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Figure 1: IRGS++ demonstrates photorealistic secondary illumination in relit scenes containing
both low-gloss and glossy surfaces, achieving plausible light effects with only 32 rays per pixel.

ABSTRACT

The accurate evaluation of the rendering equation is a fundamental challenge in in-
verse rendering, as it governs the modeling of complex light-surface interactions.
Existing 3DGS-based methods face a key trade-off: approaches using split-sum
approximations fail to model secondary light effects, while those relying on heavy
Monte Carlo integration suffer significant rendering slowdowns. To address this,
we present IRGS++, an accelerated inter-reflective Gaussian splatting framework
for inverse rendering that effectively handles both low-gloss and glossy materials.
To reduce ray sampling in Monte Carlo integration, we implement multiple im-
portance sampling with distinct distributions (cosine, GGX, and light sampling)
to better capture light effects. We also apply a cross-bilateral filter to the Monte
Carlo estimator, reducing noise while preserving quality with limited ray samples.
Furthermore, we replace 2D Gaussian ray tracing with mesh-based ray tracing dur-
ing relighting, cutting per-ray computations from hundreds of ray-splat checks to a
single ray-triangle intersection. Extensive experiments demonstrate /[RGS++’s su-
perior performance among 3DGS-based competitors on both low-gloss and glossy
datasets while achieving a 50-fold acceleration over IRGS.
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1 INTRODUCTION

Inverse rendering is a long-standing problem in computer vision and computer graphics. It decom-
poses scene attributes, geometry, material, and lighting from multi-view images. This decomposition
enables realistic relighting of reconstructed scenes by applying estimated materials under novel illu-
mination. Recent advances in scene representations, notably neural radiance fields (NeRF) Milden-
hall et al.| (2020), which encode 3D scenes as continuous volumetric fields parameterized by MLPs,
and 3D Gaussian splatting (3DGS) [Kerbl et al.| (2023)), which models scenes as collections of 3D
Gaussians, offer substantial opportunities to advance inverse rendering pipelines.

NeRF-based methods [Zhang et al.| (2021); Liu et al.| (2023)); [Hasselgren et al.| (2022)) use neural
implicit representations with ray marching to model materials and light effects. Nvdiffrec-MC Has-
selgren et al.|(2022) improves upon Nvdiffrec’s[Munkberg et al.| (2022) split-sum approximation by
adding multiple importance sampling (MIS) and a differentiable denoiser, which reduces ray sam-
ples while keeping rendering quality. However, these methods still require heavy computation due
to neural network queries. The advent of 3D Gaussian splatting, known for real-time rendering and
high-fidelity reconstruction, has driven significant inverse rendering innovations|Liang et al.|(2024);
Zhu et al.| (2024b)); |Gao et al| (2024); |Gu et al. (2025a). Existing 3DGS-based methods mainly
adopt two strategies: The first category |[Liang et al.| (2024)); |[Zhu et al.| (2024b) simplifies rendering
equations to avoid costly Monte Carlo integration. GS-ROR?|Zhu et al.| (2024b) combines split-sum
approximation with learned signed distance fields (SDFs) to better model reflective surfaces, though
this simplification inherently limits accurate modeling of complex light transport. The second cate-
gory (Gao et al|(2024); Gu et al.|(2025a) implements full rendering equations with extensive Monte
Carlo sampling. IRGS |Gu et al.|(2025a) introduces stratified sampling and 2D Gaussian ray tracing
to accurately capture ray visibility and radiance for inter-reflections, but requires intensive per-pixel
ray sampling and underperforms on glossy surfaces.

In this work, we extend IRGS |Gu et al.|(2025a) to better model specular surfaces and accelerate ren-
dering while preserving relighting fidelity. Inspired by Nvdiffrec-MC |[Hasselgren et al.| (2022)), we
integrate variance-reduction techniques, multiple importance sampling (MIS) and image denoising,
into 3DGS-based inverse rendering. Our proposed IRGS++ framework delivers two advances: (1)
material modeling from diffuse to highly specular surfaces, and (2) substantial rendering accelera-
tion over IRGS|Gu et al.|(2025a). We implement MIS for the rendering integral using three sampling
distributions: cosine-weighted, GGX Heitz (2018), and the environment light distribution |Pharr &
Humphreys|(2010). Following Nvdiffrec-MC, we apply a cross-bilateral filter[Schied et al.|(2017) to
final renders to suppress Monte Carlo noise while preserving fidelity at low sample counts. For re-
lighting, we replace IRGS’s 2D Gaussian ray tracing with mesh-based ray tracing, reducing per-ray
work from hundreds of ray-splat intersections to a single ray-triangle intersection and achieving an
order-of-magnitude speedup. Importantly, instead of using 2DGS |[Huang et al.| (2024) for geometric
initialization, we adopt Ref-Gaussian Yao et al.[(2025) to better capture specular surfaces.

Extensive experiments demonstrate /RGS++’s efficacy in handling both low-gloss and glossy ob-
jects. IRGS++ achieves 50-fold acceleration compared to IRGS |Gu et al.|(20254), and establish new
state-of-the-art relighting performance in 3DGS-based inverse rendering pipelines. In Figure[I} we
visualize the point cloud, normal, indirect illumination, global illumination of a relit scene compos-
ited of several low-gloss and glossy objects, showing IRGS++’s remarkable inter-reflection effects.

The contributions of this work include: (i) IRGS++, an inverse rendering framework capable of ac-
curately modeling both low-gloss and glossy surfaces while achieving significant rendering acceler-
ation compared to IRGS. (ii) Variance reduction strategies, including multiple importance sampling
and image denoising, to improve efficiency while maintaining photorealistic fidelity. (iii) Mesh-
based ray tracing during relighting, achieving substantial reductions in computational complexity.

