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Abstract

Many proteins useful in modern medicine or bioengineering are challenging to
make in the lab, fuse with other proteins in cells, or deliver to tissues in the body
because their sequences are too long. Shortening these sequences typically involves
costly, time-consuming experimental campaigns. Ideally, we could instead use
modern models of massive databases of sequences from nature to learn how to
propose shrunken proteins that resemble sequences found in nature. Unfortunately,
these models struggle to efficiently search the combinatorial space of all deletions,
and are not trained with inductive biases to learn how to delete. To address this
gap, we propose SCISOR, a novel discrete diffusion model that deletes letters from
sequences to generate protein samples that resemble those found in nature. To
do so, SCISOR trains a “de-noiser” to reverse a “forward noising process” that
adds random insertions to natural sequences. As a generative model, SCISOR
fits evolutionary sequence data competitively with previous large models. In
evaluation, SCISOR achieves state-of-the-art predictions of the functional effects
of deletions on ProteinGym. Finally, we use the SCISOR de-noiser to shrink long
protein sequences, and show that its suggested deletions result in significantly more
realistic proteins and more often preserve functional motifs than previous models
of evolutionary sequences.

1 Introduction

As protein design becomes easier, more protein constructs are built for bioengineering, more protein
medicines are being packaged for delivery to particular tissues, and, of course, more protein is being
synthesized in the lab. Unfortunately, many important proteins are challenging to make, engineer, and
deliver, due to their long sequences. Methods to build shorter versions of these proteins are expensive
and often only narrowly applicable. Typically, experimentalists look for shorter homologues, which
may not exist, and put them through costly optimization campaigns [9]. Or, for proteins which
function by well-characterized, simple biophysical interactions, experimentalists shrink sequences by
running extensive physical simulations [29].

Ideally we could instead learn how to shrink proteins using models trained on databases of protein
sequences in nature – these models learn the constraints evolution has put on sequences across life
and could shrink proteins to avoid breaking their function. Unfortunately, these large models [17, 15]
struggle to effectively search through the massive space of all possible shrunken versions of a protein.
They may also lack the inductive bias to predict the effect of deletions, having not been explicitly
trained to do so. In principle, the first issue could be solved by diffusion models of protein sequences,
like EvoDiff, which are effectively trained to plan series of many mutations and end with sequences
that resemble those found in nature [1, 13]. However, current diffusion frameworks can only train
models that perform substitution mutations – they cannot suggest deletions.
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(a)

(b)
Figure 1: SCISOR is a diffusion model trained to make deletions that arrive at a natural protein
sequence. We can use it to shrink proteins while maintaining their function. (a) We add random
insertions to protein sequences from nature and train SCISOR to reverse these insertions. (b) Applying
SCISOR diffusion to natural proteins, we get smaller proteins that are predicted to preserve parts of
the tertiary structures of the original sequence. We show SCISOR samples of Q8NFU3 at 0, 5, 10,
20, and 50% deletion with structures predicted by OmegaFold [27].

We propose a new diffusion model of evolutionary sequences that learns to generate by shorten
sequences — Sequence Contraction with InSertion-Only noising pRocess (SCISOR). SCISOR “adds
noise” to natural sequences by inserting random letters until they effectively become long random
sequences; then it train a “de-noiser” to reverse this process by planning deletions that result in
sequences that resemble those found in nature (Fig. 1a). Our contributions are:

• We introduce a new discrete diffusion framework that trains a de-noiser to generate
sequences by learning to delete – SCISOR.

• We show that among large-scale diffusion models, SCISOR achieves competitive model fit
for protein sequences.

• We show that the inductive biases of SCISOR allows it to make state-of-the-art predictions
of the effects of deletions on protein functions in the lab in ProteinGym.

• Finally, we show that SCISOR shortens proteins while better maintaining their struc-
ture and functional motifs than methods using previous models of protein sequences.

2 Background

Say we have a protein sequence X made up of L letters X(1)X(2) · · ·X(L) belonging to the alphabet
of 20 amino acids B. Our goal is to removeM letters fromX to make a X̃ = X(j1)X(j2) · · ·X(jL−M )

with j1 < j2 < . . . , jL−M , that is still functional. Most random sets of deletions degrade the function
of the protein, so we need to predict which deletions are unlikely to break the protein. Unfortunately
there is very little data of sequence, shrunk-sequence pairs (X, X̃) to learn from; we must instead
learn to predict functional shrunk proteins using other available data.

Models of evolutionary sequences One way we can learn how to shrink proteins is by learning
from modern huge datasets of natural proteins. Indeed we can attempt to learn what a natural protein
looks like in these databases; then we can pick a shrunken protein X̃ so that it looks natural and
is therefore likely to be functional1. In practice, we can train huge generative models to generate

1Note this does not guarantee our goal that X̃ have the same function as X . But if two functional proteins
have similar sequences then they often have related function [14] (see further discussion in Sec. 6).
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natural proteins and use their likelihoods as a measure of naturalness [21, 22, 17, 15, 12]. Indeed,
these likelihoods have been shown to be accurate predictors of whether single-letter-deletions will
harm the function of a protein [17].

Unfortunately, the models that are typically used to fit this data, such as BERT-style [22, 12] and
autoregressive models [17, 15], struggle to search over the combinatoral space of all

(
L
M

)
possible

large deletions to find an ideal X̃ . Ideally, we would have a model that can plan a number of deletions
that arrive at a functional protein sequence. We also speculate that a model that learns directly how to
delete would make more accurate predictions and designs.

Discrete diffusion To effectively search through a large mutational space, we could model the data
with discrete diffusion models. These models generate samples by starting with a random sequence
and applying mutations to arrive at a realistic sequence. In particular, a sequence is sampled from a
simple distribution X1 ∼ q(X1) and then it is transformed from time t = 1 to t = 0 using a de-noiser
qθ((Xt)

1
t=0 | X1) so that X0 looks like a sequence from the data generating distribution [5].

Diffusion models can therefore be used to search for sets of many mutations to a sequence, X , that
result in a realistic looking sequence. To do so, one sets Xs = X for some s and then “de-noises”
using the diffusion model by sampling a path q((Xt)

s
t=0|Xs), giving a “realistic”X0 nearXs. Indeed,

this procedure has been used to suggest mutations to optimize sequences [13, 8].

To train a de-noiser qθ, we first define a “forward” process p((Xt)
1
t=0) which takes samples from our

target distribution X0 ∼ p(X0) and applies random noise to them from time t = 0 to t = 1, arriving
at a distribution that is easy to approximate p(X1). Then we train the de-noiser to generate paths that
match the paths of the forward process by optimizing an evidence lower bound (ELBO) as

log qθ(X0) ≥ Ep((Xt)1t=0|X0) log
qθ((Xt)

1
t=0)

p((Xt)1t=0|X0)
. (1)

Typically, however, the forward noising process is chosen to be random substitutions. Accordingly,
the de-noiser qθ only applies substitutions rather than deletions. To search over the space of deletions,
we therefore need a new diffusion framework.

Related work We review how discrete diffusion models have handled objects of varying dimen-
sionality in language and chemistry, as well as previous attempts to shrink proteins using large protein
models in App. B.

