNF types:145

Coloring, EvenColoring, GraphOrdering and PerfectMatching [Massimo Lauria]. The underlying146

structures are generated from a variety of random graph models: Barabasi–Albert, expected-degree147

model, Erdős–Rényi, power-law cluster model, random regular graphs and Watts-Strogatz [Hagberg148

et al., 2008]. We note that we use the MiniSAT solver to filter out unsatisfiable instances in the149

generation process. The generated CNFs have between 20 and 400 variables and between 50 and150

8,000 clauses. The average ratio (clauses over variables) is 6.75. For testing Adam, we generated a151

sample of about 40 instances for each CNF type/graph generator combination.152

Loss functions We implemented and experimented with different loss functions: the Union Bound153

loss function and loss functions that are inspired by the LLL. We used smooth approximations of154

the ReLU function. Smooth activations like GELU or Softplus provide non-zero gradients that155

improve Adam’s stability, while ReLU is faster but can suffer from dead neurons due to zero gradients156

for negative inputs. In the case of the asymmetric LLL (implication 3), recall that there are free157

parameters for each clause. In the experiments, we set µ(j) = 1/(dj + 1),∀j ∈ [m], where dj is the158

degree of clause j in the dependency graph of ϕ.159

Stochastic Gradient Descent implementation The optimization is performed with five restarts,160

where each restart initializes the logits using a standard normal distribution (randn) to avoid poor161

local minima. Each batch contains multiple CNF instances, with literal and clause padding handled162

via masks, and instances that reach a threshold are masked out to prevent unnecessary updates. For163

each CNF, the lowest left-hand side (LHS) value seen across steps is tracked to monitor progress.164

This LHS value corresponds to the loss we are optimizing1 and that we try to lower below a certain165

threshold (1 in the case of the union bound and 0 in the case of the LLL2). Gradients are updated166

using the Adam optimizer, which benefits from adaptive learning rates. Furthermore, we applied167

early stopping. Logits are converted to probabilities via a sigmoid, and probabilities are clamped168

between 10−12 and 1− 10−12 to prevent numerical issues. Finally, instances are considered solved169

and removed from further updates once their LHS drops below a function-dependent threshold.170

1In the case of the LLL, this is not the proxy loss but the actual sum of ReLU values.
2We used a threshold of 10−5 for the LLL loss functions.
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Figure 1: Percentage of solved instances per CNF type

Graph Neural Network parameterization We propose a neural architecture that we tested against171

the Adam-based implementation. The architecture combines two well-known Graph Neural Networks172

(GNNs): the Graph Isomorphism Network (GIN) and the Graph Attention Network (GAT) [Xu et al.,173

2019, Velickovic et al., 2018]. We refer to the proposed neural network as the GINGAT model. This174

model is a hybrid GNN designed to operate on bipartite graphs connecting variables and clauses. It175

integrates GIN layers that capture graph structure with GAT layers that incorporate attention-based176

relational information. The model processes node features and edge attributes through a sequence177

of these layers, optionally using residual connections, dropout, and graph normalization. This178

combination of GIN and GAT layers allows the model to capture both structural patterns and the179

relative importance of neighboring nodes, making it effective for reasoning over the variable-clause180

bipartite graphs coming from SAT instances. The key hyperparameters of the model are summarized181

in Table 2. Finally, the instances that were used for training the GINGAT model are shown in Table 3.182

We used a 70/15/15 training/validation/test split.183

The experiments were run on a machine with an RTX 3090 GPU, 12 CPU cores (Xeon E5-2650 v4)184

and 32GB RAM.185

4 Results186

In Figure 1 and Table 5, we show the percentage of CNFs that were solved3 using the pure Adam-187

based approach by each loss function. Figure 4 and Table 6 contain a more in-depth comparison of188

the different loss functions on the basis of a CNF type and graph generator combination, where in the189

Figure we show the difference in performance (difference in percentage of CNFs solved) for each190

pair of functions in increasing order. The effect of the normalized maximum and average degree191

of the clause dependency graph on the performance difference between the functions is shown in192

Figures 2, 5, 6 and 7. Finally, in Figure 8, we observe the runtime of the different loss functions. We193

separately plot the runtime of Adam for processing an individual CNF (that was solved or not) and194

the runtime for solving a CNF.195

Concerning the results obtained on the GINGAT training, the best hyperparameters found for training196

the GINGAT model were determined through extensive tuning. These parameters are summarized197

in Table 4. The results obtained by GINGAT in training, validation and testing for some selected198

datasets on which we observed a performance that was comparable or higher than the pure Adam-199

based approach are shown in Table 1. We hypothesize that a future investigation into suitable GNN200

architectures for each CNF type can give an improvement on the Adam-based approach across the201

board.202

3By “solving”, we mean that the algorithm found a certificate of satisfiability. Recall that we are guaranteed
to then be able to find a solution, but for simplicity we omit this discretization step.
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Table 1: Results of GINGAT for different CNF types, generators, and loss functions
CNF type Graph generator Parameters Loss function Test % Train % Val % Adam %

graphOrdering watts strogatz graph k: 4, p: 0.3, n: 10
SymmetricLLLGelu 62.09 100 65.36 50

