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Abstract

Neuronal dynamics are highly nonlinear and nonstationary. Traditional methods
for extracting the underlying network structure from activity recordings mainly
concentrate on modeling static connectivity, without accounting for key nonsta-
tionary aspects of biological neural systems, such as ongoing synaptic plasticity
and neuronal modulation. To bridge this gap, we introduce the NetFormer model,
an interpretable approach applicable to such systems. In our model, activity of
each neuron across a series of historical time steps is defined as a token. These
tokens are then linearly mapped through a query and key mechanism to generate a
state- (and hence time-) dependent attention matrix that directly encodes nonsta-
tionary connectivity structures. We analyzed our formulation from the perspective
of nonstationary and nonlinear networked dynamical systems. We then applied
NetFormer to a large-scale, multi-modal dataset of neural activity patterns across
populations of neurons in mouse visual cortex. By comparing against an allied
dataset containing ground-truth baselines for connectivity between cell types, we
demonstrated the effectiveness of NetFormer in predicting neural dynamics and
recovering the underlying structural information about the molecular identity.

1 Introduction

Inferring the underlying connectivity of a network from observations of the activity of its units is a
long-standing challenge. In the brain, this challenge is exacerbated by (i) different nonlinear dynamics
present in individual neurons, (ii) experimental difficulty in sampling the full neuronal population
simultaneously, and (iii) dynamic reconfiguration of effective connectivity, mediated by both synaptic
plasticity and neuromodulation. This last issue carries significant practical importance in studying
behavioral dynamics, learning and memory [1, 2, 3, 4, 5]. As such, it poses a (harder) generalization
of the classical problem where the connectivity should no longer be considered as a static unknown,
rather as a dynamical variable that needs to be inferred and tracked over time.

A surrogate, but not sufficient, measure of success in unsupervised inference of connectivity is the
inferred network’s success in fitting the observed dynamics (Appendix A.1). While traditional linear
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Figure 1: Overview of NetFormer. NetFormer learns to predict neural dynamics and infer connectivity through
a linearized attention mechanism. It takes in as input activity of N neurons across T timesteps (Xk−T+1:k),
and predicts their next-step activity (Xk+1). Queries Q and keys K are linearly mapped from X̃ (Xk−T+1:k

concatenated with positional embedding E), using WQ and WK . Linearized attention matrix is computed
as QK⊤, which learns the neuron-level connectivity implicitly. Red and blue in the attention map indicate
excitatory and inhibitory interactions, respectively.

dynamical models struggle to capture the essential nonlinear mechanisms of leaky integration and
firing in biological neurons [6], more sophisticated nonlinear models typically suffer from a lack
of interpretability, making it difficult to identify the underlying connectivity [7, 8, 9]. Moreover,
traditional approaches often adopt a static perspective on connectivity [10, 11], failing to account for
the nonstationary interactions, such as those produced by plasticity and modulation at synapses.

Here we propose an interpretable nonlinear and nonstationary dynamical model to represent inter-
actions between neurons (Figure 1), based on the fast weight programming nature of the attention
mechanism [12]. Prior research has suggested that the attention mechanism can reveal information
about the underlying structure of a system [13, 14]. We further removed the softmax activation
funtion in the attention mechanism, as the constraint of attention weights summing up to one is not
biologically meaningful because neither the in-degrees nor the out-degrees of neuronal connectivity
(nor their counterparts incorporating synaptic strength) are invariant across neurons [15]. We first
demonstrated with both mathematical analysis and simulation study that even without the softmax
activation, the core part of the attention mechanism – the dot-product between queries and keys –
is capable of capturing nonstationary and nonlinear structural information. We then evaluated this
novel approach on publicly available datasets of neuronal activity recordings, showing its potential
for recovering meaningful identity and structural information. Our main contributions are as follows:
(i) We formulated a transformer-inspired network model, the NetFormer, for which the core of the
attention mechanism – the dot-product between queries and keys – directly encodes nonstationary
and nonlinear structure of networks; (ii) We applied the NetFormer model to population activity
recorded from mouse visual cortex, and showed that it can recover experimentally measured synaptic
connectivity, while benchmarking it with standard recurrent models and other common statistical
metrics; (iii) We provided a mathematical analysis on how the NetFormer can capture nonstationary
interactions likely to exist in the brain, providing a hypothesis for the improved performance of the
NetFormer on real neural data.

2 Model: Mathematical analysis on simulated systems

We consider an N -dimensional dynamical system

d

dt
x(t) = f

(
W (t)x(t)

)
(2.1)

where x(t) ∈ RN , f : RN → RN , and W (t) is an N ×N matrix whose entries may vary across
time. Wi,j(t) prescribes how the i-th variable x(i) is driven by the j-th variable x(j) at time t.

Let xk be observations of the system at discrete timesteps tk. For each k, we train the NetFormer
model (Figure 1) to predict xk+1 based on Xk = [xk−T+1 · · · xk] ∈ RN×T , the recent T -
step history of the system up to timestep k. To encode neuronal identities, a learnable positional
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embedding matrix E ∈ RN×H is concatenated to Xk, giving X̃k = [Xk E] ∈ RN×(T+H). The
queries Qk and keys Kk are obtained through linear transformations of X̃k, and their product gives
the linearized attention matrix Ak:

Qk = X̃kWQ ∈ RN×D, Kk = X̃kWK ∈ RN×D, Ak = QkK
⊤
k ∈ RN×N . (2.2)

