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Abstract

Previous work reporting Beam Enumeration showed that probable substructures1

extracted from a generative model contains chemically meaningful information2

and can act as a source of explainability. In this work, we propose Dynamic Beam3

Enumeration as an extension to extract larger substructures. We show that this4

extracted insight can be made actionable and used to filter compounds in ultra-large5

make-on-demand libraries (109−12). The resulting molecules possess properties6

more aligned with the target objective than random sampling. Importantly, the7

results suggest that Dynamic Beam Enumeration can act as a bridge between8

generative design and library screening, such that even if generated molecules9

cannot be easily synthesized, extracted knowledge from the model can be used to10

find promising molecules that are make-on-demand.11

1 Introduction12

Molecular generative models have designed experimentally validated small molecule inhibitors113

and catalysts2. However, synthesizability remains a challenge as many generative approaches do14

not explicitly enforce a notion of synthesizability. To this end, existing solutions include manual15

prioritization by expert chemists, which is not scalable. Algorithmic solutions include synthesizability16

heuristics based on historic data3–6 or synthesizability-constrained generation which enforces chemi-17

cally feasible transformation during generation7–15. Alternatively, retrosynthesis models16–28, which18

predict feasible synthetic routes given a target molecule, can be included as an optimization objective19

during molecular generation29,30 or for post-hoc filtering31. On the other side of the spectrum (Fig.20

1b), virtual screening (VS), which aims to identify promising candidate molecules from fixed datasets21

containing synthesizable molecules continues to be a productive approach to molecular discovery in22

light of ultra-large molecular libraries (109−12)32–37.23

Previous work introduced Beam Enumeration38 which extracts probable molecular substructures24

during a language-based generative model’s optimization trajectory (towards the target objective).25

These substructures were shown to be aligned with the target property profile. In this work, we26

propose Dynamic Beam Enumeration (DBE) as an extension of Beam Enumeration to extract27

probable large substructures from a model checkpoint. This contrasts Beam Enumeration which uses28

extracted substructures only during optimization. These large substructures form a considerable part29

of a full molecule and can be used to screen make-on-demand molecular libraries, such that molecules30

with matching substructures are enriched in the properties of interest. These initial results suggest the31

potential for DBE to act as a bridge between generative molecular design and VS, demonstrating32

how extracted knowledge can be made actionable. Importantly, matched compounds are presumably33

synthetically accessible, overcoming potential synthesizability challenges of de novo generated34

molecules.35
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Figure 1: Dynamic Beam Enumeration. a. To enable the extraction of larger substructures, enumer-
ated beams are pruned and only those with the highest probability are kept and further enumerated.
b. Extracted large substructures can be used to filter make-on-demand libraries to directly identify
promising molecules, acting as a bridge between generative design and screening.

2 Methods36

Dynamic Beam Enumeration. We start from the Augmented Memory39 language-based (LSTM4037

RNN) molecular generative model which generates molecules as SMILES41. Previous work extended38

Augmented Memory with Beam Enumeration38 which exhaustively enumerates the top k (2 in this39

work) tokens for N (18 in this work) beam steps, resulting in kN token sub-sequences. These are40

sub-sequences which map to substructures because they are incomplete SMILES and do not map to a41

full molecule yet. The Beam Enumeration work showed that larger substructures are more meaningful42

and the maximum size that can be extracted is directly controlled by the number of beam steps. The43

authors stated that 18 beam steps is the limit (on a 24GB GPU) due to exponentially increasing44

memory requirements. In this work, we propose DBE to prune the sub-sequences set and enable the45

remaining beams to continue enumeration (Fig. 1a). Specifically, at the end of the N beam steps, we46

keep only the top (by probability) N −M beams (M is 12 in this work), resulting in kN−M beams47

left. These remaining beams are enumerated for M more steps, resulting in sub-sequences N +M48

tokens long, which map to larger substructures (Appendix A).49

Goal-directed Generative Design. In this work, the use case of DBE is to extract large substructures50

from a model checkpoint and then use it to filter a make-on-demand library. Therefore, the first step51

is to task Augmented Memory39 with optimizing a target objective. The case study is to generate52

molecules with good QuickVina2-GPU-2.142–44 docking scores to ATP-dependent Clp protease53

proteolytic subunit (ClpP) which is implicated in cancer45. The objective function is:54
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R(x) =
(
Docking Score(x)5 ×QED(x)

