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Abstract

Retrieval-Augmented Generation (RAG) sys-
tems address the factual inaccuracies limita-
tion of Large Language Models (LLMs). How-
ever, the absence of principled methodologies
for extracting facts has led current RAG sys-
tems to uninformative fact-abstractions. To ad-
dress these challenges, we propose two princi-
ples for fact abstraction in RAG systems: the
Information-Maximization Principle and the
Multi-Perspective Principle. These principles
reformulate the task of extracting facts into an
optimization problem based on information-
theoretic quantities, providing a reliable frame-
work for fact abstraction. Building on these
principles, we introduce the Structural Entropy-
Based Multi-Perspective Abstraction for Re-
trieval Technique (SMART). Extensive exper-
iments on three real-world datasets demon-
strate that SMART significantly improves RAG
systems, achieving notable gains in multi-
hop/perspective question-answering tasks .

1 Introduction

Although effective in various tasks, Large Lan-
guage Models (LLMs) often exhibit factual inaccu-
racies due to their lack of task-specific real-world
knowledge (Hu et al., 2023; Chen et al., 2024). In-
formation Retrieval (IR) techniques have emerged
as essential tools for accessing relevant information
in LLM-based systems, forming the foundation of
Retrieval-Augmented Generation (RAG) systems
(Lewis et al., 2020; Gao et al., 2023; Salemi et al.,
2024). Research on RAG systems reveals that the
requirements for IR models in such systems dif-
fer from those of traditional IR, which primarily
focuses on retrieving precise most relevant infor-
mation for a given query. In the context of RAG
systems, while LLMs can process complex knowl-
edge, the key challenge lies in retrieving sufficient
relevant information to provide adequate context
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for generation. LLMs require IR methods to sup-
ply not only question-relevant information but also
latent and comprehensive knowledge beyond what
is explicitly stated in documents.

Studies such as (Hu et al., 2024; Mavromatis
and Karypis, 2024; Wang et al., 2024a) suggest
that ideal generation often requires multi-hop rela-
tionships between entities, which are implied but
not explicitly stated in the documents. Additionally,
(Guo et al., 2024; Edge et al., 2024) demonstrate
that incorporating latent hierarchical abstractions
can enhance the generation process. Furthermore,
(Salemi et al., 2024; Feng et al., 2024) emphasize
that considering diverse perspectives on the same
fact enriches the analysis. Based on these stud-
ies, we classify applicable facts in a database into
two types: 1) Explicit facts, which are directly
extracted from document chunks (e.g., “Cows pro-
duce milk”, “Cats produce milk”, “Dogs produce
milk”, “Bats produce milk”, “Chicken do not pro-
duce milk” and “Ducks cannot produce milk”;and
2) Implicit facts, which cannot be directly extracted
but are inferred by combining explicit facts. For
example, from the above explicit facts, one can
infer: “A group of animals, including cows, cats,
dogs, and bats, share biological similarities as milk
producers.” and “There are other animals that do
not produce milk”. Implicit facts can come from
multiple perspectives. For instance, animals could
also be categorized based on their habitat traits,
providing alternative viewpoints.

Humans excel at extracting multi-perspective im-
plicit facts by combining or comparing known facts.
However, existing IR methods in RAG systems
struggle to reliably handle implicit facts. Although
(Guo et al., 2024; Edge et al., 2024) highlight the
importance of implicit facts, most approaches cap-
ture them using heuristic designs, making it unclear
whether the retrieved facts align with the task’s de-
mands. Unlike traditional IR tasks, IR for RAG
systems lacks guiding principles, leading to over-
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looked critical information and incomplete retrieval
of implicit facts. This raises a pivotal question:
How can we design an IR system that provides
LLMs with implicit facts in addition to explicit facts
to effectively address information gaps in RAG sys-
tems?

In this paper, we address this question in two
steps. First, by analyzing the intrinsic knowledge
structure of implicit facts, we propose two prin-
ciples for abstracting such facts from documents.
Second, based on these principles, we introduce the
Structural entropy-based Multi-perspective Anal-
ysis for Retrieval Technique (SMART), a plug-in
framework that enhances RAG systems by provid-
ing comprehensive context, including both explicit
and implicit facts from multiple perspectives.