UnionBound 62.09 100 68.63 53

perfectMatching powerlaw cluster graph m: 4, p: 0.05, n: 10 AsymmetricLLLGeluDi 53.52 100 91.67 53

graphOrdering expected degree graph a: 5, min: 2, max: 4, n: 10 SymmetricLLLGelu 28.76 100 47.71 33

Figure 2: Symmetric LLL vs Union Bound for increasing maximum dependency degree

5 Conclusions203

In this work, we proposed an unsupervised learning approach for solving the CNF-SAT problem204

using probabilistic loss functions. We presented LLL-inspired losses that explicitly use instance-205

specific structure unlike the Union Bound (UB) loss. We implemented both a GNN model and a pure206

Adam-based method for finding satisfiability certificates on different types of CNFs. Empirically, the207

symmetric-LLL objective performs best in the low-degree regime where it outperforms the UB (as we208

observe in Figure 2); as the dependency degree grows, the symmetric condition expectedly becomes209

hard to satisfy; the asymmetric-LLL objective is the most robust in high normalized average-degree210

settings, outperforming the symmetric LLL and in many cases the UB (as shown in Figures 7a and211

6a). As for the runtime comparison, the UB loss tends to converge more slowly in the optimization212

dynamics (as Figure 8 clearly depicts), suggesting that LLL-inspired losses have more favorable213

gradient descent dynamics. Concerning GINGAT, Table 1 shows that while its training performance214

was high, it did not quite generalize to unseen test instances, which can be seen as a limitation of this215

study.216

6 Conclusion217

We have proposed a self-supervised approach to SAT solving the makes use of specialized loss218

functions based on classic tools from probabilistic combinatorics. While our losses rely on simpler219

versions of the LLL, this direction opens up the possibility of employing more powerful tools from220

the literature like Shearer’s bound and the cluster expansion lemma [Bissacot et al., 2011, Shearer,221

1985]. Another important direction to explore is the role of the model and its interplay with the loss222

function. Even though a specialized loss might improve direct optimization results, it is unclear how223

a model will interact with the loss.224
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A Effective entropy297

(a) Average T δ values for increasingly large random 3-CNFs of density 2.5

(b) Average T δ values for increasingly large random 3-CNFs of density 3.5

Figure 3: Comparison of average T δ values for random 3-CNFs of different densities.

Proof 1 (proof of Claim 1) We design a k-CNF ϕ′ := u(ϕ) that meets the condition of the Claim.298

More generally, ϕ′ is defined on n variables x1, . . . , xn (same as ϕ) and has m = (2k − 1)z clauses.299

We show that ϕ′ has z groups C1, . . . , Cz of clauses of size 2k − 1. Group Cr (r ∈ [z]) contains k300

variables Xr := {x(r−1)k+1, . . . , x(r−1)k+k} and 2k − 1 clauses involving Xr.301

Definition 3 Let S ∈ {−1, 1}k. Define:302

C(S,Xr) :=
∨

(i,s)∈zip(((r−1)k+1,...,(r−1)k+k),S)

xx
i ,

where303

xs
i =

xi, if s = 1,

xi, if s = −1.

Define each group of clauses Cr as304

Cr :=
⋃

S∈{−1,1}k:S ̸=(−sign(px))x∈Xr

C(S,Xr).
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Overall, ϕ′ =
(
[n],

⋃
r∈[z] Cr

)
. We now show that p∗ = (p1, . . . , pn) is the unique satisfying305

assignment of ϕ′.306

1. ϕ′(p∗) = 1: Consider an arbitrary r ∈ [z]. For every S ∈ {−1, 1}k \ {(−sign(p∗x))x∈Xr},307

there is some i ∈ [k] such that sign(si) = sign(p∗si). Thus, every clause C ∈ Cr is satisfied.308

2. Let p ∈ {0, 1}n \ p∗. Then, we show that ϕ′(p) = 0. We show that ∃r ∈ [z] such that Cr309

contains a clause violated by p. Let D = {i ∈ [n] : pi = 1− p∗i }. Without loss of generality,310

1 ∈ D. Let X ′ be a maximal subset of D such that X ′ ⊆ Var(C1). Without loss of generality,311

X ′ = [k′], k′ < k. Now the constraint312

C

(

k′︷ ︸︸ ︷
1, 1, . . . , 1,

k−k′︷ ︸︸ ︷
−1,−1, . . . ,−1, X1)


is violated by p.313

Observation 1 Let ϕ be a k-CNF formula with m clauses. Let p∗ be any satisfying assignment of ϕ.314

For any ε ∈ (0, 1), define p∗ ⊕ ε as:315

(p∗ ⊕ ε)i =

ε, if p∗i = 0

1− ε, otherwise.