3 A diffusion model that learns to delete: SCISOR
To search the space of deletions and train a model with the right inductive biases, in Sec. 3.1 we build
a process which noises sequences by adding random insertions. Then in Sec. 3.2 we show how to
train a de-noiser qθ that reverses this process (Fig. 1a). In App. C.5, we discuss the practical choices
we made to efficiently train SCISOR and in App. C.2 we cover details about sampling and shrinking
from SCISOR. In the following Sec. C.2 we describe how to use the de-noiser to generate sequences,
shrink proteins, and plan deletions in practice.

3.1 Forward noising with the pure birth process

We propose an insertion-only forward noising process for discrete diffusion known as the “pure
birth” process [11] with rate function β(t) and insertion distribution π. Let X0 be a sequence
X

(1)
0 , . . . , X

(L)
0 . There are L+ 1 possible locations we can insert letters. In the pure birth process, at

instant t, each of these locations gains an insertion with rate β(t). The letter that is inserted is drawn
from some distribution Y ∼ Cat(π). After Y is inserted at some position, the process continues
and there are now L + 2 positions in which there could be insertions with rate β(t) (Fig. 1a). To
train a diffusion model to reverse this process, we need to (1) easily sample p(Xt|X0) and (2) easily
approximate p(X1|X0).

Sampling Xt Rather than simulate the pure birth process up until time t, we show in App. G
that Xt can be sampled directly from X0 as in Alg 1. Note that 0 < α(t) ≤ 1 controls how many
insertions are added: by the property of negative binomial distributions, the expected length of Xt is
E(Mt + L) = L+1

α(t) − 1 which grows as α(t) goes to 0.
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Algorithm 1 Sample Xt

Require: Initial sequence X = X(1) · · ·X(L), time t
1: Compute the probability of no insertions at a site α(t)← exp

(
−
∫ t
0
β(s) ds

)
2: Sample total number of insertions up to time t, Mt ∼ NegativeBinomial(L+ 1, α(t))
3: Sample the number of insertions in each position by uniformly distributing Mt into L+ 1 bins:

(`0, . . . , `L) ∼ UniformMultinomial(Mt)
4: for j = 0 to L do
5: Sample insertion Yj of length `j , with each character independently from Cat(π)
6: end for
7: Add insertions into X to construct Xt ← Y0X

(0)Y1X
(1) · · ·X(L)YL

8: return Xt

Approximating p(X1|X0) As t grows, Xt becomes longer. To build a diffusion model however,
the distribution p(Xt|X0) typically must converge to a distribution so that it can be approximated by
a distribution that can easily be sampled from, q(X1). Our critical insight is that p(Xt|X0), while
not converging, can still be very well approximated by long random sequences as t gets large.

Proposition 3.1. (Proof in App. G) Say X0 is a sequence with length L. Call q(· | L) a distribution
over sequences of length L which simply samples each letter independently from Cat(π). Then, as
the number of insertions increases, M1 →∞, X1 becomes easier to approximate with q:

KL(p(X1 | X0,M1)||q(X1 | L+M1))→ 0. (2)

3.2 Learning to reverse this insertion-only noising process

Given a forward process of insertions, we now wish to learn a de-noiser qθ that generates sequences
that resemble those found in nature by deleting letters from long random sequences. We now (1)
describe our reverse process qθ((Xt)

0
t=1), (2) write the ELBO in Eqn. 1 for our model, and (3)

describe how the denoiser qθ is being trained toward a target that deletes letters that are unlikely to
align with the starting sequence X0.

The reverse process For a forward path (Xt)
1
t=0 from a sequence X0 of length L, define

t1, . . . , tM1
to be the times of each insertion. We can then sample forward paths by first decid-

ing how many insertions will occur until time 1 and when these insertions will occur, and then
choosing what these insertions are

p((Xt)
1
t=0|X0) = p(M1|L)p(t1, . . . , tM1

|M1, L)

M1∏
M=1

p(XtM |XtM−1
).

We follow the discrete diffusion framework in Amin et al. [3] in defining the reverse process to match
the “noise schedule” of the forward process. To generate a sequence of length L, we first decide the
number of insertions and their times from the same distribution as p, and then denoise each insertion
(Fig. 3a)2,

qθ((Xt)
0
t=1|L) = p(M1|L)p(t1, . . . , tM1

|M1, L)q(X1|L+M1)

M1∏
M=1

qθ(XtM−1
|XtM ,M).

Now we must only train our de-noiser qθ(XtM−1
|XtM ,M) to take in a sequenceXtM and the number

of insertions that sequence has M , and predict the sequence before the last insertion XtM−1
. That

is, qθ(· | XtM ,M) can be thought of as a distribution over the letters of Xt. Note the predictions of
the de-noiser depend on M ; different values of M allow the model to change which deletions it will
allow at each step (Fig. 3b).

The loss To train the de-noiser, we modify the calculation of the ELBO Eqn. 1 in Amin et al. [3].
We will then use this ELBO as our objective for training the de-noiser.

2Note our process is conditioned on generating a sequence of a particular length L.
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(a) (b)
Figure 3: The SCISOR de-noiser qθ plans deletions to arrive at sequences that resemble those
in nature, and therefore avoids deleting important structural motifs in natural sequences. (a)
SCISOR unconditionally samples proteins by starting with a large random sequenceX1 and iteratively
deleting according to qθ(prev(X)|X,M) to arrive at a protein that resembles those in nature. We
predict the structure of each sequence with OmegaFold [27] . (b) We ask SCISOR to plan the first of
M mutations for R4SNK4 and color residue i on a structure from Aleku et al. [2] by the deletion
probability qθ(X(−i)|X,M) (red is higher probability). As M increases, SCISOR allows insertions
in more regions while minimizing deletions in the catalytic structural motif near the bottom (white).

Proposition 3.2. (Proof in App. G) Define Mt as the number of mutations up to time t, and prev(Xt)
is the last sequence that gained an insertion to become Xt. Then the negative log likelihood of a
sequence of length L, − log qθ(X0|L), is smaller than

EM1
KL(p(X1 | X0,M1)||q(X1|L+M1))

+ Et,Xt,Mt

Mtβ(t)

1− α(t)
KL(p(prev(Xt) | X0, Xt,Mt)||qθ(prev(Xt) | Xt,Mt))

(3)

The first term is the quantity in Eqn. 2 – how well we can approximate p(X1); it is small as long
as M1 is typically large, i.e. α(1) is small, and can be calculated as in App. C. The second term is
the quantity we use to train the de-noiser. qθ takes in Xt and the number of insertions in Xt and
must predict which letter of Xt was last inserted – prev(Xt). To train the model, we must calculate
p(prev(Xt)|X0, Xt,Mt).

Figure 2: To calculate our target
distribution of what letter to delete,
p(prev(Xt) | X0, Xt,Mt), we align our
starting sequence X0 to our “noised” se-
quence Xt. The reverse process assigns
a higher probability to deleting letters
that are gaps in more of the alignments.

Target distribution Eqn. 3 trains qθ to match
p(prev(Xt)|X0, Xt,Mt), the true distribution over which
letter of Xt was last inserted in the forward process.

Conditioned on X0, Xt,Mt, we could find prev(Xt) by
simulating a path path from X0 to Xt and seeing what
insertion occurred last. However there are many paths
that could lead from X0 to Xt; to calculate p(prev(Xt) |
X0, Xt,Mt), we must marginalize over these paths.

