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ABSTRACT

Adapting large language models to multiple tasks can cause cross-skill interfer-
ence, where improvements for one skill degrade another. While methods such
as LoRA impose orthogonality constraints at the weight level, they do not fully
address interference in hidden-state representations. We propose Compositional
Subspace Representation Fine-tuning (CS-ReFT), a novel representation-based
approach that learns multiple orthonormal subspace transformations, each special-
izing in a distinct skill, and composes them via a lightweight router. By isolating
these subspace edits in the hidden state, rather than weight matrices, CS-ReFT
prevents cross-task conflicts more effectively. On the AlpacaEval benchmark, ap-
plying CS-ReFT to Llama-2-7B achieves a 93.94% win rate, surpassing GPT-3.5
Turbo (86.30%) while requiring only 0.0098% of model parameters. These find-
ings show that specialized representation edits, composed via a simple router, sig-
nificantly enhance multi-task instruction following with minimal overhead.

1 INTRODUCTION

Large language models (LLMs) have become central to a wide range of NLP applications, yet adapt-
ing them to new tasks can be computationally expensive, often requiring hundreds of GPU hours and
significant memory overhead. Parameter-efficient fine-tuning (PEFT) methods (Han et al., 2024)
tackle this challenge by updating only a small fraction of model parameters, typically 0.1–1% of the
total. While this approach has enabled more practical deployment of adapted models, with methods
like LoRA (Hu et al., 2021) reducing parameter counts by 1000x, current PEFT techniques still fo-
cus primarily on weight-based updates. In contrast, representation editing methods like ReFT (Wu
et al., 2024b) directly modify hidden states, achieving even lower parameter overhead; however,
most have used a single global edit that struggles to handle multiple skills without interference.

A core problem in multi-task adaptation is cross-task interference, wherein changes aimed at im-
proving one task degrade performance on another (Pfeiffer et al., 2023). Although recent LoRA
variants impose orthogonality constraints to reduce conflicts (Wang et al., 2023; Hsu et al., 2024),
none have extended these ideas to representation-based fine-tuning, where orthonormal subspaces
can isolate skills more effectively at the hidden-state level. To address this gap, we propose Compo-
sitional Subspace Representation Fine-tuning (CS-ReFT), a framework that extends ReFT with
multiple orthonormal subspace edits and a lightweight router for dynamic composition. Our contri-
butions include:

1*Initial ideation is AI-generated. Thus, the authors do not claim the sole credit for this scientific innovation.
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Figure 1: Illustration of CS-ReFT. (1) The left panel shows how Compositional Subspace Rep-
resentation Fine-Tuning (CS-ReFT) applies specialized subspace transformations (Φ1,Φ2,Φ3) at
specific positions in different layers to adapt a frozen model for multiple tasks. Each subspace edit
is task-specific, reducing interference while allowing composition when needed. (2) The right panel
details the routing mechanism: a lightweight router determines which subspaces to activate based
on the input, ensuring efficient and targeted modifications.

• We learn separate low-rank transformations for each skill, preventing conflicts across tasks
while requiring only 0.0098% of model parameters—a 12.7x reduction compared to LoRA.
A small gating network is trained to selectively activate relevant subspaces for each input.

• By applying orthonormal constraints directly in hidden-state space, CS-ReFT isolates skills
more cleanly than weight-based orthogonal LoRA methods, reducing cross-task interfer-
ence.

• CS-ReFT attains a 93.94% win rate on AlpacaEval—significantly outperforming both
larger models (GPT-3.5 Turbo: 86.30%) and parameter-efficient baselines (LoRA:
81.48%).

2 BACKGROUND

Both weight modification and representation editing approaches suffer from cross-task interference
when learning multiple tasks, despite their success in reducing computational overhead compared to
full model finetuning.

Weight-based methods. LoRA (Hu et al., 2021) is a representative approach that factorizes a
trained weight update ∆W into low-rank components, ∆W = UV ⊤, where U ∈ Rd×r and V ∈
Rd×r with r ≪ d. Although LoRA reduces parameter footprints to around 0.1% of the full model,
all tasks still share these low-rank factors, leading to interference when tasks require conflicting
weight updates (Pfeiffer et al., 2023).

