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Abstract

In this study, we design novel probabilistic loss functions for training neural
networks in an unsupervised way to tackle the CNF-SAT problem. In particular,
we leverage the power of the Lovdsz Local Lemma (LLL) in obtaining satisfiability
certificates to train models that achieve this in a differentiable manner. Given that
the LLL provides provable discretization procedures, such as the Moser-Tardos
algorithm, our approach leads to an end-to-end hybrid SAT solver.

1 Introduction

There is a recent line of work in the intersection of machine learning and combinatorial optimization
[Karalias and Loukas| 2020, |Yau et al., [2024} Karalias et al., 2022, Wang et al., 2019, |Selsam et al.,
2019]. |[Karalias and Loukas|[2020]] propose a principled unsupervised learning framework for tackling
a large class of NP-hard problems defined on graphs. More specifically, the authors construct a loss
function that is inspired by the Probabilistic Method and that guarantees the existence of high-quality
discrete solutions. Such solutions can also be constructed deterministically in an efficient way. We
apply this framework in the context of the CNF-SAT problem and present the loss function that arises
naturally, which we refer to as the Union Bound loss. The CNF-SAT problem — a typical NP-complete
problem with a wide variety of applications — asks for a boolean assignment x to a set of variables that
appear in a CNF boolean formula ¢ (a conjunction of disjunctions) such that z satisfies all clauses of
¢ [Karp, |1972]. Using the symmetric and asymmetric versions of the Lovasz Local Lemma (LLL)
we propose new loss functions that are exploiting the instance structure in a more direct way [Erdos
and Lovasz,|1974, |Alon and Spencer, |2016]. The LLL exhibits two appealing features: it provides
nontrivial certificates of satisfiability and efficient algorithms for finding a satisfying assignment. The
Moser-Tardos result showed that the simplest local search algorithm is efficient under the conditions
of the LLL [Moser and Tardos, 2010]. We obtain the certificate in a differentiable manner that when
combined with the efficient discretization step gives rise to an end-to-end hybrid SAT solver. The
proposed framework can thus be thought of as a learnable stochastic local search algorithm and can
be easily extended to tackle more general problems in the class of Constraint Satisfaction Problems
(CSPs).

In the context of SAT, one well-known supervised model is NeuroSAT, where a message passing
neural network (MPNN) is trained to predict satisfiability in a supervised way [Selsam et al., 2019].
SATNet introduces a differentiable maximum satisfiability (MAXSAT) solver that can be directly
embedded in deep learning models, enabling them to incorporate logical reasoning [Wang et al.|
2019]. Another way of incorporating neural methods in SAT solvers is to inject a neural network in a
well-known heuristic. The authors in|Yolcu and Poczos|[2019]] propose learning SAT solver heuristics
from scratch using deep reinforcement learning. FourierSAT considers continuous extensions for
SAT problems via Fourier analysis of Boolean functions and continuous optimization on the resulting
multilinear polynomials [Kyrillidis et al.,|2020].
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We provide a conceptual motivation for the use of the LLL via the notion of entropy rate, and we
hypothesize that satisfiability certificates that are effective for high-entropy distributions are amenable
to continuous optimization algorithms. We experimented with different loss functions on a wide
class of randomly generated CNF formulae. The results showed that in the low dependency degree
regime, the symmetric LLL can outperform the Union Bound and there are other cases for which
the asymmetric LLL works better than both of the other two losses. Furthermore, we propose a
Graph Neural Network (GNN) parameterization (we refer to our model as GINGAT) on which we
conducted experiments. The results obtained showed that the neural parameterization can typically
lead to improved results (compared to the pure Adam-based approach) on the training set and in some
cases on an unseen test set. We finally present interesting directions for future research.

2 Conceptual motivation

We want to design an unsupervised learning framework for solving Clause CSPs (where each
constraint forbids a single assignment to some subset of the variables). More specifically, we want
to define loss functions that are derived from probabilistic statements implying the satisfiability of
a given CSP instance. Moreover, we want the probabilistic statements to also provide us with an
efficient procedure for actually finding such a satisfying assignment. To simplify our discussion, we
will focus on the search version of the CNF-SAT problem, in which we are given a CNF boolean
formula ¢ on n variables 1, . .., x, and m clauses C1, ..., Cy, (where each clause is the disjunction
of some number of literals) and the goal is to find an assignment z € {0, 1}" to the variables such that
every clause evaluates to True. We work with product measures on [n], i.e. we consider only marginal
vectors p = (p1, - .., pn) such that P (X; = True) = p;, and the random variables X; ~ Ber(p;) are
mutually independent.