The next proposition shows that we can integrate over all
of these paths by first enumerating every way to align X0

to Xt and noting that letters that align with X0 less often
are more likely to have been prev(Xt) (Fig. 2).
Proposition 3.3. (Proof in App. G) Call ali(X,Y ) the
number of ways to align a sequence X to a sequence Y .
Call b the letter that was deleted from Xt to prev(Xt).

p(prev(Xt)|X0, Xt,Mt) =
ali(X0,prev(Xt))

Mt · ali(X0, Xt)
.

Naively computing this quantity would require running an
expensive alignment for every deletion. In practice, we
use a dynamic programming algorithm that computes all
ali(X0,prev(Xt)) in parallel (App. H).

4 Fitting the distribution of natural sequences as a diffusion model
We now compare how well SCISOR fits the distribution of natural sequences compared to established
sequence modeling methods; we see SCISOR fits sequence data well, competitively with state-of-
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Algorithm 2 Conditional shrinking of a sequence

Require: Number of deletions M , initial sequence X , temperature T .
1: Initialize X̃ ← X
2: while |X̃| > L−M do
3: Remove one letter from X̃ according to qθ(prev(X̃) | X̃,M)1/T

4: M ←M − 1
5: end while
6: return X̃

(a) (b) (c)

Figure 4: SCISOR fits the distribution of sequences in nature competitively with established
sequence modeling approaches. (a) SCISOR is competitive with other diffusion models (grey) in
perplexity. "S, M, L" refer to model size. (b, c) Samples from SCISOR (K = 5) are predicted to be
competitive quality to those from diffusion models and competitive with AR models as measured by
(b) matching the distribution of natural sequences as measured by the Fréchet protein distance (FPD)
and (c) foldability (higher pLDDT from OmegaFold [27]). We took EvoDiff and AR perplexities
from Alamdari et al. [1].

the-art diffusion and autoregressive models. All details are in App. D. In Fig. 4, we compare the
quality of SCISOR’s fit to the data against state-of-the-art protein diffusion models: EvoDiff [1] and
DPLM [26]. It is well known that diffusion models regularly under-perform autoregressive models on
fitting the data; we therefore include two autoregressive models from Alamdari et al. [1] as references.
All models are trained on the same release of UniRef50 [23] – small models have 35-38M parameters,
DPLM M has 150M parameters, and large models have 640-650M parameters. We evaluate each
model’s perplexity on a test set, and the quality of their samples, as measured by how well they match
the distribution of natural sequences (FPD), and “foldability” (pLDDT).

We see that, despite its difference from established modeling methods, SCISOR is competitive with
other diffusion models in perplexities. As well, SCISOR often generates higher quality samples than
previous diffusion models, even competitive with the AR reference. As mentioned in Sec. C.2 this is
likely because SCISOR is a continuous-time model while the other diffusion models are discrete-time.

5 Shrinking proteins while preserving their function
We now evaluate the ability of the SCISOR de-noiser qθ to plan deletions that preserve the function
of a protein. Since the diffusion models in Sec. 5 cannot suggest deletions, we compare to a different
set of baselines. We compare to shrinking with state-of-the-art autoregressive models ProGen2 [15]
and Tranception [17] and a stochastic autoencoder meant for shrinking proteins, Raygun [7] when
applicable. Since models trained on UniRef90 tend to better predict the effects of mutations [22], all
models in this section are trained on UniRef90. All details are in App. D.

5.1 Deletion effect prediction

First we evaluate the ability of models of evolutionary sequences to predict the effect of mutations
on the function of proteins as measured in the lab. We collected more than 7000 measurements of
deletions across 62 assays collected in ProteinGym [18] and measured the Spearman correlations of
the measurements of each assay against the predicted effects from each model. In Fig. 5 we show the
best average correlation across the assays across each model family (full table in App. E). SCISOR
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Figure 5: SCISOR accurately predicts the effect of deletions on protein function measured in
the lab. We make predictions for the effects of deletions and calculate a Spearman correlation
between predictions and measurements for each assay in ProteinGym. We report the average
Spearman correlation coefficient across all assays for each model, presenting the results from the
highest-performing variant of each model architecture. The table includes all models from the
ProteinGym leaderboard that achieve a correlation coefficient exceeding 0.4. Models that leverage
multiple sequence alignment information are shaded.

(a) (b)
Figure 6: SCISOR Shrinks proteins while maintaining their fold-ability and active site motifs.
We take 100 sequences from Uniprot that have binding or active site annotations and shrink them to
various amounts. We measure (a) the foldability (pLDDT from OmegaFold [27]) and (b) conservation
of annotated functional regions, measured by the enrichment ratio of unmodified active or binding
sites relative to random expectation. Note Raygun can do worse than random deletions because it can
also add substitutions.

outperforms all previous large models. Remarkably, SCISOR is even competitive with PoET [25], a
large model that has access to extra information about protein families.

5.2 Shrinking proteins

We now compare the ability of models to take long sequences X of length L and return shrunken
versions X̃ of length L −M while preserving their function. We will measure the fold-ability of
shrunken sequences as well as how often deletions avoid known functional annotations.

Raygun requires 1 model evaluation to make M deletions, while SCISOR requires M . For ProGen2,
ideally we would take a sample from its likelihood conditioned on looking at substrings of X that are
length L−M ; however, that would require

(
L
M

)
model evaluations, which is prohibitively expensive.

While there are a number of elaborate methods one could devise to search this space, we look at the
most computationally efficient baseline – we predict the effect of all L single deletion assume and
assume each has an independent effect on the probability, then we sample sets of deletions without
replacement (see App. D). Note even this most efficient algorithm makes L model evaluations. For
situations in which a practitioner is not interested in generating diverse samples, we also try greedily
choosing deletions with ProGen2 and SCISOR; there’s no obvious way to do this with Raygun.
In Fig. 6 we see SCISOR consistently suggests shrunken proteins that are more likely to be both
foldable and preserve functional sites than Raygun and ProGen2 baselines when sampling or greedily
choosing deletions.

6 Conclusion
By proposing a new family of generative models that learn to build natural sequences by deleting,
SCISOR, we have built models that can effectively shrink proteins. Future work may seek to address
some of the conceptual limitations of the SCISOR process discussed in App. F.
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A Code release

We release our code and model weights for SCISOR small (35M), medium (150M), and large (650M)
trained on UniRef50 and Uniref90: https://anonymous.4open.science/r/shortening_
diffusion-1AA3/.

B Related work

In chemistry and language modeling, there have been diffusion models that have attempted to allow
for insertions and deletions. Campbell et al. [6] propose TDDM, a jump diffusion model to handle
varying dimensionality. Their forward noising process involves randomly deleting elements, such
that the stationary distribution is an empty sequence. This allows them to train a model which can
learn to expand sequences. Our model, SCISOR, on the other hand shortens sequences. As well,
Johnson et al. [10] formulate a discrete-time noising process for small-scale language modeling that
includes insertions, deletions, and substitutions. Unfortunately it is unclear how to scale their loss
computation or the parameterization of their de-noiser to larger scales. Furthermore, it is unclear how
to extend their framework out of discrete-time diffusion, which is known to under-perform continuous-
time diffusion [5]. By using a continuous-time insertion-only forward process, we overcome this
challenging inference problem and obtain an intuitive parameterization of the reverse process.

