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ABSTRACT

Recent proprietary models (e.g., 03) have begun to demonstrate strong multimodal
reasoning capabilities. Yet, most existing open-source research concentrates on
training text-only reasoning models, with evaluations limited to mainly mathe-
matical and general-domain tasks. Therefore, it remains unclear how to effec-
tively extend reasoning capabilities beyond text input and general domains. This
paper explores a fundamental research question: Is reasoning generalizable across
modalities and domains? Our findings support an affirmative answer: General-
domain text-based post-training can enable such strong generalizable reasoning,
which is even more effective than in-domain multimodal training. Leveraging
this finding, we introduce X-REASONER, a vision-language model with reasoning
post training solely from general-domain text for generalizable reasoning, using a
two-stage approach: an initial supervised fine-tuning phase with distilled long
chain-of-thoughts, followed by reinforcement learning with verifiable rewards.
Experiments show that X-REASONER successfully transfers reasoning capabili-
ties to both multimodal and out-of-domain settings, outperforming prior models
trained with in-domain and multimodal data across various general and medical
benchmarks (Figure[I). Additionally, we find that X-REASONER’s performance
in specialized domains can be further enhanced through continued training on
domain-specific text-only data. Building upon this, we introduce X-REASONER-
MED, a medical-specialized variant that achieves SOTA (state-of-the-art)-level
performance on numerous text-only and multimodal medical benchmarks.
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Figure 1: X-REASONER (M blue bars), fine-tuned solely on general domain text [, shows strong
generalization across both modalities (e.g., multimodality E+kJ) and domains (e.g., medicine §JAR),
surpassing prior models (Table[7) trained with in-domain multimodal data. X-REASONER-MED (H
red bars), its medical-specialized variant, achieves SOTA-level performance on numerous medical
benchmarks.
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1 INTRODUCTION

Reasoning has emerged as a foundational capability in language models, paving the way for a new
paradigm known as test-time scaling (OpenAl, |[2024). Recent proprietary models, such as 03 (Ope-
nAlL 2025), have begun to demonstrate strong multimodal reasoning capabilities. However, existing
open-source research primarily focuses on advancing text-only reasoning, employing post-training
techniques such as long CoT (Chain-of-Thought) distillation and reinforcement learning with ver-
ifiable rewards (DeepSeek-Al et al., 2025} [Hu et al., |2025). More recently, a growing body of
open-source work has started addressing multimodal reasoning, i.e., extending reasoning to inputs
that include both vision and language (Wang et al.| [2025a; Meng et al., [2025} |Guo et al.||2024). Yet,
these multimodal approaches often rely heavily on curating multimodal datasets which are tailored
to specific tasks or domains, limiting their generalisability. In parallel, researchers have also inves-
tigated domain-specific reasoning, particularly in medicine (Zhang et al.| |2025a; |La1 et al., 2025
Pan et al.| 2025} [Su et al.||2025)), where models are typically trained on narrowly scoped in-domain
data with little capacity to generalize beyond their domain. As a result, how to develop models with
reasoning capabilities that generalize across both domains and modalities remains an open question.

In this work, we ask a fundamental, yet under-explored question: Is reasoning generalizable across
modalities and domains? Specifically, we investigate whether such generalizable reasoning can be
achieved through general-domain text-based reasoning post-training. Beyond scientific significance,
this question is also motivated by the practical advantages of general domain text-only training: i.e.
its compute efficiency and the abundance and verifiability of general-domain textual reasoning data,
which together allow us to avoid the cost and complexity of curating multimodal or domain-specific
data. Our hypothesis is that text-based post-training, when carefully designed, can impart universal
reasoning patterns that robustly transfer across both unseen domains and input modalities.

To investigate our hypothesis, we conduct an extensive empirical study using a two-stage text-only
post-training recipe: supervised fine-tuning (SFT) on general-domain text data with distilled long
CoTs, followed by reinforcement learning with verifiable rewards (RLVR) using mathematical tex-
tual questions. Remarkably, this pure general-domain textual training regimen proves sufficient to
instill strong reasoning capabilities, enabling high performance not only on general-domain text-
based tasks but also on complex multimodal and domain-specific tasks.. This finding suggests that
the core structure of reasoning can indeed be acquired from general-domain text alone.

Building upon these insights, we introduce X-REASONER, a 7B dense vision-language model post-
trained with the proposed recipe. Despite being trained only for text-based reasoning, X-REASONER
achieves superior performance on a suite of both text-only and multimodal reasoning benchmarks,
outperforming prior state-of-the-art 7B models that were explicitly trained with multimodal reason-
ing supervision, on challenging tasks including MMMU, MMMU-Pro and MathVista. We further
demonstrate that the improvement from X-REASONER can generalize to specialized domains such
as medicine. To boost in-domain performance even further, we explore the impact of incorporating
domain-specific textual data. To this end, we introduce X-REASONER-MED, a medical-specialized
variant of X-REASONER, which undergoes additional post-training on medical domain text. X-
REASONER-MED sets new records on numerous textual and multimodal medical tasks.

Our key contributions can be summarized as the following:

1. Generalizable Reasoning Study:
* We conduct an in-depth study and find that training reasoning solely on general-domain text
yields the most effective generalization across both input modalities and domains.
* We find that combining SFT and RL yields the strongest gains, and that math text data serves
as better generalization anchor than domain-specific multimodal data in RL.
2. Introduction of X-REASONER:
» We propose an effective post-training recipe for vision-language reasoning models that relies
entirely on general-domain text-based data.
* X-REASONER improves performance across modalities and domains, remarkably, outper-
forming models trained on multimodal data.
3. Medical Domain Extension via X-REASONER-MED:
¢ We present X-REASONER-MED, a domain-adapted variant of X-REASONER trained on
medical text, setting new 7B-scale records across medical text-only and multimodal tasks.
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2 A JOURNEY TOWARDS GENERALIZABLE REASONING
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knowledge

Figure 2: (Left) Our recipe for generalizable reasoning: based on an instruction-tuned VLM, we
first conduct SFT on general-domain text data with distilled long CoTs. This is followed by RLVR
on mathematical textual questions. This resulting model, X-REASONER, exhibits significantly
enhanced reasoning capabilities across modalities and domains. (Right) Model performance on
MMMU-Pro (multimodal task) steadily improves at each stage of our recipe.

In this section, we embark on a systematic exploration to understand whether generalizable reason-
ing can be effectively acquired through general-domain text-based post-training. Here, we define
generalizable reasoning as the ability to transfer reasoning capabilities not only across different task
distributions but also across modalities and domains. To thoroughly address this question, we break
it down into two sub-questions corresponding to two predominant post-training strategies used to
foster reasoning: SFT and RL. Starting from an instruction-tuned vision-language model (VLM) ca-
pable of following instructions yet benefiting less from CoT prompting (see Section[2.T), we perform
a detailed empirical study utilizing these two post-training methods. Our objective is to identify a
robust and effective recipe that achieves strong, generalizable reasoning capabilities purely through
general-domain text-based training. All experiments in this study are initialized from Qwen-2.5-
VL-7B, which is also the baseline. Evaluation tasks used are summarized Appendix [E]

2.1 RQI1: WILL GENERAL-DOMAIN TEXT-ONLY SFT IMPROVE GENERALIZABLE
REASONING?

Our first research question investigates whether SFT on general-domain textual data can already
enable generalizable reasoning, focusing on (1) the extent to which generalization can occur across
domains and modalities, and (2) the essential role of reasoning in enabling such generalization.

Extent of Generalization To examining the extent of the generalization from SFT training, we
perform SFT on Qwen-2.5-VL-7B using OpenThought s—-114k (Open Thoughts Team, [2025), a
text-only dataset covering general-domain data including math and science long-CoT reasoning dis-
tilled from DeepSeek-R1 (DeepSeek-Al et al. 2025). Results in Table[I|show the SFT models yield
consistent performance gains across the following generalization axes: cross-domain (X-domain),
cross-modality (X-modality) and the intersection of the two axes (We additionally observe text-
only SFT generalizes across distributions/tasks Appendix [G)). This indicates that SFT with general-
domain text-data already shows strong generalization capabilities across modalities and domains.

Role of CoT Reasoning in Generalization In Table [I} we observe that reasoning is crucial at
inference time (CoT prompt templates are in Appendix [D). Even among the baseline models, those
equipped with CoT prompting outperform those without it, underscoring that explicit reasoning is a
prerequisite for high performance on reasoning-centric tasks. However, the improvement from CoT
prompting in the baseline is notably smaller compared with SFT, indicating that the VLM’s inherent
CoT capability prior to SFT is limited and the long-CoT reasoning learned from SFT is essential to
unlock the full reasoning power. To further isolate the contribution of reasoning in SFT training, we
compare models trained with and without explicit CoT supervision using the same OpenThoughts
data: (1) a non-CoT SFT model trained directly on input-label pairs, and (2) a CoT SFT model
trained with reasoning traces. Across all experiments in Table |1} the CoT SFT model consistently
outperforms its non-CoT counterpart. Moreover, the CoT SFT models not only perform better in-
domain/modality but also exhibit stronger transfer capabilities. Notably, the performance lift from
CoT SFT over the CoT baseline is substantially larger than the corresponding improvement from
non-CoT SFT over the non-CoT baseline across all generation settings. This suggests that explicit
reasoning is the key to achieving both the highest performance and the optimal generalization across
new domains and modalities.
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Forced-Exiting: Mitigating Endless Thinking in Long-CoT SFT While long-CoT SFT effec-
tively learns transferrable reasoning patterns, such as self-reflection, verification, and correction (see
qualitative analyses in Appendix [0), it occasionally leads to endless thinking with non-terminating
outputs. To address this, we implement a forced-exiting mechanism inspired by Muennighoff et al.
(2025) to append ‘</think>’ after a length threshold is reached. This mechanism effectively
mitigates endless thinking and therefore improves final results (See Appendix [H]for details).