We write © ~ p to mean that we sample an assignment « according to distribution p. For every
j € [m], define the event B; = “clause j is false (under x)”. Given some ¢, we want to find
conditions on p € [0, 1]™ that imply Py, (mje[m]Fj) > 0, in which case a satisfying assignment
exists (by the probabilistic method). We will write ¢ € SAT to mean that ¢ is satisfiable. When
looking for sufficient conditions for satisfiability, probably the simplest condition is the one that
follows from the Union Bound:

D Panp (Cj(x) =0) <1 == ¢ € SAT. (1)

Jj€[m]

Denote the set of vectors p that satisfy the antecedent of 1| with Pyg(¢). To simplify notation, we

define f;(p) == Pg~p (C;(x) = 0),Vj € [m]. Since the variables X;’s are independent (from our

setup), we have that f;(p) = [[;co- pi - [Ticc+ (1 — pi), where C; is the set of variables appearing
J J

in clause C; negatively and C;“ is the set of variables appearing in clause C; positively. Now, it
is easy to see that given some p € Pyg(¢), a satisfying assignment can be found efficiently using
the method of conditionals expectations. Thus, a natural choice for the loss function to be used is
Lug(p, ¢) = > jc(m) [7(p). We will refer to Lyp as the Union Bound loss function.

The Union Bound loss function presented above uses a worst case bound in which all events are
mutually independent. In practice, clauses will share variables which introduces dependencies
between them. Hence, we will investigate loss functions that take into account this dependency
structure. To this end, we will consider the Lovasz Local Lemma (LLL), which leverages the
dependency structure of the clauses to certify satisfiability. Specifically, the symmetric version of the
(variable) LLL, yields the following:

1
Vj € ,i(p) £ ———= = ¢ € SAT, 2
where d is the maximum degree across the vertices in the dependency graph of ¢ (vertices correspond
to clauses and we draw an edge between two vertices if the corresponding clauses share a variable).
The asymmetric version of the LLL provides the following

s fm] = [0,1):Vj € [ml, f;(p) < p(G) - [[ A—uli") = ¢€SAT,  (3)
J'EN(J)
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where N () denotes the set of clauses that share some variable with clause C;. Denote the set of
vectors p that satisfy the antecedent of [2{ with P11, (¢) and the set of vectors p and p that meet with
PorLL(¢). Note that for the LLL, we have point-wise inequalities that need to hold for every clause
(unlike the global sum of the Union Bound).

We define the loss functions as follows. For the symmetric LLL, we have

Lun(p,d) = Y ReLU(f;(p) = 1/(e(d+1))).

J€[m]

For the asymmetric LLL, the loss is given by

Lo (p, 1, ¢) = Z ReLU | f;(p) — n(j) - H 1 —=nu(i)) ],

JEIm] J'EN(3)
where ReLU(z) = max(z, 0).

Altogether, we have three different loss functions and a condition on each that implies the satisfiability
of the given CNF: Lyg(p, ¢) < 1, LiL(p, ¢) = 0 and LgriL(p, p, @) = 0.

The premise of this work is that the integrality of predicted solutions can play an important role in
the success of the model. Consider the loss in (I). If our algorithm produces p which leads to a
constant probability of violation for each clause, then naturally as the number of clauses increases
then the union bound will be harder to satisfy. Hence, the probability of clause violation will have
to decrease as the number of clauses grows p. A natural way for this to occur is if p tends to an
integral assignment as the formula grows. Our goal is to investigate this and propose losses that could
overcome this challenge. To clarify this idea, we perform the following simple test which gives us
an indication of the “effective entropy” of the Union Bound and the symmetric LLL. We construct
random k-CNFs ¢,, ; for some given density. For a CNF ¢, a satisfying assignment z of ¢, a function
£ and a small constant §, we denote with 7 the smallest factor of § perturbation we need to add to
the all 1/2 vector in the direction of x so that we get an element p € P 4 (this measures some notion
of “satisfiability threshold” for the function under consideration). In Figure [3a] we show the average
T?° value for each value of n, where n is the number of variables in random 3-CNFs of density 2.5.
similarly, Figure [3b|shows the same phenomenon for density 3.5. For both cases, we can see that the
symmetric LLL kicks in with distributions that are away from binary while the union bound threshold
converges to 0.5.