Recently, Raygun [7] also suggested using a model trained on sequences from nature to shrink
proteins. Raygun trains a stochastic autoencoder to embed and generate sequences of any length
on the UniRef dataset; their insight is they can shrink a long protein by decoding its embedding at
a shorter length. However, they cannot enforce similarity between the sequence of their shrunken
and original sequence. Furthermore, like previous generative models of protein sequences, Raygun
was not specifically trained to shrink. Below we show that our model, SCISOR, is able to suggest
shrunken proteins that more often preserve structure and function than Raygun.

C Details about SCISOR

C.1 Prior matching KL term

We rewrite the first term of Eqn. 3 so we can estimate it.

Proposition C.1. (Proof in App. G) KL(p(X1 | X0,M1)||q(X1|L+M1)) is equal to

EX1|X0,M1

[
log

(
M1 + L

L

)
+

L∑
i=1

log π(X
(i)
0 )− log ali(X0, X1)

]
. (4)

We can therefore estimate the first term of the loss in Eqn. 3 by sampling X0,M1, Xt as calculating
the quantity in the expectation of Eqn. 4.

C.2 Using the de-noiser to generate and shorten sequences

The SCISOR de-noiser qθ is trained as a generative model of natural sequences. In this section,
we describe how to use this de-noiser for downstream tasks: to unconditionally generate natural
sequences, predict the effect of deletions on a protein’s function, and, ultimately, shrink long sequences
to produce shorter natural sequences.

High-quality unconditional generation As described in Sec. 3.2, to sample a sequence of length
L from SCISOR, one samples a long random sequence from EM1|Lq(X1|L+M1) and then iteratively
deletes according to the de-noiser qθ (Fig. 3a). Campbell et al. [6] suggests continuous-time discrete
diffusion models can get higher quality samples, sacrificing some compute, by applying “corrector”
steps which noise and de-noise repeatedly. For SCISOR, this takes the form of adding and removing
insertions as in Alg. 3. This allows SCISOR to more thoroughly search the space of deletions,
potentially escaping local minima. In cases where many passes through the model is too expensive,
we can make multiple deletions per de-noiser prediction, as discussed in App. C.
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Algorithm 3 Unconditional sequence generation with corrector steps

Require: Desired sequence length L, corrector steps K.
1: Sample M ∼ NegativeBinomial(L+ 1, α(1))
2: Sample X of length L+M where each X(j) ∼ Cat(π) independently
3: while |X| > L do
4: for k = 1, . . . ,K do . Corrector steps
5: Remove one letter from X according to qθ(prev(X) | X,M)
6: Insert a random letter from the distribution π into a random position in X
7: end for
8: Remove one letter from X according to qθ(prev(X) | X,M)
9: M ←M − 1

10: end while
11: return X

Note in this algorithm, SCISOR is not simply sampling deletions by how natural prev(X) looks.
Rather it also uses knowledge of M to plan for future mutations. Different values of M allow the
model to change which deletions it will allow at each step (Fig. 3b).

Mutation effect prediction Say we have a sequence X and we wish to predict the effect of the
deletion of every position to understand the importance of each residue. Typically, we would take a
model trained on protein sequences, pθ and then evaluate the “natural-ness” of the sequence with
each deletion pθ(X(−i)) where X(−i) is the deletion of letter i [21]. Unfortunately estimating the
likelihood is challenging for diffusion models as one needs to estimate the expectation in Eqn. 1.

SCISOR instead simply predicts qθ(X(−i) | X,M = 1) for every possible deletion X(−i). Then
if the de-noiser suggests that a residue is unlikely to be deleted, that suggests that X without that
residue does not look like a sample from qθ(X0), i.e. a natural sequence, and thus that deletion may
harm function. For multi-letter deletions, we integrate over all deletion paths (see App. C).

Protein shrinking The SCISOR de-noiser is trained to suggest the next deletion in a series of M
deletions that will lead to a realistic sample from p(X0). Therefore we can shrink a sequence X to a
desired length L−M by iteratively deleting according to our de-noiser as in Alg. 2.

C.3 Efficient sampling

Alg. 3 implements the Gillespie algorithm for a stochastic process. Zhao et al. [30] and Amin et al.
[3] suggested k-Gillespie for diffusion models, taking k steps at every step by sampling without
replacement. Indeed We can do the same for SCISOR, sampling many deletions at each step without
replacement.

C.4 Multi-deletion prediction

Say X̃ is the sequence X with M deletions at sites {i1, . . . , iM}. We wish to calculate qθ(X0 = X̃ |
X,M). We can break this up into a sum over all deletions using the de-noiser

qθ(X0 = X̃ | X,M) =

M∑
m=1

qθ(X0 = X̃ | X(−im),M − 1)qθ(prev(X) = X(−im) | X,M).

Continuing like this, we can write qθ(X0 = X̃ | X,M) as a sum over all permutations of the
deletions.

C.5 SCISOR in practice

We train the SCISOR de-noiser with mini-batch gradient descent on the second term of Eqn. 3 with
i.i.d. samples of t ∼ Uniform(0, 1), X0,Mt, Xt. We now discuss how we choose the rate function
β(t), the distribution of insertion letters π, the architecture for qθ, and methods to handle the wild
variation in sequence lengths of Xt which we must pass to qθ.
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Algorithm 4 Predicting the functional effect of multiple deletions with SCISOR

Require: Initial sequence X , deletions {i1, . . . , iM}.
1: P ← all permutations of {i1, . . . , iM}
2: SUM← 0
3: for j1, . . . , jM ∈ P do
4: SUM = SUM +

∏M−1
M ′=0 qθ(X

(−j1,...,jM′+1) | X(−j1,...,jM′ ),M ′)
5: end for
6: return SUM = qθ(X0 = X̃ | X,M)

Hyperparameters Our choice of hyperparameters follows that of standard diffusion methods. As
in Austin et al. [4], Amin et al. [3], the rate function β(t) was chosen so that the mutual information
between Xt and X0 decreases roughly linearly on the interval t ∈ [0, 1]. We then modulated β so
that α(1) was large enough that the first term of Eqn. 3 is small, while samples in the second term did
not get to many very long Xt. Details are below. The categorical distribution π was chosen to match
the prevalence of amino acids in our training set.

Architecture We chose our architecture of the de-noiser qθ(·|Xt,M) to leverage the pre-trained
weights of a BERT-style protein language model, while modifying the architecture to also condition
on M . The ESM2 architectures [12] are trained on a masked language modeling task, taking in
sequences and outputting logits at every site. We finetuned these models for qθ by replacing their last
layer with a linear and softmax layer. To condition on M , we also add FiLM layers [20] between
each attention block: each coordinate d of the activations in layer `, a`d, was modified with and affine
linear transformation with Aθ and Bθ shallow fully connected networks initialized to 0:

(1 +A`θ,d(M))× a`d +B`θ,d(M).