2 RELATED WORK

Novel view synthesis. NeRF |[Mildenhall et al.| (2020) represents a major breakthrough in novel
view synthesis by employing multi-layer perceptrons (MLPs) and volume rendering to learn con-
tinuous volumetric representations. Subsequent studies have built upon this foundation through
multi-resolution hash grids Miiller et al.| (2022)), voxels [Sun et al.| (2022); [Yu et al, (2021), and
tensor decomposition |Chen et al.| (2022), significantly accelerating training and rendering speeds
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while reducing computational demands. Despite their effectiveness, NeRF-based methods |Barron
et al.| (2021} 2022} 2023) remain computationally intensive, requiring long training periods and
substantial resources. In contrast, 3D Gaussian splatting |Kerbl et al.| (2023)) (3DGS) demonstrates
superior efficiency by explicitly representing scenes as learnable 3D Gaussians and employing tile-
based rasterization. It has been widely adopted for geometry reconstruction Huang et al.| (2024));
Yu et al.| (2024), dynamic scene modeling [Yang et al.| (2023a; [2024), inverse rendering |Gao et al.
(2024); Liang et al.| (2024])), 3D generation |Tang et al.| (2023)); Y1 et al.|(2024), street scene applica-
tions | Yan et al.| (2024b); |Chen et al.| (2023), and robotics |Yan et al.| (2024a)); J1 et al.| (2024). The
rasterization-based framework of 3DGS, however, limits its ability to simulate ray-based optical
effects. 3DGRT Moénne-Loccoz et al.|(2024) addresses this through a differentiable Gaussian ray
tracer that computes radiance along ray paths. We follow IRGS |Gu et al.|(2025a), which implements
2D Gaussian ray tracing for precise ray-splat intersections, enabling realistic inter-reflections.

Inverse rendering. Inverse rendering aims to reconstruct geometry, material attributes, and lighting
conditions from multi-view RGB images. Many NeRF-based Srinivasan et al.| (2021)); Boss et al.
(2021); 'Yao et al.| (2022); Zhang et al.| (2023); |Verbin et al.[ (2022)); Boss et al.| (2022); |Attal et al.
(2025)); [L1u et al.| (2023); Jin et al.| (2023)); |Yang et al.| (2023b); [Zhang et al.| (2021;2022)); Wu et al.
(2024a); Liang et al.| (2023)); IMunkberg et al. (2022)); Hasselgren et al.|(2022); |Liu et al.| (2023)); Zhu
et al.[(2024a)); Gu et al.| (2025b)) methods employ ray marching and neural implicit fields to address
complex optical effects. Nvdiffrec-MC Hasselgren et al.|(2022) integrates multiple importance sam-
pling (MIS) |Veach & Guibas| (1995) with a differentiable denoiser to improve rendering efficiency
while preserving quality. However, such methods remain inefficient due to long training and ren-
dering times and limited quality. Recent approaches have applied 3DGS to inverse rendering |Liang
et al.| (2024); |Gao et al.| (2024); Sh1 et al.| (2023)); [Wu et al.| (2024b); |Guo et al.| (2024); |Gu et al.
(2025a); Zhu et al.|(2024b)); |Lai et al.| (2025); |Sun et al.[(2025); (Chen et al.| (2025)), leveraging its
representational capacity by assigning material-related properties to individual Gaussian primitives.
GS-ROR? [Zhu et al. (2024b) utilizes a signed distance field (SDF) to supervise Gaussian geome-
try and adopts deferred splatting for rendering. However, its reliance on split-sum approximation
oversimplifies the rendering equation, compromising material and lighting estimation accuracy. To
achieve precise inter-reflection simulation, IRGS Gu et al.| (2025a) implements the full rendering
equation alongside 2D Gaussian ray tracing. However, the exhaustive stratified sampling in IRGS
not only restricts computational efficiency but also underperforms on glossy surfaces. To address
these limitations, we propose IRGS++, which employs the full rendering equation while integrating
multiple techniques to minimize variance and accelerate rendering.

3 METHOD

In this section, we present IRGS++, a pipeline for geometry, material, and light decomposition using
accelerated inter-reflective Gaussian splatting |Gu et al.| (2025a)), capable of handling both low-gloss
and glossy objects. We begin by introducing the requisite background (Section [3.1). Next, we
detail our physically based rendering pipeline (Section [3.2)). Then, we describe variance-reduction
techniques (Section[3.3). Finally, we integrate mesh-based ray tracing into our framework to further
accelerate relighting (Section[3.4). An overview of the pipeline is shown in Figure[2]

3.1 PRELIMINARY

Gaussian splatting. 3D Gaussian splatting (3DGS) [Kerbl et al.| (2023) models a 3D scene as a
collection of 3D Gaussian primitives. Each primitive is defined by a center position u € R3 and a
covariance matrix ¥ € R3*3, with its spatial influence at a point = expressed as:

G(a) = o (5@~ w5 e - ). M

Additionally, each Gaussian is associated with an opacity value o € [0,1] and a view-dependent
appearance ¢ modeled via spherical harmonics (SH). For rendering, 3D Gaussians are projected
onto the 2D image plane through a view transformation W followed by perspective projection. The
projected 2D covariance matrix ¥’ is approximated as: X' = JWXW T.J ", where J denotes the
Jacobian of the perspective projection. The final pixel color C is computed via alpha-blending of
ordered projected 2D Gaussians from front to back using: C = va:l Tiaic, T; = H;;ll (1-qy),
where «; = 0; - G'(p) combines opacity and the projected Gaussian’s contribution at pixel p.
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Figure 2: Overview of IRGS++. Leveraging the geometry of pretrained 2D Gaussians, we first
generate material maps and geometry maps via splatting. The rendering equation is solved through
multiple importance sampling. For indirect illumination, we implement hybrid ray tracing: 2D
Gaussian-based during training and mesh-based during relighting. Finally, a cross-bilateral filter
denoises the Monte Carlo estimator to produce the final image.

