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Abstract

Transformers have achieved -cutting-edge
results, with Large Language Models (LLMs)
considered SOTA in many NLP tasks.
However, the literature has not yet fully
demonstrated that LLMs are always superior
to first-generation Transformers (a.k.a. Small
Language Models (SLMs)) in all NLP tasks
and scenarios. This study compares four SLMs
(BERT, RoBERTa, Qwen, BART) with four
open LLMs (LLaMA 3.1, Mistral, Falcon,
DeepSeek) across 9 sentiment analysis and 4
topic classification datasets, totaling over 1000
results. Findings indicate that open LLMs can
moderately outperform or tie with SLMs in all
tested datasets, though only when fine-tuned,
at a very high computational cost. To address
the cost-effectiveness trade-off, we propose
“Call My Big Sibling” (CMBS)!, a novel
confidence-based framework that efficiently
integrates calibrated SLMs with open LLMs
using advanced instance selection techniques.
CMBS assigns high-confidence predictions to
the cheaper SLM, while low-confidence cases
are directed to LLMs in zero-shot, in-context,
or partially-tuned (leveraging state-of-the-art
instance selection approaches) modes,
optimizing cost-effectiveness. Experiments
show that CMBS significantly outperforms
SLMs and achieves LLM-level effectiveness
at a fraction of the cost, offering a practical
alternative for cost-sensitive NLP applications.

1 Introduction

Automatic text classification (ATC) is essential
in diverse contexts, ranging from organizing large
data volumes to personalizing user experiences.
ATC has experienced a huge revolution with the
advent of semantically enriched Transformer
models (Devlin et al., 2019) that have achieved
state-of-the-art performance (de Andrade et al.,
2023; Cunha et al., 2023a; Zanotto et al., 2021).

'Code available at https: //github.com/Anonymous
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Figure 1: Total Time (seconds) and Macro-F1 in RoOBERTa,
version of LLaMA and CMBS. All CMBS proposals outper-
form the other baselines, being much cheaper.

More recently, Large Language Models (LLMs)
emerged, built on top of the first generation of
Transformers (a.k.a., small language models —
SLMs). Studies have identified LLMs as the
current SOTA for several NLP tasks (Liang et al.,
2023). Although the literature reports LLMs’
superiority for tasks such as summarization and
translation, for others, such as sentiment analysis
and topic classification, it is not yet clear whether
LLMs’ complexity and size (e.g., in terms of a
number of parameters) translate into statistical and
mainly practical gains. In fact, several studies point
to the SLM RoBERTa as a very strong sentiment
classifier (Cunha et al., 2023b) ranking prominently
on leaderboards such as the GLUE benchmark?.

Depending on the type of training (or its
absence), LLM strategies can be categorized into
four groups: zero-shot, in-context, partially-, and
fully-tuned. In zero-shot, the model performs
tasks without specific training. In in-context, a few
examples are provided in the prompt for learning.
Partially-tuned models use a significant part of
the training set, while fully-tuned ones use the
entire set for better optimization. As shown in
(Table 1), open LLMs surpass SLMs mainly in the

https://gluebenchmark . com/leaderboard/
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fully-tuned scenario, albeit at a very high cost,
highlighting the need for cost-effective alternatives.
Accordingly, our first research question is RQ1:
“Are (open) LLMs more effective than SLMs
in sentiment and topic classification?” Recent
work (Fields et al., 2024) shows no consensus
on whether LLMs always excel in ATC tasks.
To investigate, we compared four SLMs (BERT,
RoBERTa, Qwen3, BART) and four open LLMs
(LLaMA 3.1 8B, Mistral 7B, Falcon 7B, DeepSeek
8B) on 9 sentiment and 4 topic datasets, including
two post-LLM releases (IMDB2024, RottenT2024)
to reduce data contamination (Liang et al., 2023).
We focus on open LLMs, as closed ones (e.g., Chat-
GPT) lack transparency”. Our statistically rigorous
experiments® show open LLMs can outperform
SLMs, achieving up to 8.3% (avg. 3.1%) effective-
ness gains, though mostly in fully-tuned mode.
Given the (much) higher computational costs
associated with fully fine-tuning open LLMs (the
most effective approach), a natural question we
posited is RQ2: “How does the computational cost
of using open LLMs for ATC compare to SLMs’
cost?”’. To answer this question, we conducted
a thorough analysis of our experimental results,
considering zero-shot, in-context, partially-tuned,
and fully-tuned strategies, to assess the trade-offs
between effectiveness and costs in terms of
computational cost® to train and employ the
models and their impact on carbon emission. We
found that LLMs are orders of magnitude more
costly to fully fine-tune when compared to SLMs
— fully fine-tuned LLMs are up to 1700% more ex-
pensive than SLMs. As current LLMs produce just
moderate gains over SLMs and only through highly
costly full fine-tuning processes, depending on the
scenario, the benefits may not be worth the costs.
All this leads to our final research question RQ3:
“Is it possible to perform a combination of SLM and
(open) LLMs to achieve a better effectiveness/cost
trade-off than using either SLM or LLM alone?”
To answer this question, we proposed a novel
confidence-based strategy called “Call My Big Sib-
ling” (CMBS), which smoothly combines SLM
and (open) LLMs based on calibrated confidences.

3 Among the multiple Qwen versions, we use the smallest
one, with 0.5B parameters, which we consider as an SLM due
its effectiveness comparable to the other SLMs used in this
paper and its fast response time.

4Closed LLMs are irreproducible (Gao et al., 2024).

SPlease see Section 4 for a full description of our experi-
mental setup.

®Including both, time to train the model and predict test.

In CMBS, we rely on fully fine-tuned SLMs,
which have already attained effectiveness and
efficiency and are calibrated’ for ATC tasks. We
then use the classification confidence to determine
whether the LLM should classify a low-confidence
document. In other words, the fully-tuned SLM
classifies high-certainty documents (i.e., with high
certainty calibrated scores), while low-confidence
documents are sent to the zero-shot, in-context or
partially-tuned versions of the LLMs for ATC. In
the particular case of the partially-tuned LLMs,
our CBMS solution introduces an innovation
by exploiting recent SOTA instance selection
methods (Cunha et al., 2025) to reduce the cost of
tuning while maintaining effectiveness. Such com-
bination with a cheaper LLM version (compared to
the fully-tuned LLM) brings potential effectiveness
gains to the SLM and is on par with fully-tuned
LLM, being a very attractive, cost-effective option
in basically all tested cases, as we shall see.

Our results show that for sentiment classification,
combining an SLM with a zero-shot LLM (CMBS
Zero-shot) improves effectiveness at the lowest
cost, proving its practicality. Figure 1 illustrates the
effectiveness (Macro-F1) and efficiency (Time(s))
of our approach versus baselines in two datasets,
with our proposals marked by stars. In Figure 1a,
CMBS Zero-Shot matches Fully-Tuned LLaMA’s
effectiveness at a fraction of the cost. Similarly, in
Figure 1b, all CMBS methods outperform baselines
while remaining much cheaper. Indeed, our experi-
ments reveal that CBMS Zero-shot outperforms the
SLM in § out of 9 sentiment datasets, tying with the
remaining one, with an increase in computational
cost over SLMs of only 8%. Moreover, compared
to fully-tuned LLaMA, CBMS Zero-Shot delivers
comparable effectiveness at a significantly lower
cost. In 4 of the 13 datasets, CMBS Zero-Shot ties
with the fully-tuned LLM, with minimal losses (on
average, just 2%) in the other datasets, at 1—10 of the
cost. CMBS Partially-Tuned-IS (Aggressive), on
turn, ties with fully-tuned LLaMA in all sentiment
datasets at half of the cost.