In what follows, we formalize this phenomenon by looking at the sequence of maximum average
entropy values of marginal vectors that satisfy the LLL condition as we consider larger and larger
CNF formulas coming from an infinite family. We define the analogous quantity for the case of the
Union Bound, we then compare the two and show that there are CNF families for which the LLL is
effective with joint distributions of higher per-variable entropy. We note that we will only consider
satisfiable SAT formulas so that the sets Pyg, PLir and PgrpL are non-empty.

Definition 1 For p € [0,1|", the entropy of p is defined as H(p) = Zie[n] H(p;) =
=D iefn)(Pilog(pi) + (1 — pi)log(1 — p;)). This is the joint entropy of n independent Ber(p;)
variables. Furthermore, define the average entropy of p as H (p) = %H (p).

Definition 2 Let ® = {¢. }.en be an infinite satisfiable CNF family and let L € {UB, LLL, GLLL}.
We define the L-entropy-rate of ® as: H°(®) := limsup,_, . Suppep, (4.) H(p)-

We start our discussion by showing that there exists an infinite family ®; withd = O(1), H33(®1) =
0 and HY (P1) > % where d is the maximum degree in the clause dependency graph. We start by
considering an easy-to-construct family, every CNF of which admits a unique satisfying assignment.

Claim 1 (proof in Appendix[A) Let ¢ be a k-CNF that admits a unique satisfying assignment
p* € {0,1}". For simplicity, assume that n = kz, for some z € N. Then ¢ can be equivalently
written as a k-CNF on n variables and (2% — 1)z clauses.

We consider the constant-degree infinite family of 3-CNFs described in the proof of Claim[I](i.e. we
fix k = 3) with unique satisfying assignment p* = 1". Denote the CNF family with ®;.
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Claim 2 (proof in Appendix[A) Let ®1 be the infinite family constructed above. Then, H5, (®1) =
1 0 —
5 and Hg(®1) = 0.

We now show how to get a constant entropy rate for the symmetric LLL with a CNF family having a
linear maximum degree.

Claim 3 (proof in Appendix[A) There exists an infinite family o such that Hiy; (®2) = 1.

We now separate the asymmetric LLL from the Union Bound function and the symmetric LLL. More
specifically, we construct an infinite family ®3 with d = O(m), H5g(®3) = HYL(P3) = 0 and
HE 1 (®s) > 5.

Claim 4 (proof in Appendix[A) There exists an infinite family ®3 such that: Hjg(®3) =
0, HEI?L((I)i%) =0, H(%ELL((I)S) > i

The families of synthetic instances discussed above serve as motivating examples for our discussion.
We conjecture that more powerful theoretical tools will be required to establish the benefits of the
LLL for realistic data distributions.

3 Methodology

We first present the different CNF generators used and the different loss functions considered. We
then explain the implementation that we used for optimizing the loss functions. In this work, we
primarily focus on minimizing the loss by directly optimizing the assignment in the hypercube using
first order methods (i.e., Adam). By removing the model, we can make consistent observations about
the loss that do not depend on a specific neural net architecture.

CNF generation We consider different classes (types) of CNF formulas, each encoding a different
combinatorial problem. We use an established CNF generation library for the following CNF types:
Coloring, EvenColoring, GraphOrdering and PerfectMatching [Massimo Lauria]. The underlying
structures are generated from a variety of random graph models: Barabasi—Albert, expected-degree
model, Erd6s—Rényi, power-law cluster model, random regular graphs and Watts-Strogatz [Hagberg
et al., [2008]]. We note that we use the MiniSAT solver to filter out unsatisfiable instances in the
generation process. The generated CNFs have between 20 and 400 variables and between 50 and
8,000 clauses. The average ratio (clauses over variables) is 6.75. For testing Adam, we generated a
sample of about 40 instances for each CNF type/graph generator combination.