Then, for every j ∈ [m], we have that:316

fj(p
∗ ⊕ ε) := Px∼(p∗⊕ε) (Cj(x) = 0) = εc

True
j (p∗) · (1− ε)k−cTrue

j (p∗),

where cTrue
j (p∗) := |{l ∈ Cj : l(p

∗) = 1}| (number of literals that evaluate to True in clause j under317

assignment p∗).318

Proof 2 (proof of Claim 2) We show that for every z ≥ 1, supp∈PLLL(ϕz) H(p) ≥ 1
3 . Fix an arbitrary319

z ≥ 1. It suffices to find p ∈ PLLL(ϕz) with H(p) ≥ 1
3 . Let ε = 0.071 and p := (1 − ε)1n (recall320

that n = 3z). To show that p ∈ PLLL(ϕz), we need that321

max
j∈[m]

Px∼p (Cj(x) = 0) ≤ 1

6e
,

since d = 6. From Observation 1 and since ε < 0.5, the maximum is equal to ε(1 − ε)2 =322

0.06127 · · · ≤ 1
6e = 0.061313 . . . Now, as for the average entropy, we have that:323

H(p) =
1

n

∑
i∈[n]

H(1− ε) = H(1− ε) ≈ 0.369 ≥ 1

3
.

We now consider the Union Bound. Fix an arbitrary z ≥ 1 and a p ∈ PUB(ϕz). We upper bound324

H(p). Let325

fj(p) = Px∼p (Cj(x) = 0) , j ∈ [m].

Fix any δ ∈
(
0, 1

2

)
. Let326

Bp,δ := {i ∈ [n] : pi ≤ 1− δ}
and327

Wp,δ := {r ∈ [z] : V (Cr) ∩Bp,δ ̸= ∅}.
Now observe that328

f(p) :=
∑
j∈[m]

fj(p) ≥ δ · |Wp,δ|,

since the sum in each group of clauses is equal to 1− pipqpl. Since f(p) < 1 (by assumption), we329

get |Wp,δ| < 1
δ . Each group of clauses contains exactly three variables and thus |Bp,δ| < 3

δ . Thus,330

we have that:331

H(p) ≤ 1

3z
·
(
3

δ
+H(δ) · 3z

)
=

1

zδ
+H(δ).

10



Recall that the inequality above holds for any δ ∈
(
0, 1

2

)
. Set δ := 1√

z
(define the family only for332

z > 4 to make sure that δ is in the right range). Since p was arbitrarily chosen in PUB(ϕz), we have333

sup
p∈PUB(ϕz)

H(p) ≤
√
z

z
+H

(
1√
z

)
.

Thus,334

H∞
UB(Φ) ≤ lim sup

z→∞

{√
z

z
+H

(
1√
z

)}
= 0

and we conclude.335

Proof 3 (proof of Claim 3) We now construct an infinite family Φ2 with d = O(m) and H∞
LLL(Φ2) =336

1. We define Φ2 = (ϕz)z∈N in the following way. Fix a constant q ∈ N. The CNF formula ϕz has337

q · (z + 1) variables and q · (z + 1) clauses. We set338

Var(ϕz) :=
⋃
i∈[q]

xi ∪
⋃

(i,r)∈[q]×[z]

yi,r

and339

C(ϕz) =
⋃
i∈[q]

(xi ∨ yi,1 ∨ yi,2) ∪
⋃

(i,r)∈[q]×[z]

(xi ∨ yi,r ∨ yi,r+1) ,

where yi,z+1 := yi,1.340

First, note that the dependency graph of any ϕz is a disjoint union of q copies of Kz+1 and thus every341

clause has degree z. Thus, d = z = O(m).342

Fix any z ∈ N and consider the corresponding formula ϕz . Define a joint distribution pz ∈343

[0, 1]q·(z+1) as follows:344 (pz)xi =
1

z+1 , ∀i ∈ [q],

(pz)yi,r
= 1

2 , ∀(i, r) ∈ [q]× [z].

We now see that345

fj(pz) =
1

4 · (z + 1)
, ∀j ∈ [m],

where we recall that fj(pz) is the probability that clause j is falsified when sampling from pz .346

Thus, we have that347

fj(pz) ≤
1

ed
=

1

ez
and thus pz ∈ PLLL(ϕz). It now suffices to show that348

lim
z→∞

1

q · (z + 1)
H(pz) = 1.

The average joint entropy is computed as349

1

q · (z + 1)
H(pz) =

1

q · (z + 1)

∑
i∈[q]

H((pz)xi
) +

∑
(i,r)∈[q]×[z]

H((pz)yi,r
)


=

1

q · (z + 1)

(
q ·H

(
1

z + 1

)
+ qz ·H

(
1

2

))

=
1

z + 1
H

(
1

z + 1

)
+

qz

qz + q

z→∞−→ 1.