For topic classification with several classes (up
to 11) and uneven distributions, CBMS zero-shot
and CBMS In-Context struggle with effectiveness.
Only when combined with CMBS Partially-
Tuned-IS can it surpass the SLM. Among 4
datasets, CMBS Partially-Tuned-IS (Aggressive)

"The confidence of the SLM’s softmax function is highly
calibrated as we shall discuss.



outperforms RoBERTa in 2 and ties in the others.

Against fully-tuned LLaMA, it achieves statistical

parity in 3 datasets (with just a 2% loss in the 4th)

while operating at half the computational cost.
In sum, the main contributions of this paper are:

* A comprehensive comparative
of SLMs and (open) LLMs
cost/effectiveness trade-offs.

* The proposal of “Call My Big Sibling” (CMBS),
a novel confidence-based strategy to combine
calibrated SLMs and zero-shot or partially-
tuned with instance selection LLLMs, aimed at
optimizing the effectiveness-cost trade-off.

evaluation
regarding

* A thorough evaluation of our proposals consider-
ing 13 distinct datasets, in 2 tasks®: sentiment (bi-
nary) and topic (multi-class) classification tasks,
4 SLMs and zero-shot, in-context, partially-tuned
and fully-tuned versions of 4 open LLMs.

2 Related Work

LLMs’ computational costs have led to numerous
studies highlighting their financial and environmen-
tal impacts. (Strubell et al., 2019) illustrates the
substantial financial costs propelled by the contin-
uous need for investment in specialized hardware
to manage progressive LLMs. This trend not only
limits access to these models but also escalates
energy consumption, affecting the environment by
increasing carbon dioxide (CO5) emissions.

Among LLMs, proprietary and closed-source
ones, such as GPT, operate as black boxes. This
opacity poses challenges in comprehending
their training and internal structures, obstructing
reproducibility. Utilizing such LLMs often entails
transmitting data through web platforms or APIs,
a sensitive issues when privacy is a concern. As
a result, numerous studies advocate restricting
scientific evaluations to locally-run, open-source
LLMs (Spirling, 2023).

(Xu et al., 2024) combines SLMs with LLMs
aiming to improve effectiveness. In that work,
computational costs are not evaluated, and LLMs
are used to classify the entire test set, unlike ours,
which only uses them to classify a subset of hard
instances. On the other hand, we select only
low-confidence documents to be forwarded to the
LLM, a strategy that greatly reduces computational
costs as the LLM is significantly more expensive.
Moreover, a closed LLM is employed via an API,

8 An additional application of the CBMS on a different NLP
task from the GLUE benchmark is discussed in Appendix J.

which provides no control over the computational
structure or the model architecture. Finally, only a
single sentiment dataset is used in the experiments.

Liang et al., 2023 investigate various LLMs
across multiple tasks, prompts, metrics, and
datasets. Like Liang et al., we investigate the
effectiveness-cost tradeoff of LLMs. Unlike their
study, which focuses on the breadth of evaluation
with several domains (including only one senti-
ment dataset), our work is depth-oriented into the
specific task of sentiment and topic classification,
covering multiple datasets with diverse character-
istics and domains. Moreover, although Liang et al.
evaluates several models, they do not compare
them with an SLM such as RoBERTa, considered
SOTA in sentiment and topic classification (Bai
et al., 2023a; Cunha et al., 2021a, 2020; Franca
et al., 2024; Belém et al., 2024). Last, but not
least, they do not provide any solution for the
effectiveness-cost trade-off problem, which we do!.

Yue et al., 2024 proposed a hybrid approach
using GPT-3.5 (weak) and GPT-4 (strong), where
the weak model is the first to respond, and a
decision model checks response consistency across
multiple prompts, calling the strong model if
needed. This potentially improves effectiveness
but does not reduce model costs — indeed, only
financial costs based on the number of OpenAl
API calls are considered in their work. In contrast,
our approach considers both financial and compu-
tational costs (time) and uses SLM confidence, not
response consistency, to decide when to invoke a
cost-optimized LLM.

Finally, it is worth noticing that the recent
success and impact, beyond the academic world,
of DeepSeek (DeepSeek-Al et al., 2025), which
matched or improved the effectiveness of state-
of-the-art pre-trained LLMs while reducing
computational demands, show how important the
issue of trade-off effectiveness vs. cost is to the
community. We investigate DeepSeek as one of
the LLMs for our CBMS solution.

3 The CBMS Solution

One of the main contributions of our work is
the proposal of a novel strategy to combine
simpler, more efficient, but perhaps less effective
SLMs with potentially more effective but costly
LLMs, aiming to promote effectiveness while
minimizing computational costs. Our solution,
“Call-My-Big-Sibling” (CMBS), metaphorically



conjures up the image of a small (but smart)
child who, in a challenging situation, seeks help
from a bigger sibling. CBMS pursues the best
trade-off between effectiveness and costs with a
confidence-based pipeline of Language Models.
CMBS seamlessly integrates SLMs and (open)
LLMs by leveraging instance selection and
calibrated confidences. In this framework, we
first employ fully-tuned SLMs models®, which are
already highly effective in some classification tasks
(and faster to tune compared to LLMs). In our so-
lution, (test) documents classified below a certain
confidence threshold (a parameter) by the SLM are
sent to an open LLM to be classified. We have 5
versions of LLMs: Zero-shot, In-Context, Partially-
Tuned-IS biO-IS and Aggressive, and Fully-Tuned.
In particular, in the case of partially-tuned
LLMs, we have two options. Partially-Tuned-IS
biO-IS leverages the state-of-the-art just-realased
instance selection method biO-IS (Cunha et al.,
2025) to reduce the training set size, and thus
the computational cost while trying to maintain
effectiveness. In biO-IS, the “optimal” training set
reduction is variable and determined by its own
algorithm (Cunha et al., 2025). Partially-tuned-IS
Aggressive always applies a randomly stratified
reduction of 50% in the training set despite
potential effectiveness losses in the LLM. We use
this percentage drawing on recent work in Instance
Selection (Cunha et al., 2023a) that determined this
is the maximum reduction rate that can still assure
good efficiency while producing minimal effective-
ness losses. The procedure is illustrated in Figure 2.
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Figure 2: CBMS FlowChart.

For CBMS to properly work, we have to trust the
probability outputs, or, in other words, the probabil-
ities need to be calibrated'?. Wolfe et al., 2017 ar-
gue that ROBERTa’s softmax function provides cali-
brated probabilities as it is a generalization of logis-
tic regression. To demonstrate this, Table 13 (Ap-

Tuned with the full training data.

10A calibrated classifier has a strong correlation between
class prediction probabilities and frequency of correctly pre-
dicted instances belonging to each probability range.

pendix G) presents the Brier score used to measure
model calibration, in datasets used in our exper-
iments, by two transformers: BERT and RoBERTa.
This score is calculated based on the model prob-
abilities and actual labels. The score ranges from 0
to 1, with values closer to 1 indicating a better align-
ment between probabilistic predictions and actual
outcomes. As we can observe, the table reinforces
that ROBERTa is a very calibrated model (Brier
score > (.8), being as calibrated as well-calibrated
classifiers such as Logistic Regression and
Random Forests that obtain similar Brier scores for
some of these benchmark datasets (Cunha et al.,
2025). In addition to Table 13, Figure 5 presents
the calibration curve for the BERT (red) and
RoBERTa (blue) models. The dashed line along
the main diagonal represents ideal calibration. As
shown in Figure 5, RoBERTa is consistently closer
to the ideal calibration across all datasets, further
supporting the results presented in Table 13.