It follows that entry (i, j) of Ak is computed from the history of x(i) and x(j), and thus describes
the relationship between the i-th and j-th variables. To predict xk+1, we take xk to be the values vk

and employ the residual connection [16], obtaining prediction as

x̂k+1 = vk +Akvk = xk +Akxk, (2.3)

which is similar to the update rule we would get if Equation 2.1 were simulated using the classical
forward Euler method with step size δ

xk+1 = xk + δf(Wkxk). (2.4)

Since neuronal connections can be either excitatory or inhibitory, but neither effect can be arbitrarily
large, we choose f to be a sigmoidal function with

f(0) = 0, f(x̄) = f(0) + f ′(0)x̄+O(x̄3) for x̄ within some interval (−ϵ, ϵ) around 01

Equation 2.4 can thus be written as

xk+1 = xk + δf(Wkxk) = xk + δf ′(0)Wkxk + δO(x3
k). (2.5)

Comparing equations 2.3 and 2.5, we deduce that the linearized attention matrix Ak learned by
the NetFormer may capture the true interactions between different variables Wk by approximating
δf ′(0)Wk, especially when ϵ < 1 and the first order term plays the most significant role. It is not
hard to see that this hypothesis also extends to systems in the form of

d

dt
x(t) = −x(t) + f

(
W (t)x(t)

)
, (2.6)

which includes the decaying effect that is commonly present in neural dynamics [17] (Appendix A.2).

We first considered four simplified simulated systems, with variations in the inclusion of nonlinearity
and nonstationarity:

(a)
dx

dt
= Wx, (b)

dx

dt
= tanh(Wx), (c)

dx

dt
= W (x)x, (d)

dx

dt
= tanh(W (x)x),

where W (x) = W0 + xω⊤. Simulation details are in Appendix A.3.1. All trained NetFormer
models are able to make accurate one-step-ahead predictions (R2 = 1.000, Figure 2a-d left). Vi-
sually, the average linearized attention matrix across timesteps, Ā = 1

K

∑K
k=1 Ak, provides a

good characterization of the average ground-truth dynamical association matrix across timesteps,
W̄ = 1

K

∑K
k=1 W (xk) (Figure 2a-d right). As a baseline, we consider AOLS from the linear ordi-

nary least squares regression x̂k+1 = AOLSxk. We used the Spearman’s rank correlation coefficient
(ρ) between the off-diagonal entries of Ā or AOLS and W̄ to quantify how faithfully the learned
connectivities reflect the ground-truth. Ā achieved comparable performance as AOLS in systems
(a) (b), but significantly outperformed AOLS in systems (c) (d), both visually (Figure 2a-d right)
and quantitively (Appendix A.3.2). Moreover, in the nonstationary systems (c) (d), the linearized
attention matrix is able to track the majority of changes in W (x) across timesteps (Figure 2e-f and
Appendix A.3.3). This ability to capture nonstationarity also explains why NetFormer can outperform
the linear regression model which only accounts for static connectivity.

3 Experiments on connectivity-constrained simulation and neural data

Neurons form synapses based, in part, on their cell types. The transmission of information through
these synapses is stochastic, which is shaped by activity history [18]. We applied the NetFormer on
a recent multi-modal dataset from [19], where both activity and cell type of neurons in the mouse
primary visual cortex are available. After training the NetFormer to predict activity, we inferred
the connectivity strength between cell types from its attention matrix, and compared it against

1see Appendix A.3.4 for more discussion on the radius of convergence of this series representation
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Figure 2: NetFormer provides accurate dynamics predictions, and recovers ground truth connectivity
matrices. a-d Left: Test set predictions of NetFormer. Predicted trajectories were obtained by concatenating all
one-step-ahead predictions. Predicted (dashed) trajectories overlap with the true (solid) trajectories. a-d Right:
True and inferred connectivity from NetFormer’s linearized attention matrix or linear regression weight matrix.
For systems c, d, connectivity is averaged across test set timesteps for visualization. For NetFormer, the inferred
connectivity shown is the one whose Spearman correlation ρ is closest to the average ρ across 10 random seeds.
Colorbars: scale of off-diagonal entries. Diagonal entries are masked in grey. Inferred connectivity matrices
were rescaled by the reciprocal of simulation stepsize for visualization. e: True and inferred temporal evolution
of four example connections in the nonstationary system c. Timesteps used as test set are shaded in grey. f: True
and inferred temporal evolution in system d.

the experimental ground truth: cell-type level postsynaptic potential (PSP) measured using patch-
clamp experiments from [18], where stimuli were applied to each patched neuron and postsynaptic
responses from other neurons were recorded. Additionally, following the experimental ground truth,
we designed the connectivity of a synthetic neuronal population and simulated its activity. On
this connectivity-constrained simulation dataset, we assessed the NetFormer’s ability to infer both
individual neuron-level and cell type-level connectivity. See below and Appendix A.4 for details
about both datasets.

Multi-modal in-vivo neural recording: The dataset [19] includes spontaneous population activity
recorded from the mouse primary visual cortex (V1) across layers 2 and 3 via two-photon calcium
imaging. We trained NetFormer models on data from one animal (SB025), which includes record-
ings of 2481 neurons. The dataset also provides single-cell spatial transcriptomics data, enabling
identification of excitatory and inhibitory neuron classes (Pvalb, Sst, and Vip).