Engineering for long sequences Since Xt sequences can have wildly different lengths, training
naively could result in passing batches with a very high proportion of padding and passing very long
sequences into the model. To avoid the first problem, we sort the Xt sequences within a given batch
by length, and pass them into the model in smaller sub-batches with accumulated gradients; this
allowed us to reduce the proportion of compute spent on padding while maintaining an unbiased
estimate of the loss. Next, to handle cases with extremely long Xt, if |Xt| > 2048, we randomly
selected a window X

(w:w+2048)
t uniformly at random to pass to the model. We then re-normalize

the model predictions by 2048/|Xt| and use uniform predictions outside the window such that the
deletion probabilities sum to 1. This choice keeps our ELBO a valid lower bound on the likelihood.
Further details for how this impacts the ELBO and sampling are below.

C.6 Rate function

For simplicity, we choose a functional form

β(t) =
γ

1− tmaxt
.

Consequently, we have:

α(t) =exp

(
−
∫ t

0

β(s) ds

)
=exp

(
− γ

tmax

∫ t

0

1

1− tmaxs
ds

)
=exp

(
− γ

tmax
ln(1− tmaxt)

)
=(1− tmaxt)

γ/tmax

qnd α(1) = (1 − tmax)γ/tmax . Now we must choose γ and tmax. We found empirically on small
models that γ = 1.1 gave an ELBO 3 such that the expectation conditional on each t was roughly
even. We found empirically on small models that T = 0.9 gave the best best loss controlling for wall
time, trading off allowing the model to attempt to fit larger sequences and spending compute on those
large sequences.
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C.7 Windowing

One challenge in efficiently training the SCISOR de-noiser is that we must compute qθ(prev(Xt) |
Xt,Mt), where Xt can potentially be a very long sequence. To handle these long sequences,
we introduce a windowing strategy: if |Xt| > 2048, we randomly select a window X

(w:w+2048)
t

uniformly at random to pass to the model. We then re-normalize the model predictions by 2048/|Xt|
(the probability of a deletion in the window is proportional to its size) and use uniform predictions
outside the window such that the deletion probabilities sum to 1. Calling the predictions made by
window w qwθ (prev(Xt) | Xt,Mt), we can define our model predictions as an average over all
windows

qθ(prev(Xt) | Xt,Mt) = Ewqwθ (prev(Xt) | Xt,Mt).

ELBO We modify the second term of our loss Eqn. 3 to obtain another lower bound to bring the
expectation outside

KL(p(prev(Xt) | X0, Xt,Mt)||qθ(prev(Xt) | Xt,Mt))

≥EwKL(p(prev(Xt) | X0, Xt,Mt)||qwθ (prev(Xt) | Xt,Mt)).

This gives us a new ELBO we can estimate by stochastically sampling the window w whenever we
get a large sequence.

Sampling In Alg. 1, we need to sample from qθ(prev(Xt) | Xt,Mt) for very long sequences. We
do so by sampling a w and then sampling from qwθ (prev(Xt) | Xt,Mt).

D Experimental Details

D.1 Baselines

We used EvoDiff models and code from https://github.com/microsoft/evodiff under the
MIT license. We used DPLM models and code from https://github.com/bytedance/dplm
under the Apache-2.0 license. We used ProGen2 models and code from https://github.com/
enijkamp/progen2 under the BSD-3-clause license. We used Raygun models and code from
https://github.com/rohitsinghlab/raygun under the CC BY-NC 4.0 license. We used Pro-
teinGym models and code from https://github.com/OATML-Markslab/ProteinGym under the
MIT license.

D.2 SCISOR architecture

We used the flash attention implementation of ESM from Peng et al. [19] under the MIT license.
We used ESM2 weights [12] also under the MIT license. We developed SCISOR using code from
https://github.com/AlanNawzadAmin/SCUD under the MIT license.

D.3 Training SCISOR

We apply our framework to train a protein generative model on UniRef50 [24]. We filter this dataset
to exclude proteins with non-standard amino acids, and crop long protein sequences down to their
first 1024 amino acids.

For the results in section 4, we train SCISOR models on teh March 2020 release of Uniref50,
using the same train-test split as EvoDiff [1] from https://zenodo.org/records/6564798. Our
models were trained about one week each on one NVIDIA A100 GPU with an effective batch size of
256 and learning rate of 0.0001.

For the results in section 5, we train SCISOR models on the latest release of Uniref90. Here, we
use an effective batch size of 512 and learning rate of 0.00005. The SCISOR S and M models were
trained for about one week each on two NVIDIA A100 GPUs. The SCISOR L model was trained for
about four days on four NVIDIA H100 GPUs.

For each effective batch, we sampled all t,X0,Mt, Xt. We then sorted sequences by the length of
Xt before breaking them into batches to pass to the model in batch sizes of 8 or 16; This makes
sequences in each batch have similar length, minimizing padding.
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D.4 Model fit experiments

D.4.1 Perplexities

SCISOR We compute the perplexity in Fig. 4a on the test dataset by first sub-sampling the
expectation of the ELBO from Prop. 3.2 – we take 10 samples of t,Xt for every sequence. We then
by the total number of tokens in the test set and report the and exponentiating the negative result.

EvoDiff and AR We take perplexity values from Table S1 in Alamdari et al. [1].

DPLM DPLM was trained as a discrete-time masking diffusion model with 500 steps and a linear
rate schedule – that is, the probability of each token in Xt being masked is t/500. We therefore
evaluated their perplexities as such a model as in Austin et al. [4]. This ELBO becomes

500∑
t=1

1

t
EX0,Xt

L∑
i=1

1(X
(i)
t = mask) log qθ(X

(i)
0 | Xt).

D.4.2 Samples

SCISOR We sampled according to Alg. 3.

EvoDiff and AR We sampled from EvoDiff and AR models using functions generate_oaardm
and generate_autoreg from https://github.com/microsoft/evodiff/blob/main/
evodiff/generate.py.

DPLM Wang et al. [26] suggested a novel sampling method for DPLM. However, we were
interested in measuring the quality of DPLM samples as a diffusion model. We therefore took
samples as such a model as in Austin et al. [4]: We start with X500 and for every t = 500, · · · , 1 we
unmask each position i with probability 1/t, replacing the mask according to predicted probabilities
qθ(X

(i)
0 | Xt).

D.4.3 sample evaluation

For FPD we took 1000 protein lengths from UniRef50 and sampled sequences of each of those
lengths from SCISOR, EvoDiff, and DPLM; or we sampled 1000 sequences from the AR models.
For pLDDT, we sampled 100 sequences of length 100, 200, 400, and 800 from SCISOR, EvoDiff,
and DPLM; for AR models where the sample length cannot be controlled, we sampled sequences
until we had a sufficient number of samples with lengths within 10% of each desired length.

Fréchet protein distance (FPD) We calculated the FPD of 1000 generated sequences to 10000
samples from UniRef50 using ProtT5 embeddings in https://github.com/hefeda/PGP under
the Apache-2.0 license. We then calculated the Fréchet inception distance between the embeddings
of the natural sequences and each set of sampled sequences as

‖µnatural − µsample‖2 + tr
(

Σnatural + Σsample − 2(ΣnaturalΣsample)
1/2
)

where µ· and Σ· are empirical means and covariances of the embeddings.

pLDDT We calculate pLDDT scores using OmegaFold [27] as described in https://github.
com/HeliXonProtein/OmegaFold/blob/main/README.md under the Apache-2.0 License. For
computational efficiency, we use only 1 cycle per sample. This results in lower overall pLDDT
scores than the recommended default settings, which uses 10 cycles to obtain more accurate predicted
structures.

