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Abstract

Inorganic synthesis planning has largely relied on heuristic strategies or machine-
learning models trained on limited datasets, which restricts generality. We show
that general-purpose language models, without task-specific fine-tuning, can re-
call synthesis conditions reported in the scientific literature. Off-the-shelf mod-
els, including GPT-4.1, Gemini 2.0 Flash, and Llama 4 Maverick, reach Top-1
precursor-prediction accuracy of up to 53.8% and Top-5 performance of 66.8%
on a held-out set of 1,000 reactions. They also predict calcination and sintering
temperatures with mean absolute errors below 126 °C, matching or surpassing spe-
cialized regression baselines. Ensembling these language models further improves
predictive accuracy and cuts inference cost per prediction by up to 70%. Leveraging
the broad, cross-domain knowledge of language models, we assess knowledge
transfer by training a transformer, SyntMTE, on 28,548 LM-generated reaction
recipes. Relative to a model trained on literature-reported data, a model trained
solely on LM-generated data attains competitive performance (only 6% lower).
Moreover, training on both LM-generated and literature-reported data yields up
to a 4% improvement. In a case study on Li7La3Zr2O12 solid-state electrolytes,
SyntMTE reproduces experimentally observed dopant-dependent sintering trends.
Together, these results establish a hybrid workflow for scalable, data-efficient in-
organic synthesis planning. This non-archival workshop paper summarizes work
currently under review at ACS Applied Materials & Interfaces; portions of the text
and figures are adapted from that manuscript.

1 Introduction

The discovery and design of advanced materials drive progress across energy conversion and storage,
information technology, and medicine [1, 2, 3, 4, 5]. Recent advances in machine-learning–accelerated
simulations have produced a rapid expansion of computationally predicted candidates, now num-
bering in the millions [6, 7]. Consequently, synthesizing these materials has emerged as the central
bottleneck in the discovery pipeline [8, 9, 10, 11, 12]. While density functional theory provides
valuable thermodynamic insight, accurately predicting kinetics, diffusion, and phase-transformation
pathways remains challenging, leaving synthesis largely a trial-and-error endeavor [13, 14, 15, 16,
9]. To address the synthesis bottleneck, the community has increasingly turned to ML to mine
protocols from the literature and to forecast feasible reaction routes for new compounds [17, 18,
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19]. Early contributions by Kononova et al. [16], E. Kim et al. [20], and Huo et al. [21] assembled
large, curated corpora of synthesis procedures, laying the groundwork for ML-driven inorganic
synthesis planning. Subsequent work has coalesced around two core subproblems: (i) precursor
recommendation, selecting compatible reagent sets and (ii) synthesis-condition prediction, estimating
operative parameters such as temperature and time. Chaining these steps yields end-to-end protocols
for a specified target.

Precursor recommendation The majority of precursor recommendation techniques address solid-
state synthesis. In one line of work, E. Kim et al.[22] leveraged an RNN with ELMo embeddings to
extract over 50,000 actions and 116,000 precursor mentions, then trained a paired conditional VAE
that jointly captures action sequences and precursor formulas to propose candidates for unseen targets.
S. Kim[23] introduced element-wise retrosynthesis organized into 39 template classes. Retrieval-style
models have also emerged: He et al.[24] used attention to compare planned routes against historical
syntheses, and Noh et al.[25] incorporated an enthalpy-aware ranking step. Prein et al.[26] further
enhanced generalization by embedding materials with a pretrained transformer and employing a
pairwise ranker to score precursor sets for previously unseen compounds.

Figure 1: Overview of our synthesis-condition model. Left: We first adapt the MTEncoder on a large
language-model–generated corpus to bias it toward solid-state reaction conditions, then fine-tune on
experimental literature recipes. Right: Each precursor and the target composition are encoded with a
shared MTEncoder (ωMTE) into embeddings x̃p,i, x̃T , which are pooled and concatenated, then passed
to an MLP head (ωRegressor) to predict calcination and sintering temperatures, ŷ = (ŷcalc, ŷsint).

Synthesis condition prediction Once precursors are selected, the next step is to predict isothermal-
hold temperatures and dwell durations for calcination and sintering. Leveraging text-mined properties
such as melting points and formation energies, Huo et al.[27] trained linear and tree-ensemble models
and reported an MAE near 140↔C. Prein et al.[28] introduced a Reaction Graph Network that couples
MTEncoder representations with graph-attention. In parallel, Pan et al.[29, 30] formulated the task
as conditional diffusion, using the target structure to generate plausible conditions and naturally
reflecting the one-to-many structure–synthesis relationship.