Representation-based methods. Instead of modifying weights, representation editing approaches
directly intervene on hidden states (or “activations”). For example, ReFT (Wu et al., 2024b) learns
a function Φ that updates each hidden representation h ∈ Rd via a low-rank transformation:

Φ(h) = h + R⊤(W h+ b − Rh
)
,

where R ∈ Rr×d (rows often constrained to be orthonormal) and W ∈ Rr×d. This approach can
achieve ≤ 0.004% of trainable parameters while maintaining task performance. Nevertheless, when
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multiple tasks share a single subspace intervention Φ, updates beneficial for one task can degrade
others.

3 RELATED WORK

Parameter-efficient adaptation. Recent years have seen rapid progress in parameter-efficient
fine-tuning (PEFT) methods (Han et al., 2024; Lialin et al., 2023; Li & Liang, 2021). Low-rank
adaptation approaches like LoRA (Hu et al., 2021) decompose weight updates into low-rank ma-
trices UV ⊤, typically achieving 1000x parameter reduction while maintaining performance. Other
methods like BitFit (Ben-Zaken et al., 2021) modify only bias terms. Representation-based methods
(Wu et al., 2024b; Kong et al., 2024; Zou et al., 2023) instead edit model activations. These advances
have made LLM adaptation more practical, achieving lower parameter overhead than weight-based
updates, but use a single global edit function, limiting their effectiveness for multi-task adaptation.

Multi-task learning. Multi-task adaptation strategies span several approaches, from shared pa-
rameter methods (Hu et al., 2021; Liu & Luo, 2024) that risk interference, to task-specific modules
(Chronopoulou et al., 2022; Yang et al., 2024) requiring separate adapters, to dynamic routing sys-
tems (Araujo et al., 2024; Zhang et al., 2024) that often introduce significant overhead. Some recent
work combines orthogonality constraints with multi-task setups (Hsu et al., 2024; Liu et al., 2023;
Wang et al., 2023), but again these rely on weight-based modules inserted inside Transformer lay-
ers. By contrast, our method applies orthonormal constraints at the representation level, learning
disjoint subspaces in the hidden state and dynamically routing between them. This design reduces
cross-task interference compared to sharing a single low-rank factorization for all tasks.

4 METHOD

Compositional Subspace Representation Fine-tuning (CS-ReFT) learns multiple low-rank sub-
space interventions and a router to activate them on a per-input basis, addressing cross-task inter-
ference by dedicating separate subspaces to each skill. We selectively compose these subspaces at
inference. Let M be a frozen pretrained model (e.g., a Transformer) of hidden dimension d. For
each sequence of n tokens x = (x1, . . . , xn), the model produces {h(j)

1 , . . . , h
(j)
n } in layer j. Our

goal is to adapt M to a set of k tasks {T1, . . . , Tk} without modifying the original weights. Instead,
we learn: (1) A collection of low-rank subspace transformations, {Φ1, . . . ,Φk}, one per task, (2) a
router R that decides which subset of {Φi} to activate given an input. Our design ensures that each
task Ti has a dedicated subspace edit Φi—preventing direct interference—yet also enables composi-
tion for inputs requiring multiple skills. In practice, the tasks are manually defined through manually
partitioning the data or implicitly learned during training.

4.1 SUBSPACE REPRESENTATION EDITING

Following ReFT (Wu et al., 2024b), each subspace intervention Φ modifies a hidden vector h ∈ Rd

by editing only an r-dimensional subspace spanned by the rows of R. Concretely, we let

Φ(h) = h + R⊤( W h+ b︸ ︷︷ ︸
desired subspace coords

− Rh
)
,

where R ∈ Rr×d is typically constrained to have orthonormal rows (RR⊤ = Ir), and W ∈
Rr×d, b ∈ Rr are trainable parameters. In CS-ReFT, we have Φ1, . . . ,Φk, one per task, each with
its own low-rank parameters {Ri,Wi, bi}. Ensuring that an input requiring task i can be edited by
Φi without altering another subspace, this fully separates the learned directions in hidden space,
mitigating interference across tasks.