Specifically, we analyze the knowledge structure
of implicit facts using Structural Information The-
ory. Inspired by prior research on graph analysis,
we observe that the usefulness of an extracted fact
can be evaluated by analyzing the information con-
tent of its corresponding encoding tree. To this end,
we define two principles for fact abstraction:

P1. Information-maximization principle de-
fines optimiation problem of extracting infor-
mative implicit facts.

P2. Multi-perspective principle transform the
goal of exploring implicit facts diversity into
mathematical constraints

By adhering to these principles, the fact abstraction
task becomes an optimization problem, simplifying
its application in RAG systems.

In the SMART framework, a GNN-based ap-
proach extracts informative multi-perspective im-
plicit facts under the guidance of a loss function
derived from the fact abstraction principles. This
GNN-based abstractor captures the most relevant
implicit facts and augments the database with these
facts, bridging information gaps left by explicit
facts. Additionally, SMART replaces the original
retriever in RAG systems with a comprehensive
retrieval model that retrieves both explicit and im-
plicit facts. This design enables SMART to provide
RAG systems with sufficient context for genera-
tion.

Through extensive experiments on three real-
world datasets, we demonstrate that SMART signif-
icantly improves RAG system performance, achiev-
ing up to 11%, 2%, and 11% increases in answer

accuracy on the MultiHop, TriviaQA, and Hot-
potQA datasets, respectively. We also generate
multi-hop and 2—4 perspective QA sets based on
these datasets. SMART achieves 11%, 3%, and
11% improvements in multi-perspective scenarios,
establishing itself as a powerful IR framework that
equips LLMs with both explicit and implicit knowl-
edge across diverse perspectives. The main contri-
butions of this paper are summarized as follows:

* Introduction of fact abstraction principles,
based on Structural Information Theory, to
guide implicit fact extraction in RAG systems.

* Design of the Structural entropy-based Multi-
perspective Analysis for Retrieval Technique
to enhance RAG systems’ information re-
trieval capabilities.

* Experimental validation demonstrating that
SMART improves RAG system performance.

2 Related Works

Recent studies have rapidly expanded the IR tool-
box to develop methods capable of addressing the
comprehensive knowledge demands of RAG sys-
tems. A significant portion of research focuses on
improving the quality of relevance-based retrieval.
These studies highlight the contributions of effec-
tive IR models and propose various approaches to
constructing robust IR tools for RAG systems, such
as fine-tuning LLLMs to cooperate with IR mod-
els (Zhang et al., 2024) and modifying IR models
based on LLM knowledge distillation (Salemi et al.,
2024). While these methods demonstrate impres-
sive progress, they overlook a critical limitation
of relevance-only retrieval workflows: information
with latent relevance to the query is often ignored
by smaller IR models. Research has shown that
such omissions can substantially hinder the perfor-
mance of LLMs, which excel at handling complex,
real-world knowledge. For example, (Mavromatis
and Karypis, 2024) demonstrates that providing
all documents of the entities in the shortest paths
connecting queried entities and answer candidates
is more effective than retrieving only documents
directly relevant to the answer candidates. Simi-
larly, (Hu et al., 2024) underscores the importance
of latent relational graph structures in documents
for RAG systems. These findings suggest that ex-
tracting relations between entities in documents is
essential for effective IR in RAG systems. How-
ever, many existing methods fail to consider hierar-



chical abstractions that cannot be directly extracted
from the provided documents. This oversight leads
to an overemphasis on local information while ne-
glecting the retrieval of global information across
all provided documents. To address this, (Edge
et al., 2024) introduces an IR framework that gen-
erates hierarchical abstractions of documents using
pre-defined hierarchical clustering methods. Addi-
tionally, (Guo et al., 2024) proposes a mechanism
to aggregate information across multiple related
entities and relationships, enabling the retrieval
of high-level document abstractions. These ap-
proaches successfully improve generation results
by leveraging hierarchical abstractions. However,
their predefined mechanisms are not optimized for
effective information retrieval and may fail to close
the information gaps in the original documents.
Furthermore, studies on LLMs reveal that incor-
porating multiple perspectives on the same fact
can enhance analytical comprehensiveness and im-
prove generation results (Salemi et al., 2024; Feng
et al., 2024). Despite this, existing RAG research
lacks sufficient exploration into retrieving diverse
perspective-based information for LLMs.