Connectivity-constrained simulation: We generated activity of a synthetic neuron population with
200 neurons whose cell-type level connectivity is defined by results of patch clamp experiments [18],
in which the probability and strength of connections between neurons are probed directly. Specifically,
the population activity is generated following

xk+1 = tanh(Wxk + b) + ϵ. (3.1)

where ϵ is a Gaussian observation noise, b is a constant representing the baseline activity of each
neuron, and W describes the neuronal connectivity. In our simulation, 76% of neurons are excitatory,
with the remaining 24% being inhibitory. The inhibitory neurons are further subdivided into three
cell types (Pvalb, Sst, and Vip) with equal size. To construct W , we first ensured that the connectivity
proportion of each cell type pair aligns with the probabilities from [18]. For connected neurons, the
connection strength is sampled from N (µ, σ), where µ is the measured PSP from [18].

Neural dynamics prediction and connectivity inference: We benchmarked NetFormer against
multiple methods and models. First, we compared it with linear recurrent model (referred as “linear
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Figure 3: a. Visualization of ground truth and inferred connectivity matrices at both individual-neuron level and
cell-type level. NetFormer is benchmarked with linear regression, RNNs with tanh and exponential nonlinearity,
and standard statistics metrics in both simulation data and neural data. A positive linear transformation has
been applied to standardize all matrices to the same range for better visualization. b. Experiment on partial
observation with 200 neurons. Connectivity at both neuron-level and cell type-level are evaluated.

regression”): xk+1 = Wxk + b, where W represents neuronal coupling strengths and b accounts
for baseline activity. Next, we compared it with two variants of nonlinear recurrent neural networks
(referred as “RNNs”): (i) xk+1 = tanh (Wxk + b), which closely matches our connectivity-
constrained simulation and serves as an oracle approach to provide an upper bound on performance,
(ii) xk+1 = exp (Wxk + b), also known as the generalized linear model (GLM) [20], which models
the case where the model nonlinearity does not match the one underlying the data. We also considered
standard statistical metrics, including cross-correlation, covariance, mutual information, and transfer
entropy (details in Appendix A.5), with results in Table 1.

We evaluated activity prediction using MSE, R2, and Pearson correlation coefficient. We assessed the
correlation between inferred and ground truth connectivity using Pearson and Spearman correlation
coefficients, both at the N ×N neuron level (N : number of recorded neurons) and the K ×K cell
type-level (K = 4 includes one excitatory and three inhibitory types: Pvalb, Sst, and Vip). Details on
how to aggregate neuron-level connectivity to cell-level connectivity are provided in Appendix A.7.2.
Qualitative comparison between the inferred connectivity and ground truth connectivity is shown in
Figure 3a. All inferred connectivities have been linearly transformed for standardization and better
visualization.

On the connectivity-constrained simulation, NetFormer, together with linear regression and cross
correlation, performed comparably to the "oracle" model (RNN with tanh nonlinearity) in both
neuron-wise and cell type-wise connectivity inference. RNN with exponential nonlinearity performed
significantly worse, especially at individual neuron level, underscoring NetFormer’s strength in not
requiring prior knowledge of specific activation functions. Other statistical metrics such as covariance,
mutual information, and transfer entropy all performed significantly worse than the NetFormer.

On the neural data, we only evaluated the inferred cell-type level connectivity, as we do not have access
to ground truth connectivity at the level of individual neurons. Our NetFormer model consistently
outperformed other methods in both inferring connectivity and predicting neural activity. Interestingly,
linear regression and both variants of RNN failed to infer connectivity; we hypothesize that the
reason is two-fold: the underlying connectivity is nonstationary rather than static as assumed by
these models; the nonlinearity in the dynamics is different from the one used in these models. The
statistical metrics were also unable to recover connectivity.

For most real neural systems, it is impossible to access activity of all neurons. To evaluate the
robustness of the NetFormer model against such partial observation, in the simulated network, we
randomly selected a subset of neurons and trained the NetFormer on their activity. In Figure 3b,
we show that the performance in recovering the neuron-level connectivity does not significantly
decrease with only half of the neurons observed. Moreover, cell-type level connectivity inference is
less sensitive to partial observations, highlighting the potential of NetFormer to effectively derive
cell-type level connectivity from real neural data. In addition, using the learned embedding matrix in
NetFormer, we can decode whether a neuron is excitatory ot inhibitory (Appendix A.6).
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NetFormer linear
regression

RNN
w/ tanh

RNN
w/ exp

cross
correlation covariance mutual

information
transfer
entropy

simulation

connectivity
N× N

Pearson 0.869±0.002 0.817±0.002 0.905±0.000* 0.581±0.011 0.823 -0.029 0.539 0.600
Spearman 0.532±0.001 0.507±0.001 0.546±0.000* 0.393±0.009 0.519 -0.015 0.262 0.339

connectivity
K× K

Pearson 0.879±0.001 0.885±0.001 0.908±0.000* 0.887±0.008 0.888 -0.438 0.371 0.419
Spearman 0.860±0.002 0.852±0.005 0.866±0.002* 0.822±0.025 0.732 -0.334 0.018 0.353

in-vivo
recording

connectivity
K× K

Pearson 0.777±0.047 -0.395±0.020 -0.395±0.036 -0.407±0.006 -0.017 -0.162 -0.176 0.075
Spearman 0.847±0.063 -0.409±0.051 -0.343±0.105 -0.191±0.300 -0.080 -0.190 -0.061 0.233

activity
prediction

MSE 0.404±0.004 0.443±0.001 0.560±0.001 0.476±0.003 – – – –
Pearson 0.740±0.003 0.720±0.001 0.639±0.000 0.699±0.002 – – – –
R2 0.548±0.004 0.515±0.001 0.386±0.001 0.478±0.004 – – – –

Table 1: Quantitative results from both connectivity-constrained simulation and in-vivo neural recording. An
asterisk (*) indicates that RNN with tanh activation serves as the oracle model to provide an upper bound in
the simulation data. The results of connectivity inference using mutual information and transfer entropy are
assessed by comparing against the absolute values of the ground truth. Simulation data provides ground truth for
neuron-level (N ×N ) and cell type-level (K ×K) connectivity. Patch-clamp results serve as ground truth for
real data cell-type connectivity. We assess performance using Spearman’s and Pearson’s coefficients. Next-step
activity prediction on the test set is evaluated with mean squared error, Pearson’s coefficient, and R2.