Language models in materials synthesis Modern language models (LMs) are exposed during
pretraining to vast amounts of unstructured chemical knowledge, including implicit heuristics, phase-
diagram intuition, and procedural narratives captured across large text corpora. They have shown
substantial utility across scientific domains [31, 32, 33, 34, 35]. In crystal-structure generation,
generative LMs have achieved notable successes: CrystaLLM [36] and Crystal-Text-LLM [37]
produce DFT-validated geometries, while FlowLLM [38] refines LLM-generated structures via flow
matching [39]. For synthesis planning, GPT variants fine-tuned for synthesizability and precursor
selection can approach the performance of specialized models [40]. Yet, systematic evaluation of
state-of-the-art LMs on both precursor generation and processing-condition prediction for inorganic
solid-state synthesis, the backbone of materials discovery has been lacking [12].
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Establishing such a benchmark enables us to inform the community on model selection and clearer
expectations of LM capabilities in this setting. We compare ensembles against single-model pipelines
and analyze the distributions of predicted synthesis conditions. Beyond building a benchmark with
current state-of-the-art models, we explore directions towards generating synthetic datasets via LMs,
circumventing the data availability constraints in the domain. Finally, we also showcase our models
applicability in a case study. To our knowledge, these aspects have not been comprehensively studied.
This work addresses the following questions:

1. How well do state-of-the-art LMs perform on inorganic solid-state synthesis planning tasks?
2. Do LM ensembles outperform single models, and how do they affect the distribution and

calibration of proposed recipes?
3. Can LM-generated synthesis recipes both enrich current literature-mined sparse databases

and act as an informative prior for domain-specific models?

2 Methods

2.1 Benchmarking LMs in inorganic materials synthesis

To evaluate LMs for inorganic synthesis planning, we benchmark state-of-the-art systems on two
tasks using a dataset derived from Kononova et al. [16] comprising → 10,000 unique precursor–target
pairs. For precursor recommendation, we follow prior protocol [26] and construct a 1,000-example
test set. Prompts are issued via OpenRouter without fixing the number of precursors, requiring
each LM to infer how many reagents are appropriate for a given reaction. For synthesis-condition
prediction, we curate a separate 1,000-entry subset by retaining records that report both calcination
and sintering temperatures. Across both tasks, models receive 40 in-context examples drawn from a
held-out validation split (Fig. 7). Precursor prediction is scored using exact-match accuracy [25]. We
evaluate seven contemporary LMs to cover a diverse set of architectures; further model details appear
in the Appendix.

2.2 LM ensembles

Based on validation performance, we assemble an ensemble of Gemini 2.0 Flash, Llama 4 Maverick,
and DeepSeek Chatv3, and compare three rank-aggregation schemes: Min-rank: assign each
candidate the best (lowest) rank it attains from any model, elevating items that at least one LM
strongly supports. Average-rank: use the mean rank across models, balancing contributions and
dampening the influence of outliers. Max-rank: assign each candidate the worst (highest) rank it
receives, prioritizing only those consistently preferred by all models.

2.3 LM-enabled data augmentation

To generate a synthetic dataset, we queried the Materials Project [6] for entries with reported
experimental syntheses, yielding 48,927 compounds. To promote broad chemical coverage, 10,000
target compositions were chosen using a maximum-entropy selection strategy. GPT–4.1 was prompted
to generate precursor pathways and to filter out compositions unlikely to be accessible via solid-state
routes. In line with prior practice, we retained the three highest-ranked suggestions per target (top-3
accuracy of 64.1%, Table 1). We then inferred processing parameters; after excluding incomplete
generations, 29,473 records remained. Imposing minimum temperatures of 300↔C for calcination
and 500↔C for sintering produced 28,548 candidate solid-state recipes. As summarized in Fig. 9a),
the resulting collection spans a much wider compositional space than the literature-derived Kononova
dataset [16].