Our work is also inspired by research on struc-
tural entropy. Measuring information in structural
data has been regarded as a significant challenge in
21st-century computer science. Structural entropy
has been extensively studied as a tool to analyze
the information embodied in structural representa-
tions (Brooks Jr, 2003). Numerous entropy mea-
sures have been developed to study the topology
of networks (Dehmer, 2008; Anand and Bianconi,
2009). For instance, Infomap (Rosvall et al., 2009)
analyzes graphs using random walks, while (Li
and Pan, 2016; Li et al., 2016) employ structural
entropy to evaluate network properties. Further-
more, (Liu et al., 2019) introduces residual entropy
derived from noise generation for community de-
tection. Despite these advancements, structural
entropy techniques have yet to be applied in studies
of LLM-based systems.

3 Problem Formulation

Basic Components of RAG Systems. Let W
represent the set of tokens. A query can be defined
as a positive closure of the token set: Q € W.
The collected facts are stored in a database. Denot-
ing the power set of W+ as P(WT), the database
is represented as D € P(W™), where each D € D
corresponds to a document chunk containing col-

lected facts. Upon receiving a query, a retriever
fir : WT x POWT) — WT identifies relevant
facts to support the LLM?. Let fgnp : W — Rf
denote an embedding function that maps a token
sequence to an ¢-dimensional representation vector.
Denote the inner product of two vectors by (-, -). A
vector-based retriever is defined as’:

fIr(Q, D) := arg %@%UE@(Q), Jemb(D)).

Let M : WT — W denote a pre-trained LLM,
and let & denote the concatenation of token se-
quences. The answer A € W™ generated by a
RAG system is expressed as:

A=M(@Q® f1r(Q,D)).

Representing Facts in the Database with Graphs.
In a RAG system, certain facts are directly con-
veyed through documents stored in the database
D. These are referred to as explicit facts. As
the volume of collected explicit facts grows, their
knowledge structure becomes increasingly com-
plex. Many RAG systems leverage graphs to model
these explicit facts, as graphs effectively capture
complex relationships between entities and their
interactions. A graph G := (V, &) is constructed
where nodes V represent entities and edges £ repre-
sent relationships extracted from D. For example,
let v; € V and v; € V represent the entities “cows”
and “milk”, respectively, and let e denote the rela-
tion “produce”. The fact “Cows produce milk” is
represented as the edge (v;, e, v;) € €. Conversely,
let vy € V represent the entity “ducks”. The ab-
sence of an edge between v; and v; implies the
fact “Ducks do not produce milk”. For simplicity,
we represent edges as (v;, v;) instead of (v;, e, v;)
in subsequent discussions, as this does not affect
the overall analysis. In practice, the graph G is
constructed using an entity-relation extraction al-
gorithm powered by an LLM. The detailed process
is described in Algorithm 2 in Appendix A.1,
Additionally, we introduce two functions that
model the links between documents and nodes in
the graph G during the graph construction process
outlined in Algorithm 2. Define fyou : V — WT

ZVarious types of retrievers exist; in this paper, we use the
widely adopted vector-based retriever as an example. Note that
our proposed method is not restricted to this type of retriever;
it is also applicable to other retrieval approaches.

3In real-world scenarios, the retriever typically retrieves
the top-k results rather than a single maximum. However, for
simplicity, we use the maximum retrieval here, which does
not affect the overall design of the RAG system.



as a function that maps nodes in the graph G
to token sequences composed of the document
chunks in D that reference them. Similarly, de-
fine fexe : D — P(V) as a function that maps
document chunks in the database to a set of nodes
representing the entities they reference. These two
functions are essential for maintaining relationship
between nodes and documents within RAG system.