D.5 ProteinGym

D.5.1 Model predictions

SCISOR To evaluate SCISOR, we set Xt to be the target sequence and M to be the number of
deletions between the target and the mutant of interest. We then predict the effect of the deletion
using Alg. 4.
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ProGen and other models We evaluated other models using scripts available on ProteinGym.

D.5.2 Model evaluation

For Fig. 5, we adapt the ProteinGym benchmark from [18] by filtering their indels dataset to cases
where the mutant is a strict subsequence of the target sequence. For the single deletions benchmark,
we use mutants that are only one deletion away from the target sequence, while for the multiple
deletions benchmark, we use mutants that are two or three deletions away from the target sequence.

For single mutations, we gathered 61 assays in ProteinGym with 4544 mutations in total.

Three assays in ProteinGym measured double and triple mutations: A4_HUMAN_Seuma_2022
measured stability and had 42 double mutations and 40 triple mutations,
KCNJ2_MOUSE_Macdonald_2022 measured expression and had 397 double mutations and
387 triple mutations, P53_HUMAN_Kotler_2018 measured organismal fitness and had 172 double
mutations and no triple mutations.

D.6 Shrinking

For Fig. 6a and 6b we sample 100 sequences with annotated active sites and 100 sequences
with annotated binding sites from UniProt. We then shrink each sequence by d percent, where
d ∈ {1, 3, 5, 10, 20, 30, 40, 50}.

D.6.1 Model samples

SCISOR We shrunk sequences using Alg. 3.

ProGen Ideally we could sample from qProGen(X̃) over all shrunken versions of X , X̃ , of desired
length L−M . However, for even moderate values of M , this becomes computationally intractable.
We therefore approximate this distribution by assuming each deletion has an independent effect:

log qProGen(X̃) ≈ log qProGen(X) +
∑

deletions i

∆i

where ∆i is the effect of a single mutation,

∆i = log
qProGen(X(i))

qProGen(X)
.

This approximation requires calculating L quantities ∆i.

Sampling from this approximation is equivalent to sampling M deletions – deletion i is sampled with
probability proportional to exp(∆i). Greedy shrinking just involves picking the M mutations with
the highest ∆i.

Raygun we use the Raygun generate command to generate shrunken proteins of desired length,
where length was calculated by first calculating rounded up number of deletions to introduce, and
conditioning Raygun to generate sequence of length L−M . we used a noise ratio of 0.5 with uniform
sampling (noise sampled uniformely between 0 and 0.5), in order to limit the number of substitutions
introduced. We use a filter ratio of 0.1 meaning we select the best candidate among ten generated
sequences, and recycle sequences once.

D.6.2 Model evaluation

We evaluate the foldability of the shrunk sequneces using the average pLDDT per residue for the struc-
ture generated using OmegaFold [27] as described in https://github.com/HeliXonProtein/
OmegaFold/blob/main/README.md under the Apache-2.0 License, using 1 cycle per sample. We
calculate enrichment as the number of active or binding sites in the original sequence that were
preserved in the shrunk sequence – we call a functional site “preserved” if no residues were modifiesd
or deleted.
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E Supplementary Results

E.1 Full ProteinGym table

We show the results for ProteinGym for all models and sizes, stratifying the single deletions into
functional, taxonomic, and MSA depth categories.

Table 1: ProteinGym results on single and multiple deletions.
Model MSA Single Deletions Multiple Deletions
Progen2 S 0.457 0.445
Progen2 M 0.513 0.385
Progen2 Base 0.497 0.408
Progen2 L 0.491 0.375
Progen2 XL 0.393 0.392
RITA S 0.409 0.274
RITA M 0.448 0.318
RITA L 0.465 0.323
RITA XL 0.440 0.161
Tranception S 0.439 0.475
Tranception M 0.464 0.424
Tranception L 0.445 0.426
HMM Yes 0.453 0.474
PoET (200M) Yes 0.551 0.488
SCISOR S 0.332 0.241
SCISOR M 0.505 0.478
SCISOR L 0.573 0.458

Table 2: ProteinGym results on single deletions stratified by the measured function of each assay.
Model MSA Activity Expression Organismal Fitness Stability
Progen2 S 0.566 0.294 0.499 0.470
Progen2 M 0.574 0.404 0.558 0.514
Progen2 Base 0.592 0.380 0.496 0.520
Progen2 L 0.550 0.344 0.560 0.508
Progen2 XL 0.418 0.298 0.333 0.521
RITA S 0.507 0.320 0.452 0.356
RITA M 0.514 0.345 0.500 0.432
RITA L 0.530 0.437 0.420 0.474
RITA XL 0.532 0.385 0.360 0.481
Tranception S 0.542 0.351 0.532 0.331
Tranception M 0.594 0.340 0.526 0.395
Tranception L 0.533 0.336 0.445 0.466
HMM Yes 0.496 0.321 0.501 0.493
PoET (200M) Yes 0.664 0.424 0.566 0.551

SCISOR S 0.376 0.289 0.198 0.465
SCISOR M 0.514 0.362 0.576 0.571
SCISOR L 0.604 0.415 0.668 0.606
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Table 3: ProteinGym results on single deletions stratified by the MSA depth of proteins in each assay.
Model MSA Low Medium High
Progen2 S 0.558 0.429 0.497
Progen2 M 0.415 0.483 0.544
Progen2 Base 0.438 0.460 0.568
Progen2 L 0.513 0.473 0.532
Progen2 XL 0.216 0.499 0.530
RITA S 0.300 0.293 0.424
RITA M 0.278 0.376 0.492
RITA L 0.444 0.434 0.504
RITA XL 0.139 0.462 0.508
Tranception S 0.467 0.316 0.360
Tranception M 0.297 0.358 0.447
Tranception L 0.519 0.391 0.518
HMM Yes 0.624 0.506 0.471
PoET (200M) Yes 0.595 0.553 0.548

SCISOR S 0.385 0.381 0.509
SCISOR M 0.641 0.547 0.575
SCISOR L 0.621 0.628 0.584

Table 4: ProteinGym results on single deletions stratified by the taxa of the protein in each assay.
Model MSA Human Eukaryote Prokaryote Virus
Progen2 S 0.506 0.467 0.361 0.567
Progen2 M 0.536 0.539 0.432 0.510
Progen2 Base 0.568 0.541 0.396 0.471
Progen2 L 0.536 0.513 0.442 0.492
Progen2 XL 0.511 0.537 0.420 0.573
RITA S 0.398 0.353 0.272 0.448
RITA M 0.496 0.417 0.310 0.504
RITA L 0.522 0.473 0.327 0.568
RITA XL 0.510 0.466 0.386 0.555
Tranception S 0.332 0.363 0.297 0.449
Tranception M 0.443 0.406 0.295 0.468
Tranception L 0.511 0.462 0.348 0.513
HMM Yes 0.585 0.392 0.437 0.547
PoET (200M) Yes 0.554 0.522 0.523 0.721

SCISOR S 0.486 0.418 0.340 0.652
SCISOR M 0.571 0.539 0.525 0.735
SCISOR L 0.590 0.568 0.621 0.767

F Discussion of limistations

Realistic insertion process One conceptual limitation about SCISOR is that it shrinks proteins
by assuming X ∼ p(Xt) for some t, i.e. X resembles a natural sequence after time t of random
insertions. In reality, the sequences we typically want to shrink, X , are natural, and may not resemble
typical samples from p(Xt) – there may be a distribution shift between our training procedure and
downstream task. One way to remedy this is to make samples from p(Xt) look more like natural
sequences. We made progress on this by choosing a realistic distribution of insertion letters π. But
future versions of SCISOR could add more structure to the insertion process.