Proof 4 (proof of Claim 4) Fix some q = O(1). We define Φ3 = (ϕz)z∈N≥5
in the following way:350

Var(ϕz) :=
⋃

(i,r)∈[q]×[z]

xi,r

11



and351

C(ϕz) =
⋃
i∈[q]

∨
r∈[z]

xi,r ∪
⋃

(i,r)∈[q]×[z]

(xi,r) .

We clearly have that n = qz, m = q · (z + 1) and d = z = O(m).352

We start with the Union Bound. Fix any z ∈ N≥5 and any sequence (pz)z such that pz ∈ PUB(ϕz), ∀z.353

We show that354

lim
z→∞

1

qz
H(pz) = 0.

Since, pz ∈ PUB(ϕz), we know that355 ∑
j∈[m]

fj(pz) < 1.

Set δ := 1√
z

and define the set of “middle” variables356

Bpz,δ := {(i, r) ∈ [q]× [z] : pi,r ∈ [δ, 1− δ]} .

We compute357 ∑
j∈[m]

fj(pz) =
∑

(i,r)∈[z]×[z]

pi,r +
∑
i∈[q]

∏
r∈[z]

pi,r ≥ |Bpz,δ| · δ.

Thus, we get that |Bpz,δ| < 1
δ since by assumption we have that pz ∈ PUB(ϕz).358

To conclude, we write359

1

qz
H(pz) ≤

1

qz

(
1

δ
+ qz ·H(δ)

)
=

1

qzδ
+H(δ)

z→∞−→ 0.

We now consider the symmetric LLL. Fix any z ∈ N≥5 and any sequence (pz)z such that pz ∈360

PLLL(ϕz), ∀z. We show that361

lim
z→∞

1

qz
H(pz) = 0.

The LLL conditions require:362 pi,r ≤ 1
ez , ∀(i, r) ∈ [q]× [z],∏

r∈[z] pi,r ≤ 1
ez , ∀i ∈ [q].

Thus,363

1

qz
H(pz) ≤

1

qz

(
qz ·H

(
1

ez

))
= H

(
1

ez

)
z→∞−→ 0.

Finally, we consider the asymmetric LLL. It suffices to show the following: let ε ∈ (0, 1/4]. Then, for364

every ϕz ∈ Φ3, there exists some p ∈ [0, 1]qz such that:365

1. 1
qzH(p) = ε366

2. ∃µ ∈ (0, 1)q·(z+1) : (p, µ) ∈ PGLLL(ϕz).367

Fix any ε ∈ (0, 1/4]. Let δ ∈ (0, 1) be such that δ(1− δ) = ε. Fix any ϕz ∈ Φ3. Now define368 pz = δ(1− δ) · 1qz,

µz = δ · 1q·(z+1).

We now have that:369 δ(1− δ) ≤ δ(1− δ),

(δ(1− δ))z ≤ δ(1− δ)z.

and thus (p, µ) ∈ PGLLL(ϕz). We also get that 1
qzH(p) = δ(1− δ) = ε.370

B GINGAT and Adam results371
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Table 2: Key parameters of the GINGAT model
Parameter Description

Hidden dimensions hvc and hcv denote message dimensions from variables to clauses and
clauses to variables, respectively

Input feature dimensions dv and dc for variable and clause nodes

Number of layers Lgin GIN layers and Lgat GATv2 layers

Activation function σ(·), typically ReLU

Aggregation method aggr, e.g., sum or mean

Attention heads H in GATv2 layers

Dropout probability p

Residual connections, concatenation, graph nor-
malization

optional design choices

Epsilon parameter ϵ, trainable in GIN layers to control self-loop contribution

Table 3: GNN training instance generators
CNF types Graph Generators Parameters
binaryClique gnm random graph m: 5, k: 3

coloring

barabasi albert graph m: 2, col: 3
expected degree graph a: 5.5, min: 4, max: 10, col: 3
gnp random graph p: 0.08, col: 3
random regular graph d: 6, col: 4
watts strogatz graph k: 4, p: 0.3, col: 3

evenColoring random regular graph d: 4
watts strogatz graph k: 3, p: 0.3

graphOrdering
expected degree graph a: 5, min: 2, max: 4
powerlaw cluster graph m: 2, p: 0.05
watts strogatz graph k: 4, p: 0.3

perfectMatching

expected degree graph a: 4.5, min: 3, max: 4
expected degree graph a: 5.5, min: 3, max: 10
gnp random graph p: 0.1
powerlaw cluster graph m: 4, p: 0.05
watts strogatz graph k: 4, p: 0.2