Recent studies have revealed that RAG systems
often fail to emulate the human ability to compre-
hend implied facts from the provided documents
(Edge et al., 2024; Guo et al., 2024). Most previous
RAG systems, which primarily focus on explicit
facts, fail to capture latent information. This limita-
tion raises a critical research question: How can ab-
stracted latent information be effectively provided
to LLMs within a RAG system?

4 Methodology

4.1 Principle for Fact Abstraction

Humans have the ability to extract facts from high-
level combinations or comparisons of superficial
explicit facts. We refer to these facts as implicit
facts. These implicit facts help human construct
high-level understanding of the world. Implicit
facts cannot be directly extracted from one specific
document chunk in the data base. They are inferred
through combinations of multiple explicit facts.

Information-max principle. For a RAG system,
the captured implicit facts are expected to help
LLM under the world better. Form the view of
Information, the information quantity of captured
implicit facts is expected to be as much as possible.
Thus, the first principle is drawn from quantitative
analysis of information inside captured implicit
facts. This principle translate the task of finding
helpful implicit facts into an optimization problem.

As discussed above, the facts make up a hi-
erarchical structure with implicit facts on high-
level part while explicit facts in the lowest-level
and explicit facts can be modeled by graphs. To
model such hierarchical structure, Encoding Tree
of graphs introduced by (Li and Pan, 2016) is
proved effective and widely applied (Cao et al.,
2024).

In this RAG scenario, we build Encoding Tree
of graph G. Construct a tree denoted by 7', with V'
denoting its node set. Define fepig : V' — P(V) as
a function returning the child nodes of input node,
where P(V') denotes the power set of V. Then,

leaf node set of 1" is defined as:
Vieaf = {U eV ‘ fchild('U) = (Z)}

T is an Encoding Tree of G if all leaf nodes in T’
correspond to nodes in G, i.e.:

Vieaf =V.

Define fparent : V' — V as a function returning
the parent node of input node. The internal node
(non-leaf, non-root) set of T is defined as:

Vinee := {v € V| fenita(v) # O A frarent(v) € V'}.

Each inter node v € Vi, represents combina-
tion of its children nodes, and thus indicates ab-
stract implicit fact derived from its child nodes.
For example, let v, € Vipe be a node follows
fchild(va) = {U ey | (U,Uj) S 5}, where v; € )%
be the node indicate entity “milk”. Then, from the
sub-tree with v,, as root, denoted by T, , a implicit
fact can be implied that “A group of animals, in-
cluding cows, cats, dogs, and bats, share biological
similarities as milk producers.”.

Since the sub-tree structure of each v € Vg
reveals the implicit fact, from information view,
capturing sufficient implicit fact is equivalent to
making the sub-tree structure of all internal nodes
informative. In other words, a RAG system de-
mand information content captured by the sub-tree

structure of all internal nodes being maximized.

. | fehita (V)]
Let 6, = log TFenita (Fparent (0))]

tion theory (Li and Pan, 2016) introduced a tool to
evaluate the information content of the sub-tree of
an internal node v. Let V,, := fepiia(v) denote the
set of v’s children:

Structural informa-

HT(G;v) := 6, x {Zp(vi €N, Av; ¢Nv)}. (1)
&

Based on (1), they provide the evaluation of the
information content of the sub-tree of all internal
nodes in T, called the structural entropy of T, de-
noted as H1 (G):

1(G) = > H'(Gv). )

VE Vinee

Structural entropy H”(G) increases with the in-
formation content of implicit facts captured by 7.
Thus, we have the first principle for abstraction of
implicit facts, the Information-max Principle:



P1. During fact abstraction, extract implicit
facts whose corresponding encoding tree
has the maximized structural information.

arg max HT(G). (3)

Specially, we notice that for a balanced 7', where
the number of children at each level is uniform, 0
becomes constant, and H? (G) approximates the
graph modularity. This special case aligns with
the design in GraphRAG(Edge et al., 2024). In
GraphRAG, the implicit fact abstraction is done
by applying the Leiden algorithm (Traag et al.,
2019) which maximize the graph modularity of G.
Aligning with Information-max Principle provide
GraphRAG helpful implicit facts and Information-
max Principle print out the direction for more com-
mon cases.