Loss functions We implemented and experimented with different loss functions: the Union Bound
loss function and loss functions that are inspired by the LLL. We used smooth approximations of
the ReLU function. Smooth activations like GELU or Softplus provide non-zero gradients that
improve Adam’s stability, while ReLU is faster but can suffer from dead neurons due to zero gradients
for negative inputs. In the case of the asymmetric LLL (implication [3), recall that there are free
parameters for each clause. In the experiments, we set u(j) = 1/(d; + 1),Vj € [m], where d; is the
degree of clause j in the dependency graph of ¢.

Stochastic Gradient Descent implementation The optimization is performed with five restarts,
where each restart initializes the logits using a standard normal distribution (randn) to avoid poor
local minima. Each batch contains multiple CNF instances, with literal and clause padding handled
via masks, and instances that reach a threshold are masked out to prevent unnecessary updates. For
each CNF, the lowest left-hand side (LHS) value seen across steps is tracked to monitor progress.
This LHS value corresponds to the loss we are optimizinéﬂ and that we try to lower below a certain
threshold (1 in the case of the union bound and O in the case of the LLL}"). Gradients are updated
using the Adam optimizer, which benefits from adaptive learning rates. Furthermore, we applied
early stopping. Logits are converted to probabilities via a sigmoid, and probabilities are clamped
between 10712 and 1 — 10712 to prevent numerical issues. Finally, instances are considered solved
and removed from further updates once their LHS drops below a function-dependent threshold.

'In the case of the LLL, this is not the proxy loss but the actual sum of ReLU values.
2We used a threshold of 10~ for the LLL loss functions.
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Figure 1: Percentage of solved instances per CNF type

Graph Neural Network parameterization We propose a neural architecture that we tested against
the Adam-based implementation. The architecture combines two well-known Graph Neural Networks
(GNNs): the Graph Isomorphism Network (GIN) and the Graph Attention Network (GAT)

174 2019 [Velickovic et al., [2018]]. We refer to the proposed neural network as the GINGAT model. This
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model is a hybrid GNN designed to operate on bipartite graphs connecting variables and clauses. It
integrates GIN layers that capture graph structure with GAT layers that incorporate attention-based
relational information. The model processes node features and edge attributes through a sequence
of these layers, optionally using residual connections, dropout, and graph normalization. This
combination of GIN and GAT layers allows the model to capture both structural patterns and the
relative importance of neighboring nodes, making it effective for reasoning over the variable-clause
bipartite graphs coming from SAT instances. The key hyperparameters of the model are summarized
in Table 2] Finally, the instances that were used for training the GINGAT model are shown in Table 3]
We used a 70/15/15 training/validation/test split.

The experiments were run on a machine with an RTX 3090 GPU, 12 CPU cores (Xeon E5-2650 v4)
and 32GB RAM.

4 Results

In Figure and Table we show the percentage of CNFs that were solve(ﬂ using the pure Adam-
based approach by each loss function. Figure[d]and Table[6]contain a more in-depth comparison of
the different loss functions on the basis of a CNF type and graph generator combination, where in the
Figure we show the difference in performance (difference in percentage of CNFs solved) for each
pair of functions in increasing order. The effect of the normalized maximum and average degree
of the clause dependency graph on the performance difference between the functions is shown in
Figures[2] 5} [ and[7} Finally, in Figure[8] we observe the runtime of the different loss functions. We
separately plot the runtime of Adam for processing an individual CNF (that was solved or not) and
the runtime for solving a CNF.

Concerning the results obtained on the GINGAT training, the best hyperparameters found for training
the GINGAT model were determined through extensive tuning. These parameters are summarized
in Table[d] The results obtained by GINGAT in training, validation and testing for some selected
datasets on which we observed a performance that was comparable or higher than the pure Adam-
based approach are shown in Table[I] We hypothesize that a future investigation into suitable GNN
architectures for each CNF type can give an improvement on the Adam-based approach across the
board.