4.2 ROUTER MECHANISM

Not every input belongs to a single task, nor do we want to dedicate a distinct subspace for every
fine-grained skill. Hence, we introduce a router that selects or composes the relevant subspaces at

3



Published as a workshop paper at SCOPE - ICLR 2025

inference time. For example, an instruction might require both Φ2 (arithmetic) and Φ3 (sentiment
analysis). We define a small routing network

Router(x) = α ∈ [0, 1]{k},

which maps an embedding of the input (e.g., the first token’s hidden state) to a gating vector α. We
then compose the subspace edits as:

h′ = h +

k∑
i=1

αi

[
R⊤

i

(
Wi h+ bi −Ri h

)]
.

If αi is discrete (e.g. thresholded), then each Φi is on or off. Alternatively, we can keep αi ∈
[0, 1] for a soft gating. In either case, the parameter overhead from the router is minimal, allowing
dynamic composition without losing efficiency. Crucially, this router is jointly trained alongside the
subspaces themselves. As a result, the model can implicitly discover how to route different inputs to
different subspaces without any manual task partitioning.

At inference time, the router first computes α = (α1, . . . , αk) by examining the input (or a small
hidden-state summary). At the chosen intervention layer ℓ, each Φi receives the hidden representa-
tion h(ℓ). Finally, we update

h(ℓ) 7→ h(ℓ) +

k∑
i=1

αi

[
Φi(h

(ℓ))− h(ℓ)
]
.

This approach preserves the rest of the network intact, guaranteeing that the large majority of pa-
rameters remain frozen. Meanwhile, each subspace transform is task-specific, and the router gates
them as needed.

4.3 TRAINING OBJECTIVE

We train CS-ReFT by minimizing:

L =

k∑
i=1

E(x,y)∼Ti

[
ℓ
(
M

(
x; {Φi}, R

)
, y

)]
+ λΩ(α),

where ℓ(·) is a task loss (e.g. cross-entropy), and Ω(α) can be a sparsity regularizer on the router
outputs to encourage minimal subspace usage. In practice, we update only {Φ1, . . . ,Φk} and the
router’s parameters while leaving all original model weights frozen. This design prevents cross-task
interference by activating only relevant subspaces on each input, and the low-rank structure keeps
parameter overhead minimal.

In addition to these aspects, CS-ReFT provides multiple benefits. It prevents cross-task interference
by keeping each skill’s subspace disjoint so that changes to Φi do not overwrite Φj . It also fosters
compositional synergy, as the router composes subspaces on demand to enable multi-skill prompts.
Finally, it ensures extreme parameter savings because each subspace Φi remains low-rank and the
router is tiny, resulting in significantly fewer parameters than typical multi-head adapters. This com-
positional subspace design thus unifies the efficiency of representation editing with the modularity
of multi-task routing, enabling high-quality, multi-task LLM adaptation with minimal overhead.

5 EXPERIMENTS

We evaluate CS-ReFT using the AlpacaEval benchmark (Dubois et al., 2024), which measures
instruction-following capabilities through win rates against reference responses. As a general task,
instruction-following implicitly involves multiple subtasks, such as reasoning and common-sense
understanding. Our experiments use Llama-2-7B (Touvron et al., 2023) as the base model, compar-
ing CS-ReFT against both parameter-efficient methods and larger models.

5.1 SETUP

The CS-ReFT architecture consists of subspace transformations and a router network. We imple-
ment four distinct low-rank transformations using the ReFT intervention mechanism (Wu et al.,
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Table 1: Performance on AlpacaEval. Parameter Efficiency (PE) shows fraction of trainable param-
eters relative to the base model. Win rate measures preference over reference responses. CS-ReFT
on Llama-2-7B outperforms all baseline methods and is competitive with ReFT on parameter effi-
ciency.