Table 1: Comparing baseline (Qwen-2.5-VL-7B) and SFT models trained on general-domain text-
only data with and without CoT on evaluation benchmarks across modalities and domains.

Non-CoT CoT
Task Modality Domain Baseline SFT Baseline SFT
MMLU-Pro Textual  General 39.5 39.5(+0.0) 47.6 50.4 (+2.8)
MedQA (X-domain) Textual Medical 49.3  52.1(+2.8) 50.5 55.2 (+4.7)
MMMU-Pro (X-modality) Multimodal General 34.6 36.0 (+1.4) 38.3 404 (+2.1)

MMMU-Pro-H (X-modality&domain) Multimodal Medical 28.1  30.2 (+2.1) 343 379 (+3.6)

SFT on general-domain text-only data, when enriched with long CoTs, can endow models
with generalizable reasoning capabilities that transfer across tasks, domains, and modalities.

2.2 RQ2: WILL GENERAL-DOMAIN TEXT-ONLY RL IMPROVE GENERALIZABLE
REASONING?

Reinforcement Learning (RL) has become an effective approach for training models to reason. In
this section, we explore whether general-domain (particularly mathematical) text-only RL can pro-
mote generalizable reasoning.

Learning Algorithm We adopt GRPO (Shao et al.l |2024) as our reinforcement learning algo-
rithm (Sutton, |1988), which avoids value functions by computing advantages within query-specific
groups, making it preferable to methods like PPO (Schulman et al. 2017) (see Appendix [B). To
enhance training, we apply recent advances (Liu et al.l 2025a; Yu et al.l 2025): (1) a higher clipping
threshold to boost response diversity and prevent entropy collapse; (2) a token-level policy gradient
to reduce response-length bias; and (3) minimal or no KL penalty, which benefits long CoT reason-
ing. For rewards, we use verifiable task accuracy—assigning 1 for semantically correct responses
and 0 otherwise—instead of learned reward models, which are prone to reward hacking (Gao et al.,
2022). No format rewards are needed, as the model reliably adheres to formatting.

The Role of Training Data: Math Text as a Generalization Anchor A central question in gen-
eralizable RL training is what type of training data best supports reasoning generalization? We
hypothesize that math textual questions are particularly effective, as math tasks naturally elicit long,
structured chains of thought that should benefit transfer across domains and modalities. To test this,
we finetune Qwen-2.5-VL-7B with RL on math textual questions from Orz (Hu et al., |2025). We
compare this approach with RL trained with popular existing in-domain and multimodal training
data including (1) MedQA, a domain-specific medical textual QA dataset . (2) ThinkLite (Wang
et al., [2025b)), a large-scale curated multimodal general-domain VQA dataset. and (3). OmniMed-
VQA, a large-scale multimodal medical-domain VQA dataset (We follow previous studies [Pan et al.
(2025)) to split 80% and 20% of the data as the train and test set). We report results across all evalua-
tion combinations of domain and modality: {general, medical} x {text, multimodal}. For additional
reference, we include in-distribution test set results for RL datasets that have corresponding test
splits. Specifically, we report results on MathVista testmini, MedQA test and OmniMedVQA test for
ThinkLite RL, MedQA RL and OmniMedVQA RL. Results in Table 2]reveal RL trained with math
text data achieves the overall best generalization with the highest average performance. Notably,
math text RL can achieve better performance in MMMU-Pro (a general-domain multimodal task)
than RL trained on general-domain multimodal data (ThinkLite). Similarly, on MMMU-Pro-Health,
a medical multimodal task, math text RL outperforms OmniMedVQA RL. We observe that while
OmniMedVQA does achieve near-perfect performance on its own test set: 97% accuracy, it fails
to generalize to other tasks—even those that are in-domain and multimodal. These findings high-
light that math text data offers the most effective foundation for cross-domain and cross-modality
generalization, outperforming in-domain multimodal training.
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Table 2: Comparing the effect from different training data on RL generalizatio from Qwen-2.5-VL-
7B. For some RL data, in-distribution (in-distr.) test results are also shown. Each result reports av-
erage accuracy over 5 runs (SD. in Table . gen.=general; med.=medical; OMV=0OmniMedVQA.

)

RL Data Domain Modality GSM8K  MMMU-Pro MMLU-Pro-H MMMU-Pro-H Average | In-distr.
(gen. text)(gen. multimodal) (med. text) (med. multimodal) (all)

Baseline - - 86.0 383 47.8 343 51.6 -

math Orz general  text 89.0 41.2 51.8 36.9 54.7 -

MedQA medical  text 86.9 39.7 53.9 34.4 53.7

ThinkLite general multimodal ~ 87.4 40.1 49.8 37.5 53.7 73.0

OMV  medicalmultimodal  85.1 36.2 453 29.0 48.9 97.0

Math text data provides effective generalization anchor for cross-domain and cross-modality
reasoning in RL, outperforming even in-domain multimodal training.

RL vs SFT Prior work has positioned RL as a powerful yet volatile method for promoting general-
izable reasoning (Chu et al. [2025), while SFT is widely recognized for its stability and efficacy in
capturing structured reasoning patterns. In addition, RL is often plagued by training instability and
convergence issues, particularly when applied in isolation (Yeo et al., 2025)). To better understand
their relative strengths, we conduct comparison between RL and SFT in fostering generalization
across domain shifts and modality transitions. Specifically, we compare general-domain text-only
SFT (trained on general-domain OpenThoughts data) and RL (trained on math questions from Orz),
and their combination (SFT + RL). Alongside the general-domain text task (MMLU-Pro), we eval-
uated the models in three distinct generalization settings: cross-domain (medical text: MMLU-Pro-
Health), cross-modality (multimodal: MMMU-Pro), cross domain&modality (multimodal medical:
NEJM Image Challenge). In Table [3] we first observe that general-domain SFT and RL can both
significantly improve from baseline across all the generalization settings, indicating both SFT and
RL can elicit generalizable reasoning. We further notice that pure RL is overall slightly better than
SFT. Interestingly, there is a synergy effect when we apply RL after SFT. We hypothesize that it is
because RL can benefit from the long and structured reasoning foundation established by SFT, and
further refines the model’s capabilities via RLVR. This is supported by the observation that SFT +
RL maintains the long response length induced by SFT. We also observe that SFT + RL is able to
regulate the endless thinking issue from SFT as the percentage of responses that exceeds the maxi-
mum length decreases during RL training, as shown in the training response clip ratio in Figure[5] In
summary, the hybrid approach, general-domain text-only SFT + RL, achieves the best results across
all generalization settings, effectively combining SFT’s stability and inductive strength with RL’s
reward-guided optimizatio

Table 3: Comparison of general-domain text-based RL, SFT, and SFT + RL in general-domain
textual task (MMLU-Pro) and generalization setups including cross-modality (X-modality), cross-
domain (X-domain) and combined cross-domain&modality (X-modality&domain) tasks. SFT is
trained with OpenThoughts data and RL is trained with math data. Baseline is Qwen-2.5-VL-7B

MMLU-Pro MMLU-Pro-Health MMMU-Pro NEJM Image Challenge Response Len

Method G qomain text)  (X-domain)  (X-modality) (X-domain&modality)  (#words)
Baseline 47.6 47.8 383 41.8 122
SFT 50.4 50.4 40.4 45.0 946
RL 523 51.8 413 45.0 461
SFT +RL 533 53.1 42.5 45.7 977

Combining SFT with RL, both trained on general-domain text-only data, proves to be the
most effective strategy for achieving optimal performance and robust generalization.

"We also conduct a more controlled comparison between SFT and RL, both trained on the same MedQA
data, and arrive at the same conclusion (Table[T0).
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2.3 PUTTING IT ALL TOGETHER: X-REASONER

Our investigation reveals that general-domain text-only post-training, when carefully designed, can
drive strong generalizable reasoning across tasks, domains, and modalities. Therefore, we conclude
our investigation by consolidating our findings into a coherent training recipe, illustrated in Figure[2]
culminating in a powerful generalizable reasoning model named X-REASONER. Specifically, ini-
tialized with Qwen?2 . 5-VL-7B-Instruct (Bai et al.,|2025), our training recipe follows:

Step 1: text-only general-domain Long-CoT SFT. We begin with SFT to elicit ex-
plicit structured reasoning using long-CoT traces. The train data is the general-domain
open—-thoughts/OpenThoughts—-114k dataset (Open Thoughts Team, 2025), which con-
tains reasoning traces on math, coding and science questions, distilled by DeepSeek-R1 (DeepSeek-
Al et al |2025) (We also compared with using math data from RL stage for SFT but found worse
performance in Appendix ) We performed SFT for 4 epochs with a learning rate of 1 x 1075.