Guiding based on function In this work, we aimed to shrink proteins into sequences that may
still appear in nature and are thus likely to be functional. While two functional proteins with similar
sequences are likely to have the same function, this is not guaranteed, especially in those protein
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families with diverse functions [28]. Future work may incorporate other information of function into
the SCISOR shrinking process. For example, one could guide the SCISOR diffusion process using a
classifier trained to detect functional proteins of interest [16].

Including compensatory mutations Currently, SCISOR only shrinks proteins via deletions. It is
possible however that there are substitutions or insertions that could be added to a protein to make it
more tolerant to more deletions. To allow SCISOR to introduce these mutations which planning a
series of deletions, we could add substitutions and deletions to the forward process, thereby training
the de-noiser to also include substitutions and insertions in its planning.

Broader Impacts SCISOR has the potential to accelerate drug development and simplify drug
delivery. However, like other protein models, it could aid in developing harmful biotechnologies.

G Proofs

G.1 Proof of correctness for Algorithm 1

The correctness of Alg. 1 follows from Cor. G.2.
Proposition G.1. Call

Xt = Y0X
(1)
0 Y1X

(2)
0 · · ·X

(L)
0 YL

where X(1)
0 X

(2)
0 · · ·X

(L)
0 are the letters of X0 and Y0, Y1, . . . , YL are the insertions. Then |Yl| is a

Geom(α(t)) distribution, where α(t) = exp(−
∫ t
0
β(s)ds).

Proof. By the Kolmogorov forward equation,

d

dt
p(|Yl| = n|t) = β(t)np(|Yl| = n− 1|t)− β(t)(n+ 1)p(|Yl| = n|t).

This can be written as
d

dt

(
e(n+1)

∫ t
0
β(s)dsp(|Yl| = n|t)

)
= ne(n+1)

∫ t
0
β(s)dsβ(t)p(|Yl| = n− 1|t).

For n = 0, this is solved by p(|Yl| = 0|t) = α(t). By induction,

p(|Yl| = n|t) = α(t)(1− α(t))n

as
nα(t)−(n+1)β(t)p(|Yl| = n− 1|t) =nα(t)−nβ(t)(1− α(t))n−1

=
d

dt

(
α(t)−n(1− α(t))n

) (5)

Corollary G.2.
p(|Y0|, . . . , |YL|) = α(t)|X0|+1(1− α(t))

∑
l |Yl|

so p(|Y0|, . . . , |YL|) only depends on |X0| and M =
∑
l |Yl|. In particular we can sample M ∼

NegativeBinomial(α(t)) and then distribute it uniformly into L+ 1 bins.

Proof. Each Yiis generated independently, so we just take the product of probabilities from Prop. G.1.

G.2 Proof of Proposition 3.1

Proposition G.3. (Proof of Prop. 3.1) SayX0 is a sequence with lengthL. Call q(· | L) a distribution
over sequences of length L which simply samples each letter independently from Cat(π) for a
distribution π such that π(b) > 0 for all letters b. Then, as the number of insertions increases,
M1 →∞, X1 becomes easier to approximate with q:

KL(p(X1 | X0,M1)||q(X1 | L+M1))→ 0.
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Proof. We suppress the subscript 1. Note by Lem. G.8

p(X | X0,M)

q(X | L+M)
=

ali(X0, X)(
L+M
L

)∏L
i=1 π(X

(i)
0 )

.

For a set of L indices I = i1 < i2 < · · · < iL, call χI = 1(X0 = X(i1) · · ·X(iL)). Then
ali(X0, X) =

∑
I χI and EqχI =

∏L
i=1 π(X

(i)
0 ). Therefore we can write

Ep log
p(X | X0,M)

q(X | L+M)
=Ep log

ali(X0, X)(
L+M
L

)∏L
i=1 π(X

(i)
0 )

=Ep log
ali(X0, X)

Eqali(X0, X)

≤Ep
∣∣∣∣ ali(X0, X)

Eqali(X0, X)
− 1

∣∣∣∣
=
Ep |ali(X0, X)− Eqali(X0, X)|

Eqali(X0, X)

≤Ep |ali(X0, X)− Epali(X0, X)|
Eqali(X0, X)

+
|Epali(X0, X)− Eqali(X0, X)|

Eqali(X0, X)

≤Stdp (ali(X0,X))

Eqali(X0, X)
+

∣∣∣∣Epali(X0, X)

Eqali(X0, X)
− 1

∣∣∣∣ .
We now show that these two terms each go to 0, starting with the second term.

The second term Say X is generated by picking indices Z = z1 < · · · < zL which are X0 and
then generating all other letters from π Say we have indices I . Then

EpχI ≤(1− p(I ∩ Z = ∅)) + Ep [χI |I ∩ Z = ∅]

=1−
(
M+L−L

L

)(
M+L
L

) + EqχI

≤1−
(
M − L
M

)L
+ EqχI

≤O
(
L2/M

)
+ EqχI

=(1 + o(1))EqχI .

Also
EpχI ≥(1− p(I ∩ Z = ∅))× Ep [χI |I ∩ Z = ∅]

=

(
1−

(
M+L−L

L

)(
M+L
L

) )× EqχI
≥

(
1−

(
M

M + L

)L)
× EqχI

≥
(
1−O

(
L2/M

))
EqχI

=(1− o(1))EqχI .

Then

Epali(X0, X)

Eqali(X0, X)
=

(
M+L
L

)
EpχI(

M+L
L

)
EqχI

= 1 + o(1).
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The first term We first change the expectation in the standard deviation into an expectation over
q. Say X is generated by picking indices Z = z1 < · · · < zL which are X0 and then generating all
other letters from π Say we have indices I, J . Then

EpχIχJ ≤(1− p(I ∩ Z, J ∩ Z = ∅)) + Ep [χIχJ |I ∩ Z, J ∩ Z = ∅]

≤1−
(
M+L−2×L

L

)(
M+L
L

) + EqχIχJ

=O(L2/M) + EqχIχJ .

We also have from above that

EpχIEpχJ = (1 + o(1))EqχIEqχJ .

Then

Varpali(X0, X) =
∑
I,J

Covp(χI , χJ) =

(
M + L

L

)2

o(1) +
∑
I,J

Covq(χI , χJ).

The first term is o(1) against Eqali(X0, X)2 =
(
M+L
L

)2
(EχI)

2, so we can just focus on the second
term, Varqali(X0, X).