) 1
6 ∈ [0, 1] (1)

where x is a generated SMILES and the exponential terms apply more weighting to docking, i.e.,55

its contribution to the reward is greater than QED score46 which is an empirical measure of "drug-56

likeness" (see Appendix C for more details). All experiments were run across 10 seeds (0-9 inclusive)57

with 3,000 oracle calls.58

Ultra-large Make-on-demand Library. WuXi GalaXi47 contains billions of make-on-demand59

molecules and the sheer size makes screening (even with active learning48,49) computationally60

expensive. We consider two pseudo-randomly constructed subsets which we call WuXi (84,243,879)61

and WuXi-Large (756,642,169). See Appendix B for details. Extracted substructures from DBE are62

used to find match WuXi compounds that contain the substructure. The rationale for considering63

subsets differing by an order of magnitude is to increase the chances of a sufficient number of matches64

(1,000 in this work), as large substructures are necessarily specific.65

Experimental Setup. Augmented Memory was tasked to generate molecules satisfying the objective66

function (Eq. 1) across 10 replicates (10 seeds, 0-9 inclusive). DBE was run on all 10 model67

checkpoints, extracting substructures with either a minimum token length of 20 or 25. These68

substructures were then used to find 1,000 matching compounds in the WuXi subsets, which were69

then assessed according to the same objective function (Eq. 1) and compared to random sampling.70

We note that experiments that did not match 1,000 compounds could be rescued by screening a larger71

WuXi subset, as WuXi-Large, despite containing >700M molecules, is a small fraction of WuXi72

GalaXi.73

3 Results and Discussion74

Figure 2: Docking scores distribution and example extracted substructures. a. Docking scores
distribution of matched compounds vs. random sampling across WuXi and Wuxi-Large. b. Example
extracted substructures using Dynamic Beam Enumeration and also showing the best and worst (by
reward) and randomly matched compounds.
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Quantitative Results. Fig. 2a shows the distribution of pooled (all runs that successfully matched75

1,000 compounds) docking scores comparing DBE-matched compounds vs. random sampling. The76

docking scores of the matched compounds possess better docking scores, on average, than random77

sampling (statistically significant). For plots of QED and reward, see Appendix D. Next, Table78

1 shows the mean and standard deviation of all properties. Note that reward is the aggregated79

"goodness" of a molecule, calculated based on Eq. 1. We make the following observations: firstly,80

on the WuXi subset, DBE outperforms random sampling and extracting larger substructures (2581

vs. 20) further improves property values. Secondly, both docking scores and QED are improved82

because both properties are part of the objective function (Eq. 1). Thirdly, matched compounds83

maintain diversity which is often desirable in screening campaigns (Table 2). However, we note that84

this improvement is inconsistent as matching compounds on the WuXi-Large subset can result in85

worse QED. For future work, it would be straightforward to add additional physico-chemical property86

checks to guard against this by discarding matched molecules with poor QED, since it is cheap to87

compute. We further note that the reason for inconsistent results between WuXi and WuXi-Large88

may be due to the significantly decreased diversity of WuXi-Large (Table 2). Consequently, matched89

compounds may be too similar, rather than being a set of more distinctive compounds that simply90

share common substructures. The straightforward solution is to further increase the subset size and91

diversity. This would also increase the chances of matching 1,000 compounds.92

Qualitative Results. Fig. 2b shows the best and worst (by reward) and two random examples93

of matched compounds. We make the following observations: firstly, the best randomly sampled94

molecule is comparable to the best DBE molecules, but on average, they are worse (Table 1). Secondly,95

the substructures extracted from different model checkpoints via DBE can converge, as evidenced96

by identical substructures highlighted (Fig. 2) Thirdly, molecules with poor docking scores can be97