4 Discussion and Conclusion

Experience and adaptation change the effective connectivity of the underlying neuronal network
via mechanisms including synaptic plasticity and neuromodulation, at various time scales. This
perspective poses connectivity as a dynamical variable that should be tracked, rather than inferred
once. Here, we propose the NetFormer as a light-weighted model for dynamical connectivity
inference. We began with a mathematical analysis that relates nonlinear and nonstationary dynamics
to its linearized attention mechanism. We further demonstrated, on both simulated and in-vivo neural
datasets, the strength of our model through comparison against various baselines.

5 Reproducibility

Implementation details and computing requirements are listed in Appendix A.7 and A.8. Our code is
available at https://github.com/NeuroAIHub/NetFormer.
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A Appendix

A.1 Related Work

Dynamical models of neuronal activity: Dynamical models have been a powerful tool for high-
dimensional neural data analysis [21]. Generalized linear models (GLMs), known for both in-
terpretability and desirable convexity properties [22], have been widely used to model neuronal
population activity as well as inter-neuronal interactions [20]. Nevertheless, unless stacked with an
explicit state switching mechanism [23], in GLMs the temporal filters describing interactions among
neurons are typically stationary across time [24]. Recurrent neural networks (RNNs) have been a
popular alternative [25, 26]; while the connectivity in (trained) RNNs is typically given by a static con-
nectivity matrix “W ”, variants including long short-term memory networks (LSTMs) [27] and gated
recurrent neural networks (GRUs) [28], do include nonstationarities at the level of individual neural
units. While this can enhance the model’s expressivity and performance in predictive tasks [29, 30],
it also introduces challenges for interpretability [10]. Recently, transformer models [31] have been
observed to outperform RNNs in various time series forecasting tasks [32, 33], but their deep layered
structures and nonlinear attention mechanisms also raise challenges in interpretation with respect to
underlying connectivity structures in the orignal data [34, 35], as discussed more below. A closely
related approach to the present work is the switching linear dynamical systems [36, 37]. These
models have nonstationary connectivity matrices which switch among a number of discrete values
according to a Markov process. Nevertheless, in vivo experimental recordings have revealed that
cortical activity is more likely to go through a continuum of states instead of discrete switching [38].
This motivates us to propose a model capable of capturing continuous changes in connectivity.

Predicting activity from connectivity: The reverse direction, predicting activity from connectivity,
is an allied approach for studying the complexities relating functional and structural information. A
prominent line of study have focused on the worm C. elegans as its synaptic connectome was the first
available among all species [39]. Using this, generative models of activity have been proposed [40].
Nevertheless, decades of electrophysiological analyses have emphasized the strong additional role of
neuromodulators in shaping activity [41, 3]. As a result, the synaptic connectome alone predicts only
partial information about recorded population dynamics [1], which directly motivates our study of
nonstationary, dynamical connectivity which aims to infer connectivity from functional activity.

Interpretability of the attention mechanism: Attention weights and positional embeddings provide
opportunities to understand the inner working of the transformer models. However, the interpretability
of these components is a subject of debate. Findings supporting a certain level of interpretability, such
as correlation to linguistic features, are common in the literature, with specialized metrics developed
to quantify their interpretability [42, 35]. However, caution should be taken when equating attention
with explanation [34], considering the lack of identifiability [43] and the wide variety of underlying
architectures and implementations [44]. In this work, we seek to avoid these confounding aspects by
focusing on the linearized attention mechanism [12].

A.2 Justification for linearized attention applied to “leaky" systems (Eqn 2.6)

Using the forward Euler method and step size δ, Equation 2.6 can be simulated as

xk+1 = xk + δ
(
− xk + f(Wkxk)

)
= xk − δxk + δf(Wkxk). (A.1)

Following the same sigmoidal assumption on f , Equation A.1 can be written as
xk+1 = xk + δ(f ′(0)Wk − I)xk + δO(x3

k), (A.2)
where I is the N ×N identity matrix. Therefore, the linearized attention matrix Ak learned from
Equation 2.3 may reflect the true interactions Wk by approximating δ(f ′(0)Wk − I), and can
capture the interactions between different variables (off-diagonal entries of Wk) up to a scaling factor
(δf ′(0)).

A.3 Additional details for nonlinear and nonstationary systems simulation (Sec ??)

A.3.1 Simulation details

In Figure 2a,b, ground-truth W were generated randomly, with real-part of each eigenvalue clipped at
0 to ensure stability of the system. W in a,b were also used as W0 in c,d, respectively. ω in c,d were
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picked randomly while maintaining stability of the system. In a, the system trajectory was simulated
using the closed-form solution x(t) = eWtη. In b-d, trajectories were simulated using the forward
Euler method: xk+1 = xk + δf(Wkxk), where Wk ≡ W for b, and Wk = W0 + xkω

⊤ for c, d. All
simulations consist of 3000 timesteps with stepsize δ = 0.01, with the first 80% used as training set,
and last 20% as test set. Time-averaged ground-truth across test set timesteps W̄ =

∑3000
k=2400 Wk

for c, d. Simulated trajectories are visualized in Figure 4. In all settings, the NetFormer model was
trained to minimize the mean squared error on the trainining set for 1100 epochs using the Adam
optimizer in Pytorch, with T = 1, H = 5, batch size = 80, initial learning rate = 0.01. In b, d,
learning rate was decayed by a factor of 0.9 every 100 epochs. In c, learning rate was decayed by a
factor of 0.8 every 100 epochs.