We select a document set for which the classifier
is least confident about its classification (Proba-
bility < L) to send to an LLM for final prediction.
Due to computational costs, we employ either the
zero-shot, in-context, or partially-tuned strategies
for this LLM. Finally, our final prediction set is
built using the following procedure: 1) we evaluate
the probability the model provides and compare it
with the threshold parameter; 2) we decide whether
the prediction will be made using an SLM or an
LLM (zero-shot, in-context or partially-tuned).

In this proposal, the choice of confidence thresh-
old L is essential to evaluate the documents that will
be sent to the LLM. To illustrate this point, Figure 3
presents the effectiveness based on prediction confi-
dence for the SST2 dataset. On the Y-axis, we have
RoBERTa’s effectiveness, and on the X-axis, we
have confidence. We can observe the more confi-
dent RoBERTa is, the more effective its predictions
are. The figure highlights the importance of se-
lecting an appropriate confidence threshold, show-
ing that it is more advantageous to forward low-
confidence documents, as high-confident ones are
classified with high accuracy by the cheaper SLM.

4 Experimental Methodology and Setup

4.1 Datasets

Our study draws on thirteen datasets developed
for sentiment analysis and topic classification.
The sentiment analysis datasets include Finance,
IMDB, PangMovie, SemEvall7, SST, SST2 and
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Yelp Review (Yelp2L), while prompt fication we
used ACM, DBLP, Twitter and Webkb. With
the significant amount of data used in building
LLMs, several authors express concerns about
contamination in evaluation data. To minimize this
issue, we collected and curated two datasets with
data post-LLMs release (RottenT2024 from Jan-
Nov 2024 and IMDB2024 from Jan-May 2024),
ensuring no contamination in the training of these
LLMs. Further details about the datasets in Ap-
pendix B: domain, number of documents, density,
and skewness (class imbalance). Our benchmark
covers a wide variety of heterogeneous scenarios.

4.2 Prompt Template

We evaluated four open LLMs—Falcon 7B, Mis-
tral 7B, DeepSeek 8B, and LLaMA 3.1 8B—using
the prompt template from Liang et al. (2023),
who found that the most effective format includes:
(i) task description, (ii) examples with expected
responses, and (iii) the text to be evaluated. We
adapted this for sentiment (Table 5) and topic
classification (Table 6, Appendix A). The prompt
provides instructions, class examples, and the text
to evaluate, with the LLM generating the class as
the “next word.” The In-Context LLM template
(Table 7) modifies this by replacing a generic exam-
ple with the closest training document, determined
via cosine similarity using ROBERTa embeddings.

4.3 Zero-shot, In-context, Partially-tuning or
Fully-tuning for Text Classification

Applying SLM or LLM pre-trained models to ATC
can be done within our CBMS solution through five
strategies: zero-shot, in-context, partially-tuned-IS
biO-IS, partially-tuned-IS Aggressive, and fully-
tuned. Zero-shot strategy predicts text classes with-
out using training examples or performing model
fine-tuning. In an In-context approach, the model
relies on a prompt containing the nearest neighbors
of the evaluated example inserted into it to provide
context for making predictions without adjusting
its weights. In the partially-tuned (IS) strategies,

a portion of labeled data is employed to adjust
the model weights, simulating a scenario of data
scarcity. As described in Section 3, we have two op-
tions for this strategy: using biO-IS instance selec-
tion for training set reduction, with variable reduc-
tion rates, depending on the dataset, and Aggres-
sive, in which we fixed 50% of the training partition
data for model training, selecting these instances
in a stratified random manner. An evaluation using
different fixed training data sizes was conducted in
Appendix E, further justifying the 50% rate choice.

Lastly, the fully-tuned strategy utilizes all avail-
able labeled data in the model’s training partition
to maximize model adjustment for the task and
data domain. While this strategy typically achieves
better effectiveness, it has a very high computa-
tional cost. In our paper, the fully-tuned strategy
is used as baseline to compare with our proposals.

We only employ the SLMs fully tuned, which
is essential for effectiveness (de Andrade et al.,
2023). Fully tuning SLMs involves fine-tuning the
SLM’s text representation (CLS token) and a fully
connected layer that performs class prediction,
utilizing all available training samples.

4.4 Method-Specific Parameter Tuning

All data is divided using stratified 5-fold cross-
validation, a widely accepted technique in model
evaluation. This method enhances the robustness
and reliability of the model by splitting the dataset
into five parts: three for training, validation, and
testing. In each of the five iterations, the roles of
the partitions alternate between training, validation,
and testing, ensuring that the class distribution is
preserved in the test partition. The validation set is
crucial for parameter tuning, as detailed below.

For SLMs, we adopted Cunha et al. (2023b) “s
hyper-parameterization, fixing the learning rate
in 2x107°, the batch size with 64 documents,
adjusted the model for five epochs and set the
maximum size of each document to 256 tokens.
We adopted the following parameters for the LLM
models: all LLMs use 4-bit quantization, with
QLoRA and PEFT enabling fine-tuning on rea-
sonably equipped machines. For LLaMA, we used
1024 maximum tokens, a learning rate of 2x 1074,
and a temperature equal to 0.6. All other param-
eters were set at their default values. For fully-
tuning processes, which are more costly due to the
model’s weight adjustment (backpropagation), we
had to reduce the maximum number of tokens to
256. We performed training for three epochs.



We introduce a confidence threshold parameter:
if the SLM’s confidence is below this threshold,
predictions are forwarded to the LLM, the "Big
Sibling." This ensures that the complex LLM
takes over only when the SLM is not confident.
Using the validation set, we vary this parameter
to optimize Macro-F1 without increasing cost.
Table 12 (Appendix F) shows the selected
threshold for sample datasets, the percentage of
forwarded instances, and LLM/SLM effectiveness.
For example, in SST2, documents with confidence
below 0.9 go to the LLM; otherwise, the SLM
classifies them. Higher thresholds mean more
documents are sent to the LLM. Notably, the
optimal threshold (around 0.9) is consistent across
most datasets, and the LLM outperforms the SLM
in these difficult cases, supporting CBMS gains.

4.5 Maetrics and Experimental Protocol

We evaluated SLMs and (open) LLMs regarding
the effectiveness/cost tradeoff. All models were
assessed on identical hardware configuration: a
4-core processor, 32GB of system memory, and an
Nvidia Tesla P100 GPU. Classification effective-
ness is assessed using Macro-F1 due to imbalance
in several datasets. To ensure statistical validity
of the results and demonstrate model generality,
models were evaluated using the test set from
a 5-fold stratified cross-validation methodology
and a t-test with 95% confidence with Bonferroni
correction to account for multiple comparisons.

To assess cost-effectiveness tradeoff, we
evaluate each method’s total model-building time,
including learning and class prediction for the test
set. For CMBS Zero-Shot, this includes tuning
the SLM, predicting part of the test set with the
SLM, and a smaller portion with the LLM. CMBS
in-context also accounts for finding the k nearest
neighbors, while CMBS partially-tuned includes
training the LLM using biO-IS or 50% stratified
random of the training for Aggressive.