2.4 SyntMTE architecture and training

To predict synthesis parameters, we introduce SyntMTE, which adapts the MTEncoder [41], pre-
trained on the Alexandria DFT corpus across 12 properties [7], for actionable condition prediction
from a reaction description. The target composition and each precursor are encoded with shared
MTEncoder weights. The resulting embeddings are mean-pooled, concatenated, and fed to a two-
layer MLP that performs multi-task regression of calcination and sintering temperatures. Training
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Table 1: Precursor recommendation performance. Top-k exact-match accuracies for individual
language models and ensemble strategies on retrosynthesis precursor prediction. GPT-4.1 achieves
the highest Top-1 accuracy, while min-rank ensembles boost performance at higher Top-k thresholds.
Notably, the ensemble of Llama 4 Maverick, DeepSeek Chat v3, and Gemini 2.0 Flash surpasses
GPT-4.1 for relevant Top-5 and Top-10 settings with a 70% reduction in inference cost.

Model Top-1 → Top-3 → Top-5 → Top-10 →

Ensemble Min-Rank 52.3 65.8 70.7 74.3

Ensemble Min-Rank 51.8 63.1 67.4 71.9

OpenAI GPT-4.1 53.8 64.1 66.1 68.7

Grok 3 Mini Beta 52.2 63.2 66.8 69.5

Llama 4 Maverick 53.1 61.1 64.2 69.3

DeepSeek Chat v3 53.5 60.7 63.7 66.2

Mistral Small 3.1 52.0 59.7 61.7 63.9

Gemini 2.0 Flash-001 51.4 59.2 62.0 66.2

Qwen 2.5 VL 50.7 55.5 58.0 59.3

follows a chronological split on the Kononova corpus [16] (train ↑2014, validation 2015–2016, test
>2016) to emulate forward-in-time deployment, and uses an LM-generated synthetic corpus for broad
coverage before final alignment on literature yielding realistic, lab-ready temperature predictions.

3 Results and Discussion

3.1 Precursor recommendation

We assess the language models on the precursor prediction task and report Top-k exact-match accuracy.
This metric is a conservative estimate of performance because it requires the model to reproduce
exactly the precursor set documented in the literature, even though other valid, undocumented
synthesis routes may exist [29]. Since practical precursor selection involves testing several candidate
routes, the Top-5 and Top-10 results are especially useful, they show whether a correct set appears
among the model’s five or ten highest-ranked suggestions. As summarized in Table 1, all models
perform competitively and fall within a tight range. Qwen 2.5 VL is the only clear underperformer
despite its substantial parameter count. OpenAI GPT-4.1 ranks first for Top-1 at 53.8% and maintains
strong results as k increases, followed by Grok 3 mini, Llama 4 Maverick, and DeepSeek Chat v3.
We compare LM outcomes with literature baselines, noting that the comparison is imperfect: baseline
systems were trained on smaller datasets, and LMs could benefit from pretraining exposure to test-set
synthesis protocols. The best reported baseline achieves Top-5 and Top-10 accuracies of 73% and
78% [26], whereas individual LMs approach these figures with up to 66% and 69%. Overall, this
highlights that state-of-the-art LMs, without chemistry-specific objectives, can retrieve high-quality
chemical knowledge via in-context learning alone.

LM ensemble We find that the Min-rank and Average-rank schemes markedly boost performance
at Top-3, Top-5, and Top-10 (Fig. 5), with only a slight decrease in Top-1 accuracy relative to the
best single model. The ensemble’s strong recall is driven by its diversity. In the information-retrieval
literature, rank-fusion methods consistently raise recall by leveraging complementary strengths of
heterogeneous rankers across topics and queries, and increased diversity is linked to improved recall
in ranking tasks [42, 43]. Accordingly, min-rank and average-rank aggregation are well suited to our
LM ensembles: they promote any candidate highly ranked by at least one model into the final Top-k,
thereby maximizing recall.
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Figure 2: Synthesis condition distributions of literature-reported and LM generated solid-state

synthesis recipes for BaTiO3. Literature distribution KDEs are shaded purple. Dotted lines refer to
the mean value. ’Single’ refers to LM distributions acquired by drawing 24 samples from Gemini-
2.0-Flash (orange). ’Ensemble’ refers to LM distributions acquired by drawing 8 predictions each
are sampled from Llama Maverick, DeepSeek Chat v3, and Gemini 2.0 Flash (blue). The individual
LMs yield narrower distributions that fail to capture the underlying literature distribution, whereas
the ensemble more accurately reproduces the literature’s secondary modes.