13



Table 4: Best hyperparameters for training the GINGAT model
Parameter Value

Number of epochs 200

Learning rate 0.001

Number of samples 1024

Optimizer Adam or AdamW

Weight decay 0.0003

Variable initialization Kaiming

Clause initialization Kaiming

Hidden dimension (variable → clause) 128

Hidden dimension (clause → variable) 128

Variable feature dimension 128

Clause feature dimension 128

Output dimension 1

Number of GIN layers 10

Number of GAT layers 1

Activation function ReLU

Aggregation method Sum

Number of attention heads 8

Dropout rate 0.1

Add self-loops False

Residual connections True

Concatenate heads True

Graph normalization True

Epsilon in GIN 0

Trainable epsilon True

Table 5: Performance of pure Adam across CNF types and loss functions
CNF type AsymmetricLLLGeluDi SymmetricLLLGelu UnionBound Total

binaryClique 61% 19% 83% 53%

coloring 67% 67% 63% 66%

evenColoring 83% 62% 75% 72%

graphOrdering 32% 26% 28% 29%

perfectMatching 31% 48% 47% 44%

Total 57% 52% 57% 55%
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Table 6: Detailed Adam performance comparison across CNF types and graph generators
CNF type Graph generator Asymmetric LLL GeluDi Symmetric LLL Gelu Union Bound Asym LLL GeluDi vs. UB Sym LLL Gelu vs. UB Asym vs. Sym
binary Clique gnm random graph 61.03% 19.24% 83.18% -22.15% -63.94% 41.79%

coloring

barabasi albert graph 39.75% 44.53% 46.83% -7.08% -2.30% -4.78%

expected degree graph 89.10% 87.58% 80.40% 8.70% 7.18% 1.52%

gnp random graph 61.64% 53.25% 51.13% 10.51% 2.13% 8.39%

powerlaw cluster graph 40.29% 51.67% 46.43% -6.14% 5.24% -11.38%

random degree sequence graph 70.86% 76.11% 70.56% 0.31% 5.56% -5.25%

random regular graph 62.59% 70.00% 66.11% -3.52% 3.89% -7.41%

watts strogatz graph 68.07% 71.70% 67.95% 0.12% 3.75% -3.63%

even Coloring

barabasi albert graph 100.00% 44.00% 90.00% 10.00% -46.00% 56.00%

expected degree graph 99.75% 89.23% 98.33% 1.42% -9.10% 10.52%

gnp random graph 74.38% 59.00% 99.00% -24.63% -40.00% 15.38%

powerlaw cluster graph 80.74% 25.83% 91.67% -10.93% -65.83% 54.91%

random degree sequence graph 81.25% 62.50% 65.83% 15.42% -3.33% 18.75%

random regular graph 67.10% 46.33% 36.33% 30.76% 10.00% 20.76%

watts strogatz graph 82.07% 84.86% 72.64% 9.43% 12.22% -2.79%

graph Ordering

barabasi albert graph 32.27% 22.92% 33.33% -1.06% -10.42% 9.36%

expected degree graph 16.79% 15.94% 13.75% 3.04% 2.19% 0.85%

gnp random graph 61.29% 53.49% 58.67% 2.62% -5.18% 7.80%

powerlaw cluster graph 45.35% 28.54% 35.42% 9.93% -6.88% 16.81%

random degree sequence graph 17.50% 20.00% 15.94% 1.56% 4.06% -2.50%

random regular graph 22.00% 21.04% 19.17% 2.83% 1.88% 0.96%

watts strogatz graph 24.00% 16.67% 16.04% 7.96% 0.62% 7.33%

perfect Matching

barabasi albert graph 1.00% 19.17% 70.00% -69.00% -50.83% -18.17%

expected degree graph 25.00% 29.81% 17.88% 7.12% 11.92% -4.81%

gnp random graph 20.63% 68.21% 60.00% -39.38% 8.21% -47.59%

powerlaw cluster graph 23.97% 47.23% 85.80% -61.84% -38.57% -23.27%

random degree sequence graph 84.38% 83.33% 70.83% 13.54% 12.50% 1.04%

random regular graph 43.75% 50.50% 39.50% 4.25% 11.00% -6.75%

watts strogatz graph 32.31% 44.44% 22.51% 9.80% 21.93% -12.14%
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(a) Symmetric LLL vs Union Bound

(b) Asymmetric LLL vs Union Bound

(c) Asymmetric LLL vs Symmetric LLL

Figure 4: Pair-wise comparisons between loss functions across different CNF/graph generator
combinations.
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Figure 5: Symmetric LLL vs Union Bound for increasing average dependency degree

(a) Asymmetric LLL vs Union Bound for increasing average dependency degree

(b) Asymmetric LLL vs Union Bound for increasing maximum dependency degree

Figure 6: Asymmetric LLL vs Union Bound
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(a) Asymmetric LLL vs Symmetric LLL for increasing average dependency degree