Gaussian ray tracing. While 3DGS achieves real-time rendering, it falls short in modeling ray-
based effects (e.g., shadows and inter-reflections) due to its rasterization-based nature. To address
this limitation, 3D Gaussian ray tracing (3DGRT) Moénne-Loccoz et al.| (2024) proposes to ap-
ply ray tracing across 3D Gaussians. By leveraging a k-buffer hit-based marching technique with
hardware-accelerated OptiX |Parker et al.|(2010) implementation, the method achieves both efficient
and accurate rendering. In the meanwhile, 2D Gaussians [Huang et al.| (2024)) demonstrate superior
surface modeling compared to 3D Gaussians. Building on this advantage, IRGS |Gu et al.| (2025a)
introduces 2D Gaussian ray tracing (2DGRT), thereby eliminating inconsistencies in ray-splat inter-
sections inherent to 3D Gaussian primitives.

Rendering equation. The rendering equation Kajiya|(1986) describes the interaction between light-
ing and surfaces over the hemispherical domain €2 defined by the surface normal n:

Lo(ws @) = / F(@ows, @) La (s, @) (ws - m)dws @)
Q

where L, and L; denote outgoing radiance and incident radiance. The bidirectional reflectance
distribution function (BRDF) f encodes material response, parameterized by material properties.

3.2 RENDERING PIPELINE

Rasterization. We adopt physically-based deferred rendering, same as in IRGS |Gu et al.| (2025a)),
wherein Gaussians are first rasterized to generate pixel-level material maps before applying the ren-
dering equation. It should be noted that IRGS relies on a dielectric material assumption, limiting its
capacity to model highly reflective surfaces. To address this, we extend material parameterization by
equipping each Gaussian with material attributes, including albedo a € [0, 1], roughness r € [0, 1],
and an additional metallic m € [0, 1]. The pixel-level maps can be obtained through rasterization:

N
T
{67D7Na A7R5M} = Zwi{ciadivni7a’iaTiami}7 where w; = Nlia 3)
i=1 >zt i

where c is the outgoing radiance modeled via SH and n = ¢,, X t,, is the normal vector.

Light modeling. Leveraging the depth map obtained above, we can easily derive the surface point
x for each pixel. We decompose the incident light at = into direct and indirect terms:

Li(wia w) = V(wu x)Ldir(wi) + Lind(wi7 .’E), (4)

where Lg;, is assumed to come from distant sources parameterized by an environment map, while
V and Lj,q are obtained through 2DGRT. Notably, we implement distinct strategies for L;,q during
training and relighting phases. During training, L;,q is computed via alpha-blending of outgoing
radiance ¢; through 2DGRT, whereas its acquisition during relighting is detailed in Section [3.4]
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Monte Carlo sampling. Given incident radiance, we employ importance sampling (detailed in
Section to numerically evaluate the rendering equation integral Cook & Torrancel(1982):

1 f(we,wy, ) Li(wi, @) (w; - 1)
Cobr = 3 Z; @) : (5)

where [V, sampled directions w; are drawn from proposal distribution ¢ with probability density
function ¢(w;). When the distribution of ¢ closely matches the integrand of rendering equation, the
variance of the estimator is minimized, enabling comparable quality with fewer sampling rays.

3.3 VARIANCE REDUCTION

While IRGS |Gu et alf(2025a) demonstrates remarkable relighting quality, its reliance on a high
ray count per pixel with stratified sampling introduces significant computational overhead, requiring
seconds per image during relighting. To address this inefficiency, we pursue variance reduction
strategies that preserve rendering fidelity with substantially fewer samples. Inspired by Nvdiffrec-
MC [Hasselgren et al.| (2022)), we leverage multiple importance sampling Veach & Guibas| (1995)
(MIS) that strategically combines three distinct distributions (diffuse, specular, and environmental
lighting), and then apply a post-processing image denoising process to further eliminate noise.

3.3.1 MULTIPLE IMPORTANCE SAMPLING

Multiple importance sampling|Veach & Guibas|(1995) (MIS) provides a methodology for combining
samples from multiple probability distributions, enabling the sampling distribution to approximate
the characteristics of target integrand. The estimator with balance heuristic is formulated as:

n n;

1 e (X 9(Xi5) () — n;pi ()
;n’; Z(XZ’])Pi(Xi,jV (@) >k nepr(T) ©

To reduce variance when evaluating the rendering equation, we implement MIS with three distinct
sampling strategies: 1) Cosine-weighted distribution targeting the diffuse component, 2) GGX dis-
tribution |Heitz (2018)) aligned with the specular lobe, and 3) Environment light distribution gener-
ated through intensity-based sampling of environment map [Pharr & Humphreys| (2010). The GGX
sampling proves particularly effective for glossy surfaces by concentrating samples around specular
reflection directions, enabling accurate estimation of specular contributions in ¢y, with only a few
samples. Light sampling handles strong directional illumination, significantly eliminates artifacts.