3.2 Synthesis condition regression

For synthesis-condition regression, we assess LM performance on predicting parameters for a standard
solid-state route comprising two heating stages. First, precursor powders are mixed and homogenized
to achieve uniformity. Then, during calcination, the blended precursors are heated so that thermal
decomposition and diffusion initiate formation of the target phase. Finally, in the sintering stage,
elevated temperatures enhance grain-boundary and volume diffusion, leading to neck formation
and growth that consolidate and densify the powder into a cohesive bulk body [44, 45]. To mirror
experimental practice, we prompt the LMs to output calcination and sintering temperatures and
evaluate the predictions against the curated 1,000-entry subset from Kononova [16]. We exclude
dwell times because they are highly operator-dependent and therefore difficult to model via regression
[9, 27]. As a consequence, prior point-regression approaches often captured researcher-specific noise
rather than underlying thermodynamics, yielding low R2 and weak predictive performance [9, 27].
Moreover, for regression-style problems, it is important to remember that LMs are fundamentally
next-token predictors optimized with a classification objective, and do not possess built-in, high-
precision numerical reasoning. Consequently, they are generally a poor fit for pure regression [46].
That said, several studies have demonstrated that LMs can tackle challenging numerical tasks with
notable success [47]. In practical synthesis reporting, temperatures are almost always given as integer
values (e.g., 800 °C), which further facilitates LM applicability. Table 2 summarizes our results on the
synthesis-condition regression task. For calcination temperature prediction, OpenAI GPT-4.1 attains
the best performance, followed by Gemini 2.0 Flash and DeepSeek Chat v3. For sintering temperature,
Gemini 2.0 Flash leads, with Llama 4 Maverick and OpenAI GPT-4.1 next in line. Grok 3 Mini Beta,
previously second on precursor prediction, places last on both regression evaluations. Overall, model
rankings are broadly correlated across the two tasks.

Single-model methods reach MAEs of 101 ↔C for sintering temperature prediction, compared with
127 ↔C for calcination temperature regression. This gap is notable given that sintering temperatures
are generally higher in absolute magnitude. We find, that the calcination temperature distribution

5



Table 2: Synthesis condition prediction performance. Regression performance for calcination and
sintering temperature prediction. Bold indicates the best and underlined the second-best value in
each metric. Ensemble 1 comprises Gemini 2.0 Flash, Llama 4 Maverick, and DeepSeek Chat v3,
Ensemble 2 features OpenAI GPT-4.1, Gemini 2.0 Flash, and DeepSeek Chat v3.

Model Sintering temperature Calcination temperature

MAE (↑) R2 (→) RMSE (↑) MAE (↑) R2 (→) RMSE (↑)

Ensemble Avg 96.31 0.667 134.48 125.72 0.410 168.86

Ensemble Avg 96.89 0.6627 135.42 123.00 0.424 166.93

Gemini 2.0 Flash-001 100.66 0.628 142.22 127.04 0.356 176.53

Llama 4 Maverick 102.76 0.612 145.23 135.85 0.323 180.90

OpenAI GPT-4.1 105.21 0.586 150.01 125.92 0.371 174.45

DeepSeek Chat v3 106.40 0.610 145.73 132.48 0.309 182.78

Mistral Small 3.1 113.93 0.550 156.36 137.05 0.291 185.20

Qwen 2.5 VL 131.93 0.443 174.06 142.68 0.232 192.72

Grok-3 Mini Beta 131.00 0.433 175.56 152.09 0.123 205.97

has higher variance, about 16% higher normalized spread than sintering. Additionally, calcination
temperature appears more sensitive to factors not captured in the dataset (e.g., precursor particle size),
which are known to influence calcination conditions. For instance, Pavlović et al. show that increasing
the ball-milling time for BaTiO3 by one hour can lower the required calcination temperature by more
than 100 ↔C [48]. Overall reinforcing calcination temperature prediction as the more challenging
task.

LM ensemble Echoing the precursor recommendation setup, we construct simple three-model ensem-
bles by averaging LM predictions. For sintering-temperature regression, combining Llama 4 Maver-
ick, Gemini 2.0 Flash, and DeepSeek Chat v3 delivers a 4% absolute gain in R2 over the strongest
single model. For calcination-temperature regression, a second ensemble that replaces Llama with
GPT-4.1 improves R2 by 5%, reaching 42.4%. Consistent with the precursor task, these ensemble
configurations both boost performance and may reduce inference cost by roughly 70%.