Step 2: text-only math RLVR. After SFT, we further refine our model using RL with ver-
ifiable rewards to enhance its reasoning accuracy and generalization. We train our model on
Orz-math-57k, a set of 57k mathematical textual questions curated by [Hu et al.| (2025). Dur-
ing this stage, we set the total training episodes/epochs to 3, use a learning rate of 3 x 107°, a global
batch size of 128, and sample 8 rollouts per query with a maximum response length of 4,096 tokens.

SFT used 8x40GB A100 GPUs for 8 hours, while RLVR used 32x40GB A100 GPUs for 56 hours.
See Appendix [C]and Appendix [N]for full training details and the visualized training dynamics.

3 A COMPREHENSIVE EVALUATION OF X-REASONER

Evaluation Setup To assess the generalizability of X-REASONER, we evaluate its performance
across four distinct settings: (1) General-domain text-only tasks; (2) General-domain multimodal
tasks (X-modality); (3) Specialized-domain text-only tasks (X-domain); and (4) Specialized-domain
multimodal tasks (X-modality&domain) (see Appendix [E] for details). The baseline is Qwen-2.5-
VL-7B. Inference is conducted using the vLLM backend (Kwon et al.,[2023)). Consistent with recent
reproducibility studies (Hochlehnert et al.| 2025]), we observe variability even under greedy decoding
(temperature=0), due to hardware and environment differences. Therefore, while we report greedy
decoding results to compare with previous studies, we report average accuracy, majority-vote accu-
racy, and pass@n accuracy over five runs at temperature 0.3 to ensure robustness and reproducibil-
ity. Majority-vote accuracy follows the self-consistency method (Wang et al.| 2023)) to scale parallel
test-time evaluation. Unless noted otherwise, all evaluations use CoT prompting (prompt templates
are in Appendix D). Additionally, we apply forced-exiting mechanism as described in Section [2.1]
capping output generation at 4,096 tokens, to mitigate endless thinking.

3.1 X-REASONER’S CROSS-MODALITY GENERALIZATION

In Figure 3] we assess the cross-modality generalization capabilities of X-REASONER. We first
validate its effectiveness on text-only tasks, observing significant performance gains in MMLU-Pro
and GSM8K. Moreover, these improvements robustly transfer to multimodal benchmarks, reflected
consistently across average, majority vote, and pass@5 accuracy. These results suggest not only su-
perior reasoning ability but also a broader and more effective search space for further improvement.

‘We further show that X-REASONER achieves SOTA on MMMU, MMMU-Pro and MathVista, while
remaining competitive on others in Table i} Notably, these SOTA models are extensively trained
on multimodal data, underscoring the critical finding that text-only reasoning training alone is suffi-
cient—and likely accounts for the majority of learning necessary for effective multimodal reasoning.
In Appendix [[] we explored continue training X-REASONER with multimodal RL, but results were
mixed, underscoring the challenge of curating transferable multimodal data (Wei et al., 2025).

Qualitative analysis in Appendix [O]shows that X-REASONER consistently produces more sophisti-
cated reasoning than the baseline, exhibiting detailed planning, verification (e.g., “wait” steps), and
self-correction. In cross-modality tasks, it effectively integrates visual inputs into step-by-step rea-
soning. For instance, in Table[I8] X-REASONER accurately analyzes all bar values in a plot, avoid-
ing common baseline errors. These examples demonstrate that X-REASONER internalizes general
reasoning patterns through text-only training and successfully transfers them across modalities.
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X-REASONER, trained on text-only data, consistently improves multimodal task perfor-
mance, matching or surpassing prior SOTA trained explicitly with multimodal data.
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Figure 3: Comparing X-REASONER and baseline on text-only and multi-modal benchmarks (SD
reported in Table [T4). Despite being trained with text-only data, X-REASONER can significantly
improve multi-modal benchmarks, showing the generalization of X-REASONER’s reasoning.

Table 4: X-REASONER outperforms SOTA multimodal models on the 7B/8B scale on challenging
multimodal tasks. All results are based on greedy decoding.

Reasoning MMMU MMMU-Pro MathVista MathVision
Model

Data Source (Val) (testmini)
Qwen-VL-2.5-7B-Instruct (Bai et al.,[2025) - 53.0 38.7 62.8 25.0
R1-Onevision-7B (Yang et al.,|2025) multimodal - - 64.1 29.9
MAmmoTH-VL2-7B (Jia et al.,|2025) multimodal 54.7 40.7 68.1 -
MM-Eureka-8B (Meng et al.,|2025) multimodal 49.2 - 67.1 22.2
Mulberry-7B (Yao et al.| [2024) multimodal 55.0 36.8 63.1 -
X-REASONER (7B) text 56.4 43.0 69.0 29.6

Ablation Study: Is X-REASONER simply solving the text-solvable examples? A potential lim-
itation in evaluating vision-language models is their tendency to rely on text-based shortcuts, solv-
ing tasks without genuinely integrating visual information. To rigorously confirm that the cross-
modality generalization observed with X-REASONER is not merely due to improved text-only short-
cut solutions, we conduct an ablation experiment. Specifically, we identify and remove text-solvable
examples and assess whether performance gains persist afterward. To identify these text-solvable ex-
amples, we mask visual inputs for multimodal tasks previously evaluated in Section 3.1} performing
text-only evaluations using both X-REASONER and the baseline Qwen2 .5-VL-7B-Instruct.
For each model, we sample three independent responses per question and eliminate examples con-
sistently solved through text alone. Table [5] summarizes the number of remaining examples after
removing text-solvable examples for each task, along with the corresponding model performances.
While a substantial number of text-solvable instances were identified, these primarily reflect models’
textual reasoning shortcuts rather than dataset issues (Yue et al., [2024b). Crucially, X-REASONER
maintains performance advantages over the baseline after text-only solvable examples are excluded,
affirming true multimodal reasoning capabilities. This confirms that X-REASONER effectively uti-
lizes visual context within the reasoning framework acquired through text-only training.

X-REASONER achieves authentic multimodal reasoning capabilities, as evidenced by sus-
tained improvements after excluding text-only solvable examples.
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Table 5: Comparing X-REASONER and baseline performance after removing text-solvable exam-
ples. The improvement of X-REASONER remains, indicating true multimodal generalizability.

Task #original - #text-solvable =#  Baseline X-REASONER
MMMU 900 - 308 = 592 39.3 414
MMMU-Pro 1730 - 259 = 1471 334 36.4
MathVista (testmini) 1000 - 257 = 743 579 60.6
MathVision 3040 - 448 = 2592 18.6 21.8
MMStar 1500 - 259 = 1241 56.6 59.0

3.2 X-REASONER IN MEDICINE: A CROSS-MODALITY AND CROSS-DOMAIN STUDY

In this section, we examine the cross-domain and cross-modality transfer capabilities of X-
REASONER, specifically within medical contexts. While X-REASONER is trained exclusively on
general-domain text data, we further probe the benefits of domain-specific adaptation by developing
X-REASONER-MED, which extends X-REASONER with additional training using medical text data.

Evaluation Setup Our evaluation includes three text-only medical tasks: MMLU-Pro-Health (the
healthcare subset of MMLU-Pro (Wang et al.| [2024b), selected following the setup in (Chen et al.,
2024a)), MedQA (the original USMLE version), and MedQA (4-ops: the four-choice version). For
multimodal medical evaluations, we utilize healthcare subsets of MMMU (Yue et al.| 2024a) and
MMMU-Pro (Yue et al., 2024b)), designated as MMMU-Health and MMMU-Pro-Health respec-
tively. We also include MedXpertQA-MM (Zuo et al., 2025), OmniMedVQA (Hu et al.,|2024) and
NEJM Image Challenge (New England Journal of Medicinel 2025)), which are specifically designed

to evaluate medical knowledge and reasoning.
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Figure 4: Comparing X-REASONER, X-REASONER-MED and baseline on text and multimodal
medical benchmarks (SD. reported in Table[T5). X-REASONER, trained with general-domain text-
only data brings consistent improvement across medical tasks. X-REASONER-MED, obtained by
continued training of X-REASONER on medical text data, further improves performance.

Results Figure ] shows X-REASONER demonstrates robust cross-domain and cross-modality gen-
eralization capabilities, surpassing baseline models on both textual and multimodal medical tasks.
Remarkably, as detailed in Figure [l X-REASONER surpassing or matching previous SOTA on
MedXpertQA-MM and MMMU-Health, despite previous SOTA models being explicitly trained on
multimodal medical data. Qualitative assessments in Appendix [O]further illustrate X-REASONER'’s
effective integration of visual information and medical domain-specific reasoning. As an example,
X-REASONER accurately identifies medical patterns, such as correctly recognizing white matter ab-
normalities indicative of progressive multifocal leukoencephalopathy in histology slides (Table[T9).
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X-REASONER substantially enhances medical task performance, confirming its strong ca-
pability for cross-domain and cross-modality generalization.