(b) Asymmetric LLL vs Symmetric LLL for increasing maximum dependency degree

Figure 7: Asymmetric LLL vs Symmetric LLL
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(a) Processing runtime

(b) Solving runtime

Figure 8: Runtime comparison between different loss functions
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1. Claims373

Question: Do the main claims made in the abstract and introduction accurately reflect the374

paper’s contributions and scope?375

Answer: [Yes]376

Guidelines:377

• The answer NA means that the abstract and introduction do not include the claims378

made in the paper.379

• The abstract and/or introduction should clearly state the claims made, including the380

contributions made in the paper and important assumptions and limitations. A No or381

NA answer to this question will not be perceived well by the reviewers.382

• The claims made should match theoretical and experimental results, and reflect how383

much the results can be expected to generalize to other settings.384

• It is fine to include aspirational goals as motivation as long as it is clear that these goals385

are not attained by the paper.386

2. Limitations387

Question: Does the paper discuss the limitations of the work performed by the authors?388

Answer: [Yes]389

Guidelines:390

• The answer NA means that the paper has no limitation while the answer No means that391

the paper has limitations, but those are not discussed in the paper.392

• The authors are encouraged to create a separate "Limitations" section in their paper.393

• The paper should point out any strong assumptions and how robust the results are to394

violations of these assumptions (e.g., independence assumptions, noiseless settings,395

model well-specification, asymptotic approximations only holding locally). The authors396

should reflect on how these assumptions might be violated in practice and what the397

implications would be.398

• The authors should reflect on the scope of the claims made, e.g., if the approach was399

only tested on a few datasets or with a few runs. In general, empirical results often400

depend on implicit assumptions, which should be articulated.401

• The authors should reflect on the factors that influence the performance of the approach.402

For example, a facial recognition algorithm may perform poorly when image resolution403

is low or images are taken in low lighting. Or a speech-to-text system might not be404

used reliably to provide closed captions for online lectures because it fails to handle405
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• The authors should discuss the computational efficiency of the proposed algorithms407

and how they scale with dataset size.408

• If applicable, the authors should discuss possible limitations of their approach to409

address problems of privacy and fairness.410

• While the authors might fear that complete honesty about limitations might be used by411

reviewers as grounds for rejection, a worse outcome might be that reviewers discover412

limitations that aren’t acknowledged in the paper. The authors should use their best413

judgment and recognize that individual actions in favor of transparency play an impor-414

tant role in developing norms that preserve the integrity of the community. Reviewers415

will be specifically instructed to not penalize honesty concerning limitations.416

3. Theory assumptions and proofs417

Question: For each theoretical result, does the paper provide the full set of assumptions and418

a complete (and correct) proof?419

Answer: [Yes]420

Guidelines:421

• The answer NA means that the paper does not include theoretical results.422
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-423

referenced.424

• All assumptions should be clearly stated or referenced in the statement of any theorems.425

• The proofs can either appear in the main paper or the supplemental material, but if426

they appear in the supplemental material, the authors are encouraged to provide a short427

proof sketch to provide intuition.428

• Inversely, any informal proof provided in the core of the paper should be complemented429

by formal proofs provided in appendix or supplemental material.430

• Theorems and Lemmas that the proof relies upon should be properly referenced.431

4. Experimental result reproducibility432

Question: Does the paper fully disclose all the information needed to reproduce the main ex-433

perimental results of the paper to the extent that it affects the main claims and/or conclusions434

of the paper (regardless of whether the code and data are provided or not)?435

Answer: [Yes]436

Guidelines:437

• The answer NA means that the paper does not include experiments.438

• If the paper includes experiments, a No answer to this question will not be perceived439

well by the reviewers: Making the paper reproducible is important, regardless of440

whether the code and data are provided or not.441

• If the contribution is a dataset and/or model, the authors should describe the steps taken442

to make their results reproducible or verifiable.443

• Depending on the contribution, reproducibility can be accomplished in various ways.444

For example, if the contribution is a novel architecture, describing the architecture fully445

might suffice, or if the contribution is a specific model and empirical evaluation, it may446

be necessary to either make it possible for others to replicate the model with the same447

dataset, or provide access to the model. In general. releasing code and data is often448

one good way to accomplish this, but reproducibility can also be provided via detailed449

instructions for how to replicate the results, access to a hosted model (e.g., in the case450

of a large language model), releasing of a model checkpoint, or other means that are451

appropriate to the research performed.452

• While NeurIPS does not require releasing code, the conference does require all submis-453

sions to provide some reasonable avenue for reproducibility, which may depend on the454

nature of the contribution. For example455

(a) If the contribution is primarily a new algorithm, the paper should make it clear how456

to reproduce that algorithm.457

(b) If the contribution is primarily a new model architecture, the paper should describe458

the architecture clearly and fully.459

(c) If the contribution is a new model (e.g., a large language model), then there should460

either be a way to access this model for reproducing the results or a way to reproduce461

the model (e.g., with an open-source dataset or instructions for how to construct462

the dataset).463

(d) We recognize that reproducibility may be tricky in some cases, in which case464

authors are welcome to describe the particular way they provide for reproducibility.465