3By “solving”, we mean that the algorithm found a certificate of satisfiability. Recall that we are guaranteed
to then be able to find a solution, but for simplicity we omit this discretization step.
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Table 1: Results of GINGAT for different CNF types, generators, and loss functions

CNF type Graph generator Parameters Loss function Test % Train % Val % Adam %
. SymmetricLLLGelu 62.09 100 65.36 50
graphOrdering ~ watts strogatz graph k:4,p:0.3,n: 10
UnionBound 62.09 100 68.63 53
perfectMatching powerlaw cluster graph  m: 4, p: 0.05, n: 10 AsymmetricLLLGeluDi ~ 53.52 100 91.67 53
graphOrdering expected degree graph  a: 5, min: 2, max: 4, n: 10 SymmetricLLLGelu 28.76 100 47.71 33

Difference in percentage of solved instances between UB and SymmetricLLL
for increasing maximum dependency degree

I '1 i
-20
-40 ‘
-60

-100

E

SymmetricLLLGelu - UnionBound (%)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized maximum dependency degree

Figure 2: Symmetric LLL vs Union Bound for increasing maximum dependency degree

5 Conclusions

In this work, we proposed an unsupervised learning approach for solving the CNF-SAT problem
using probabilistic loss functions. We presented LLL-inspired losses that explicitly use instance-
specific structure unlike the Union Bound (UB) loss. We implemented both a GNN model and a pure
Adam-based method for finding satisfiability certificates on different types of CNFs. Empirically, the
symmetric-LLL objective performs best in the low-degree regime where it outperforms the UB (as we
observe in Figure[J); as the dependency degree grows, the symmetric condition expectedly becomes
hard to satisfy; the asymmetric-LLL objective is the most robust in high normalized average-degree
settings, outperforming the symmetric LLL and in many cases the UB (as shown in Figures [7a]and
[6a). As for the runtime comparison, the UB loss tends to converge more slowly in the optimization
dynamics (as Figure [§] clearly depicts), suggesting that LLL-inspired losses have more favorable
gradient descent dynamics. Concerning GINGAT, Table[T|shows that while its training performance
was high, it did not quite generalize to unseen test instances, which can be seen as a limitation of this
study.

6 Conclusion

We have proposed a self-supervised approach to SAT solving the makes use of specialized loss
functions based on classic tools from probabilistic combinatorics. While our losses rely on simpler
versions of the LLL, this direction opens up the possibility of employing more powerful tools from
the literature like Shearer’s bound and the cluster expansion lemma [Bissacot et al.,[2011} |Shearer,
1985]]. Another important direction to explore is the role of the model and its interplay with the loss
function. Even though a specialized loss might improve direct optimization results, it is unclear how
a model will interact with the loss.
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Figure 3: Comparison of average 7 values for random 3-CNFs of different densities.

208 Proof 1 (proof of Claim[I) We design a k-CNF ¢’ = u(¢) that meets the condition of the Claim.

299 More generally, ¢’ is defined on n variables x1, ..., x, (same as ¢) and has m = (2¥ — 1)z clauses.
a0 We show that ¢’ has z groups C*, ... ,C* of clauses of size 2 — 1. Group C" (r € [2]) contains k
o1 variables X" = {2 (_1)k41, .- T(r—1)ktk } and 2% — 1 clauses involving X .

302 Definition 3 Let S € {—1,1}*. Define:

C(S, X7 = \V af,
(i,s)€zip(((r—1)k+1,...,(r—1)k+k),S)
303 where

Il
\'H

Ly l:fS
T, ifs = —1.
304 Define each group of clauses C" as

Cr = U C(S, X").

Se{_lvl}k:S?é(_sig”(pz))me)("
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Overall, ¢/ = ([n], UrE[z] C”). We now show that p* = (p1,...,pn) is the unique satisfying
assignment of ¢'.

1. ¢'(p*) = 1: Consider an arbitrary r € [2]. For every S € {—1,1}* \ {(—sign(p:))zex-},
there is some i € [k] such that sign(s;) = sign(py,). Thus, every clause C € C" is satisfied.

2. Letp € {0,1}™ \ p*. Then, we show that ¢' (p) = 0. We show that Ir € [z] such that C"
contains a clause violated by p. Let D = {i € [n] : p; = 1 — p}'}. Without loss of generality,
1 € D. Let X' be a maximal subset of D such that X' C Var(C'). Without loss of generality,
X' = [K'], k' < k. Now the constraint

K k—Fk'
—
cl@n,... . 1,~1,-1,...,-1,X"

is violated by p.