3.3.2 DENOISING

Denoising in computer graphics enables high-quality rendering with low sample counts by reducing
noise in Monte Carlo estimators, thereby enhancing the stability and efficiency of the rendering
process. Typical denoising implementations employ spatial filter kernels that perform low-pass
operations on noisy inputs through weighted neighborhood averaging. However, while aiming to use
as few samples as possible in Monte Carlo integration, the limited sampling rate inevitably results in
images with substantial noise. Inspired by Nvdiffrec-MC |[Hasselgren et al.| (2022), we leverage the
image denoising technique, using a cross-bilateral filter based on Spatio-temporal Variance-Guided
Filtering Schied et al.| (2017 (SVGF), which preserves geometric edges through depth and normal-
aware weighting. The bilateral weighting between pixels p and q is computed as:

lp—al? [2(p)—2(a)]

Bilateral (p,q) = e~ 22 e v=IV=@ -l max(0,n (p) -n(q))’", 7

where z, n denote the image space depth and surface normal, respectively.

3.4 ACCELERATED RELIGHTING WITH MESH-BASED RAY TRACING

During training, IRGS |Gu et al.| (2025a)) computes incident radiance via Gaussian ray tracing, where
each Gaussian contributes its learnable outgoing radiance c;. However, c¢; becomes invalid un-
der novel environmental lighting during relighting. To circumvent recursive sampling, we aggre-
gate material properties through Gaussian ray tracing and apply split-sum approximation for inci-
dent radiance estimation. While optimized sampling (Section alleviates computational load,
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Table 1: Quantatitive comparison of normal, novel view synthesis, albedo, and relighting results on
TensolR datasetJin et al.[(2023). A higher intensity of the red color signifies a better result.

Method Normal Novel View Synthesis Albedo Relighting
MAE | | PSNRT SSIMtT LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIM?T LPIPS |

NeRFactor 6.314 24.68 0.922 0.120 25.13 0.940 0.109 23.38 0.908 0.131

InvRender 5.074 27.37 0.934 0.089 27.34 0.933 0.100 23.97 0.901 0.101

TensoIR 4.100 35.09 0.976 0.040 29.28 0.950 0.085 28.58 0.944 0.081
GS-IR 4.948 35.33 0.974 0.039 30.29 0.941 0.084 24.37 0.885 0.096
R3DG 5.927 26.20 0913 0.095 27.37 0.934 0.064

GS-ROR? NA NA NA NA NA NA NA 27.07 0.938 0.060
IRGS 3.998 35.52 0.964 0.049 33.42 30.63 0.935 0.076

Ours (V;=512) 35.15 0.967 0.045 !
Ours (IV;=32) - - - - 0.944

R3DG IRGS Ours

w RRR
- RRR

Ours

S

Relightingl

~a, 5

Relighting2 _
. S i:, 13

Figure 3: Qualitative comparison of NVS, albedo, and relighting results on the TensolR dataset.

Gaussian ray tracing remains the dominant bottleneck. We address this by substituting 2DGRT
with mesh-based ray tracing during relighting. Our approach uses truncated signed distance fu-
sion (TSDF) to extract triangle meshes while storing material attributes on mesh
vertices, thereby simplifying alpha-blended materials to direct queries of the first-intersected face’s
attributes. This reduces intersection complexity from hundreds of ray-splat tests to a single ray-
triangle intersection, achieving magnitude-order acceleration. We retain 2DGRT during training to
fully exploit the learnable ¢; for precise indirect illumination. Experimental results confirm negligi-
ble quality loss when transitioning between Gaussian and mesh-based ray tracing.

3.5 TRAINING SCHEME

To accurately model complex light-surface interactions through geometry-sensitive ray tracing, es-
tablishing reliable geometry proves essential. Following the common practice (2025a)), we
implement a two-stage training process. The first stage employs Ref-Gaussian (2025),
which utilizes physically-based deferred rendering with split-sum approximation, to reconstruct
high-fidelity geometry for both low-gloss and glossy surfaces. Compared to IRGS’s
2DGS-based geometry initialization, our approach demonstrates superior capability in han-
dling glossy materials. The second stage concentrates on material and lighting estimation as detailed
in Section 3.2 During training, we selectively evaluate the rendering equation on a subset of pixels
per viewpoint, significantly reducing computational overhead, and the denoiser is only used during
relighting. We adopt a similar loss function as in IRGS:

L= Ec + )\Ifbrﬁlfbr + )\lightﬁlight + )\s,aﬁs,a + )\s,rﬁs,r + )\s,mﬁs,ma (8)

where L. represents the reconstruction loss |Kerbl et al. d2023|) for the outgoing radiance C, Llfbr
denotes the L1 loss between the final physically rendered pixels and GT, Lijgn, regularizes incident
illumination toward natural white balance, and {Ls a, Ls 1, Ls.m } impose edge-aware smoothness
constraints on pixel-level albedo, roughness, and metallic maps respectively.
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Table 2: Quantitative comparison of relighting results on GlossySynthetic dataset.

NeRF-based 3DGS-based
Nvdiffrec-MC TensoSDF NeRO R3DG GS-ROR? Ref-Gaussian IRGS Ours (N, = 512)  Ours (N, = 16)
PSNR/SSIM  PSNR/SSIM  PSNR/SSIM | PSNR/SSIM  PSNR/SSIM  PSNR/SSIM  PSNR/SSIM PSNR/SSIM PSNR/SSIM