X-REASONER-MED: Enhancing Medical Performance We investigate whether additional
medical-domain text data can further enhance X-REASONER’s medical performance. To explore
this, we extend X-REASONER’s training with text-only MedQA data. Specifically, starting from X-
REASONER, we perform SFT with distilled CoTs from QwQ-32B (Qwen Team, 2025), followed by
RLVR on the same data (For ablation, we also compared MedQA SFT + RL with X-REASONER-
MED in Appendix [K] showing X-REASONER-MED is better, highlighting the benefit of starting
domain adaptation from a generalist X-REASONER).

The resulting model, X-REASONER-MED, achieves further improvements across all medical bench-
marks. As depicted in Figure[d}, X-REASONER-MED consistently surpasses X-REASONER in terms
of average and majority vote accuracies. Notably, X-REASONER sometimes attains higher pass@n
scores, suggesting it explores a broader search space. Conversely, X-REASONER-MED, benefit-
ing from targeted medical-domain fine-tuning, already leverages this search space more effectively
but potentially with reduced room for further gains. Nevertheless, as highlighted in Figure |1} X-
REASONER-MED sets new SOTA performance for both text-only and multimodal medical tasks,
validating our hypothesis that combining general text-based reasoning with domain-specific text-
based fine-tuning unlocks substantial additional performance gains for specialized domains.

X-REASONER-MED, obtained by further training X-REASONER on medical text, improves
further and sets new SOTA on both text and multimodal medical benchmarks.

4 RELATED WORK

In RL-based learning of multimodal reasoning, most methods such as VFT (Liu et al., [2025b),
MM-Eureka (Meng et al., [2025)), Vision-R1 (Huang et al., [2025a), R1-V (Chen et al. 2025), and
Zhou et al.|(2025); Deng et al.|(2025)); Wan et al.|(2025) refine reasoning in VLM with multi-modal
training data. [Peng et al.| (2025b) present a two-stage RL approach that leverages both text-based
and multimodal data. On the SFT side, reasoning is commonly distilled from captions or responses
synthesized by VLMs. Methods such as MaMMOTH (Guo et al., 2024; Jia et al. 2025)), Vision-
R1 (Huang et al.,|2025a), R1-OneVision (Yang et al., [2025)), and Llava-CoT (Xu et al., [2024)) follow
this strategy to infuse reasoning into multimodal models during SFT. Alternatively, some methods
incorporate visual grounding by coupling a text-based reasoning model with a vision encoder (Peng
et al.,|2025a). Closest to our study, Du et al.| (2025) also explores text-only training for multimodal
tasks, though their setting is limited to SFT and general-domain evaluation. Recently, there has also
been growing interest in applying reasoning techniques to specialized domains such the medical
domain, initially focusing on the text modality (Zhang et al., [2025aj |Huang et al., [2025b; |(Chen
et al.| [2024a). Subsequently, researchers have begun exploring RL-based training on multimodal
medical datasets to enhance multimodal reasoning performance in the medical domain, e.g., [Pan
et al.[|(2025) and [Lai et al.| (2025)).

5 CONCLUSION

This study demonstrates that general domain text-only SFT+RL is the most effective recipe for learn-
ing generalizable reasoning even for multi-modal and out-of-domain settings. Building on this in-
sight, we introduce X-REASONER, a simple yet effective post-training recipe that enhances the rea-
soning capabilities of VLMs using only general-domain text-based supervision. Through extensive
experiments, we show that X-REASONER generalizes effectively across modalities and domains,
surpassing prior SOTA trained with in-domain multimodal data. We further show X-REASONER
serves as a strong foundation for domain specialization by introducing X-REASONER-MED, a vari-
ant further trained on medical text, which achieves new SOTA on various medical benchmarks across
both text-only and multimodal settings. We leave to future work the exploration of continued in-
domain multimodal SFT/RL and we provide detailed discussion on our limitations in Appendix



Under review as a conference paper at ICLR 2026

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL Technical Report, 2025.
URLhttp://arxiv.org/abs/2502.13923.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. HuatuoGPT-ol, Towards Medical Complex Reasoning with LLMs, 2024a.
URLhttp://arxiv.org/abs/2412.18925.

Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization
ability in vision-language models with less than $3. https://github.com/Deep—-Agent/
R1-V, 2025. Accessed: 2025-02-02.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are We on the Right Way for Evaluating Large
Vision-Language Models? In Proceedings of Conference on Neural Information Processing
Systems (NeurIPS), 2024b. URL http://arxiv.org/abs/2403.20330.

Zui Chen, Yezeng Chen, Jiaqi Han, Zhijie Huang, Ji Qi, and Yi Zhou. An Empirical Study of
Data Ability Boundary in LLMs’ Math Reasoning, 2024c. URL http://arxiv.org/abs/
2403.00799.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. SFT Memorizes, RL Generalizes: A Comparative Study of
Foundation Model Post-training, 2025. URL http://arxiv.org/abs/2501.17161|

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems, 2021. URL http://arxiv.
org/abs/2110.14168.

Noel C. F. Codella, Ying Jin, Shrey Jain, Yu Gu, Ho Hin Lee, Asma Ben Abacha, Alberto
Santamaria-Pang, Will Guyman, Naiteek Sangani, Sheng Zhang, Hoifung Poon, Stephanie Hy-
land, Shruthi Bannur, Javier Alvarez-Valle, Xue Li, John Garrett, Alan McMillan, Gaurav Ra-
jguru, Madhu Maddi, Nilesh Vijayrania, Rehaan Bhimai, Nick Mecklenburg, Rupal Jain, Daniel
Holstein, Naveen Gaur, Vijay Aski, Jeng-Neng Hwang, Thomas Lin, Ivan Tarapov, Matthew Lun-
gren, and Mu Wei. MedImagelnsight: An Open-Source Embedding Model for General Domain
Medical Imaging, 2024. URL http://arxiv.org/abs/2410.06542.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, and 190 additional authors. DeepSeek-R1: Incentivizing
Reasoning Capability in LLMs via Reinforcement Learning, 2025. URL http://arxiv.
org/abs/2501.12948l

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. OpenVLThinker:
An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement,
2025. URL http://arxiv.org/abs/2503.17352.

Yifan Du, Zikang Liu, Yifan Li, Wayne Xin Zhao, Yuqi Huo, Bingning Wang, Weipeng Chen, Zheng
Liu, Zhongyuan Wang, and Ji-Rong Wen. Virgo: A preliminary exploration on reproducing ol-
like mllm, 2025. URL |https://arxiv.org/abs/2501.01904.

Leo Gao, John Schulman, and Jacob Hilton. Scaling Laws for Reward Model Overoptimization,
2022. URL http://arxiv.org/abs/2210.10760.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, and 188 ad-
ditional authors. Gemma 2: Improving Open Language Models at a Practical Size, 2024. URL
http://arxiv.org/abs/2408.00118.

10


http://arxiv.org/abs/2502.13923
http://arxiv.org/abs/2412.18925
https://github.com/Deep-Agent/R1-V
https://github.com/Deep-Agent/R1-V
http://arxiv.org/abs/2403.20330
http://arxiv.org/abs/2403.00799
http://arxiv.org/abs/2403.00799
http://arxiv.org/abs/2501.17161
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2410.06542
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2503.17352
https://arxiv.org/abs/2501.01904
http://arxiv.org/abs/2210.10760
http://arxiv.org/abs/2408.00118

Under review as a conference paper at ICLR 2026

Jarvis Guo, Tuney Zheng, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Yizhi Li, Graham Neubig,
Wenhu Chen, and Xiang Yue. MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction
Tuning at Scale, 2024. URL http://arxiv.org/abs/2412.05237.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
Matthias Bethge. A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to
Reproducibility, 2025. URL http://arxiv.org/abs/2504.07086.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model, 2025. URL https://arxiv.org/abs/2503.24290.

Yutao Hu, Tianbin Li, Quanfeng Lu, Wengi Shao, Junjun He, Yu Qiao, and Ping Luo. OmniMed-
VQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024. URL http://arxiv.org/abs/2402.09181.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large Language Models Can Self-Improve. In Proceedings of Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2023. URL https://aclanthology.org/
2023 .emnlp-main.o67/.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu,
and Shaohui Lin. Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language
Models, 2025a. URL http://arxiv.org/abs/2503.067409.

Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, and Yuyin Zhou. m1: Unleash the potential
of test-time scaling for medical reasoning with large language models, 2025b. URL https:
//arxiv.org/abs/2504.00869.

Yiming Jia, Jiachen Li, Xiang Yue, Bo Li, Ping Nie, Kai Zou, and Wenhu Chen. VisualWeblInstruct:
Scaling up Multimodal Instruction Data through Web Search, 2025. URL http://arxiv.
org/abs/2503.10582.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-R1: Reinforcement
Learning for Generalizable Medical Reasoning in Vision-Language Models, 2025. URL http:
//arxiv.org/abs/2503.13939.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tris-
tan Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-
and-vision assistant for biomedicine in one day. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 28541-28564. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
Sabcdf8ecdcachbal28c6662789194572-Paper—-Datasets_and_Benchmarks.
pdfl

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding R1-Zero-Like Training: A Critical Perspective, 2025a. URL http:
//arxiv.org/abs/2503.20783.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025b.