Figure 4: Simulated trajectories of toy models in Figure 2. Shaded regions represent timesteps used
as test set.

A.3.2 Quantitive comparsion with linear regressoin model

For each toy system, we trained 10 NetFormer models with different random initializations, and
computed the Spearman’s rank correlation coefficient (ρ) and the Pearson correlation coefficient
(r) between the off-diagonal entries of Ā and W̄ for each trained model. In terms of ρ, Ā achieved
comparable performance as AOLS in systems (a) (b) (p > 0.3, two-sided one sample t test), but
significantly outperformed AOLS in systems (c) (d) (p < 10−8) (figure5 left). Similar observations
can be made with r (figure5 right). For each system, the attention matrix visualized in figure2 is the
one whose ρ is the closet to the average ρ across 10 random initializations.

Figure 5: Comparison between AOLS (red cross) and Ā from NetFormer models with 10 different
random initializations (boxplots).

A.3.3 Nonstationarity connectivity tracking

On toy systems with nonstationary connectivity (Figure 2c, d), we evaluated how well linearized
attention matrices across timesteps can track changes in the connectivity. For each pair (i, j), i, j =
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1, . . . , 5, i ̸= j, we collected Aij and Wij across all test timesteps, resulting in two time-varying
series Aij(t) and Wij(t), and computed the Pearson correlation coefficient between them. Results
for 10 trained NetFormer models with different random seeds are shown in Figure 6. Distributions of
the temporal correlation coefficients for all off-diagonal pairs (i, j) are shown as violin plots, where
each violin corresponds to model trained with one random seed. The median of each distribution is
marked with a black line. All medians are greater than 0.999.

Figure 6: Distribution of test set temporal correlation between the linearized attention matrix and the
true nonstationary connectivity. Each column shows result from NetFormer model with a different
random seed. Median of each distribution is marked in black. All medians are greater than 0.999.

A.3.4 Further discussion on nonlinear dynamical systems

In section 2, we showed that when f is sigmoidal, A can reflect W through Taylor series approxima-
tion of f(Wxk). Take f = tanh as an example. When |w⃗⊤i xk| < π

2 ∀i = 1, . . . , N ,

tanh(Wx) = tanh(0) + tanh′(0)Wx+O(x3).

As tanh(0) = 0, the forward Euler method is

xk+1 = xk + δ tanh(Wxk) = xk + δ tanh′(0)Wxk + δO(x3
k).

This analysis also applies to other sigmoidal functions f , such as arctan, with

f(0) = 0, f(x) = f ′(0)x+O(x3) for x within some interval around 0.

Therefore, we hypothesize that A can capture W through learning δf ′(0)W for sigmoidal f . It is
also clear that learning W becomes more challenging when w⃗⊤i x does not always stay within the
radius of convergence of the Maclaurin series. Nonetheless, we note that if some w⃗⊤i x is constantly
outside the convergence region, f(w⃗⊤i x) will be constantly positive or negative, and the system will
either blow up or decay to zero. Therefore, for the systems of interest here, which are those with
interesting persistent dynamics, from time to time w⃗⊤i x must fall within the convergence region
where the Maclaurin series representation is valid. That being said, while A may still be able to
capture some aspect of W , it could become less accurate, and may require more observations of the
system to gather sufficient timestamps within the convergence region.

In the example nonlinear dynamical system shown in figure 2b, w⃗⊤i x
k stays within the radius of

convergence of tanh for all i and k, which makes the Maclaurin series approximation valid for
all timesteps. In figure 7, we provide another toy model example showing that the attention from
NetFormer still bears considerable similarity to the ground-truth W even when w⃗⊤i x

k falls out of the
convergence region for some i and k.

A.4 Connectivity-constrained simulation and neural data: Datasets and preprocessing

A.4.1 Connectivity-constrained simulation

We used the following procedure to construct the ground-truth connectivity matrix. For each cell-type
pair and for every pair of neurons, we first drew a random sample from the uniform distribution
between 0 and 1. Then, we used the connectivity probability from patch-clamp experiments [18] as a
cutoff threshold to determine if two neurons are connected. For connected neurons, we sampled their
connection strength from a normal distribuion N (µ, 0.1), where µ is the measured post-synaptic
potential from patch-clamp experiments. We simulated 30, 000 steps for 200 neurons, using the first
80% timesteps for training and the last 20% for testing.
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Figure 7: Demonstration of NetFormer on a nonlinear system dx
dt = tanh(Wx) where w⃗⊤i x

k

does not always stay within the convergence region of the Maclaurin series of tanh. a. Top row:
Trajectories of the simulated system. Simulation was done using the forward Euler method with
stepsize δ = 0.1. Shaded regions represent timesteps used as test set. Bottom row: Visualization
of w⃗⊤i x across simulated timesteps. Boundaries of the convergence region, ±π

2 , were marked with
black horizontal lines. The right column provides a zoomed-in view of the first 500 simulation
timesteps. b. Left to right Ground-truth W , average linearized attention matrix across test timesteps
from NetFormer (Ā), AOLS fitted through least-squares regression. Colorbars indicate the scale of
the off-diagonal entries, and the diagonal entries are masked in grey. Ā, AOLS were rescaled for
visualization. Spearman’s rank correlation coefficients (ρ) were computed between the off-diagonal
entries of Ā or AOLS and W . We trained 10 NetFormer models with different random initializations
(ρ = 0.841 ± 0.02, mean ± std), and Ā shown is the one whose ρ is the closet to the average ρ
across 10 random initializations. NetFormer models achieved similar performance as AOLS (p = 0.9,
two-sided one sample t test). All NetFormer models were trained to minimize the mean squared error
on the trainining set for 600 epochs using the Adam optimizer in Pytorch, with T = 1, H = 5, batch
size = 80. Learning rate was initialized to 0.01, and was decayed by a factor of 0.9 every 100 epochs.