16.65/.8013  20.81/.8775  21.39/0.9003  20.58/0.8596 24.15/0.9053

16.15/.8391  24.49/.9267  22.90/0.9197  20.98/0.8779 25.96/0.9335 25.81/0.9315

Angel 22.89/0.865 20.40/.8969
Bell 24.30/0.903 29.91/.9767

16.21/.7819

Cat 23.88/0.907 26.12/.9354 17.49/.8503  26.28/.9421  20.54/0.9119  22.43/0.8881 27.21/0.9398 27.10/0.9374
Horse 26.42/0.935 20.63/.8832  23.31/.9376  24.97/0.9441  22.10/0.9208 24.81/0.9419 24.80/0.9415
Luyu 23.60/0.859 19.91/.8825 17.47/.8168  22.61/.8995  19.74/0.8753  22.73/0.8523 25.74/0.8966 25.73/0.8955
Potion 22.07/0.858 27.71/.9422 14.99/7799  25.67/9175  20.06/0.8677  22.92/0.8663 27.55/0.9184 27.42/0.9155
Tbell 22.60/0.883 23.33/.9404 15.99/.7965  22.80/.9180  20.74/0.9038  19.97/0.8535 22.21/0.8918 22.07/0.8869
Teapot 22.45/0.899 | 25.16/.9482 17.36/.8389  21.17/.8932  21.78/0.9237  19.27/0.8699 23.58/0.9250 23.55/0.9241
Mean 23.53/0.889  24.97/.9349 17.09/.8258  23.39/.9140  21.51/0.9058  21.37/0.8736 25.16/0.9192 25.08/0.9172

Training Time 4h 6h Th 1.5h 0.6h 1h 0.7h 0.7h
Ren. Time (FPS) 2.5 1/4 1.5 122 208 0.5 1.5 25

Normal
(Ours) IRGS Ours GT IRGS Ours GT

Figure 4: Qualitative comparison of relighting results on the GlossySynthetic dataset.

4 EXPERIMENT

Datasets and metrics. For quantitative evaluation, we utilize two synthetic datasets with ground
truth material maps and relighting images: one low-gloss TensolR datasets and one
glossy GlossySynthetic dataset (2023). We employ PSNR, SSIM (Wang et al., 2004),
and LPIPS (Zhang et al] 2018) to assess novel view synthesis, albedo, relighting, and estimated
environment maps. For surface normal, we adopt mean angular error (MAE). We further conduct
qualitative evaluations on three real-world datasets (RefReal [Verbin et al| (2022), GlossyReal

(2023), and Stanford-ORB [Kuang et al.| (2024) dataset).

Implementation details. Our training process consists of two stages. The first stage follows the
original configurations of Ref-Gaussian (2025), while the second stage extends for an
additional 10,000 iterations with loss weights consistent with IRGS (20254). For MIS, we
implement two configurations: a high-quality setting sampling 512 rays (256 cosine-weighted, 128
GGX, 128 light) and an efficient setting allocating 32 rays (16 cosine, 8 GGX, 8 light) for low-gloss
dataset or 16 rays (8 cosine, 4 GGX, 4 light) for glossy dataset. We implement the mesh-based ray
tracing in Optix [Parker et al.| (2010) via PyTorch CUDA extensions, utilizing meshes reconstructed
from learned Gaussians via truncated signed distance fusion (TSDF). Material attributes are encoded
per vertex in the extracted mesh. We employ 64 x 128 resolution environment maps for low-gloss
materials, while glossy surfaces necessitate 128 x 256 resolution maps to adequately capture specular
reflections. The complete training pipeline requires 40 minutes (30 minutes for the first stage, 10
minutes for the second stage), and the VRAM consumption is around 10 GB on a RTX 3090 GPU.
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Table 3: Quantitative comparison of estimated environment maps on GlossySynthetic dataset.
\ 3DGS-DR  GShader Ref-Gaussian IRGS  Ours

PSNR1 9.04 6.52 14.70 7.18
SSIMt 0.435 0.320 0.599 0.304
LPIPS, |  0.53 061 [N044n 067 052

Scenes GT Ours IRGS Ref-Gaussian GShader

: e RN > " . £ e AP
Figure 5: Qualitative comparison of estimated environment maps on the GlossySynthetic dataset.

4.1 RESULTS ON SYNTHETIC DATA

TensolIR. In Table m we provide metrics for NVS, albedo estimation, and relighting results on
TensoIR dataset 2023). Compared to previous arts [Zhang et al.| (2021}, [2022)); [Jin et al.
(2023)); [Liang et al.| (2024); |Gao et al| (2024); [Zhu et al] (2024b); |Gu et al| (2025a), our high-

quality setting (N, = 512) achieves state-of-the-art relighting quality, while our efficient setting
(N; = 32) has only 0.29dB degradation in PSNR and also outperform pervious arts. Figure [3]
demonstrates qualitative comparisons between /[RGS++ and 3DGS-based competitors |Gao et al.
(2024); |Gu et al.| (2025a) through NVS, albedo, and relighting. IRGS++ achieves photorealistic
relighting with smooth results and accurate inter-reflections, whereas IRGS shows limited quality in
specular modeling and R3DG completely fails to model secondary light effects.

GlossySynthetic. For GlossySynthetic dataset Liu et al.| (2023, we evaluate IRGS++s performance
in relighting. As shown in Table[2} JRGS++ achieves superior relighting quality among 3DGS-based
methods, though NeRF-based approaches like TensoSDF|Li et al.| (2024) and NeRO [Liu et al.|(2023)
exhibit higher metrics, partly attributed to their employment of Blender’s physically-based path
tracing for global illumination in relighting, as they do not native support global illumination with
implicit field. For fairness, we evaluate IRGS (2025a) with its first stage substitute to Ref-
Gaussian (2025), as its original 2DGS implementation fails to reconstruct the geometry.
Figure 4 demonstrates JRGS++s capacity for modeling accurate highlight regions, whereas IRGS
exhibits substantial artifacts due to the lack of importance sampling and metallic. Table [3] gives
quantitative evaluation of estimated environment maps, where our method outperforms on most
metrics. Figure 3] illustrates our most natural estimations. Note that although Ref-Gaussian appears
smooth, its relighting and environment maps score poorly because it leverages spherical harmonics
to model the diffuse term, causing incorrect albedo estimation.