Multi-perspective principle. In real-world sce-
narios, explicit facts can be analyzed from various
perspectives, leading to different implicit facts. An-
alyzing explicit facts from a single perspective risks
overlooking some implicit relationships. For ex-
ample, given the explicit fact “Bats produce milk
and possess wings”, one can infer the implicit fact
“A group of animals (cows, cats, dogs, bats) that
produce milk are biologically similar” from the
perspective of milk production. Conversely, from
the perspective of possessing wings, the implicit
fact “A group of animals (chickens, ducks, bats)
with wings are biologically similar” can be derived.
These two perspectives cannot be effectively repre-
sented using a single encoding tree.

To address this limitation, we employ multiple
encoding trees to capture implicit facts from differ-
ent perspectives:

T = {T | Vieaf = V} (4)

Two distinct trees within the ideal encoding tree
set 7 should reflect implicit facts abstracted from
different perspectives. In other words, the internal
nodes of two different trees in 7 should contain no
overlapping information. To model this scenario,
we use mutual information (MI) (Cover, 1999),
a widely applied tool. Here, we compute the MI
between the internal nodes of two distinct encoding
trees.

Let T% € T and T¥ € T denote two encoding
trees, and let Vn’fte and anfte represent their internal
nodes, respectively. Let v € V denote a node ran-
domly selected from the graph G. The MI between

the internal nodes is defined as:

> Z

vaeVE
@ inte V8 €Y mle

Puﬁ X Hapg,

/
I(V;mu ml(,) =
where Po,g =p(v € fenild(va) N fenia(vg)),

p(v € fenita(va) N fenia(vg))

Hap =log .
P(v € fenila(va))p(v € fehia(vg))

For T* and T*' to capture different perspectives,
the condition Z(V;¥_; Vi ) = 0 holds. The ideal
set 7 is expected to include all encoding trees re-
flecting different perspectives. However, due to
the input length limitations of LLMs in RAG sys-
tems and the computational cost of constructing
encoding trees, it is often impractical to include
all such trees. As a practical solution, we select
K encoding trees that maximize the information
content of implicit facts while ensuring no overlap
among them. Thus, let k € N *, the demanded set

of k encoding trees can be formulated as:

( mte’ mte) =0. } (5)

However, the constraint in (5) is too restricted that
makes it hard to search for the tree set satisfies
it. Thus, we transform it into a principle to make
multiple encoding trees have the least overlaps, i.e.,
the Multi-perspective Principle:

{TF | Yk # K,

P2. During fact abstraction, extract implicit
facts from views whose corresponding en-
coding tree has the minimized mutual in-
formation.

argmin > T(Viei Vine)- (0
Tk Tk T

Combining the Information-max principle and
the Multi-perspective principle, an appropriate goal
for implicit fact abstraction of a RAG system can
be formulated by optimizing:

T = argmln{ Z ’HT

TkeT
k#k’ (7)

+ > IV vm’ié)}.
Tk Tk T

4.2 SMART framework

Following the fact abstraction principles, we pro-
pose Structural entropy-based Multi-perspective
Abstraction framework for Retrieval Technique
(SMART), a plug-in framework to improve the
information retrieval method of RAG systems.
SMART include two crucial components, the GNN-
based Fact-Abstraction model and the Comprehen-
sive Retrieval model.



GNN-based Fact-Abstraction. We apply a
Graph Neural Network (GNN) based model to
learn the 7. Specifically, let d € N denote
the dimension of GNN learned embeddings. Let
fonn iV — R? denote a GNN model. Then we
learns embedding H € RIVI*4 that represents each
node of G:

H = fonn(G).