In the case of closed-source models, it may be that access to the model is limited in466

some way (e.g., to registered users), but it should be possible for other researchers467

to have some path to reproducing or verifying the results.468

5. Open access to data and code469

Question: Does the paper provide open access to the data and code, with sufficient instruc-470

tions to faithfully reproduce the main experimental results, as described in supplemental471

material?472

Answer: [No]473

Guidelines:474

• The answer NA means that paper does not include experiments requiring code.475
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/476

public/guides/CodeSubmissionPolicy) for more details.477

• While we encourage the release of code and data, we understand that this might not be478

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not479

including code, unless this is central to the contribution (e.g., for a new open-source480

benchmark).481

• The instructions should contain the exact command and environment needed to run to482

reproduce the results. See the NeurIPS code and data submission guidelines (https:483

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.484

• The authors should provide instructions on data access and preparation, including how485

to access the raw data, preprocessed data, intermediate data, and generated data, etc.486

• The authors should provide scripts to reproduce all experimental results for the new487

proposed method and baselines. If only a subset of experiments are reproducible, they488

should state which ones are omitted from the script and why.489

• At submission time, to preserve anonymity, the authors should release anonymized490

versions (if applicable).491

• Providing as much information as possible in supplemental material (appended to the492

paper) is recommended, but including URLs to data and code is permitted.493

6. Experimental setting/details494

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-495

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the496

results?497

Answer: [Yes]498

Guidelines:499

• The answer NA means that the paper does not include experiments.500

• The experimental setting should be presented in the core of the paper to a level of detail501

that is necessary to appreciate the results and make sense of them.502

• The full details can be provided either with the code, in appendix, or as supplemental503

material.504

7. Experiment statistical significance505

Question: Does the paper report error bars suitably and correctly defined or other appropriate506

information about the statistical significance of the experiments?507

Answer: [No]508

Guidelines:509

• The answer NA means that the paper does not include experiments.510

• The authors should answer "Yes" if the results are accompanied by error bars, confi-511

dence intervals, or statistical significance tests, at least for the experiments that support512

the main claims of the paper.513

• The factors of variability that the error bars are capturing should be clearly stated (for514

example, train/test split, initialization, random drawing of some parameter, or overall515

run with given experimental conditions).516

• The method for calculating the error bars should be explained (closed form formula,517

call to a library function, bootstrap, etc.)518

• The assumptions made should be given (e.g., Normally distributed errors).519

• It should be clear whether the error bar is the standard deviation or the standard error520

of the mean.521

• It is OK to report 1-sigma error bars, but one should state it. The authors should522

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis523

of Normality of errors is not verified.524

• For asymmetric distributions, the authors should be careful not to show in tables or525

figures symmetric error bars that would yield results that are out of range (e.g. negative526

error rates).527
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• If error bars are reported in tables or plots, The authors should explain in the text how528

they were calculated and reference the corresponding figures or tables in the text.529

8. Experiments compute resources530

Question: For each experiment, does the paper provide sufficient information on the com-531

puter resources (type of compute workers, memory, time of execution) needed to reproduce532

the experiments?533

Answer: [Yes]534

Guidelines:535

• The answer NA means that the paper does not include experiments.536

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,537

or cloud provider, including relevant memory and storage.538

• The paper should provide the amount of compute required for each of the individual539

experimental runs as well as estimate the total compute.540

• The paper should disclose whether the full research project required more compute541

than the experiments reported in the paper (e.g., preliminary or failed experiments that542

didn’t make it into the paper).543

9. Code of ethics544

Question: Does the research conducted in the paper conform, in every respect, with the545

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?546

Answer: [Yes]547

Guidelines:548

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.549

• If the authors answer No, they should explain the special circumstances that require a550

deviation from the Code of Ethics.551

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-552

eration due to laws or regulations in their jurisdiction).553

10. Broader impacts554

Question: Does the paper discuss both potential positive societal impacts and negative555

societal impacts of the work performed?556

Answer: [NA]557

Justification: There is no direct impact.558

Guidelines:559

• The answer NA means that there is no societal impact of the work performed.560

• If the authors answer NA or No, they should explain why their work has no societal561

impact or why the paper does not address societal impact.562

• Examples of negative societal impacts include potential malicious or unintended uses563