A.4.2 Patch-clamp dataset

The dataset released in [18] contains experimental results of connectivity probability and connectivity
strength (Postsynaptic Potential (PSP)) at the cell-type level measured using patch-clamp. In each
experiment, up to eight neurons were simultaneously subjected to whole-cell patch-clamp recording,
mainly under current-clamp conditions, with some stimuli also tested under voltage-clamp conditions.
Stimuli were applied to each patched neuron while recording the other neurons for postsynaptic
responses. We mainly focus on the experimental results for layers 2/3 in mouse primary visual cortext
(V1), to match the neurons recorded in the multimodal mouse datatset [19].

A.4.3 Multimodal mouse data

For functional activity recordings from neuronal populations, we used a recent, public multimodal
dataset provided by [19]. This dataset includes spontaneous population activity recordings from
the mouse primary visual cortex (V1) across layers 2/3 via 2-photon calcium imaging at a temporal
sampling frequency of 4.3Hz across six 20-minute sessions, recording approximately 500 neurons
per session. Spatial coordinates of the recorded neurons are also provided. We trained our models on
data from one experimental subject (SB025), which includes recordings of 2481 neurons, with some
neurons repeating across six sessions. The dataset also includes single-cell spatial transcriptomics,
profiling mRNA expression for 72 selected genes to identify excitatory and inhibitory class labels of
neurons. 51% of neurons in the inhibotiry class can further be identified to be one of Lamp5, Pvalb,
Vip, Sncg, and Sst.
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A.4.4 Data preprocessing

In the connectivity-constrained simulation, when using RNN with an exponential activation, we
rescaled the data to ensure that all neuronal activities are nonnegative, as exponential activation
produces only nonnegative outputs.

For the experimental neural recording, which is nonnegative, we normalized it using the mean and
standard deviation calculated across all sessions and neurons involved in training. When using the
RNN model with exponential activation, we normalized the data by dividing by the standard deviation
only, without first subtracting the mean.

A.5 Baselines

Linear Regression: We denote neural activity data as X ∈ RN×T recorded from N neurons and T
time steps. Let xk+1 ∈ RN denote the neuronal activity at the (k + 1)th time step. Given previous 1
time step, xk, linear regression predicts current time step activity as

x̂k+1 = Wxk + b

Recurrent Neural Network (RNN) with tanh activation: Given neuronal activity across previous
p time steps, xk, xk−1, . . . , xk−p+1, a RNN with predefined Tanh activation function predicts current
time step activity as

x̂k+1 = σ
(
W (0)xk +W (1)xk−1 + · · ·+W (p−1)xk−p+1 + b

)
, σ = tanh

where W (l), l ∈ {0, 1, . . . , p−1}, represent how the previous l-th step affects the current step activity
and each element W (l)

ij represents how the j-th neuron at the previous l-th time step influences the
ith neuron in current step. The RNN is trained by minimizing mean squared errors (MSE) of the
current time step activity prediction given previous time steps. p = 1 is commonly used for RNN.
For modeling both simulation data and real mouse data, we chose p = 1, because the simulation data
has exactly one timestep dependency. Using larger p did not improve performance in real data either.

Recurrent Neural Network (RNN) with exponential activation: Next, we change the predefined
activation function of RNN to exponential function for modeling both simulation data and real mouse
data.

x̂k+1 = σ
(
W (0)xk +W (1)xk−1 + · · ·+W (p−1)xk−p+1 + b

)
, σ = exp

Cross correlation: Recall that Xk = [xk−T+1 · · · xk] ∈ RN×T denotes activity of N neurons
across T time steps. Let x(i), x(j) ∈ RT denote the i-th and j-th neurons’ activity across T time
steps. For simpliticity, let a = x(i) [τ :] , b = x(j) [: −τ ]. Cross correlation with time delay τ reflects
connectivity as

ri←j =
a⊤b

∥a− a∥∥b− b∥
We choose τ = 1 for inferring connectivity in both simulation and read data.

Covariance: Similar to above, let x(i), x(j) ∈ RT denote the i-th and j-th neurons’ activity across
T time steps. Covariance indicates the level to which two variables vary together. Covariance matrix
is symmetric, which assumes that the influence from neuron i to neuron j is the same as influence
from neuron j to neuron i. Covariance between neuron i and j is defined as

ci←j = cj←i =
1

T − 1
ΣT

k=1x
(i)
k x

(j)
k

Mutual information: Mutual information quantifies the amount of information that one random
variable contains about another, which is also symmetric. When calculating the mutual information
between activity history of two neurons, the computation involves estimating the entropy of each
neuron’s activity individually and the joint entropy of both neurons together. We used the Python
package PyInform.mutualinfo to compute the mutual information. Let x(i), x(j) ∈ RT as defined
above, then

Ii←j = Ij←i = I(x(i);x(j)) = H(x(i)) +H(x(j))−H(x(i), x(j)),
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Simulation Data Real Mouse Data

EC/IN Cell Type Classification

Figure 8: Confusion matrices of Excitatory/Inhibitory cell type classification using the learnable
neuronal embedding from NetFormer on both connectivity-constrained simulation and real mouse
data. The classifier is logistic regression. For real data, all neurons in one session are classified to be
Excitatory or Inhibitory neurons.

where H(x(i)) is the entropy of neuron i’s activity, calculated as H(x(i)) = −
∑

z∈x(i) p(z) log p(z).
H(x(j)) is the entropy of neuron j’s activity. H(x(i), x(j)) is the joint entropy of neurons i and j,
calculated as H(x(i), x(j)) = −

∑
z∈x(i),ξ∈x(j) p(z, ξ) log p(z, ξ).