11


http://arxiv.org/abs/2412.05237
http://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2503.24290
http://arxiv.org/abs/2402.09181
https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67
http://arxiv.org/abs/2503.06749
https://arxiv.org/abs/2504.00869
https://arxiv.org/abs/2504.00869
http://arxiv.org/abs/2503.10582
http://arxiv.org/abs/2503.10582
http://arxiv.org/abs/2503.13939
http://arxiv.org/abs/2503.13939
https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf
http://arxiv.org/abs/2503.20783
http://arxiv.org/abs/2503.20783

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In Proceedings of
International Conference on Learning Representations (ICLR), 2019. URL http://arxiv.
org/abs/1711.05101.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. MathVista: Evaluating Mathematical Reasoning of
Foundation Models in Visual Contexts. In Proceedings of International Conference on Learning
Representations (ICLR), 2024. URL http://arxiv.org/abs/2310.02255.

Rengian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu. Biogpt:
generative pre-trained transformer for biomedical text generation and mining. Briefings in bioin-
formatics, 23(6):bbac409, 2022.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
Han, Botian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng
Zhang, and Wenqi Shao. MM-Eureka: Exploring the Frontiers of Multimodal Reasoning with
Rule-based Reinforcement Learning, 2025. URL http://arxiv.org/abs/2503.07365.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. S1: Simple test-time
scaling, 2025. URL http://arxiv.org/abs/2501.19393|

Robert Osazuwa Ness, Katie Matton, Hayden Helm, Sheng Zhang, Junaid Bajwa, Carey E. Priebe,
and Eric Horvitz. Medfuzz: Exploring the robustness of large language models in medical ques-
tion answering, 2024. URL https://arxiv.org/abs/2406.06573.

New England Journal of Medicine. Image challenge, 2025. URL https://www.nejm.org/
image—-challenge. Accessed: 2025-05-02.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King,
Jonathan Larson, Yuanzhi Li, Weishung Liu, Rengian Luo, Scott Mayer McKinney, Robert Os-
azuwa Ness, Hoifung Poon, Tao Qin, Naoto Usuyama, Chris White, and Eric Horvitz. Can
Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine,
2023. URL http://arxiv.org/abs/2311.16452.

Harsha Nori, Naoto Usuyama, Nicholas King, Scott Mayer McKinney, Xavier Fernandes, Sheng
Zhang, and Eric Horvitz. From Medprompt to ol: Exploration of Run-Time Strategies for Medi-
cal Challenge Problems and Beyond, 2024. URL http://arxiv.org/abs/2411.03590.

Open Thoughts Team. Open Thoughts, 2025. URL https://www.open-thoughts.ai/|
OpenAl Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

OpenAl Openai 03 and o4-mini system card. https://cdn.
openail.com/pdf/2221c875-02dc-4789-800b—-e7758f£3722cl/
o03-and-o4-mini-system-card.pdf} 2025. Accessed: 2025-04-29.

Pallets. Jinja. https://github.com/pallets/jinjal 2024.

Jiazhen Pan, Che Liu, Junde Wu, Fenglin Liu, Jiayuan Zhu, Hongwei Bran Li, Chen Chen, Cheng
Ouyang, and Daniel Rueckert. MedVLM-R1: Incentivizing Medical Reasoning Capability of
Vision-Language Models (VLMs) via Reinforcement Learning, 2025. URL http://arxiv.
org/abs/2502.19634.

Yi Peng, Chris, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo
Hao, Jiachun Pan, Tianyidan Xie, Li Ge, Rongxian Zhuang, Xuchen Song, Yang Liu,
and Yahui Zhou. Skywork rlv: Pioneering multimodal reasoning with chain-of-thought.
https://github.com/SkyworkAl/Skywork-R1V/blob/main/report/Skywork_RI1V.pdf, 2025a. URL
https://huggingface.co/Skywork/Skywork—-R1V-38B.

Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-rl: Empowering 3b Imms with strong reasoning
abilities through two-stage rule-based rl. arXiv preprint arXiv:2503.07536, 2025b.

12


http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2310.02255
http://arxiv.org/abs/2503.07365
http://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2406.06573
https://www.nejm.org/image-challenge
https://www.nejm.org/image-challenge
http://arxiv.org/abs/2311.16452
http://arxiv.org/abs/2411.03590
https://www.open-thoughts.ai/
https://arxiv.org/abs/2412.16720
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://github.com/pallets/jinja
http://arxiv.org/abs/2502.19634
http://arxiv.org/abs/2502.19634
https://huggingface.co/Skywork/Skywork-R1V-38B

Under review as a conference paper at ICLR 2026

Hoifung Poon, Tristan Naumann, Sheng Zhang, and Javier Gonzdlez Herndndez. Precision health
in the age of large language models. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’23, pp. 5825-5826, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599568.
URL https://doi.org/10.1145/3580305.3599568.

Qwen Team. QwQ-32B: Embracing the Power of Reinforcement Learning, 2025. URL https:
//gwenlm.github.io/blog/qwg—-32b/.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, 2017. URL http://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, 2024. URL http://arxiv.org/abs/
2402.03300.

Yanzhou Su, Tianbin Li, Jiyao Liu, Chenglong Ma, Junzhi Ning, Cheng Tang, Sibo Ju, Jin Ye,
Pengcheng Chen, Ming Hu, Shixiang Tang, Lihao Liu, Bin Fu, Wenqi Shao, Xiaowei Hu, Xiang-
wen Liao, Yuanfeng Ji, and Junjun He. GMAI-VL-R1: Harnessing Reinforcement Learning for
Multimodal Medical Reasoning, 2025. URL http://arxiv.org/abs/2504.01886,

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9-44,1988. URL http://link.springer.com/10.1007/BF00115009.

Zhongwei Wan, Zhihao Dou, Che Liu, Yu Zhang, Dongfei Cui, Qinjian Zhao, Hui Shen, Jing Xiong,
Yi Xin, Yifan Jiang, et al. Srpo: Enhancing multimodal Ilm reasoning via reflection-aware rein-
forcement learning. arXiv preprint arXiv:2506.01713, 2025.

Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhu Chen. VI-
rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning.
arXiv preprint arXiv:2504.08837, 2025a.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2024a. URL https://openreview.net/forum?id=QWTCcxMpPAL

Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
visual reasoning self-improvement. arXiv preprint arXiv:2504.07934, 2025b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
Models. In Proceedings of International Conference on Learning Representations (ICLR), 2023.
URLhttp://arxiv.org/abs/2203.11171.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024b.

Yana Wei, Liang Zhao, Jianjian Sun, Kangheng Lin, Jisheng Yin, Jingcheng Hu, Yinmin Zhang,
En Yu, Haoran Lv, Zejia Weng, et al. Open vision reasoner: Transferring linguistic cognitive
behavior for visual reasoning. arXiv preprint arXiv:2507.05255, 2025.

Yiqing Xie, Sheng Zhang, Hao Cheng, Pengfei Liu, Zelalem Gero, Cliff Wong, Tristan Naumann,
Hoifung Poon, and Carolyn Rose. Doclens: Multi-aspect fine-grained evaluation for medical text
generation. arXiv preprint arXiv:2311.09581, 2023.

Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. LLaVA-ol: Let Vision Lan-
guage Models Reason Step-by-Step, 2024. URL http://arxiv.org/abs/2411.10440.

13


https://doi.org/10.1145/3580305.3599568
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2504.01886
http://link.springer.com/10.1007/BF00115009
https://openreview.net/forum?id=QWTCcxMpPA
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2411.10440

Under review as a conference paper at ICLR 2026

Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal rea-
soning through cross-modal formalization. arXiv preprint arXiv:2503.10615, 2025.

Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,
Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like reasoning
and reflection via collective monte carlo tree search. arXiv preprint arXiv:2412.18319, 2024.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. 2025. URL https://arxiv. org/pdf/2502.03373, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gachong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: An Open-
Source LLM Reinforcement Learning System at Scale, 2025. URL http://arxiv.org/
abs/2503.14476.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556-9567, 2024a.

Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal
understanding benchmark. arXiv preprint arXiv:2409.02813, 2024b.

Juan Manuel Zambrano Chaves, Shih-Cheng Huang, Yanbo Xu, Hanwen Xu, Naoto Usuyama,
Sheng Zhang, Fei Wang, Yujia Xie, Mahmoud Khademi, Ziyi Yang, Hany Awadalla, Julia
Gong, Houdong Hu, Jianwei Yang, Chunyuan Li, Jianfeng Gao, Yu Gu, Cliff Wong, Mu Wei,
Tristan Naumann, Muhao Chen, Matthew P. Lungren, Akshay Chaudhari, Serena Yeung-Levy,
Curtis P. Langlotz, Sheng Wang, and Hoifung Poon. A clinically accessible small multi-
modal radiology model and evaluation metric for chest x-ray findings. Nature Communica-
tions, 16(1), April 2025. ISSN 2041-1723. doi: 10.1038/s41467-025-58344-x. URL http:
//dx.doi.org/10.1038/s41467-025-58344~-x.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STaR: Bootstrapping Reasoning With
Reasoning. In Proceedings of Conference on Neural Information Processing Systems (NeurIPS),
2022. URL http://arxiv.org/abs/2203.14465.