4.2 RESULTS ON REAL-WORLD DATA

In Figure [f] we conduct experiments on real-world datasets, including the RefReal dataset
(2022), and GlossyReal dataset (2023). Due to the lack of ground-truth material
maps and relighting results, we provide qualitative results. To mitigate the impact of unbounded
geometry on relighting quality, we only consider regions within a predefined spherical boundary,
thereby enabling more effective ray tracing. In Figure[d] the reflective sphere in the “gardenspheres”
exhibits precise reflections of novel lighting and inter-reflections from adjacent objects, confirming
IRGS++’s capability to handle specular effects in complex scenarios. We also provide visualizations
on Stanford-ORB dataset[Kuang et al.| (2024) in Figure[I5] please refer to supplementary.

4.3 ABLATION STUDY

Figure 8 presents ablation studies analyzing critical components of IRGS++: “w/o denoiser” (direct
output of Monte Carlo estimator), “w/o MIS” (stratified sampling replacing multiple importance
sampling), and “w/o mesh” (persisting with 2D Gaussian ray tracing during relighting). The full
model maintains stable rendering quality when reducing ray samples from 512 to 16, while “w/o
denoiser” and“ w/o MIS” exhibit significant degradation under sparse sampling. Notably, the “w/o
mesh” variant achieves comparable quality to the full model, confirming mesh-based ray tracing pre-



Under review as a conference paper at ICLR 2026

Reference

Figure 6: Relighting results on the real-world RefReal dataset and GlossyReal dataset.
Full w/o MIS

43¢ Jod - o -0
Sl SR SR

Figure 7: Ablation studies on denoiser and multiple importance sampling (MIS).

w/o denoiser

37 800
—_—
36 5 400
£
35 2 200
B34 £
P 100
o
z33 —a— Full £ 50 —e— Full
& 32 w/o denoiser | 3 w/o denoiser
. —— w/o MIS 8 20 —— w/oMIS
—e— w/0 mesh —e— w/0 mesh
30 10

16 32 64 128 256 512 16 32 64 128 256 512

. . Samples . S les, . ”
Figure 8: Ablation studies on various components of IRGS++ uglﬁgges ‘Armadillo” scene.

serves accuracy while significantly accelerating computation. The narrow gap between “full” and
“w/o denoiser” is only significant under sparse sampling, attributed to cross-bilateral filter overhead.
Meanwhile, “w/o MIS” marginally outperforms “full”, this is because the MIS is more complex than
stratified sampling. Figure[7] qualitatively demonstrates these effects: “w/o denoiser” exhibits pro-
nounced Monte Carlo noise under sparse sampling, while “w/o MIS” produces inaccurate specular
highlights because it misses strong directional illumination with too few samples.

5 CONCLUSION

In this paper, we introduce /RGS++, a novel framework that achieves photorealistic secondary light
effects spanning from diffuse to specular surfaces, while achieving significant acceleration com-
pared to IRGS. IRGS++ employs multiple importance sampling (cosine, GGX, and light sampling)
to reduce ray sampling in Monte Carlo integration while better capturing light effects. A cross-
bilateral filter is also applied to the Monte Carlo estimator to further eliminate noise under limited
sampled rays. Furthermore, we replace 2D Gaussian ray tracing with mesh-based ray tracing during
relighting, reducing computational complexity from hundreds of ray-splat intersection queries to
a single ray-triangle intersection per ray. Extensive experiments across both low-gloss and glossy
material datasets demonstrate the superior rendering quality and efficiency of IRGS++.
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misuse of the proposed method.
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light transport modeling and reduce noise in rendering. All datasets employed are publicly available.
We provide experimental details and ablation results to clarify design choices.

REFERENCES

Benjamin Attal, Dor Verbin, Ben Mildenhall, Peter Hedman, Jonathan T Barron, Matthew O’ Toole,
and Pratul P Srinivasan. Flash cache: Reducing bias in radiance cache based inverse rendering.
In ECCV, 2025.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In ICCV, 2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In CVPR, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In ICCV, 2023.

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P.A. Lensch.
Nerd: Neural reflectance decomposition from image collections. In ICCV, 2021.

Mark Boss, Andreas Engelhardt, Abhishek Kar, Yuanzhen Li, Deqing Sun, Jonathan Barron, Hen-
drik Lensch, and Varun Jampani. Samurai: Shape and material from unconstrained real-world
arbitrary image collections. NeurIPS, 2022.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In ECCV, 2022.

Hongze Chen, Zehong Lin, and Jun Zhang. Gi-gs: Global illumination decomposition on gaussian
splatting for inverse rendering. In /CLR, 2025.

Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, and Li Zhang. Periodic vibration gaussian:
Dynamic urban scene reconstruction and real-time rendering. arXiv preprint, 2023.

Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer graphics. ACM TOG,
1982.

Jian Gao, Chun Gu, Youtian Lin, Zhihao Li, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. Relightable
3d gaussians: Realistic point cloud relighting with brdf decomposition and ray tracing. In ECCV,
2024.

Chun Gu, Xiaofei Wei, Zixuan Zeng, Yuxuan Yao, and Li Zhang. Irgs: Inter-reflective gaussian
splatting with 2d gaussian ray tracing. In CVPR, 2025a.

Chun Gu, Xiaofei Wei, Li Zhang, and Xiatian Zhu. Tensoflow: Tensorial flow-based sampler for
inverse rendering. In CVPR, 2025b.

Yijia Guo, Yuanxi Bai, Liwen Hu, Ziyi Guo, Mianzhi Liu, Yu Cai, Tiejun Huang, and Lei Ma.

Prtgs: Precomputed radiance transfer of gaussian splats for real-time high-quality relighting. In
ACMMM, 2024.