Transfer entropy: Transfer entropy quantifies the amount of directed information transferred be-
tween systems, or in our case, between two neurons. We use python package PyInform.transferentropy
to compute the transfer entropy, which is defined as

T i←j =
∑

p
(
x
(i)
k+1, x

(i)
(k+1−p):k, x

(j)
(k+1−l):k

)
log

p
(
x
(i)
k+1 | x(i)

(k+1−p):k, x
(j)
(k+1−l):k

)
p
(
x
(i)
k+1 | x(i)

(k+1−p):k

)
 ,

where x
(i)
k+1 is the future activity of neuron i. x(i)

(k+1−p):k represents the past p activities of neuron

i up to time k. x
(j)
(k+1−l):k denotes the past l activities of neuron j up to time k. p(·) denotes the

probability distributions calculated from the joint and conditional activities as observed in the data.

A.6 Neuronal identity information

We demonstrate the learned positional embeddings E for each neuron, as in [45]. We train a logistic
regression for binary classification using embeddings as features for neurons in the training set. We
classify unseen neurons in the test set as excitatory/inhibitory neurons, with 100% top-1 accuracy in
simulation data, 71.21% top-1 accuracy and AUROC score of 0.700 in real mouse data (confusion
matrixes in Figure 8). This shows that excitatory and inhibitory cell types are learned in a linearly
separable way using the positional embeddings in the NetFormer.

A.7 Implementaion Details

A.7.1 Model framework for fitting connectivity-constrained simulation and real mouse data

Following Section 2, we train the NetFormer to predict xk+1 based on Xk = [xk−T+1 · · · xk] ∈
RN×T . To encode neuron identities, a learnable positional embedding matrix E ∈ RN×H is
concatenated to X , giving X̃k = [Xk E] ∈ RN×(T+H). The queries Qk and keys Kk are obtained
through linear transformations of X̃k, Qk = X̃kWQ ∈ RN×D, and Kk = X̃kWK ∈ RN×D.
NetFormer model is trained to predict the next time-step activity xk+1, defined as

x̂k+1 = Akxk + xk = ϕ(
QkK

T
k√

D
)xk + xk =

1√
D
(X̃kWQ)(W

⊤
K X̃⊤k )xk + xk,

where Ak is the self-attention that we want to use for inferring connectivity, ϕ is the attention
activation. In the standard Transformer model [31], softmax is used as the attention activation
function, but here we set ϕ equal to identity for better interpretability. In fact, we experimented with
different activation functions and empirically found that the identity activation yields the best results
on recordings from the mouse cortex.
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Although not used in the current experiments, it is possible to use an additional linear transformation
on Xk to accommodate neuronal dynamics that can depend on multiple previous timesteps, that is,

x̂k+1 = Ak(Xkwout) +Xkwout, wout ∈ RT×1.

A.7.2 NetFormer training and evaluation

We first assign each unique neuron in all sessions an ID, which is later used to track positional
embedding for each unique neuron, because same neuron can be recorded in more than one session.
Then, within each session, we construct samples with window size 200 in simulation and 60 in
real data, and we make sure samples in one batch should come from the same session so that the
dimensions can match.

We use the first 80% time-steps in all sessions for training and the last 20% time-steps for validation.
The model is trained using MSE as the loss function, comparing the predicted activity for the next
time step with the ground-truth activity. We employ early stopping criteria, ceasing training if there
are 20 epochs without improvement, with a hard limit of 100 epochs maximum.

After training is complete, we calculate the attention for each sample in the dataset. For each session,
we aggregate the attentions from all samples to compute a single averaged attention. Averaged
attentions from all sessions are then transformed into a final cell-type level attention. We achieve this
by aggregating attention values according to their corresponding presynaptic and postsynaptic cell
types and dividing by the total count of such pairings.

We also extract positional embeddings from the model and utilize each neuron’s unique ID to
determine the neuronal embedding for every unique neuron. These embeddings are then used as
features for logistic regression to classify neurons as either excitatory or inhibitory.

For evaluation, we assess the inferred cell-type level connectivity against the Postsynaptic Potential
(PSP) resting state amplitude obtained from patch-clamp experiments, which serves as the experimen-
tal ground-truth. Additionally, we evaluate the accuracy of the binary cell-type classification using
experimental data from single-cell spatial transcriptomics, which provides a classification of neurons
into excitatory and inhibitory types across all sessions.

A.7.3 Evaluation Metircs

We use python libraries and built-in functions for computing evaluation metrics.

For connectivity inference, we flatten the inferred 2-dimensional N × N or K × K connectivity
matrix and grond-truth matrix.
Pearson correlation: scipy.stats.pearsonr()
Spearman rank correlation: scipy.stats.spearmanr().