We explain why LM ensembles surpass single models. In materials synthesis, the mapping from
process recipes to a target compound is inherently one-to-many[29]. A given composition, e.g.,
BaTiO3, can be obtained via multiple annealing protocols that differ in calcination and sintering
settings, especially temperature and dwell time. We generate LM-based distributions over synthesis
conditions and compare them with literature-reported protocols for 24 pristine BaTiO3 samples.
As illustrated in Fig. 2, individual LMs produce narrow distributions with a single dominant mode
sharply centered near the mean (orange, top row). In contrast, an LM ensemble exhibits much
better overlap with the ground truth (purple). For calcination temperature, for instance, it recovers a
secondary mode below the mean while also matching the primary mode (blue, bottom row). Likewise,
for sintering temperature, the ensemble distribution captures the mean and additional structure in
the target distribution, including a regime around 1200 °C. Most notably, for synthesis time, single
LMs regress toward the mean with limited spread, whereas the ensemble more faithfully reflects
the behavior at longer durations. This shows the efficient modelling of one-to-many synthesis
relationships via LM ensembles.

3.3 LM ensembles expand the performance-cost pareto front

To compare overall LM performance, we normalize each model’s score to the best-performing model
and then average these normalized values. We estimate inference cost using input/output token pricing
(Fig. 3). GPT-4.1 and Gemini deliver the highest mean normalized performance; however, Gemini’s
much lower price point makes it particularly appealing for materials-informatics use. Notably, an
ensemble of lower-cost models, Llama 4 Maverick, DeepSeek Chat v3, and Gemini 2.0 Flash,
surpasses any single model while cutting cost by roughly 70% relative to GPT-4.1. In addition,
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Figure 3: Comparison of model performance vs. cost. We compute each model’s relative
performance on precursor prediction, calcination and sintering temperature estimation tasks, and plot
the average performance relative to cost. GPT-4.1 delivers highest individual performance and comes
at the highest cost. An ensemble of Llama 4 Maverick, DeepSeek Chat v3 and Gemini 2.0 Flash
surpasses any single model in performance while reducing cost by 70% relative to GPT-4.1. The
ELO rating score is represented by the color of each circle and serves as a quantitative indicator of
model performance [49].

our analyses show that ensembles produce output distributions that more closely track the scientific
literature, reinforcing their combined advantages in cost and performance.

3.4 Synthetic data augmentation improves model performance

We study how datasets expanded with LM outputs affect leading methods for predicting synthesis
conditions. Our setup follows NLP practice, where limited, specialized corpora are bolstered with
LM-generated text (e.g., Xu et al. [50]) or with teacher–student style pseudo-labels [51, 52, 53]. The
core idea is to leverage an LM’s prior over synthesis parameters to initialize smaller expert models:
we first fit to LM-derived estimates to capture broad regularities, and then continue training on
experimental observations. Building on this workflow, we introduce SyntMTE, a composition-focused
model derived from MTEncoder, a transformer representation for inorganic materials pretrained
on the large-scale Alexandria DFT collection [41, 7]. Pretraining on extensive DFT data improves
representations and yields better results across many materials tasks. As in NLP and vision, the
pretraining objective can be only loosely related to the downstream goal; broad, physics-based
supervision still shapes the internal chemical-space representation in ways that transfer effectively.
We therefore exploit the scale and diversity of public DFT datasets, covering millions of computed
properties, to pretrain MTEncoder and subsequently fine-tune it for synthesis prediction, which
consistently outperforms training from scratch.

Our approach extends over previous work [9] by embedding not only the reaction products but also the
full set of precursor materials. This makes the task more challenging: a single target compound can be
paired with multiple precursor combinations, each implying different processing temperatures. At the
same time, it better reflects practical solid-state synthesis. After mapping every material participating
in a reaction to an embedding, we form a reaction vector via mean pooling and predict the processing
parameters with a multi-task regression head (Figure 1, right). For evaluation, we use the Kononova
dataset [16] with a time-aware split, training on entries up to 2015, validating on 2015–2016, and
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Figure 4: LLZO-case study. a) Probable doping sites in the cubic LLZO unit cell. Reproduced from
ref mahbub2020text. Available under a CC BY-NC-ND 4.0 license (https://creativecommons.
org/licenses/by-nc-nd/4.0/). Copyright 2020 Mahbub et al. b) True (blue circles) vs. predicted
(orange squares) sintering temperatures with mean and standard deviation across different case reports
per cation of the garnet electrolyte. Dopants grouped by crystallographic substitution site.

testing on later publications. We compare against three baselines: (i) a composition-only feedforward
network, (ii) a CrabNet-style transformer [55], and (iii) an XGBoost model operating on mean-pooled
reaction features. We study three training schemes: two-stage fine-tuning (synthetic data followed by
literature data), direct fine-tuning on literature only, and training solely on synthetic data.