particularly large or contain undesirable atoms, e.g., Si, and it would be straightforward for future98

work to add a filter for these when matching. Moreover, it is well known that docking scores can99

be artificially inflated for molecules with high molecular weight and logP50. Consequently, we100

analyzed select physico-chemical property distributions of the DBE matched vs. randomly sampled101

compounds (Fig. D5). Interestingly, DBE-matched compounds may not only possess better docking102

and QED values, but can also be smaller with less heavy atoms and polar surface area. This supports103

the efficacy of our workflow and shows promise for future development. Finally, the results show that104

information extracted from a generative model can be made actionable and that the substructures105

themselves are chemically meaningful, otherwise, such heavily biased matching would not result in a106

statistically significant improvement over random sampling.107

Table 1: Extracted substructures are used to find compounds with the matching substructure in the
WuXi datasets. The numbers in parenthesis denote the number of replicates out of 10 that were
successful in matching 1,000 compounds. All compounds were pooled and the mean and standard
deviation for docking, QED, and reward are reported.

Method WuXi (84,243,879) WuXi-Large (756,642,169)

Docking QED Reward Docking QED Reward

Random (10, 10) −7.13 ± 1.23 0.55 ± 0.19 0.47 ± 0.06 −7.17 ± 1.29 0.50 ± 0.16 0.46 ± 0.06

Dynamic Beam Enumeration
20 Tokens (9, 9) −7.52 ± 1.15 0.60 ± 0.22 0.49 ± 0.06 −7.82 ± 1.04 0.41 ± 0.15 0.47 ± 0.05
25 Tokens (5, 1) −7.96 ± 0.83 0.74 ± 0.16 0.53 ± 0.04 −7.56 ± 1.08 0.36 ± 0.15 0.45 ± 0.05

4 Conclusion108

In this work, we introduced Dynamic Beam Enumeration (DBE) as an extension to Beam Enumer-109

ation 38. By extracting larger substructures from a generative model checkpoint, they can be used to110

find matching compounds in ultra-large make-on-demand datasets. Our results show that matched111

compounds have properties more aligned with the desired property profile than random sampling112

(Table 1), while maintaining diversity (Table 2). Future work will investigate different beam pruning113

methods, add filtering checks to discard matched compounds with poor physico-chemical properties,114

and extract larger substructures (>25 tokens). Our method demonstrates the potential for DBE to115

act as a bridge between generative design and library screening, showing how extracted chemical116

insights can be made actionable.117
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Appendix268

The Appendix contains details on how Dynamic Beam Enumeration extracts substructures, the WuXi269

GalaXi47 make-on-demand library, reward shaping details, and additional results.270

A Dynamic Beam Enumeration: How are Substructures Extracted?271

In this section, we discuss more in detail the formulation of the original Beam Enumeration38, how272

Dynamic Beam Enumeration extends the method, and finally, how substructures are extracted from273

token sequences. Beam Enumeration exhaustively enumerates the top k highest probability tokens274

from autoregressive language-based molecular generative models. When k = 2, this results in 2N275

sub-sequences, where N (18 in this work) is the number of beam steps. As the generative model276

is autoregressive, every sub-sequence has an associated probability given by the product of the277

individual token probabilities. For example, the sub-sequence "CN" has a probability of P(C) * P(N |278

C). Dynamic Beam Enumeration stores these probabilities for all enumerated sub-sequences, sorts279

them, then prunes the set and keeps only the highest 2N−M subsequences. M is 12 in this work,280

therefore 26 = 64 were kept. Next, these 64 sub-sequences were further enumerated for 12 steps,281

resulting in token sub-sequences of length M + N tokens = 30. Substructures are then extracted282

exactly as formulated in the original Beam Enumeration work: every consecutive sub-sub-sequence283

is considered and those that map to valid RDKit51 molecules are stored. For example, consider the284

sub-sequence ABCDEF. The set of consecutive sub-sub-sequences are A, AB, ABC, ABCD, ABCDE,285

ABCDEF. Every single sub-sequence undergoes this process and the substructure frequencies are286

summed up. The top-4 most frequently appearing substructures are the set of extracted substructures.287