Then, let d,,, € N be hyper parameters denote the
node number of learned encoding trees at level m.
Note that for any 7%, dj) is the dimension of GNN
output,i.e., dg = d. We apply learnable matrix set
C={Cm | Crm € R%m-1) de}, and function
o : R — [0, 1] that maps real value into probabili-
ties. Thus we obtain indicator matrix Y}, for each
encoding tree T'* at level m:

Yim = o(H - [] Cam). )
k=1

Let Yy |7, @ be the i-th row a-th column value of
Yi.m, we use it to indicate whether the node v; is in
the subtree with v, as root:

v; € { Senita (- + - fenia(va) - -+ )} if Yim[i,a] =1,
N—

repeat m times

v; ¢ { Jenita (- -+ fenia(va) - - )} if Yim[i,a] =0.
repeat m times
©))

Then, with (9), we are able to construct every
T+ € T Let u € Rand A € R denote a hyper-
parameters, I = 19m*1 denote a vector with all
elements be 1, and A € [0, 1]V1*VI denote the nor-
malized adjacency matrix of graph G. Applying the
indicator matrix in (8), the search for T following
(7) can be reformulated as an optimization problem
to minimize £:

L=- kZ Yiem [i> 3)(Ali 5] = ,Z, Ali, 1AL, 4])

Yem ® Ygr,, - 1™)
Vi I™) X (Yyrp, - I™)

(10)
Thus, we can train GNN model {gnn and update
learnable matrix set C with back propagation mini-
mizing loss L. After training process, the learned
encoding tree set 7 can be constructed according
to indicator matrix set { Y, }.

XA DT (Yiem ® Yy, - 1) log
k#k! ,m

Comprehensive Retrieval. With Encoding trees
constructed by (10), the implicit facts are indicated
by internal nodes of these encoding trees. Then we
transform the abstract tree structure into documents

chunks that LLM can understand. We apply the
function fsour in Section 3 to generate description,
i.e., token sequence, for node v; in graph G, by
mapping it to documents it was mentioned in D.
Define ﬁf € WT denote the description of v; €
V* of encoding tree T*. f)f is constructed by :

ifvi < Vigaf (11)
M(TE) ifv; € ViE

inte*

7

f)k {fsour(vi)

Then we form a SMART adaption of RAG sys-
tem with retriever fir and database D. Let ) _ for
documents denote concatenate all included docu-
ment chunks, V' = fex(fir(Q, D)) C V denote
the entities mentioned in the returned documents in
fir(Q, D). This SMART adaption of RAG system
retrieves information with 7(Q, D, fir):

F@.D.fr)=wkR@De > > > Dk

v eV T Vi, fial=1

(12)

The over all process of SMART is described in
Algorithm 1:

Algorithm 1 SMART framework

Require: Documents D, LLM M, Basic retriever
fir, Query Q.
Ensure: answer A
1: Construct graph G with Algorithm 2
Train the GNN-based fact abstracter with (10)
Construct encoding trees T according to (9)
for each encoding tree 7% € T do
for each internal node v,, € V;¥_ do
Generate description ﬁf according to
(11)
end for
: end for
9: Retrieve context with F(Q, D, fir) by (12)
10: Generate answer A = M(Q @ F(Q, D, fir)
11: return A
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Table 1: Dataset Statistics

Basic Statistics Multi-perspective
Entity Count  Relation Count Document Count | Perspective Count QA Count
1 500
677
6779
2544

Dataset

MultiHop RAG 39359 29523 600

428
1572
2668
2262

300

419
2581
2415

HotpotQA 73643 64659 1000

TriviaQA 169374 150583 1700

T R R SR PN )