5 [Experimental Results and Analyses

5.1 SLMs vs. LLMs - Effectiveness

To address RQ1, we first evaluated several popular
open-source LLMs, including Falcon 7B, Mistral
7B, DeepSeek 8B, and LLaMA 3.1 8B. We began
by comparing the performance of these four LLMs
on sentiment and topic tasks in the Zero-Shot set-
ting. Table 9 in Appendix C presents the Macro-F1
scores, highlighting the best results in bold, includ-

ing statistical ties. LLaMA 3.1 8B consistently
achieves the best results (statistically) across most
datasets in both sentiment and topic tasks. Due to
the high computational cost of fully tuning LLMs,
we selected LLaMA 3.1 8B for all subsequent tests.

Regarding SLMs, we did a similar experiment
and compared four widely used SLMs — BERT,
BART, RoBERTa and QWen. Results in Table 10
in Appendix D show that, among SLMs, RoOBERTa
achieves the highest effectiveness (or ties for it)
in all cases, confirming findings reported in the
literature (Cunha et al., 2023b; Bai et al., 2023b).

Still answering RQ1, we compare RoBERTa
with five LLaMA versions in Table 1—zero-shot,
in-context, partially-tuned (biO-IS and Aggres-
sive), and fully-tuned—using the full training
set. Zero-shot LLaMA 3.1 ties or underperforms
compared to RoBERTa in sentiment datasets
and performs much worse in topic classification.
Similarly, In-Context LLaMA does not outperform
RoBERTa in sentiment classification.  Since
Zero-Shot LLaMA lacked training labels, while
RoBERTa was fully tuned, RoBERTa achieved bet-
ter effectiveness in most cases. The performance
gap is even larger in topic classification due to more
classes and higher complexity of the ATC task.

Only partially-tunned-IS (in both versions,
biO-IS and Aggressive, for most datasets) and fully-
tuned LLaMA can outperform RoBERTa, with
some advantage for fully-tuned, especially for topic
classification. However, in some datasets, such
as Finance and Yelp2L (sentiment), and Twitter
(topic), fully-tuned and RoBERTa are statistically
tied, mainly due to larger confidence intervals
(meaning higher variability) for the RoBERTa
results. In some other datasets, RoBERTa’s and
fully-tuned LLama’s effectiveness are also close.

The instance selection versions of the LLM
are also very competitive with the fully-tuned
version in most datasets, but at a much cheaper
cost (between 30%-50%). When comparing both
instance selection alternatives, we can see that
biO-IS preserves effectiveness in more datasets,
which is consistent with (Cunha et al., 2025),
probably due to its lower training set reduction
rate (around 40% on average when compared to
Aggressive (always 50%). These results further
motivate us to combine SLMs and LLMs with
our proposed CMBS pipeline for the sake of
optimizing the effectiveness-cost trade-off. This
trade-off is the core of our subsequent analyses.



Dataset RoBERTa | Zero- In- Partially- | Partially-| Fully- Dataset RoBERTa| Zero- In- Partially- | Partially-| Fully-
Shot Context Tuned- Tuned- Tuned Shot Context Tuned- Tuned- Tuned
LLaMA LLaMA IS IS LLaMA LLaMA LLaMA IS IS LLaMA
biO-IS Agres- biO-IS Agres-
LLaMA sive LLaMA sive
LLaMA LLaMA
Finance 98.1+1.9| 954+12| 98.6+1.8| 88.6+13 | 98.6+0.1| 98.7+1.6 Finance 79 103 123 514 484 896
Imdb 9340.5 9340.3 789+1.2| 957403 | 95840.2| 95.9+04 Imdb 2615 6295 11548 33554 25176 39257
PangMovie 88.740.9| 88.840.9| 89.9+0.7| 93.5+04| 93.1+04| 93.74+0.5 PangMovie 934 1200 1490 7169 5892 10921
SemEvall7 91.240.7 | 89.74£0.6| 90.1£0.7| 92.74+0.6 | 92.7+0.6| 93.5+0.3 SemEvall7 2416 3160 4251 19541 15154 28087
Sst 87.3+1 87.940.7 | 88.5+1 90.7+0.9 | 90.94+0.8 | 91.1+1 Sst 1027 1230 1562 7913 6544 11791
Sst2 94.64+0.2| 914404 | 935404 | 958403 | 957+0.2| 96+0.1 Sst2 5817 7800 10936 47813 37435 65428
Yelp2L 97.94+0.5| 98.6+0.3| 92.1+1 98.7+0.3 | 98.540.6| 98.5+0.5 Yelp2L 510 1161 1736 3743 2407 5116
IMDB2024 97.6+1 96.5+1 93.9+1 98.410.7 | 98.6+0.7 | 98.7+0.7 IMDB2024 681 1623 2538 9015 5822 12304
RottenT2024 | 93.74+1.1| 952414 | 95341 96.3+0.4 | 96.6+0.7 | 96.7+0.4 RottenT2024 | 789 983 1708 5766 4393 8130
ACM 70.7+1.5| 35.6+1.1| 505+1.6| 74.6+2.7| 72441.6| 76.6+2.1 ACM 2665 3163 7896 18539 16877 28207
DBLP 81.9+0.7 | 53.74£0.8 | 53.2+1 86.7+1 85.9+0.8| 87.840.7 DBLP 4140 8113 17311 47501 27564 139250
Twitter 77.54+2.7| 67.442.7| 729+1.6| 704423 | 73543.1| 77.7+£25 Twitter 651 892 1478 7105 6664 11406
Webkb 82.342.6| 41.9+15| 64+1.8 83.4+1 82.4+42.1| 86+1.3 Webkb 910 2877 3274 12547 10150 26021

Table 1: Average Macro-F1 and 95% confidence interval
for SLMs and versions Llama 3.1 §B. Best results (including
statistical ties) are marked in bold.

Dataset RoBERTa| CMBS CMBS CMBS CMBS Fully-
Zero- In- Partially- | Partially-| Tuned
Shot Context Tuned- Tuned- LLaMA
1S IS
biO-IS Agres-
sive
Finance 98.1+1.9| 98+2.1 982+1.7| 97.7£1.6| 98.3+13| 98.7+1.6
Imdb 9340.5 94+0.6 925406 95.7+0.3| 958402 959404
PangMovie 88.74+0.9| 90.240.9 | 89.9+0.8| 93.5+£04| 93.1+0.3| 93.74+0.5
SemEvall7 91.240.7 | 92240.6| 9240.5 929+0.5| 92.9+0.6| 93.54+0.3
Sst 87.3+1 89+0.6 88.54+1.2| 90.8+0.9 | 90.9+0.9| 91.1+1
Sst2 94.6+0.2 | 95.1+02| 94.8+03| 95.8+0.2| 95740.2| 96+0.1
Yelp2LL 97.940.5| 985+0.2| 98.1+0.2| 98.84+0.2| 98.6+0.5| 98.5+0.5
IMDB2024 97.6+1 982409 | 97.3+12| 98.510.6| 98.7+0.8| 98.7+0.7
RottenT2024 | 93.741.1| 95.6+1 95.740.7 | 96+0.7 96.31+0.7 | 96.7+0.4
ACM 70.7£15] 70.5£12| 70.6+12| 747427 73.3+24| 76.6+2.1
DBLP 81.940.7| 81.94+0.6| 82+1.6 86.71+0.9 | 8640.8 87.81+0.7
Twitter 775427 | 794+27| 78.7+25| 777122 782+1.8| 77.7+2.5
Webkb 823+2.6| 82.1+23| 82.2+2.7| 83.61+1.1| 83.842.5| 86+1.3

Table 2: Average Macro-F1 and 95% confidence intervals for
RoBERTa, versions of CMBS and Fully-Tuned LLaMA. Best
results (including statistical ties) are marked in bold.