The results are reported in Tab. 3. Training on synthetic recipes alone delivers strong performance for
all models despite having no exposure to literature-mined samples and no overlap with the literature
test set. The coefficient of determination (R2) remains high across models, with the exception of
XGBoost. This drop is attributable to XGBoost’s single-task formulation: it fits calcination and
sintering separately and thus misses the inductive bias of joint (multi-task) learning, which especially
degrades calcination temperature predictions. We then contrast the two fine-tuning approaches. For
every model except XGBoost, incorporating synthetic data improves accuracy, as shown by the
relative MAE reductions in Table 3. The largest gains appear for SyntMTE, which lowers MAE by
over 4% on both targets. CrabNet also improves (a 1% MAE reduction), even narrowly surpassing
the SyntMTE variant trained solely on experimental data. Overall, representation-learning methods,
SyntMTE and CrabNet, benefit most from augmentation. This is illustrated in Figure 6, which
compares parity plots for two SyntMTE models: one trained only on literature data and one trained
with the augmented set. In sum, comparing literature-only training with training that includes LM-
generated synthetic data underscores the utility of synthetic corpora for synthesis modeling. Models
trained exclusively on large synthetic sets still achieve competitive accuracy, reducing the need
for labor-intensive manual literature curation. Furthermore, SyntMTE’s DFT-based pretraining is
particularly advantageous when literature data are scarce. Finally, when set against the top ensembles
in the LM benchmark (Table 2), our expert models outperform on all regression targets. Because
benchmark scores may be inflated by data leakage, we advise caution in comparing them to our
year-split evaluations; even so, the discrepancy highlights the rapid advancement of LM capabilities.

3.5 Case study

Virtual screening of compound-specific sintering temperatures and durations provides a quantitative
proxy for manufacturing cost [56]. As a case study, we evaluate garnet-type LLZO (Li7La3Zr↓2O↓12),
a leading oxide solid-state electrolyte valued for high ionic conductivity but constrained by costly,
high-temperature densification [57, 58, 59, 60, 61]. We curate 40 literature synthesis routes of doped
LLZO and test SyntMTE in a strict extrapolation setting by withholding all LLZO-like compositions
from training. Because multiple viable sintering protocols exist per dopant family, we assess
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qualitative ordering rather than exact temperatures. Across C-site dopants, the model reproduces
known trends: Ta5+ substitution (charge-balanced by VLi) yields moderate densification aid with
experimental pellets sintered at 1100–1150↔C, SyntMTE recovers a matching window with mean
near reported values and spread 1060–1200↔C [62, 63, 64, 65]. Bi3+ substitution predicts a narrow,
lower-temperature window (model: 880–980↔C) and captures the sharp decline to 850↔C observed
experimentally [66, 67]. For A/B-site dopants, Al exhibits a broad window (small radius, mixed-site
occupancy), whereas Ga yields a narrower profile, predictions for Fe align well with reports, while
Gd is overly optimistic [68, 69]. Overall, despite no prior LLZO training, SyntMTE recovers key
sintering-temperature trends, indicating that synthesis-planning models can guide dopant selection
and reduce processing temperatures and thus costs via virtual screening.

4 Conclusions

Machine-learning approaches to materials synthesis are constrained by limited data, we show that
modern language models can mitigate this. Across seven models evaluated on precursor recommen-
dation and processing-parameter regression, top-1 exact-match exceeds 50% (66% top-5). Ensembles
better capture multimodal synthesis windows and can cut inference cost by up to 70%. We distill liter-
ature knowledge into 28,548 synthetic solid-state recipes and use it for two-stage training of SyntMTE
(synthetic pretraining, then literature fine-tuning). This yields state-of-the-art results, surpassing
CrabNet and lowers MAE for sintering and calcination by about 6↔C. In a LLZO case study, the model
recovers broad sintering windows and the temperature drop from Bi substitution, suggesting practical
guidance for lower-temperature routes. Overall, LM-based augmentation offers scalable, low-cost
auxiliary data on commonly reported synthesis variables and can pair with Bayesian optimization
and autonomous experimentation to accelerate discovery and scale-up of advanced materials.
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