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations564

(e.g., deployment of technologies that could make decisions that unfairly impact specific565

groups), privacy considerations, and security considerations.566

• The conference expects that many papers will be foundational research and not tied567

to particular applications, let alone deployments. However, if there is a direct path to568

any negative applications, the authors should point it out. For example, it is legitimate569

to point out that an improvement in the quality of generative models could be used to570

generate deepfakes for disinformation. On the other hand, it is not needed to point out571

that a generic algorithm for optimizing neural networks could enable people to train572

models that generate Deepfakes faster.573

• The authors should consider possible harms that could arise when the technology is574

being used as intended and functioning correctly, harms that could arise when the575

technology is being used as intended but gives incorrect results, and harms following576

from (intentional or unintentional) misuse of the technology.577
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• If there are negative societal impacts, the authors could also discuss possible mitigation578

strategies (e.g., gated release of models, providing defenses in addition to attacks,579

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from580

feedback over time, improving the efficiency and accessibility of ML).581

11. Safeguards582

Question: Does the paper describe safeguards that have been put in place for responsible583

release of data or models that have a high risk for misuse (e.g., pretrained language models,584

image generators, or scraped datasets)?585

Answer: [NA]586

Guidelines:587

• The answer NA means that the paper poses no such risks.588

• Released models that have a high risk for misuse or dual-use should be released with589

necessary safeguards to allow for controlled use of the model, for example by requiring590

that users adhere to usage guidelines or restrictions to access the model or implementing591

safety filters.592

• Datasets that have been scraped from the Internet could pose safety risks. The authors593

should describe how they avoided releasing unsafe images.594

• We recognize that providing effective safeguards is challenging, and many papers do595

not require this, but we encourage authors to take this into account and make a best596

faith effort.597

12. Licenses for existing assets598

Question: Are the creators or original owners of assets (e.g., code, data, models), used in599

the paper, properly credited and are the license and terms of use explicitly mentioned and600

properly respected?601

Answer: [Yes]602

Guidelines:603

• The answer NA means that the paper does not use existing assets.604

• The authors should cite the original paper that produced the code package or dataset.605

• The authors should state which version of the asset is used and, if possible, include a606

URL.607

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.608

• For scraped data from a particular source (e.g., website), the copyright and terms of609

service of that source should be provided.610

• If assets are released, the license, copyright information, and terms of use in the611

package should be provided. For popular datasets, paperswithcode.com/datasets612

has curated licenses for some datasets. Their licensing guide can help determine the613

license of a dataset.614

• For existing datasets that are re-packaged, both the original license and the license of615

the derived asset (if it has changed) should be provided.616

• If this information is not available online, the authors are encouraged to reach out to617

the asset’s creators.618

13. New assets619

Question: Are new assets introduced in the paper well documented and is the documentation620

provided alongside the assets?621

Answer: [NA]622

Guidelines:623

• The answer NA means that the paper does not release new assets.624

• Researchers should communicate the details of the dataset/code/model as part of their625

submissions via structured templates. This includes details about training, license,626

limitations, etc.627

• The paper should discuss whether and how consent was obtained from people whose628

asset is used.629
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• At submission time, remember to anonymize your assets (if applicable). You can either630

create an anonymized URL or include an anonymized zip file.631

14. Crowdsourcing and research with human subjects632

Question: For crowdsourcing experiments and research with human subjects, does the paper633

include the full text of instructions given to participants and screenshots, if applicable, as634

well as details about compensation (if any)?635

Answer: [NA]636

Guidelines:637

• The answer NA means that the paper does not involve crowdsourcing nor research with638

human subjects.639

• Including this information in the supplemental material is fine, but if the main contribu-640

tion of the paper involves human subjects, then as much detail as possible should be641

included in the main paper.642

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,643

or other labor should be paid at least the minimum wage in the country of the data644

collector.645

15. Institutional review board (IRB) approvals or equivalent for research with human646

subjects647

Question: Does the paper describe potential risks incurred by study participants, whether648

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)649

approvals (or an equivalent approval/review based on the requirements of your country or650

institution) were obtained?651

Answer: [NA]652

Guidelines:653

• The answer NA means that the paper does not involve crowdsourcing nor research with654

human subjects.655

• Depending on the country in which research is conducted, IRB approval (or equivalent)656

may be required for any human subjects research. If you obtained IRB approval, you657

should clearly state this in the paper.658

• We recognize that the procedures for this may vary significantly between institutions659

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the660

guidelines for their institution.661

• For initial submissions, do not include any information that would break anonymity (if662

applicable), such as the institution conducting the review.663

16. Declaration of LLM usage664

Question: Does the paper describe the usage of LLMs if it is an important, original, or665

non-standard component of the core methods in this research? Note that if the LLM is used666

only for writing, editing, or formatting purposes and does not impact the core methodology,667

scientific rigorousness, or originality of the research, declaration is not required.668

Answer: [NA]669

Guidelines:670

• The answer NA means that the core method development in this research does not671

involve LLMs as any important, original, or non-standard components.672

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)673

for what should or should not be described.674
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