Note if I ∩ J = ∅ then Covq(χI , χJ) = 0. Then∑
J

Cov1(χIχJ) ≤
(
M + L

L

)
−
(
M + L− L

L

)
=o

((
M + L

L

))
using the same logic as above. Therefore, Varqali(X0, X) = o

((
M+L
L

)2)
= o(Eqali(X0, X)2).

This completes the proof.

G.3 Proof of Proposition 3.2

Proposition G.4. (Proof of Prop. 3.2) Define Mt as the number of mutations up to time t, and
prev(Xt) is the last sequence that gained an insertion to becomeXt. Then the negative log likelihood
of a sequence of length L, − log qθ(X0|L), is smaller than

EMt
KL(p(X1 | X0,M1)||q(X1|L+M1))

+ Et,Xt,Mt

Mtβ(t)

1− α(t)
KL(p(prev(Xt) | X0, Xt,Mt)||qθ(prev(Xt) | Xt,Mt))

Proof. The proof of Prop. 4.4 from Amin et al. [3] derives an ELBO

EMt
KL(p(X1 | X0,M1)||q(X1|L+M1))

+ Et,Xt,Mt
w(Mt, t,X0)KL(p(prev(Xt) | X0, Xt,Mt)||qθ(prev(Xt) | Xt,Mt))

where
w(Mt, t,X0) = lim

ε→0
E[#events in [t− ε, t]|Mt, X0]/ε.

The following lemma shows this result.

Lemma G.5.
w(M, t,X0) = M

β(t)

1− α(t)

Proof. First we change out time variable to τ = − logα(t). Noting − logα(t− ε) = τ − εβ(τ) +
O(ε2), we have

w(M, t,X0) = β(t) lim
ε→0

Ẽ[#events in [τ − ε, τ ]|Mτ = M ]/ε (6)
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where Ẽ is as if the rate β were constant. In SCUD, events occur uniformly in the time interval, so
the RHS would be M/τ = M/(− logα(t)). For SCISOR, events are more concentrated later in time
since more insertions increases the rate of insertion.

Ẽ[#events in [τ − ε, τ ]|Mτ = M ] =P [Mτ−ε = M − 1|Mτ = M ] +O(ε2)

=
P [Mτ−ε = M − 1]

P [Mτ = M ]
P [Mτ = M |Mτ−ε = M − 1] +O(ε2).

(7)
Note

P [Mτ = M |Mτ−ε = M − 1] =P [Mτ ≥M |Mτ−ε = M − 1] +O(ε2)

=P (Exp(M + |X0|) ≤ ε) +O(ε2)

=1− e−ε(M+|X0|) +O(ε2)

=ε(M + |X0|) +O(ε2).

(8)

Finally,

P [Mτ = M − 1]

P [Mτ = M ]
=

NegBin(|X0|, e−τ ;M − 1)

NegBin(|X0|, e−τ ;M)

=

(
m−1+|X0|

m−1
)
(1− e−τ )M−1(

M+|X0|
M

)
(1− e−τ )M

=
M

(M + |X0|)(1− e−τ )
.

(9)

This gives us

w(M, t,X0) = M
β(t)

1− α(t)

which is similar for small alpha to the SCUD weight of w(M, t,X0) = M β(t)
− logα(t) but becomes

larger at larger values.

G.4 Proof of Proposition 3.3

Proposition G.6. (Proof of Prop. 3.3) Call ali(X,Y ) the number of ways to align a sequence X to
a sequence Y .

p(prev(Xt)|X0, Xt,Mt) =
ali(X0,prev(Xt))

Mt · ali(X0, Xt)
.

Proof. Say Yt is Xt with a single deletion, the letter b. By Lem. G.8

p(Yt | X0, Xt,Mt) =
p(Yt | X0,Mt − 1)

p(Xt | X0,Mt)
p(Xt | Yt)

=

(
L+Mt−1

L

)−1
ali(X0, Yt)(

L+Mt

L

)−1
ali(X0, Xt)π(b)

π(b)(L+Mt)
−1

=
(L+Mt)ali(X0, Yt)

Mtali(X0, Xt)

=
ali(X0, Yt)

Mtali(X0, Xt)
.

Note finally that we’ve ignored that there may be multiple deletions that takeXt to Yt when calculating
p(Xt | Yt). We can safely do so as it does not affect the loss Eqn. 3 of any of our other algorithms.
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G.5 Derivation of prior matching KL term

Proposition G.7. (Proof of Prop. C.1) KL(p(X1 | X0,M1)||q(X1|L+M1)) is equal to

EX1|X0,M1

[
log

(
M1 + L

L

)
+

L∑
i=1

log π(X
(i)
0 )− log ali(X0, X1)

]
.

Proof. From Lem. G.8,

p(X1 | X0,M1) =

(
M1 + L

L

)−1
ali(X0, X1)

∏
b∈X1\X0

π(b).

Given that q(X1|L+M1) =
∏
b∈X1

π(b), this finishes the proof.

G.6 Useful lemma

Lemma G.8. Calling the letters in Xt that are not in X0 Xt \X0,

p(Xt | X0,Mt) =

(
L+Mt

L

)−1
ali(X0, Xt)

∏
b∈Xt\X0

π(b)

Proof. To generateXt fromX0,Mt, we could (1) decide which positions i1, . . . , iL ∈ 1, . . . , L+Mt

should come from X0 and then generate the rest of the letters according to π. Then

p(Xt | X0,Mt) =
∑

indices i1,...,iL

1(X0 = X
(i1)
t · · ·X(il)

1 )(
L+Mt

L

) ×
∏

b∈Xt\X0

π(b)

=

(
L+Mt

L

)−1
ali(X0, Xt)

∏
b∈Xt\X0

π(b).

H Alignments algorithm

Both KL terms in the ELBO make use of the primitive ali(X,Y ). In particular, the denoising KL term
requires computing the number of alignments betweenX0 and each possible prev(Xt), a total of |Xt|
computations. Naively, computing the alignments between each pair of sequences takesO(|X0|·|Xt|)
time for a total of O(|X0| · |Xt|2). However, we devise an efficient dynamic programming algorithm
to compute all of the alignment terms in parallel in O(|X0| · |Xt|) time, presented in Algorithm 5.

Algorithm 5 Compute ali(X
−(l)
t , X0) for all l in parallel

Require: Sequences X0 with |X0| = L and Xt with |Xt| = N

1: Set matching[i, j]← I(X(i)
0 = X

(j)
t ) for all i ∈ {1, . . . , L}, j ∈ {1, . . . , N}

2: Initialize prefix_dp← 0(N+1)×(L+1)

3: Set prefix_dp[i, 0]← 1 for all i ∈ {1, . . . , N}
4: for l = 1 to L do
5: prod← prefix_dp[1 : N, l − 1]×matching[l − 1, 1 : N ]
6: prefix_dp[1 : N + 1, l]← cumsum(prod, axis = 0)
7: end for
8: Initialize suffix_dp← 1(N+1)×(L+1)

9: for l = L− 1 down to 0 do
10: prod← suffix_dp[1 : N + 1, l + 1]×matching[l, 1 : N ]
11: suffix_dp[1 : N, l]← cumsum(prod, axis = 0)
12: end for
13: alignments[l]←

∑N
i=1 prefix_dp[i, l]× suffix_dp[i+ 1, l + 1] for all l

14: return alignments
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