5.2 SLMs vs. LLMs - Computational Cost

Table 3 presents total time (in seconds) required
to obtain final predictions for each solution. The
Table shows that RoOBERTa’s time is the shortest,
followed by LLM Zero-Shot, which is around 76%
more expensive than the SLM, on average. LLM
In-context, in turn, is 176% slower than RoBERTa
and 56% costlier than LLM Zero-Shot.

In Partially-Tuned-IS, cost increases signifi-
cantly due to weight adjustment performed via
LLM backpropagation. Aggressive version is
always around 9%-35% faster than biO-IS due
to its larger training set reduction, which impacts
the fine-tuning time. Of course, fully-tuned LLM
is the most expensive solution, which is 1700%
more expensive than RoOBERTa. With an average
improvement of 3.3% across all datasets (peaking
at 8.3% in ACM), it is not clear whether such
improvements justify the significant computational
cost increases. Depending on the application
scenario, costly solutions may not be ideal or even
feasible. To address this, our proposed solution
reduce costs associated with using LLMs while
preserving effectiveness gains.

Table 3: Average Total Time for ROBERTa and versions of
Llama3.1-8B.

Dataset RoBERTa| CMBS CMBS CMBS CMBS Fully-
Zero- In- Partially- | Partially-| Tuned
Shot Context Tuned- Tuned- LLM
IS IS
biO-IS Agres-
sive
Finance 79 84 89 542 515 896
Imdb 2615 2930 3245 32813 25273 39257
PangMovie 934 994 1054 7386 6237 10921
SemEvall7 2416 2574 2732 20004 16055 28087
Sst 1027 1089 1150 8149 6917 11791
Sst2 5817 6207 6597 48848 39508 65428
Yelp2L 510 568 626 3879 2676 5116
IMDB2024 681 762 844 8795 5921 12304
RottenT2024 | 789 838 887 5978 4743 8130
ACM 2665 2823 2981 19349 17854 28207
DBLP 4140 4546 4951 46891 28948 139250
Twitter 651 695 740 7045 6648 11406
Webkb 910 1054 1198 12202 10045 26021

Table 4: Average Total Time for ROBERTa and versions of
CMBS and Fully-Tuned LLaMA.

5.3 RQ3: Evaluating the CBMS Approach

Focusing now on our proposals, we assess the
four CBMS implementations: CMBS Zero-Shot,
In-Context, Partially-Tuned-IS (bio-IS) and
Partially-Tuned-IS (Aggressive). Starting with
sentiment classification, Table 2 presents results for
RoBERTa, each CMBS version, and Fully-Tuned
LLaMA. CMBS Zero-Shot outperforms RoBERTa
in 8 out of 9 sentiment datasets, tied only in
Finance. These gains come with a small increase
in computational cost over SLMs of only 8%.
Moreover, in 4 of the 9 datasets, CMBS Zero-Shot
ties with fully-tuned LLM, with minimal losses in
others (on average, just 2% less effective). These
excellent effectiveness results come at 10% of
the fully-tuned cost, as demonstrated in Table 4,
which presents total time results for all alternatives.
Moreover, both CMBS partially-tuned-IS ver-
sions tie with fully-tuned LLama in a// sentiment
datasets at 30%-50% of the fully-tuned cost.

For topic classification, with more categories (up
to 11) and uneven distributions, CBMS Zero-Shot
and CBMS In-Context struggle with effectiveness.
Significant gains over SLMs occur only with
CBMS Partially-Tuned-IS versions. Among four
topic datasets, both CBMS Partially-Tuned-IS
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Figure 4: Effectiveness, Size of the Test Set Sent to LLM and Efficiency for IMDB dataset.

(Aggressive) and (biO-IS) outperform RoBERTa
in two datasets, tying with the other two. Both also
surpass partially-tuned LLaMA in all cases, with
up to 6.4% gains in Twitter. Compared to fully-
tuned LLaMA, CMBS Partially-Tuned-IS (bio-IS)
achieves statistical equivalence in all datasets and
(Aggressive) in three, having just a small deficit
of around 2% in the fourth (DBLP). (Bio-IS) cuts
computational costs by 40% on average while
Aggressive achieves 50% of cost reduction.

If choosing between the two partially-tuned-
IS CBMS versions, we would prefer Aggres-
sive. Both show similar effectiveness in sentiment
and topic datasets, but Aggressive offers a better
effectiveness-cost tradeoff. Its main cost reduction
comes from randomly cutting the training set by
50%. Surprisingly, its effectiveness matches state-
of-the-art biO-IS when used within CBMS. How-
ever, remember that partially-tuned LLaMA (Ag-
gressive), used within CBMS, only needs to handle
the hardest cases. Outside CBMS, Bio-IS performs
better (Table 1), but within our solution, Aggressive
achieves the best effectiveness-cost balance.

Summarizing, for sentiments, best effectiveness
tradeoff is achieved by CBMS Zero-Shot. If
effectiveness is mandatory, the choice is CBMS
Partially-Tuned-IS (Aggressive), which ties with
LLaMA Fine-tuned at half the cost. For topics,
the choice is also CBMS Partially-Tuned-IS
(Aggressive), which ties with LLaMA fine-tuned
in 3 out of four datasets, losing minimally (by 2%)
in the fourth, being twice more efficient.

Finally, we calculated CO5 emissions for ob-
taining final model predictions using Lacoste et al.
(2019)’s methodology. Results in Table 14 (Ap-
pendix H) show emissions are significantly higher
for LLMs, by orders of magnitude. Financial costs,
analyzed in Appendix I, lead to similar conclusions.

5.4 Confidence Threshold Sensitivity Analysis

We analyze confidence threshold impact. Figure 4
shows IMDB results, where CMBS Partially-tuned-
IS (Aggressive) achieved a strong cost-benefit

tradeoff—outperforming ROBERTa and matching
Fully-tuned LLaMA, at half the cost. Figures 4a,
4b, and 4c depict effectiveness gains, instances
sent to LM, and cost increases. Trends are similar
across all graphs, despite different metrics. With
appropriate thresholds, effectiveness can improve,
though at a higher cost.

5.5 CBMS Applied to Other NLP Tasks-
CoLA GLUE

To demonstrate the potential of our solution for
other NLP tasks, Appendix J shows the results of
applying CBMS-Partially-Tuned-IS (Aggressive)
to CoLA (Corpus of Linguistic Acceptability), a
GLUE task assessing a model’s ability to classify
English sentences as grammatically acceptable or
unacceptable. As seen in Table 16, our solution out-
performs RoOBERTa and is statistically equivalent
to Fully-Tuned at half of its computational cost.

6 Conclusion

We proposed Call-My-Big-Sibling (CMBS), an
ATC solution that optimizes the effectiveness-cost
trade-off by combining efficient, calibrated SLMs
with more effective but costlier LLMs. CMBS
uses LL.Ms only when the SLM is not confident,
minimizing costs through zero-shot inference or
instance selection when tuning is needed. Exper-
iments on 13 sentiment and topic classification
datasets confirmed its strong effectiveness-cost
balance. CMBS Zero-Shot outperformed SLMs in
8 of 9 sentiment datasets with minimal overhead,
while CMBS Partially-Tuned-IS matched fully
tuned LLMs in sentiment tasks at half the cost. For
topics, it surpassed partially tuned LLaMA and
achieved near-equal effectiveness to fully tuned
LLMs at twice the efficiency. Such efficiency
gains are crucial in real-world scenarios. Future
work includes extending CMBS to tasks like hate
speech, irony detection, summarization, and Q&A,
refining instance selection to reduce training needs,
and exploring additional LLMs, configurations,
and alternative prediction methodologies.