Model Win Rate (%) PE (%)

Reference Models
GPT-3.5 Turbo 1106 86.30 —
Llama-2 Chat 13B 81.10 —
Llama-2 Chat 7B 71.40 —

Parameter-Efficient Methods (Llama-2 7B)
Full Fine-tuning 80.93 100.00
LoRA 81.48 0.1245
RED 81.69 0.0039
DiReFT 84.85 0.0039
LoReFT 85.60 0.0039
CS-ReFT (Ours) 93.94 0.0098

2024b), and each transformation operates independently on the model’s hidden states, allowing for
selective skill composition. Meanwhile, a lightweight two-layer network processes the first token’s
embedding (h ∈ Rd) to produce gating signals, including an input layer mapping Rd → Rd/2 with
ReLU activation, and an output layer mapping Rd/2 → R4 with sigmoid activation. We threshold at
0.5 for binary gating in each subspace.

We evaluate models on two key metrics. The first is Win Rate, which measures the percentage
of model outputs preferred over reference responses in the AlpacaEval benchmark. The second is
Parameter Efficiency, referring to the percentage of trainable parameters relative to the full model
size. Our baselines include both parameter-efficient methods (LoRA (Hu et al., 2021), RED (Wu
et al., 2024a), DiReFT (Wu et al., 2024b), LoReFT (Wu et al., 2024b)) and larger models (GPT-3.5
Turbo (Brown et al., 2020), Llama-2-13B (Touvron et al., 2023)), providing a comprehensive com-
parison across the efficiency-performance spectrum. For the optimizer we use AdamW (Loshchilov
& Hutter, 2017) with learning rate 2e-5, using a cosine schedule with 3% warmup steps. We set the
batch size to 16 samples per device, accumulate gradients for 4 steps, and apply an L1 regulariza-
tion coefficient of 0.01 for router sparsity to encourage sparse gating. Our baselines include both
parameter-efficient methods (LoRA, RED, DiReFT, LoReFT) and larger models (GPT-3.5 Turbo,
Llama-2-13B), providing a comprehensive comparison across the efficiency-performance spectrum.

5.2 RESULTS

Table 1 presents performance comparisons across model sizes and adaptation methods. CS-ReFT
achieves a 93.94% win rate while modifying only 0.0098% of model parameters. Specifically, it
surpasses larger models such as GPT-3.5 Turbo (86.30%) and Llama-2-13B (81.10%), outperforms
weight-based methods like LoRA (81.48%, 0.1245% parameters), and exceeds representation meth-
ods such as ReFT variants (81.69–85.60%, 0.0039% parameters).

CS-ReFT’s strong performance can be attributed to specialized subspaces and dynamic routing.
Maintaining separate transformations for different skills prevents interference while enabling precise
adaptations, and the significant performance improvement over methods using shared parameters
(e.g., LoRA at 81.48%) highlights its effectiveness. In addition, the router successfully learns to
activate task-relevant subspaces, as demonstrated by the 93.94% win rate across diverse instructions.
This indicates that skill composition based on input context is effective.
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6 CONCLUSION

We introduced Compositional Subspace Representation Fine-tuning (CS-ReFT), which addresses
cross-task interference by assigning separate low-rank subspace transformations to each skill and
using a lightweight router for dynamic composition. Unlike orthonormal LoRA variants that still op-
erate on weight matrices, our approach enforces orthonormal subspace constraints directly on hid-
den states, thereby isolating learned features more effectively. Experiments on AlpacaEval demon-
strate that CS-ReFT outperforms both larger models (GPT-3.5) and other parameter-efficient meth-
ods (LoRA, LoReFT). Future research should focus on scalability (subspace merging or sharing for
large skill sets) and interpretability (shedding light on the router’s gating decisions). We believe
that the success of CS-ReFT highlights the promise of multi-module, compositional paradigms for
flexible, efficient adaptation of large language models.
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