10



Under review as a conference paper at ICLR 2026

Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. Shape, Light, and Material Decomposition
from Images using Monte Carlo Rendering and Denoising. arXiv preprint, 2022.

Eric Heitz. Sampling the ggx distribution of visible normals. Journal of Computer Graphics Tech-
niques (JCGT), 2018.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In SIGGRAPH, 2024.

Mazeyu Ji, Ri-Zhao Qiu, Xueyan Zou, and Xiaolong Wang. Graspsplats: Efficient manipulation
with 3d feature splatting. arXiv preprint, 2024.

Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei Zhou, Zexiang
Xu, and Hao Su. Tensoir: Tensorial inverse rendering. In CVPR, 2023.

James T Kajiya. The rendering equation. In Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, 1986.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. 7OG, 2023.

Zhengfei Kuang, Yunzhi Zhang, Hong-Xing Yu, Samir Agarwala, Elliott Wu, Jiajun Wu, et al.
Stanford-orb: a real-world 3d object inverse rendering benchmark. NeurlPS, 2024.

Shuichang Lai, Letian Huang, Jie Guo, Kai Cheng, Bowen Pan, Xiaoxiao Long, Jiangjing Lyu,
Chengfei Lv, and Yanwen Guo. Glossygs: Inverse rendering of glossy objects with 3d gaussian
splatting. IEEE Transactions on Visualization and Computer Graphics, 2025.

Jia Li, Lu Wang, Lei Zhang, and Beibei Wang. Tensosdf: Roughness-aware tensorial representation
for robust geometry and material reconstruction. ACM TOG, 2024.

Ruofan Liang, Huiting Chen, Chunlin Li, Fan Chen, Selvakumar Panneer, and Nandita Vijaykumar.
Envidr: Implicit differentiable renderer with neural environment lighting. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 79-89, 2023.

Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. Gs-ir: 3d gaussian splatting for inverse
rendering. In CVPR, 2024.

Yuan Liu, Peng Wang, Cheng Lin, Xiaoxiao Long, Jiepeng Wang, Lingjie Liu, Taku Komura, and
Wenping Wang. Nero: Neural geometry and brdf reconstruction of reflective objects from multi-
view images. In SIGGRAPH, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Nicolas Moénne-Loccoz, Ashkan Mirzaei, Or Perel, Riccardo de Lutio, Janick Martinez Esturo,
Gavriel State, Sanja Fidler, Nicholas Sharp, and Zan Gojcic. 3d gaussian ray tracing: Fast tracing
of particle scenes. arXiv preprint, 2024.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Trans. Graph., 2022.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas
Miiller, and Sanja Fidler. Extracting triangular 3d models, materials, and lighting from images.
In CVPR, 2022.

Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke,
David McAllister, Morgan McGuire, Keith Morley, Austin Robison, et al. Optix: a general
purpose ray tracing engine. TOG, 2010.

Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition: From Theory To
Implementation. Morgan Kaufmann Publishers Inc., 2nd edition, 2010. ISBN 0123750792.

11



Under review as a conference paper at ICLR 2026

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R Alla Chaitanya,
John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. Spatiotem-
poral variance-guided filtering: real-time reconstruction for path-traced global illumination. In
Proceedings of High Performance Graphics, 2017.

Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng, Jingtuo Liu,
Liangjun Zhang, Jian Zhang, Bin Zhou, et al. Gir: 3d gaussian inverse rendering for relightable
scene factorization. arXiv preprint, 2023.

Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and
Jonathan T Barron. Nerv: Neural reflectance and visibility fields for relighting and view syn-
thesis. In CVPR, 2021.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In CVPR, 2022.

Hanxiao Sun, YuPeng Gao, Jin Xie, Jian Yang, and Beibei Wang. Svg-ir: Spatially-varying gaussian
splatting for inverse rendering. arXiv preprint, 2025.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint, 2023.

Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques for monte carlo
rendering. In Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, 1995.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srini-
vasan. Ref-nerf: Structured view-dependent appearance for neural radiance fields. In CVPR,
2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. [EEE Trans. Image Process., 2004.

Liwen Wu, Sai Bi, Zexiang Xu, Fujun Luan, Kai Zhang, Iliyan Georgiev, Kalyan Sunkavalli, and
Ravi Ramamoorthi. Neural directional encoding for efficient and accurate view-dependent ap-
pearance modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21157-21166, 2024a.

Tong Wu, Jia-Mu Sun, Yu-Kun Lai, Yuewen Ma, Leif Kobbelt, and Lin Gao. Deferredgs: Decoupled
and editable gaussian splatting with deferred shading. arXiv preprint, 2024b.

Chi Yan, Delin Qu, Dan Xu, Bin Zhao, Zhigang Wang, Dong Wang, and Xuelong Li. Gs-slam:
Dense visual slam with 3d gaussian splatting. In CVPR, 2024a.

Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang,
Xiaowei Zhou, and Sida Peng. Street gaussians for modeling dynamic urban scenes. arXiv
preprint, 2024b.

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene repre-
sentation and rendering with 4d gaussian splatting. arXiv preprint, 2023a.

Ziyi Yang, Yanzhen Chen, Xinyu Gao, Yazhen Yuan, Yu Wu, Xiaowei Zhou, and Xiaogang Jin.
Sire-ir: Inverse rendering for brdf reconstruction with shadow and illumination removal in high-
illuminance scenes. arXiv preprint, 2023b.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d
gaussians for high-fidelity monocular dynamic scene reconstruction. In CVPR, 2024.

Yao Yao, Jingyang Zhang, Jingbo Liu, Yihang Qu, Tian Fang, David McKinnon, Yanghai Tsin, and
Long Quan. Neilf: Neural incident light field for physically-based material estimation. In ECCV,
2022.