Finally, Dynamic Beam Enumeration enforces the minimum token length of the substructures to be288

either 20 or 25 in this work. This ensures that the subtructures are larger than the original Beam289

Enumeration work which only considered substructures with minimum token length as long as 15.290

B WuXi GalaXi: Ultra-large Make-on-demand Library291

WuXi GalaXi47 contains billions of make-on-demand molecules. Dynamic Beam Enumeration292

extracted substructures are used to match compounds with these corresponding substructures. As293

searching through such a large database can be computationally prohibitive, we create two smaller294

sub-sets of WuXi in a pseudo-random manner. In this section, we detail the construction process295

of the two datasets which we call WuXi and WuXi-Large. Note that WuXi GalaXi is provided in296

Phases which can contain multiple Parts, each composed of a set of SMILES. Construction of the297

datasets involved extracting the raw zip files from WuXi GalaXi. Due to the size of the files, we298

performed the extraction for an arbitrary amount of time (not extracting the full file). This is why299

every file extraction as described below contains a seemingly completely random number of SMILES.300

B.1 WuXi301

WuXi was constructed by taking the entire Phase 1 (24,093,421 SMILES) and part of Phase 2 Part 3302

(the first 60,150,458 SMILES). This was done arbitrarily and resulted in 84,243,879 total SMILES.303

B.2 WuXi-Large304

WuXi-Large was constructed by taking some SMILES from all six parts of WuXi Phase 2.305

• Part 1: First 125,821,918306

• Part 2: First 122,345,617307

• Part 3: First 133,357,788308

• Part 4: First 132,610,455309

• Part 5: First 120,735,841310

• Part 6: First 121,770,550311

This was done arbitrarily and resulted in 756,642,169 total SMILES.312
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Figure C3: Reward shaping function for QuickVina2-GPU-2.1.

C Reward Shaping313

This section contains details on the reward shaping functions used during Augmented Memory39314

goal-directed generation. Fig. C3 shows the function for QuickVina2-GPU-2.142–44 docking scores.315

For QED46, raw values were used. Subsequently, the reward-shaped docking scores and raw QED316

values were aggregated to a single scalar following the equation below:317

R(x) =

[∏
i

pi(x)
wi

] 1∑
i wi

(2)

where x is a SMILES41, i is the index of an oracle given many oracles (MPO objective), pi is an oracle,318

and wi is the weight assigned to the oracle. In this work, the oracles were QuickVina2-GPU-2.142–44319

docking and QED46 with weights of 5 and 1, respectively.320

D Additional Results321

This section contains supplementary plots comparing Dynamic Beam Enumeration matched com-322

pounds vs. random sampling in WuXi and WuXi-Large. Fig. D4 shows the distributions of docking323

scores, QED, and reward. Fig. D5 shows the distributions of molecular weight, topological polar324

surface area (tPSA), and number of heavy atoms. Table 2 contains statistics on the internal diversity325

(IntDiv1)52 and #Circles53 with threshold = 0.75 of the matched vs. randomly sampled compounds.326

We note that WuXi-Large is notably less diverse than the smaller WuXi.327
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Figure D4: Distributions of oracle values.
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Figure D5: Distributions of property values.
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Table 2: Diversity of WuXi matched compounds vs. randomly sampled. The numbers in parenthesis
denote the number of replicates out of 10 that were successful in matching 1,000 compounds. All
compounds were pooled and the mean and standard deviation for IntDiv1 and #Circles are reported.

Method WuXi (84,243,879) WuXi-Large (756,642,169)

IntDiv1 #Circles (Threshold = 0.75) IntDiv1 #Circles (Threshold = 0.75)

Random (10, 10) 0.826 ± 0.001 90 ± 0.7 0.773 ± 0.002 5 ± 1

Dynamic Beam Enumeration
20 Tokens (9, 9) 0.781 ± 0.035 20 ± 10 0.630 ± 0.039 1 ± 1
25 Tokens (5, 1) 0.743 ± 0.027 8 ± 3 0.741 ± 0.000 4 ± 0
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