Observation 1 Let ¢ be a k-CNF formula with m clauses. Let p* be any satisfying assignment of ¢.
Forany e € (0,1), define p* @ ¢ as:

g, ifp; =0
(p*®e)i =
1 — €, otherwise.

Then, for every j € [m], we have that:
f(p* &) E) = P-TN(p*EBs) (C’j (.’ﬂ) _ 0) _ ECJT_W(;D*) ) (1 B g)k—c?“"(p*)’

where ci(p*) == |{l € C; : I(p*) = 1}| (number of literals that evaluate to True in clause j under
assignment p*).

Proof 2 (proof of Claim[2) We show that for every z > 1 SUDpe Py (6.) H(p) >

z > 1. It suffices to find p € P (¢,) with H(p) > +. Lete = 0.071 and p :=
that n = 3z). To show that p € Prr(d,), we need that

% Fix an arbitrary
(1 —&)1" (recall

1
Pyrp (Cj(x) = 0) < —,
max Pop (Cj(2) = 0) < &2

since d = 6. From Observation |l| I and since ¢ < 0.5, the maximum is equal to (1 — ¢)? =
0.06127 ... < 1 = 0.061313... Now, as for the average entropy, we have that:

1
—ZH(l—e):H(l—s)%O.%ng.

n
1€[n]

We now consider the Union Bound. Fix an arbitrary z > 1 and a p € Pyg(¢.). We upper bound
H(p). Let
fj(p) = ]P):ch (Cj(m) = 0) ,J € [m]
Fixanyé € (0, %) Let
By,s={ien]:p, <1-46}
and
Wy ={relz]: V(C")NB,s # 0}.

Z f] >§'|WP75|7

J€[m]

Now observe that

since the sum in each group of clauses is equal to 1 — p;p,p;. Since f(p) < 1 (by assumption), we
get |W, s| < %. Each group of clauses contains exactly three variables and thus | B, 5| < %. Thus,

we have that: ) 3 )
Hp)<—-(= . == .
H(p) P <5+H(6) 3z) 25+H((5)

10
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Recall that the inequality above holds for any § € (O, %) Set § == % (define the family only for
z > 4 to make sure that 0 is in the right range). Since p was arbitrarily chosen in Pyg(¢.), we have

sup H(p) < vz +H (1) )

pEPys(b=) z \/2
Thus,
, NG 1
HS(®) < 1 VE gl \loy
UB( )— lisip{ > + \/2

and we conclude.

Proof 3 (proof of Claim[3) We now construct an infinite family ®5 with d = O(m) and HiY, (P2) =
1. We define 3 = (¢.).en in the following way. Fix a constant ¢ € N. The CNF formula ¢, has
q - (z+ 1) variables and q - (z + 1) clauses. We set

Var (bz = U z; U U Yi,r

(i,m)€lg]x[2]
and
C(¢,) = U (Ti V yin Vi) U U (@i VsV ¥irs1)
i€lq] (i,r)€lg] x[2]
where Y; 41 = Yi 1.

First, note that the dependency graph of any ¢, is a disjoint union of q copies of K11 and thus every
clause has degree z. Thus, d = z = O(m).

Fix any z € N and consider the corresponding formula ¢.. Define a joint distribution p, €
[0,1)7 G+ as follows:

(pz)a:i = Z+17VZ € [ ]

(p=)y.,, = 3. 9(,7) € [g] x [].

We now see that )

fj(Pz) = m,

where we recall that f;(p.) is the probability that clause j is falsified when sampling from p..