Yuxuan Yao, Zixuan Zeng, Chun Gu, Xiatian Zhu, and Li Zhang. Reflective gaussian splatting. In
ICLR, 2025.

12



Under review as a conference paper at ICLR 2026

Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu,
Qi Tian, and Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussians by
bridging 2d and 3d diffusion models. In CVPR, 2024.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for
real-time rendering of neural radiance fields. In /CCV, 2021.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient adaptive surface
reconstruction in unbounded scenes. TOG, 2024.

Jingyang Zhang, Yao Yao, Shiwei Li, Jingbo Liu, Tian Fang, David McKinnon, Yanghai Tsin, and
Long Quan. Neilf++: Inter-reflectable light fields for geometry and material estimation. In ICCV,
2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman, and
Jonathan T Barron. Nerfactor: Neural factorization of shape and reflectance under an unknown
illumination. ACM Trans. Graph., 2021.

Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou. Modeling
indirect illumination for inverse rendering. In CVPR, 2022.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

Tengjie Zhu, Zhuo Chen, Jingnan Gao, Yichao Yan, and Xiaokang Yang. Multi-times monte carlo
rendering for inter-reflection reconstruction. arXiv preprint, 2024a.

Zuo-Liang Zhu, Beibei Wang, and Jian Yang. Gs-ror: 3d gaussian splatting for reflective object
relighting via sdf priors. arXiv preprint, 2024b.

A MORE DETAILS

A.1 MESH CONVERSION

After the getting the robust geometry from the first stage, we utilize truncated signed distance fusion
(TSDF) to extract meshes using Open3D [Zhou et al.| (2018). We first render the depth map using
Gaussian splatting, then project the depth map onto a voxel grid to convert it into truncated signed
distances from the object surface to the voxel center. Finally, the marching cubes algorithm is
applied to extract the zero-level isosurface, which is then converted into a triangle mesh. The whole
mesh conversion process completes in less than 20 seconds.

B MORE RESULTS

A supplementary video demonstrating full 360-degree perspective visualization of the scenes pre-
sented within the paper is included in the supplemental materials.

B.1 RESULTS ON A COMPOSITED SCENE

In Figure [0] we present a relit scene comprising reconstructed objects from the TensolR [Jin et al.
(2023)) and GlossySynthetic|Liu et al.|(2023)) datasets, demonstrating /[RGS++’s capacity to concur-
rently process both low-gloss and glossy objects. Visualizations of indirect illumination (considering
only the indirect term in Eq.4)) and global illumination are provided for comprehensive analysis. In
Figure[I0] we provide the rendered material maps of the compsited scene. The scene is relighted us-
ing only 32 samples per pixel, yet achieves high-fidelity relighting results with physically plausible
secondary effects, as evidenced by the accurate ground reflectance of the specular “bell”.

13
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B.2 RESULTS ON TENSOIR DATASET

In Figure|l1] we present a comprehensive qualitative comparison of two additional scenes from the
TensolR dataset [Jin et al.| (2023). Our method achieves comparable or superior material decom-
position and relighting fidelity relative to IRGS |Gu et al.| (2025a), while simultaneously attaining
significantly accelerated rendering speed. A qualitative comparison of rendered normal maps in
Figure [I2] further demonstrates the enhanced geometry quality enabled by our integration of Ref-
Gaussian |Yao et al.|(2025) during the first stage.

B.3 RESULTS ON GLOSSYSYNTHETIC DATASET

In Figure we present an extended evaluation of relighting results across four additional scenes
within the GlossySynthetic dataset Liu et al.|(2023). /[RGS++ demonstrates superior relighting per-
formance compared to IRGS |Gu et al.| (2025a)), achieving physically accurate specular reflectance.
The corresponding normal maps exhibit high fidelity, which is attributed to the robust geometry
reconstruction during the initial stage.

B.4 RESULTS ON STANFORD-ORB DATASET

In Figure[T5] we present an visualization of the relighting results on Standford-ORB dataset [Kuang
et al.| (2024)), demonstrating our method’s capability on diverse real-world data.

C DISCUSSIONS ON THE POTENTIAL SOCIAL IMPACTS

IRGS++ leverages Gaussian splatting for more robust inverse rendering and accelerated global il-
lumination, helping small teams create realistic 3D content for movies or AR apps. However, this
could reduce demand for traditional lighting artists, requiring workers to adapt to new tools. Errors
in input 3D models (like gaps or inaccuracies) might lead to wrong material estimates, impacting
fields like digital museum projects. JRGS++’s quick lighting/material editing could also be misused
to falsify details in virtual scenes, needing protective measures. We hope it encourages blending Al
with physically-based rendering to improve digital replicas of real-world scenes.

D THE USE OF LLM

Large language models were only used to aid and polish the writing of this paper. They played no
role in research ideation, algorithm design, experimental setup, or result analysis.

E LIMITATION

Despite implementing multiple acceleration strategies, our approach exhibits higher computational
demands compared to real-time 3DGS-based methods employing split-sum approximations that sac-
rifice rendering accuracy. This limitation primarily arises from the fundamental requirement of eval-
uating the rendering equation with at least 16 rays per pixel to maintain photometric fidelity.
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Figure 9: Indirect and global illumination in a composited scene using IRGS++.
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Figure 11: Qualitative comparison of NVS, albedo, and relighting results on the TensolIR dataset.
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Figure 12: Qualitative comparison of rendered normal maps on the TensolIR dataset|Jin et al.|(2023)).
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Figure 13: Qualitative comparison of relighting results on the GlossySynthetic dataset.
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Figure 15: Relighting results on the real-world Stanford-ORB dataset.
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