7 Limitations

Despite relevant contributions, our study has some
limitations. Our current work covers only two clas-
sification tasks, which we have pursued to evaluate
in depth. In this study, we used 13 datasets, 9 on
sentiment analysis and 4 on topic classification,
all with distinct characteristics. Additionally, we
covered a single GLUE task on grammatical cor-
rectness to demonstrate generalization.

In spite of such limitations, there are only few
studies - most of them covered in our related work
- that analyze the complex issue of balancing effec-
tiveness and the associated computational costs of
NLP tasks in the Language Models context, particu-
larly through the combination of LMs, as proposed
in our paper. Indeed, this is a challenging trade-off
to address: improving effectiveness often leads to
higher costs. The recent success and real-world im-
pact, including financial, of DeepSeek (DeepSeek-
Al et al., 2025), which matched or surpassed the
effectiveness of state-of-the-art pre-trained LLMs
while reducing computational demands, highlights
the importance of this topic (effectiveness vs. cost
trade-off) to the community.

Although we have explored two (three if we
consider GLUE CoLA) classification tasks - topic
classification and sentiment analysis (and grammat-
ical correctness) - we emphasize that ATC remains
an open challenge in several NLP applications,
such as hate speech detection, misinformation
identification, and sentiment analysis—all of
which can be framed as classification problems.
Papers on these topics are recurrent in major ACL
conferences, which attests to the relevance of this
problem. Moreover, many classification tasks
are imbalanced, posing significant challenges,
particularly in multi-class classification.  For
instance, in the ACM dataset, which contains
documents distributed across 11 imbalanced
classes, the highest reported effectiveness is 76.6
Macro-F1, highlighting that this task remains
challenging and far from being successfully solved.

We believe our proposal is comprehensive, as it
evaluates four SLM methods, four LLMs - includ-
ing four versions of LLaMA (zero-shot, in-context,
partially tuned, and fully tuned) - and three
versions of our solution across 13 different datasets.
This extensive effort comprises more than 1000
experimental results (13 datasets x 16 methods x 5
runs). Nonetheless, more SLMs and LLLMs, alone
and in combination, will be tested in the future.

We focused our evaluation on open LLMs for
the sake of reproducibility in subsequent research
using our method. Hence we have refrained from
using proprietary and closed-source LLMs, such as
GPT, which operate as black boxes. This opacity
poses challenges in understanding their training
methodologies or internal structures, thereby
obstructing reproducibility in research reliant on
these models.

LLMs have been made available for different
purposes. Some of these LLMs have high exe-
cution costs, such as Falcon 180B (Penedo et al.,
2023), which requires an expensive infrastructure
to use it. In our work, we limited our study to
the best evaluated LLMs in the Hugging Face
platform!!, with around 7 billion parameters,
which have a reasonable structure allowing us
to evaluate zero-shot, in-context, partially and
fully-tuned versions of our solutions.

Regarding, probability estimation, we employ a
straightforward heuristic that exclusively considers
the token with the maximum predicted probability.
While this approach offers simplicity, we recognize
its limitations and intend to explore alternative
methodologies that incorporate a broader spectrum
of high-probability tokens, thereby transcending
the constraints of a singular, most likely prediction.

Finally, our work focused on applying our
proposals with four open LLMs—Falcon 7B,
Mistral 7B, DeepSeek 8B, and LLaMA 3.1 8B.
However, new LLMs emerge all the time and it is
hard to test all of them. In any case, we intend to
explore new LLMs in future work. Given that these
new LLMs tend to be increasingly more complex
and costly, optimizing the cost-effectiveness of our
combined approach using SLMs and LLMs will
remain not only relevant but also an even more
compelling objective.
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A Prompt Templates

Below are examples of the structure of the prompts
we used for our experiments’ Zero-Shot and
In-Context versions of the LLMs. They all draw on
(Liang et al., 2023). Table 5 provides the prompt
used for sentiment classification, while Table 6
presents the prompt for topic classification. Both
prompts include the tag [Evaluate Text], which
represents the (test) text to be classified, and the tag
[Response from LLM], which contains the model’s
output. If the model’s output does not match any
of the given alternatives (due to hallucination), we
predict the majority class from the training set.

We employ a straightforward heuristic that
exclusively considers the token with the maximum
predicted probability. While this approach offers
simplicity, we recognize its limitations and
intend to explore alternative methodologies that
incorporate a broader spectrum of high-probability
tokens, thereby transcending the constraints of a
singular, most likely prediction.

The third example of prompt, shown in Table 7,
is tailored for in-context learning. For the evaluated
test document, “I spent a day at a 5-star hotel,
which was amazing.” the most similar example
from the training set included in the prompt was
“5-star hotels have many food options.”. A vector
representation is generated for each evaluated
example using the fully-tuned RoBERTa as an
encoder. By comparing the vector of the evaluated
(test) document with the vectors of the training set
documents, we identify the most similar document
based on the cosine similarity between the vectors
and use it as a training example in the prompt.

Classify the sentiment in the text exclusively as positive
or negative:

Input: I love you.

Reference:

A. Positive

B. Negative

Answer: A

Input: The product is bad.
Reference:

A. Positive

B. Negative

Answer: B

Input: {Evaluate Text}
Reference:

A. Positive

B. Negative

Answer: {Response from LLM}

Table 5: Prompt template for sentiment classification.
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Classify the topic of the text exclusively with one of the
references:

Input: Messi scored a goal against France.
Reference:

A. Pop culture

B. Sports or gaming

C. Daily life

D. Science or technology

E. Business or entrepreneurs

F. Arts or culture

Answer: B

Input: {Evaluate Text}

Reference:

A. Pop culture

B. Sports or gaming

C. Daily life

D. Science or technology

E. Business or entrepreneurs

F. Arts or culture

Answer: {Response from LLM}

Table 6: Prompt template for topic classification.

Classify the sentiment in the text exclusively as positive
or negative:

Input: 5-star hotels have many food options.
Reference:

A. Positive

B. Negative

Answer: A

Input: I spent a day at a 5-star hotel, which was amazing.
Reference:

A. Positive

B. Negative

Answer: {Response from LLM}

Table 7: Prompt template for sentiment classification
for In-Context Llama and CMBS In-Context.

B Datasets

Our study draws on thirteen datasets developed for
topic and sentiment classification. Our choice was
strategically purposeful due to the effort to perform
an in-depth analysis of this task. The datasets
include Finance (Malo et al., 2014) focusing on
economic news, IMDB (Maas et al., 2011)!2 com-
piling movie reviews as well as PangMovie (Pang
and Lee, 2005) including Rotten Tomatoes'> data,
SemEvall7 (Rosenthal et al., 2019) containing
Twitter texts used in a significant text classification
challenge, and the Stanford Sentiment Treebank
(SST) (Socher et al., 2013) and SST2 (Socher
et al., 2013), where sentiment classification relies
on a treebank, a corpus with sentiment labels and
labeled parse trees. Yelp Review is a subset of Yelp
data widely used in sentiment classification studies

Zhttps://www.imdb. com/
13https: //www.rottentomatoes.com/


https://www.imdb.com/
https://www.rottentomatoes.com/

(Canuto et al., 2016; Viegas et al., 2023; Mendes
et al., 2020). IMDB2024 and RottenT2024 were
collected to avoid data contamination by LLM. For
topic classification, we have ACM Digital Library
(Cunbha et al., 2021b), DBLP (Tang et al., 2008),
Twitter Topic (Antypas et al., 2022) and WebKB
(Craven et al., 1998).