Vi € [m],
Thus, we have that

and thus p, € Prii(¢.). It now suffices to show that

lim ———H(p,) = 1.
l e e

The average joint entropy is computed as

) = o | D H D)+ Y H))

g-(z+1) icla) (iyr)€lal x[2]

H(H(> 7(3))

1 1 z o0
_ o + =y
z+1 z+1 qz+q
Proof 4 (proof of Claim[d) Fix some q = O(1). We define ®3 = (¢..).en., in the following way:

Var(¢,) = U T

(i,r)€lglx[2]

11
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and

C(¢z) = U \/ Li,r U U (m)
i€q] r€(z] (i,r)Elalx[2]
We clearly have thatn = qz, m = q- (2 + 1) and d = z = O(m).
We start with the Union Bound. Fix any z € N>5 and any sequence (p,), such that p, € Pyg(¢,), Vz.
We show that ]
lim —H(p.) =0.

zZ—00 qz

Since, p, € Pyg(d.), we know that

Z fj(pz) < 1.
j€[m]
Set § == % and define the set of “middle” variables
By, s ={(,r) €[q] x [2] : pir € 16,1 6]}
We compute

S i) = > piet >, ] pir =Byl
]

j€[m] (i,7)E[2] x[2] i€lg] r€lz
Thus, we get that | B, 5| < % since by assumption we have that p, € Pyg(¢.).

To conclude, we write

H < — H = — 4+ H .
) < (5+qz (6)) s TH0) =0

We now consider the symmetric LLL. Fix any z € N>5 and any sequence (p), such that p, €
Pri(¢z),Vz. We show that
1
z—00 Q2

The LLL conditions require:
Di,r S éa V<Z,’r> € [Q] X [2]7

[Lcppir < &, Vielg)

—H(p.) < — (qz-H ()) =H () —%0.
qz qz ez ez

Finally, we consider the asymmetric LLL. It suffices to show the following: let € € (0,1/4]. Then, for
every ¢, € s, there exists some p € [0, 119 such that:

I LH(p)=¢

Thus,

2. 3p e (0,1)CE+D : (p, u) € Poris(ss).-
Fixanye € (0,1/4]. Let 6 € (0,1) be such that (1 — §) = e. Fix any ¢, € $3. Now define
Pz = 5(1 - 6) : lqzv

,uz = 5 . 1q-(z+1).

We now have that:

5(1—6) < 5(1—10),

(0(1=9))* <6(1—9)=.
and thus (p, 1) € Per(¢). We also get that q%H(p) =d(1—-90)=e.

B GINGAT and Adam results

12



Table 2: Key parameters of the GINGAT model

Parameter

Description

Hidden dimensions

Input feature dimensions
Number of layers
Activation function
Aggregation method
Attention heads

Dropout

Residual connections, concatenation, graph nor-

malization

Epsilon parameter

hy. and h., denote message dimensions from variables to clauses and
clauses to variables, respectively

d, and d,. for variable and clause nodes
Lgin GIN layers and Ly,; GATV2 layers
o(-), typically ReLU

aggr, e.g., sum or mean

H in GATV2 layers

probability p

optional design choices

€, trainable in GIN layers to control self-loop contribution

Table 3: GNN training instance generators

CNF types Graph Generators Parameters
binaryClique gnm random graph m: 5,k: 3

barabasi albert graph m: 2, col: 3

expected degree graph  a: 5.5, min: 4, max: 10, col: 3
coloring gnp random graph p: 0.08, col: 3

random regular graph d: 6, col: 4

watts strogatz graph k: 4,p: 0.3,col: 3

. random regular graph d: 4

evenColoring watts stroggatz gr%lplﬁl) k:3,p: 03

expected degree graph  a: 5, min: 2, max: 4
graphOrdering powerlaw cluster graph  m: 2, p: 0.05

watts strogatz graph k:4,p: 03

expected degree graph  a: 4.5, min: 3, max: 4

expected degree graph  a: 5.5, min: 3, max: 10
perfectMatching  gnp random graph p: 0.1

powerlaw cluster graph  m: 4, p: 0.05

watts strogatz graph k: 4,p: 0.2

13



Table 4: Best hyperparameters for training the GINGAT model

Parameter Value
Number of epochs 200
Learning rate 0.001
Number of samples 1024
Optimizer Adam or AdamW
Weight decay 0.0003
Variable initialization Kaiming
Clause initialization Kaiming
Hidden dimension (variable — clause) 128
Hidden dimension (clause — variable) 128
Variable feature dimension 128
Clause feature dimension 128
Output dimension 1
Number of GIN layers 10
Number of GAT layers 1
Activation function ReLU
Aggregation method Sum
Number of attention heads 8
Dropout rate 0.1

Add self-loops False
Residual connections True
Concatenate heads True
Graph normalization True
Epsilon in GIN 0
Trainable epsilon True