Sheng Zhang, Qianchu Liu, Guanghui Qin, Tristan Naumann, and Hoifung Poon. Med-RLVR:
Emerging Medical Reasoning from a 3B base model via reinforcement Learning, 2025a. URL
http://arxiv.org/abs/2502.19655.

Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Preston,
Rajesh Rao, Mu Wei, Naveen Valluri, et al. A multimodal biomedical foundation model trained
from fifteen million image—text pairs. NEJM Al, 2(1):Aloa2400640, 2025b.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
Zero’s “Aha Moment” in Visual Reasoning on a 2B Non-SFT Model, 2025. URL http://
arxiv.org/abs/2503.05132.

Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning
Ding, and Bowen Zhou. MedXpertQA: Benchmarking Expert-Level Medical Reasoning and
Understanding, 2025. URL http://arxiv.org/abs/2501.18362,

14


http://arxiv.org/abs/2503.14476
http://arxiv.org/abs/2503.14476
http://dx.doi.org/10.1038/s41467-025-58344-x
http://dx.doi.org/10.1038/s41467-025-58344-x
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2502.19655
http://arxiv.org/abs/2503.05132
http://arxiv.org/abs/2503.05132
http://arxiv.org/abs/2501.18362

Under review as a conference paper at ICLR 2026

A LIMITATIONS

While we show X-REASONER effectively equips vision-language models with generalizable rea-
soning capabilities, we acknowledge several limitations that offer opportunities for future work:

Base Model Constraints Prior studies have emphasized the importance of starting from pretrained
base checkpoints, rather than instruction-tuned models, to better incentivize the emergence of rea-
soning behaviors (DeepSeek-Al et al., 2025} Hu et al 2025). However, in our case, we are con-
strained by computational resources and the lack of base VLMs in the recent open-source releases,
limiting our ability to empirically validate these claims.

Model Scale and Backbone Diversity Prior work suggests that larger models tend to exhibit
stronger reasoning capabilities (DeepSeek-Al et al., [2025). However, due to computational con-
straints, our model size is limited to 7B parameters. We also focused exclusively on the Qwen-VL
series and did not evaluate other publicly available VLMs.

Task Scope Our evaluation primarily targets mathematical questions and multiple-choice questions
across general and medical domains. While these benchmarks provide clear, verifiable supervision
for assessing reasoning capabilities, they do not capture the full spectrum of real-world reasoning
challenges. In particular, we have not tested our approach on open-ended generation, interactive
dialogue, or instruction-following scenarios. Understanding how reasoning generalizes to such un-
constrained settings remains an important area for future exploration. Our evaluation settings also
focus on two modalities—text and vision—which are currently the most central to vision-language
foundation models. Extending this framework to additional modalities such as audio and video
remains an important and valuable direction for future work

B GRPO

Let 7y be a vision language model (VLM) based on decoder-only transformers and parameterized
by 6. It takes as input a sequence of tokens, denoted by q, such as a question, and autoregressively
decodes the response, denoted by o. Optionally, 7y can also take visual features, such as pictures, as
input that is tokenized by a vision encoder. However, visual features are not included in our training
paradigm, and q during training is supposed to be natural languages only. We use text-only math
datasets for training. Let D be a dataset and (q,a) € D be pairs of questions and answers.

In Group Relative Policy Optimization (Shao et al., 2024, GRPO), for a given query q, the policy
model samples a group of responses, and the token-level advantage A;; for the i-th response is
estimated by normalizing its reward r; relative to the group rewards r:

r; — mean(r)

Ai,t = W, (1)

Similar to PPO (Schulman et al.,[2017), GRPO employs a clipped surrogate objective but includes
a KL-divergence penalty term directly in its loss function to encourage stability:

7T001d Oit | q, 0;, <t)

loi]
m9(0i4 | 4,00 <1) 1
Jareo(0) = Equg g0}~ (- Q){G Z |01| Zm [ Aig,

clip ( Toloie [ 0uct) gy e> — Bk [mo | mie] ¢, @)
TOo1a (Ol}t | q, Oi,<t)
where 7y is the policy model, i.e., VLM. For a query q, we sample G outputs {01, ...,0¢} from

the old policy model 7y_,. Clip ratio € and 3 are hyper-parameters and 7 is the reference VLM.

old *

C HYPERPARAMETERS

In this section, we discuss the hyperparameters used in our SFT and RL experiments.

15



Under review as a conference paper at ICLR 2026

C.1 SUPERVISED FINE-TUNING

For the SFT experiments, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning
rate of 1 x 1075, weight decay of 0.0, 5; = 0.9 and 3 = 0.999. We adopt a multiplicative learning
rate scheduler with a decay rate of 0.8 for each epoch. The training batch size is set as 4 per device
and we used 32 GPUs in total. For training efficiency, we remove examples that exceed 4096 tokens
and result in around 40k training examples. Each dataset will be trained for 4 epochs.

C.2 REINFORCEMENT LEARNING

Throughout our experiments, we set KL coefficient 3 = 1.0 x 10~2 and the clip ratio ¢ = 0.2.
For each example, we sample 8 responses with a maximum length of 4096 tokens and sampling
temperature of 1.0.

When updating the actor model, we use AdamW (Loshchilov & Hutter, 2019) and set the learning
rate as 3.0 x 1076 and weight decay as 1.0 x 10~2. A warm-up learning rate scheduler is used by
using 10% of the total training steps. Gradient norm is applied with a threshold of 1.0. A global batch
size (calculated across all devices) is set as 128. All the training are stopped on the convergence of
the reward value on the training set.

D PROMPT TEMPLATES

Below are the prompt templates in Jinja format |Pallets| (2024) used in training and evaluation. Both
Qwen-2.5-VL-7B-Instruct baseline and X-REASONER are able to successfully follow instructions to
enclose answers within <answer> </answer> tags with a success rate of around 99% . There-
fore the improvements from X-REASONER are not attributable to formatting.

Prompt Template for Training

You will solve a problem/request. You should provide your
thoughts within <think> </think> tags before

providing the answer.\nWrite your

final answer within <answer> </answer> tags.

Here is the question:

{{ question }}{% if options %}\nOptions:

\n\n{{ options }}{% endif

%} \n\n

Prompt Template for Evaluation Multi-choice Questions

You should provide your thoughts within <think> </think> tags,
then answer with just one of the options below within
<answer> </answer> tags (For example,

if the question is \n’Is the earth flat?\n A: Yes

\nB: No’, you should answer with <think>...</think>

<answer>B: No</answer>) .

Here is the question: {{ question }}{% if options %}\n
Options:\n\n{{ options }}{% endif %}\n\n
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Prompt Template for Evaluation Mathematical Questions

A conversation between User and Assistant. The user asks a
question, and you as the assistant solves it.

You should first think about the reasoning process

in the mind and then provide the user with the answer.

The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think>

<answer> the final answer as the option letter

or the number depending on the question </answer>

(For example, if the question is \n’Is the earth flat?\n

</think> <answer>B: No</answer>. If the question is

"What is 1+1?’, you should answer with <think>

your reasoning </think> <answer>2

</answer>) .\n\nHere is the question: {{ question }}

{% if options %}\nOptions:\n\n{{ options }}{% endif %}\n\n

A: Yes \nB: No’, you should answer with <think> your reasoning

Table 6: Tasks for different evaluation settings. CC: CC BY-SA 4.0

Evaluation setting Task name [license] Shorthand Data size

. GSMB8K main [MIT] (Cobbe et al.,|2021) GSM8K 1,319
General-domain text-only

MMLU-Pro [MIT] (Wang et al., 2024b) MMLU-Pro 12,032

MMMU (val) [CC] ) MMMU 900

General-domain multimodal MMMU-Pro [Apache-2.0] (Yue et al.} 2024b) MMMU-Pro 1,730

(X-modality) MMStar [CC] (Chen et al., 2024b) MMStar 1,500

MathVista (testmini) [CC] (Lu et al.} 2024 MathVista 1,000

MathVision [MIT] (Wang et al.;|2024a) MathVision 3,040

Specialized-domain text-only MedQA [MIT] (Jin et al.}2021) MedQA 1273

(X-domain) MedQA (4 options) [MIT] (Jin et al.||2021)) MedQA (4-ops) 1,273

MMLU-Pro-Health [MIT] (Wang et al.l|2024b) MMLU-Pro-H 818

MMMU-Health (Yue et al., [2024al) B MMMU-H 150

Specialized-domain multimodal MMMU-Pro-Health [CC] (Yue et al.,[2024b) MMMU-Pro-H 286

(X-modality & X-domain) MedXpertQA-MM [MIT] (Chen et al.,|2024b) MXQ 2,000

OmniMedVQA [CC Zero] (Hu et al.,2024) oMV 1,000

NEJM Image Challenge NEIM 947

(New England Journal of Medicinel 2025)

E EVALUATION TASKS

Table [6] summarizes tasks used for different evaluation settings in our experiments: general-domain
text-only, general-domain multimodal, specialized-domain text-only, and specialized-domain mul-
timodal. We focus specifically on the medical domain as our representative specialized domain due
to its significant practical importance and recent intensive research activities (Li et al., 2023 [Zam-
brano Chaves et al.l 2025} [Zhang et al., 2025bj |Luo et al., |2022; Nor1 et al.| 2023} 2024} (Codella

et al., 2024} [Poon et al. [2023}; [Xie et al.l [2023]; [Ness et al., 2024). For OmniMedVQA, we
1000 from the full data for efficient evaluations.