Dataset Domain | IDI Avg Classes| Minor| Major
Words Class | Class
Finance Finance | 873 24.88 2 303 570
IMDB Movie 24904 234 2 12432 | 12472
= PangMovie Movie 10662 21.02 2 5331 5331
g| SemEvall7 Twitter 27413 19.85 2 7745 19668
E Sst Movie 11841 19.18 2 5905 5936
5 Sst2 Movie 66973 10.45 2 29643 | 37330
Yelp2L Place 4995 131.8 2 2495 2500
IMDB2024 Movie 6572 163.02 2 2057 4515
RottenT2024 | Movie 7948 46.13 2 3315 4633
© Acm Atrticle 24897 63.52 11 63 6562
‘a| Dblp Atrticle 38128 141.43 10 1414 9746
S| Twitter Twitter | 6997 28.68 6 152 2738
‘Webkb Pages 8199 208.81 7 137 3705
Table 8: Datasets Statistics.

As detailed in Table 8, we can observe an
ample diversity in many aspects of these datasets:
domain, number of documents (IDI), density (the
average number of words per document), etc.

C Evaluating LLMs

‘We evaluate four LLMs in Zero-shot mode: Falcon

7B, Mistral 7B, LLaMA 3.1-8B and DeepSeek 8B.

Table 9 presents the results regarding Macro-F1,
with the best outcomes highlighted in bold.
As observed, LLaMA is consistently the best
performer, either alone or tied with Mistral, across
all datasets, except WebKB.

Dataset Falcon 7B | Mistral 7B | Llama 3.1 8B | DeepSeek 8B
Finance 46.7£4.8 94.3+1.9 95.4+1.2 95.6+£2.1
Imdb 68.4+0.7 68.410.7 93+0.3 84.24+0.5
PangMovie 43.6£0.5 82.3+0.9 88.81+0.9 82.1£0.5
SemEvall7 54.44+0.6 81+0.9 89.7+0.6 87.2+0.9
Sst 47£1.2 8240.8 87.9+£0.7 82.31+0.8
Sst2 38.6+0.1 86.240.5 91.4+0.4 84.440.6
Yelp2L 799+1.3 96.21+0.9 98.6+0.3 96.4+0.6
IMDB2024 78.4£0.8 94.940.9 96.5+1 94.6+0.8
RottenT2024 65.8+1.3 93.8+1.2 95.3+1 92.1£1.0
ACM 2.610.2 18.2+0.9 35.6+1.1 142404
DBLP 3.1£0.2 50.2+0.6 53.7+£0.8 39.240.5
Twitter 13+0.3 62.2+2.1 63.5+£1.7 63.6+1.2
Webkb 3.8+£0.3 42.1+0.6 37+2.1 241435

Table 9: Effectiveness in Macro-F1 for sentiment and
topic classification tasks with the LLMs in Zero-shot
version, Falcon 7B, Mistral 7B, and Llama 3.1 8B. Best
results (including statistical ties) marked in bold.

D Evaluating SLMs

We evaluate four fully-tuned SLMs: BART, BERT,
Qwen 0.5B and RoBERTa. Table 10 presents the
results regarding Macro-F1, with the best outcomes
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highlighted in bold. As observed, RoBERTa is con-
sistently the best performer, alone or tied with an-
other SLM, across all datasets, with no exception.

Dataset BERT BART Qwen RoBERTa
0.5B

Finance 94.14+3.8 | 97+1.7 67.8+14.2| 98.1+1.9
Imdb 91.740.4 | 92.84+04 | 81.64+1.3 | 93+0.5

PangMovie 87.5+£0.7 | 88.4+1 72.5+1.8 | 88.7+0.9
SemEvall7 90.34+0.3 | 91+0.4 79.940.7 | 91.2+0.7
Sst 86.1£0.4 | 87.7+1.1 | 69.5£8.7 | 87.3+1

Sst2 94.840.1 | 94.2+0.3 | 87.940.7 | 94.6+0.2
Yelp2L 96.84+0.4 | 97.7+£0.2 | 89.44+3.7 | 97.9+0.5
IMDB2024 96.64+0.5 | 97.5£0.6 | 90.24+2.2 | 97.6%1

RottenT2024 | 92.5+1 93.54+0.5 | 84.6+0.8 | 93.7+1.1
ACM 69.8+1.8 | 68+2.8 46.4+13.7| 70.7+1.5
DBLP 82.14+0.9 | 81.9+0.6 | 685484 | 81.9+0.7
Twitter 76.6+4.4 | 76.9+3.3 | 39.1+5.7 | 77.5+2.7
‘Webkb 80.84+3.8 | 81.7+3.5 | 459+13.6| 82.3+2.6

Table 10: Average Macro-F1 and 95% confidence interval
for SLMs . Best results (including statistical ties) marked in
bold.

E Evaluating Aggressive Reduction in the
LLMs with Different Reduction Levels

As mentioned, fine-tuning is essential for LLM
effectiveness. Here, we illustrate the impact of
training data size on the LL.M effectiveness using
the validation set and a sample of two datasets.
The pattern of results is basically the same in all
other datasets we experimented with.

Table 11 presents the effectiveness results when
utilizing 30%, 50%, and 70% of the training data
in Twitter and WebKB, two topic datasets in which
CMBS performs very well. As we can see in the
Table, 30% of training generally is not enough
for achieving reasonable effectiveness, while the
improvements of using 70% are either marginal
or incur in higher costs.

As discussed in Section 5, the CMBS Partially-
Tuned-IS (Aggressive) version we employed in
our experiments uses 50% of the training data,
randomly selected in a stratified manner, based on
results of instance selection experiments (Cunha
et al., 2023a). In all datasets, such a choice
produced the best tradeoff between effectiveness
and computational cost.

Dataset Portion Macro-
Train F1
Twitter 30 66.2
Twitter 50 71.9
Twitter 70 76.1
Webkb 30 76.7
Webkb 50 83.4
Webkb 70 85.2

Table 11: Evaluate amount training LLM.



F Evaluating Threshold L

We evaluate the impact of the parameter L, which
determines the number of documents sent to
the LLM. The higher the value of L, the more
documents fall below the threshold, increasing
the number of documents forwarded to the LLM.
Table 12 presents this evaluation for a sample
of four datasets, showing the dataset name, the
percentage of instances sent to the LLM relative to
the total of test instances, and the effectiveness of
both the SLM and LLM on this subset of instances.
It is interesting to notice that the choice of L that
maximizes the cost-effectiveness threshold (around
0.9) is similar in all datasets, and that the LLM
effectiveness in these hard-to-classify instances
is better than the SLM, which justifies the CBMS
Partially-Tuned-IS Aggressive gains.
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Dataset Percentage of | SLM LLM Threshould
Instances Macro- Macro- (L)
F1 F1
Sst 27.0 0.65 0.76 0.9
Sst2 25.3 0.82 0.85 0.9
IMDB2024 7.8 0.72 0.87 0.9
‘Webkb 13.9 0.56 0.67 0.9
Twitter 13.9 0.51 0.53 0.9

Table 12: Evaluation Threshold L.