Table 5: Performance of pure Adam across CNF types and loss functions

CNF type AsymmetricLLLGeluDi SymmetricLLLGelu UnionBound Total
binaryClique 61% 19% 83% 53%
coloring 67% 67% 63% 66%
evenColoring 83% 62% 75% 72%
graphOrdering 32% 26% 28% 29%
perfectMatching 31% 48% 47% 44%
Total 57% 52% 57% 55%

14



Table 6: Detailed Adam performance comparison across CNF types and graph generators

CNF type Graph generator Asymmetric LLL GeluDi Symmetric LLL Gelu Union Bound Asym LLL GeluDi vs. UB Sym LLL Gelu vs. UB Asym vs. Sym
binary Clique gnm random graph 61.03% 19.24% 83.18% -22.15% -63.94% 41.79%
barabasi albert graph 39.75% 44.53% 46.83% -7.08% -2.30% -4.78%
expected degree graph 89.10% 87.58% 80.40% 8.70% 7.18% 1.52%
gnp random graph 61.64% 53.25% 51.13% 10.51% 2.13% 8.39%
coloring powerlaw cluster graph 40.29% 51.67% 46.43% -6.14% 5.24% -11.38%
random degree sequence graph 70.86% 76.11% 70.56% 0.31% 5.56% -5.25%
random regular graph 62.59% 70.00% 66.11% -3.52% 3.89% -7.41%
walts strogatz graph 68.07% 71.70% 67.95% 0.12% 3.75% -3.63%
barabasi albert graph 100.00% 44.00% 90.00% 10.00% -46.00% 56.00%
expected degree graph 99.75% 89.23% 98.33% 1.42% -9.10% 10.52%
gnp random graph 74.38% 59.00% 99.00% -24.63% -40.00% 15.38%
even Coloring powerlaw cluster graph 80.74% 25.83% 91.67% -10.93% -65.83% 54.91%
random degree sequence graph 81.25% 62.50% 65.83% 15.42% -3.33% 18.75%
random regular graph 67.10% 46.33% 36.33% 30.76% 10.00% 20.76%
watts strogatz graph 82.07% 84.86% 72.64% 9.43% 12.22% -2.79%
barabasi albert graph 32.27% 22.92% 33.33% -1.06% -10.42% 9.36%
expected degree graph 16.79% 15.94% 13.75% 3.04% 2.19% 0.85%
gnp random graph 61.29% 53.49% 58.67% 2.62% -5.18% 7.80%
graph Ordering  powerlaw cluster graph 45.35% 28.54% 35.42% 9.93% -6.88% 16.81%
random degree sequence graph 17.50% 20.00% 15.94% 1.56% 4.06% -2.50%
random regular graph 22.00% 21.04% 19.17% 2.83% 1.88% 0.96%
watts strogatz graph 24.00% 16.67% 16.04% 7.96% 0.62% 7.33%
barabasi albert graph 1.00% 19.17% 70.00% -69.00% -50.83% -18.17%
expected degree graph 25.00% 29.81% 17.88% 7.12% 11.92% -4.81%
gnp random graph 20.63% 68.21% 60.00% -39.38% 821% -47.59%
perfect Matching  powerlaw cluster graph 23.97% 47.23% 85.80% -61.84% -38.57% -23.27%
random degree sequence graph 84.38% 83.33% 70.83% 13.54% 12.50% 1.04%
random regular graph 43.75% 50.50% 39.50% 4.25% 11.00% -6.75%
watts strogatz graph 32.31% 44.44% 22.51% 9.80% 21.93% -12.14%
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Bar plot of SymmetricLLLGelu - UnionBound (sorted in increasing order)
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Figure 4: Pair-wise comparisons between loss functions across different CNF/graph generator
combinations.
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Figure 6: Asymmetric LLL vs Union Bound
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Guidelines:

* The answer NA means that paper does not include experiments requiring code.
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¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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8.

10.

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no direct impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

24


paperswithcode.com/datasets

630
631

632

633
634
635

636

637

638

639
640
641
642
643
644
645

646
647

648
649
650
651

652

653

654

655

656
657
658

659
660
661

662
663

665
666

668

669

670

671
672
673
674

14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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