F PREVIOUS SOTA RESULTS

Table[/|lists details of the previous SOTA results for each task.
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Table 7: Previous SOTA results. * indicates our replicated results.

Task Previous SOTA Model Result

GSMSK MMOS-DeepSeekMath-7B (Chen et al.,2024c) 87.2
MMLU-Pro Gemma-2-9B-it (Gemma Team et al., 2024) 52.1
MMMU-Pro MAmmoTH-VL2-7B (Jia et al.,2025) 40.7
MMMU (Val) Mulberry-7B (Yao et al.| [2024) 55.0

MedQA (4-ops) HuatuoGPT-01-7b (Chen et al., [2024a) 71.6%*

MMLU-Pro-H HuatuoGPT-01-7B (Chen et al., |2024al) 54.3%
MMMU-H GMAI-VL-RL (Su et al.}[2025) 57.3
MedXpertQA-MM  GMAI-VL-RI (Su et al., 2025) 23.8

G CROSS-DISTRIBUTION/TASK GENERALIZATION OF SFT

We conduct a cross-distribution investigation where we fine-tune an instruction-tuned VLM,
Qwen?2.5-VL-7B-Instruct (Bai et al.|2025) using text-only MedQA (Jin et al.| 2021]), a spe-
cialized medical QA dataset. The training signal comprises detailed long-COT reasoning traces,
distilled via rejection sampling (Huang et al., 2023} Zelikman et al., [2022) from QwQ-32B (Qwen
Team), [2025)). We then evaluate the model’s generalization on an out-of-distribution task: MMLU-
Pro-Health, the healthcare subset of MMLU-Pro (Wang et al.l [2024b). The full training and eval-
uation details are provided in Sections [2.3]and [3] As shown in Table [§] all the SFT approaches
consistently transfers the improvements from the source task (MedQA) to the target task (MMLU-
Pro-Health), demonstrating strong cross-task generalization from text-only SFT.

Table 8: Comparing baseline and text-only SFT with and without CoT On MedQA task and evalu-
ating on in & out of distribution tasks

Training: MedQA Non-CoT CoT
Eval: in & out of distribution  Modality ~Baseline SFT Baseline SFT

MedQA (In distribution) Textual 49.3 57.6 (+8.3) 50.5 61.9 (+11.4)
MMLU-Pro-H (Out of dist.) ~ Textual 43.7 47.2 (+3.5) 47.8 54.2 (+6.4)

H FORCED-EXITING TO MITIGATE ENDLESS THINKING IN LONG-COT SFT

While long-CoT SFT effectively learns transferrable reasoning patterns, such as self-reflection, ver-
ification, and correction (see qualitative analyses in Appendix[O), we observe a recurring challenge:
the model occasionally fails to terminate its responses. Specifically, the model continues generating
tokens indefinitely without producing a stop signal. Such endless thinking occurs 13% of genera-
tions for MMLU-Pro-Health tasks and 32% for MMMU-Pro, as reported in (Table [0). Upon closer
inspection, these failure cases are often characterized by verbose, repetitive output, where the model
persistently attempts to “re-think™ or “double-check”, an artifact likely stemming from the reasoning
mechanism introduced during long-CoT SFT (DeepSeek-Al et al., 2025)).

To address this, we implement a forced-exiting mechanism inspired by the method introduced in
Muennighoff et al.| (2025). This involves appending a designated stop token ‘</think>’ once the
output sequence reaches a predefined length threshold. This soft intervention encourages the model
to wrap up its reasoning process within a reasonable token budget. As shown in Table [9} applying
forced-exiting effectively reduces endless thinking, thereby improving final task accuracy.

I COMPARISON OF RL AND SFT ON MEDQA DATA

We conduct a direct comparison between Rl, SFT and their combination with the same MedQA
data. As shown in Table[I0] pure RL performs worse than SFT and the hybrid SFT + RL performs
the best.
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Table 9: Forced-exiting mitigates endless thinking and improves final task accuracy from CoT SFT

Task Before Forced-Exiting After Forced-Exiting

% endless thinking Accuracy % endless thinking Accuracy
MMMU-Pro 32.5% 325 1.4% 404
MMLU-Pro-Health 13.4% 46 0.1% 50.4

Table 10: Comparison of performance from RL, SFT, and SFT + RL in both in-distribution (ind.
text) and generalization settings, including out-of-distribution (ood. text) and cross-modality (X-
modality). All models are trained on MedQA data.

Method MedQA  MMLU-Pro-Health MMMU-Pro-Health Average Response Length

(ind. text) (ood. text) (X-modality) (number of words)
baseline 50.5 47.8 34.3 111
SFT 61.9 54.2 39.2 950
RL 57.8 53.6 35.8 103
SFT + RL 64.9 55.8 39.7 1039

J COMPARING SFT ON OPENTHOUGHTS AND ORZ MATH DATA

As in Table [IT} we also experimented with using the Orz math data as well in the SFT stage by
distilling CoT traces from QwQ-32B. We found that the X-Reasoner recipe with OpenThoughts
SFT performs better than Orz math SFT. This suggests that we need more diverse general-domain
training data than math in the SFT stage.

Table 11: Comparing SFT on OpenThoughts and Orz math data in the pipeline

Method MMMU-Pro MathVision
X-Reasoner (OpenThoughts SFT + Math RL) 42.5 294
Math SFT + Math RL 40.5 26.7

K CoMPARING MEDQA SFT + RL WITH X-REASONER-MED

As in Table we also compare MedQA SFT + RL with X-REASONER-MED, which fine-tunes
the general-domain X-REASONER using domain-specific data. X-REASONER-Med yields the
strongest results, highlighting the benefit of starting from a generalist model and then applying
domain-specific fine-tuning.

L  CONTINUE TRAINING X-REASONER WITH MULTIMODAL DATA

As in Table[T3] adding general-domain multimodal RL with ThinkLite data improves in-distribution
performance (MathVista), but hurts generalization for the other tasks (MMMU-Pro, MMMU), high-
lighting the difficulty of curating broadly transferable multimodal data—a challenge we leave for
future work. A recent follow-up (Wei et al., [2025) shows that with the right training regime, multi-
modal data can complement X-Reasoner’s text-only base.

M STANDARD DEVIATION

We report standard deviations for each experiment from the cross-modal evaluation (Figure [3) and
cross-domain evaluation (Figure [d)) in Table[T4]and Table[T5] We also report standard deviation for
the RL training data experiments from Table|2]in Table
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Table 12: Comparing MedQA SFT + RL and X-REASONER-MED

Method MedQA MMLU-Pro-H MMMU-Pro-H MedXpertQA-MM
MedQA SFT + RL 64.9 55.8 39.7 24.4
X-REASONER-MED 66.7 57.9 40.0 25.9

Table 13: Continue training X-REASONER with multimodal data from ThinkLite |[Wang et al.
(2025b)

Method MMMU-Pro MMMU MathVista
X-REASONER (text-only) 42.5 54.8 66.8
X-REASONER + ThinkLite RL (multimodal) 39.9 52.7 70.7

Table 14: Standard Deviation for the Cross-Modality Evaluation in Figure |3| comparing X-
REASONER and the baseline across 5 runs.

Method GSM8k MMLU-Pro MMMU MMMU-Pro MMStar MathVista (testmini) MathVision
Baseline 0.22 0.29 0.61 0.39 0.47 0.10 0.59
X-REASONER 0.32 0.24 1.05 0.90 0.65 0.77 0.38

Table 15: Standard Deviation for evaluating X-REASONER, X-REASONER-MED and the baseline
across 5 runs on medical benchmarks from Figure |4 MedQA (4): MedQA (4-ops), OMV: Omn-
iMedVQA, MXQ: MedXpertQA-MM

Method MedQA (4) MedQA MMLU-P-H MMMU-P-H MMMU-H OMV NEJM MXQ
Baseline 0.80 0.38 0.72 1.72 3.7 0.65 045 0.29
X-REASONER 0.89 0.87 0.61 1.49 271 096 0.81 048
X-REASONER-MED  0.85 0.46 0.78 0.65 4.76 096 042 0.88

Table 16: Standard Deviation for the results from the Rl training data exploration in (Table

Method GSMS8K MMMU-Pro MMLU-Pro-Health MMMU-Pro-Health
Baseline 0.22 0.39 0.72 1.72
Math orz RL 0.49 0.78 1.13 2.10
MedQA RL 0.50 0.80 0.86 1.7
ThinkLite RL 0.51 0.30 0.76 1.24
OmniMedVQARL  0.24 0.40 0.69 0.92

N TRAINING DYNAMICS

Figure [5| shows the RL training dynamics when X-REASONER is being trained on Orz (Hu et al
2025)) and when X-REASONER-MED is being trained on MedQA (Jin et al.l 2021]), including train-
ing reward, policy gradient loss, mean advantage, mean training response length, training response
clip ratio, validation accuracy.