G Calibration Model

We analyze the behavior of the Transformer
calibrations using Brier Score (BS) (BRIER, 1950),
a scoring rule applied to measure the accuracy of
probabilistic predictions. Brier (BRIER, 1950) de-
fines BS = % 2im1 Zgzl (P(Y = yelz:) — 0ci)?,
where o,; is the one-hot vector with a value 1 in the
index of the true class of z;, and 0 otherwise. BS
ranges from O (worst) to 1 (best) — the closer to one,
the better in achieving more calibrated probability
estimations. Table 13 presents the obtained Brier
Score averaged across the datasets by applying
BERT and RoBERTa classifiers on all datasets
considered in our experiments. Meanwhile,
Figure 5 presents the calibration curves for BERT
and RoBERTa, reinforcing that RoOBERTa is a
better-calibrated model compared to BERT.

H CO, emissions

We calculated the CO5 emissions associated with
the execution of the model using the methodology
developed by Lacoste et al. (2019). It is possible to
associate the value of emission 0.14 kg of COzeq
per hour with a machine of similar structure to
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Figure 5: Calibration curve for BERT and RoBERTa.
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Dataset BERT RoBERTa
Finance 0.784 0.989
IMDB 0.854 0.873
PangMovie 0.793 0.804
SemEvall7 0.879 0.887
Sst 0.783 0.792
Sst2 0.919 0.912
Yelp2L 0.968 0.968
IMDB2024 0.944 0.959
RottenT2024 0.898 0.911
ACM 0.691 0.662
DBLP 0.765 0.747
Twitter 0.810 0.828
‘Webkb 0.779 0.80

Table 13: Brier score for BERT and RoBERTa.

the one used in our experiments'*. The emission
values are presented in Table 14.

I Financial Cost

Following (Griggs et al., 2024), Table 15 presents
the financial cost in dollars for executing the main
methods discussed in this paper. As a reference, we
used the hourly price of a setup similar to the one
used in this research '°, offered by a large cloud
company, which currently costs $0.752 per hour.

J GLUE CoLA

To demonstrate the potential of our solutions for
other NLP tasks, we present the application of the
best version of CBMS (CBMS Partially-Tuned
(Aggressive) to CoLA (Corpus of Linguistic
Acceptability), a GLUE task that evaluates a
model’s ability to predict the grammaticality of
an English sentence by identifying it as either
grammatically acceptable or unacceptable. For
example, the sentence ‘“The cat sat on the mat” is
grammatically correct, whereas the sentence “On
the mat sat cat the” is grammatically incorrect.
Table 16 presents the results. As it can be
observed, our solution outperforms RoBERTa
and is statistically equivalent to Fully-Tuned at
approximately half the computational cost.

K Pareto-optimal

Figure 6 presents the graph of the effectiveness-
efficiency trade-off across all methods evaluated in
this study. The Pareto frontier is represented by the
dashed red line, with all points overlapping this line
being Pareto-optimal. We can observe that CMBS
is the most frequent method on the Pareto frontier.

14https ://mlco2.github.io/impact/#co2eq
Saws.amazon.com/ec2/instance-types/g4/
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Dataset RoBERTa | Zero- In- Partially- | Partially- | CMBS CMBS CMBS CMBS Fully-
Shot Context Tuned-IS Tuned-IS Zero- In- Partially- | Partially- | Tuned
LLaMA LLaMA biO-IS Agressive | Shot Context Tuned-IS | Tuned-IS | LLaMA
LLaMA LLaMA biO-IS Agressive
Finance 0.02 0.02 0.02 0.1 0.09 0.02 0.02 0.11 0.1 0.17
Imdb 0.51 1.22 2.25 6.52 49 0.57 0.63 6.38 4.91 7.63
PangMovie 0.18 0.23 0.29 1.39 1.15 0.19 0.21 1.44 1.21 2.12
SemEvall7 0.47 0.61 0.83 3.8 2.95 0.5 0.53 3.89 3.12 5.46
Sst 0.2 0.24 0.3 1.54 1.27 0.21 0.22 1.58 1.34 2.29
Sst2 1.13 1.52 2.13 9.3 7.28 1.21 1.28 9.5 7.68 12.72
Yelp2L 0.1 0.23 0.34 0.73 0.47 0.11 0.12 0.75 0.52 0.99
IMDB2024 0.13 0.32 0.49 1.75 1.13 0.15 0.16 1.71 1.15 2.39
RottenT2024 | 0.15 0.19 0.33 1.12 0.85 0.16 0.17 1.16 0.92 1.58
ACM 0.52 0.62 1.54 3.6 3.28 0.55 0.58 3.76 3.47 5.48
DBLP 0.81 1.58 3.37 9.24 5.36 0.88 0.96 9.12 5.63 27.08
Twitter 0.13 0.17 0.29 1.38 1.3 0.14 0.14 1.37 1.29 222
Webkb 0.18 0.56 0.64 2.44 1.97 0.2 0.23 2.37 1.95 5.06

Table 14: Emission CO5. Calculation based on the work of Lacoste et al. (2019).

Dataset RoBERTa | Zero- In- Partially- | Partially- | CMBS CMBS CMBS CMBS Fully-
Shot Context Tuned-IS Tuned-IS Zero- In- Partially- | Partially- | Tuned
LLaMA LLaMA biO-IS Agressive | Shot Context Tuned-IS | Tuned-IS | LLaMA
LLaMA LLaMA biO-IS Agressive
Finance 0.08 0.11 0.13 0.54 0.51 0.09 0.09 0.57 0.54 0.94
Imdb 2.73 6.57 12.06 35.05 26.29 3.06 3.39 34.27 26.4 41
PangMovie 0.98 1.25 1.56 7.49 6.15 1.04 1.1 7.71 6.51 11.41
SemEvall7 2.52 33 4.44 20.41 15.83 2.69 2.85 20.89 16.77 29.33
Sst 1.07 1.28 1.63 8.26 6.84 1.14 1.2 8.51 7.22 12.31
Sst2 6.08 8.15 11.42 49.94 39.1 6.48 6.89 51.02 41.26 68.34
Yelp2L 0.53 1.21 1.81 391 2.51 0.59 0.65 4.05 2.8 5.34
IMDB2024 0.71 1.7 2.65 9.42 6.08 0.8 0.88 9.19 6.18 12.85
RottenT2024 | 0.82 1.03 1.78 6.02 4.59 0.88 0.93 6.24 4.95 8.49
ACM 2.78 33 8.25 19.36 17.63 2.95 3.11 20.21 18.65 29.46
DBLP 432 8.47 18.08 49.61 28.79 4.75 5.17 48.97 30.23 145.44
Twitter 0.68 0.93 1.54 7.42 6.96 0.73 0.77 7.36 6.94 11.91
Webkb 0.95 3.01 3.42 13.1 10.6 1.1 1.25 12.74 10.49 27.18

Table 15: Finance Cost in dollars ($) for RoOBERTa, Zero-Shot LLaMA, In-Context LLaMA, Partially-Tuned
LLaMA, CMBS Zero-Shot, CMBS In-Context, CMBS Partially-Tuned, and Fully-Tuned LLaMA.

Dataset RoBERTa | CMBS Fully-Tuned LLM
Partially-
Tuned-IS
Agressive

GlueCola | 804118 | 83.4+2.1 | 84.5104

Table 16: Average Macro-F1 and 95% confidence interval RoOBERTa, CMBS Partially-Tuned-IS Agressive and
Fully-Tuned LLaMA. Best results (including statistical ties) marked in bold.
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