For activity prediction, given the input matrix ∈ RB×N×T for NetFormer and input matrix ∈ RB×N

for RNN, where B is the batch size, NetFormer outputs ∈ RB×N×1 and RNN outputs ∈ RB×N . We
flatten the predicted activity and the grond-truth.
MSE: torch.nn.functional.mse_loss()
Pearson correlation: scipy.stats.pearsonr()
R2 : sklearn.metrics.r2_score()

For binary classification, classifier predicts the probability for all neurons.
Top-1 accuracy: sklearn.metrics.accuracy_score()
Area Under the Receiver Operating Characteristic (AUROC): sklearn.metrics.roc_auc_score()

A.7.4 Hyperparameters

In connectivity-constrained simulation data, for training NerFormer, we use window size 100,
embedding size 200, hidden dimension of query and key matrices is 300, learning rate 10−3, and
batch size 32. For training RNN, we use p = 1, batch size 32, and learning rate 10−3.

In real data, for training NetFormer, we use window size 60, embedding size 30, hidden dimension of
query and key matrices 90, learning rate 10−3, and batch size 32. For training RNN, we use p = 1,
batch size 32, and learning rate 10−4.
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We use PyTorch [46] and PyTorch Lightning [47] for model development and training, and Adam as
the optimizer.

A.7.5 Pseudo Code

We train NetFormer and extract attentions and positional embeddings for connectivity inference
and binary cell-type classification. The pseudo code for model training , connectivity inference and
cell-type classification is provided as follows:

NetFormer(x, neuron_ids):
if constraint == True:

cell_type_level_mean = parameters(num_cell_type, num_cell_type)
cell_type_level_var = parameters(num_cell_type, num_cell_type)

embeddings = embedding_table(neuron_ids)
input = layer_norm(concat(x, embeddings))
x, embeddings = input[:, :, :T], input[:, :, T:]

dim_x, dim_e = x.shape[-1], embeddings.shape[-1]
scale = (dim_x + dim_e) ** -0.5

logits = input @ W_Q_W_KT @ input.T
logits = logits * scale

if activation == softmax:
attention = softmax(logits)

elif activation == sigmoid:
attention = sigmoid(logits)

elif activation == tanh:
attention = tanh(logits)

elif activation == none:
attention = logits

output = layer_norm(attention @ x + x)

if out_layer == True:
# linear_out is a lienar transformation from dimension T to 1
output = linear_out(output)
return output, attention

else:
# Use the last column as prediction
return output[:, :, -1], attention

NetFormer_Training(all_samples):
all_inputs, all_neuron_ids, all_GT_targets = all_samples
model = NetFormer()
optimizer = Adam(model, learning_rate)

all_predictions, all_attentions = model(all_inputs, all_neuron_ids)

prediction_loss = MSE(all_predictions, all_GT_targets)
loss = prediction_loss

optimizer.zero_grad()
loss.backward()
optimizer.step()

Connectivity_Inference(all_samples, trained_NetFormer, GT_connectivity):
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all_inputs, all_neuron_ids, all_GT_targets = all_samples
all_predictions, all_attentions = trained_NetFormer(all_inputs, all_neuron_ids)

avg_attention = mean(all_attentions, axis=0)

pearson_corr = pearsonr(GT_connectivity, avg_attention)
spearman_corr = spearmanr(GT_connectivity, avg_attention)

Cell_Type_Classification(trained_NetFormer, neuron_ids, cell_types):
embeddings = trained_NetFormer.embedding_table(neuron_ids)

X_train = embeddings[TRAIN_idx]
y_train = cell_types[TRAIN_idx]
X_test = embeddings[TEST_idx]
y_test = cell_types[TEST_idx]

# Train classifier
classifier = LogisticRegression.fit(X_train, y_train)
# Test on test set
y_pred = classifier.predict(X_test)

A.8 Compute Resources

In Section 2, model training was done on a MacBook Pro with Apple M1 chip. In Section 3, using
the NVIDIA A100 GPU, NetFormer model trained on connectivity-constrained simulation data took
about 10min. NetFormer model trained on one mouse (SB025) in real mouse data took about 20min,
which requires at least 60 GB of RAM and 16 GB of GPU memory.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions.
For each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their
evaluation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer
"[No] " provided a proper justification is given (e.g., "error bars are not reported because it would be
too computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We validate all claims with mathematical analysis and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see our discussion section.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In section 2 we provided a mathematical analysis on the connection between
our model and the classical forward Euler method. In the main text, we noted explicitly
that the theorical analysis may not extend easliy to nonlinear systems with inputs outside
the convergence region. Meanwhile, we provided empirical evidence with an additional
simulation example in A.3.4 to demonstrate that our model can still be applicable in this
setting.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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In section 2 and model architecture figure 1, we included all details about the model
architecture and the toy simulation. Appendix A.3.1 provided the mathematical formula for
simulating the toy data, model architecture, and model training. Appendix A.4 described
another simulation data, two real mouse datasets, and data preprocessing steps, while
Appendix A.7 contains implementation details for modeling and evaluating on these datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We have not yet released our code but plan to in the future. All data are
publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: To the extent possible, we state all experimental setting and details including
hyperparameters, architectures, optimizers, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Where possible, we state sensitivity analysis in our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: In Appendix A.8, we mentioned the use of NVIDIA A100 GPUs. We indicated
that each experiment on one mouse (SB025) requires at least 60 GB of RAM and 16 GB of
GPU memory and takes about 20min, while each experiment on connectivity-constrained
simulation data takes about 10min.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not raise any ethical concerns, and conforms with all ethical
guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work studies fundamental concepts in machine learning and neuroscience,
and we do not believe it has any immediate societal consequences.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We are not releasing high-risk models or data with this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited all those involved with the collection of the data we utilize.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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