20



Under review as a conference paper at ICLR 2026

training reward policy gradient loss advantages (mean)
— X-Reasoner s — X-Reasoner 5 — X-Reasoner :
-0.03
0-95 0.0006
05 0.0005 0.04
0.45 0.0004
-0.05
0.4 0.0003
0.35 0.0002 -0.06
0.3 0.0001
-0.07
0.25 Step 0 Step Step
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
training reward policy gradient loss advantages (mean)
— X-Reasoner-Med : — X-Reasoner-Med s — X-Reasoner-Med s
0.0005 -0.02
0.74
072 0.0004 -0.025
-0.03
o1 0.0003
0.68 -0.035
0.0002
0.66
-0.04
0.64 0.0001
-0.045
0.62 | Step 0 Step } Step
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
training response length (mean) training response clip ratio val/math500
— X-Reasoner $ — X-Reasoner $ — X-Reasoner $

g
I

3400 06 4 074

3200 0.5 0.72
0.4

3000 0.7
0.3

2800 0.68
0.2

2600 066
0.1

Step tep Step
50 100 150 200 250 300

50 100 150 200 250 300 50 100 150 200 250 300

o

training response length (mean) training response clip ratio val/Med_QA@test

— X-Reasoner-Med

o

= X-Reasoner-Med

o«

= X-Reasoner-Med

o«

1550 0.007

0.68
0.006
1500

0.005 0.67
1450
0.004
1400 0.66
0.003
1350
0.002 0.65
1300 /
0.001

z
B

Step Step 0.64 Step

10 20 30 40 50 60 10 20 30 40 50 60

o
=
15}

20 30 40 50 60

Figure 5: RL training dynamics of X-REASONER and X-REASONER-MED

O QUALITATIVE ANALYSIS

Table[T7]shows some example reasoning output from X-REASONER as compared with the baseline.
We can clearly see that X-REASONER is able to engage in more complex reasoning traces including
detailed planning, verification ("wait). This complex reasoning patterns is successfully transferred
to cross-modality setups where X-REASONER seamlessly integrates the vision information into the
reasoning chain, and provides detailed step-by-step reasoning with verification for review/correc-
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tion. In the example, X-REASONER provides a detailed plan to go over all the bar values whereas
the baseline misses half of the bar values. X-REASONER is also able to correct its mistake in the
reasoning chain. In the cross-modal cross-modality setting, X-REASONER connects the dots from
both visual information and domain knowledge to the reasoning chain, and successfully identifies
the patterns (white matter) from the histology slide and refers to its medical domain knowledge to
connect it to progressive multifocal leukoencephalopathy.

Table 17: Reasoning output comparison between the baseline Qwen?2.5-VL-7B-Instruct
model and X-REASONER on an text-only question.

Question

The great dragon, Perg, sat ...within a distance of 1000 feet. Polly could throw the gold
javelin...for a distance of 400 feet, well within the reach of the dragon’s flames. But
when Polly held the sapphire gemstone, she could throw the javelin three times farther
than when not holding the gemstone. If holding the gemstone, how far outside of the
reach of the dragon’s flames could Polly stand and still hit the dragon with the gold
javelin? (from gsm8k main)

Response

Baseline

<think> To solve this problem, we need to determine the maximum distance Polly
can stand from the dragon and still hit it with the javelin when holding the sapphire
gemstone. Here’s the step-by-step reasoning: 1. When Polly is not holding the gem-
stone, she can throw the javelin for a distance of 400 feet. 2. When Polly holds the
gemstone, she can throw the javelin three times farther than when not holding the gem-
stone. Therefore, the distance she can throw the javelin when holding the gemstone is
\( 400 \times 3 = 1200 \) feet..</think>

<answer>1200</answer> X

X-REASONER

<think>Okay, let’s see. First, let’s break down the information. Without the gem-
stone, the javelin’s distance is 400 feet. With the gemstone, it’s three times that. So,
400 feet multiplied by 3 gives the new throwing distance. Let me calculate that: 400 *
3 = 1200 feet... Wait, but is that correct? Let me check again. Wait, the problem says
“how far outside of the reach of the dragon’s flames could Polly stand and still hit the
dragon with the gold javelin?” So, if the dragon’s flames reach 1000 feet, then the max-
imum distance Polly can stand from the dragon’s position and still hit it is 1200 feet.
But the question is asking how far outside the dragon’s flames she can stand. So, 1200
feet minus 1000 feet is 200 feet. Therefore, the answer should be 200 feet. </think>
<answer>200</answer> v/
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Table 18: Reasoning output comparison between the baseline Qwen?2.5-VL-7B-Instruct
model and X-REASONER on a multimodal question.

Question How many bars have value below 40? (from MathVista)

Response

Baseline <think>To determine how many bars have a value below 40, I’ll examine each bar’s
value:

. 2014: 63 (above 40)

. 2015: 95.5 (above 40)

. 2016: 82.2 (above 40)

. 2017: 72.9 (above 40)

. 2018: 58 (above 40)

. 2019: 55.2 (above 40)

None of the bars have a value below 40.</think><answer>0</answer> X

NN AW =

X-REASONER <think> Okay, let’s see. The question is asking how many bars have a value below
40. The image is a bar chart with two categories: Banknotes and Coins, and years from
2014 to 2019. Each year has two bars, one for each category. The values are given in
thousands, so we need to check each bar’s value and count those below 40 thousand.
First, let’s go through each year:
2014:
- Banknotes: 63 thousand. That’s above 40.
- Coins: 46 thousand. Also above 40.

Now, let’s count the bars below 40:

-2016: Coins (33)

-2017: Coins (32.5)

-2018: Coins (33.1)

- 2019: Coins (42.1) - Wait, 42.1 is above 40. Wait, hold on. Wait, 2019’s Coins is
42.1 thousand. 42.1 is above 40. So that’s not below 40. So only the 2016 and 2017
Coins are below 40... Let’s recast:

2014: Banknotes 63 (no), Coins 46 (no) — 0

2015: Banknotes 95.5 (no), Coins 46 (no) — 0

2016: Banknotes 82.2 (no), Coins 33 (yes) — 1

2017: Banknotes 72.9 (no), Coins 32.5 (yes) — 1
2018: Banknotes 58 (no), Coins 33.1 (yes) — 1

2019: Banknotes 55.2 (no), Coins 42.1 (no) — 0

... So total bars below 40: 3. Therefore, the answer is 3.
</think>

<answer>3</answer> v
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Table 19: Reasoning output comparison between the baseline Qwen?2.5-VL-7B-Instruct
model and X-REASONER on an medical multimodal question.

Question What is in the image? A. Progressive Multifocal Leukoencephalopathy (PML) B. Ra-
bies C. West Nile Virus D. Herpes Simplex encephalitis E. Encephalitis Lethargica F.
HIV encephalitis G. Lyme Disease H. Syphilis I. Meningitis J. Creutzfeldt-Jakob dis-
ease (from MMMU _PRO HEALTH)

Response

Baseline <think>The image appears to be a histological section, likely from a brain biopsy,
given the presence of cellular structures and the context of the question. The pattern of
the lesions and the cellular infiltration are characteristic of encephalitis. Herpes Sim-
plex encephalitis (HSE) is a well-known cause of encephalitis, often presenting with a
characteristic pattern of perivascular inflammation and necrosis, which can be seen in
such images. The lesions in the image seem to have a focal nature, which is consistent
with HSE. However, without further clinical information and a more detailed examina-
tion, a definitive diagnosis cannot be made.

Given the options, the most likely answer is:
D. Herpes Simplex encephalitis</think><answer>D. Herpes Simplex
encephalitis</answer> X

X-REASONER <think> Okay, let’s try to figure out this question. The image shows a histological
section with some lesions. The question is about which neurological disease is depicted.
Let me go through the options one by one. First, I remember that PML (Progressive
Multifocal Leukoencephalopathy) is caused by the JC virus and typically affects the
white matter of the brain, leading to lesions that can be seen on MRI as areas of low
signal intensity on T2-weighted images. The histology might show demyelination and
gliosis. The image here shows some irregular areas with a pinkish hue, which could
be consistent with demyelination. But I need to check if the lesions are in the white
matter. The image doesn’t show the entire brain, but the lesions appear to be in the
white matter, which is typical for PML. Rabies usually presents with encephalitis, but
the histology isn’t typically as specific as PML... Encephalitis Lethargica is an old
disease, but its histology isn’t as specific as PML.

Given the appearance of the lesions in the white matter, the pinkish areas, and the pos-
sibility of demyelination, PML seems the most likely. So the answer is A. </think>
<answer>A</answer> v
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