Table 2: Comparison on Original QA

Word Coverage ‘ Acc@0.25 ‘ Acc@0.5
Model Multihop RAG  HotpotQA  TriviaQA ‘ Multihop RAG  HotpotQA  TriviaQA ‘ Multihop RAG  HotpotQA  TriviaQA
RAG 0.75 0.18 0.73 0.75 0.49 0.73 0.74 0.01 0.73
GRAG 0.70 0.36 0.71 0.73 0.84 0.74 0.71 0.08 0.72
LightRAG 0.70 0.42 0.68 0.70 0.90 0.70 0.69 0.10 0.67
SMART 0.80 0.42 0.81 0.83 0.92 0.82 0.81 0.14 0.79
Impro. 10.07 0.00 170.11 ‘ 10.11 10.02 170.11 ‘ 10.09 104 10.08
Table 3: Comparison on Multi-Perspective QA
Word Coverage ‘ Acc@0.25 ‘ Acc@0.5 ‘ Perspective Coverage

Model Multihop RAG  HotpotQA  TriviaQA ‘ Multihop RAG  HotpotQA  TriviaQA ‘ Multihop RAG  HotpotQA  TriviaQA ‘ Multihop RAG  HotpotQA  TriviaQA
RAG 0.72 0.25 0.71 0.72 0.52 0.69 0.71 0.03 0.66 0.18 0.15 0.20
GRAG 0.75 0.38 0.66 0.74 0.83 0.75 0.74 0.10 0.73 0.52 0.25 0.47
LightRAG 0.76 045 0.69 0.76 0.89 0.74 0.70 0.15 0.74 0.58 038 0.51
SMART 0.81 0.47 0.82 0.84 0.92 0.83 0.82 0.18 0.79 0.78 0.65 0.73
Impro. 10.07 10.04 10.15 10.11 10.03 10.11 10.11 10.20 10.07 10.34 10.71 1043

Table 4: Ablation Study on Head Count

Head Count

Ave. Modularity

Ave. NMI

‘Word Coverage

Acc@0.25

Acc@0.5

2-head
3-Head
4-Head
5-Head
6-Head

0.680
0.625
0.762
0.789
0.785

0.410
0.480
0.510
0.395
0.360

0.70
0.75
0.78
0.77
0.78

0.73
0.77
0.80
0.81
0.79

0.71
0.74
0.76
0.78
0.77

5 Experiments

Datasets. We evaluate our SMART framework
using three widely utilized question answering
(QA) datasets: MultiHop RAG, HotpotQA, and
TriviaQA. These datasets were chosen due to their
inherent complexity in multi-hop reasoning and
their natural incorporation of multi-perspective an-
swers. Each dataset contains questions that re-
quire synthesizing knowledge from multiple doc-
uments, emphasizing the importance of implicit
multi-perspective reasoning in QA tasks. For gen-
erating multi-perspective questions, we use the
ChatGPT-40 mini (Achiam et al., 2023) to gener-
ate questions from the datasets by providing multi-
ple documents and ask it to generate questions that
demand knowledge from all provided documents,
including different perspectives. For detailed statis-
tics of the datasets, please refer to Table 1

Baselines We compare our SMART framework
against several popular RAG approach es: Naive
RAG (Lewis et al., 2020), GRAG (Edge et al.,
2024) and LightRAG(Guo et al., 2024). While
Naive RAG focuses on explicit facts, both GRAG
and LightRAG attempt to enhance performance
by incorporating implicit facts, but with varying
degrees of complexity and efficiency. By com-
paring these models, we can better highlight the
advantages of the SMART framework in han-

dling multi-hop and multi-perspective question-
answering tasks. To evaluate the performance of
the models, we use the Word Coverage, Accuracy,
Perspective Coverage and Average Modularity. For
more about baseline, implementation and evalua-
tion, please refer to Appendix A.3, A4 and A.5

5.1 Comparison on Original QA

Firstly, we evaluate the performance of the baseline
models and our SMART model on the original QA
datasets, as shown in Table 2. SMART consistently
outperforms other models across all evaluation met-
rics when applied to original QA tasks. It achieves
the highest scores in Word Coverage, indicating
its superior ability to generate more relevant and
comprehensive answers. Similarly, SMART excels
in Acc@0.25 and Acc@0.5, further confirming its
effectiveness in producing accurate and precise an-
swers across different datasets. From Table 2, it
is clear that SMART surpasses RAG, GRAG, and
LightRAG in handling original QA tasks, validat-
ing its superior performance in this domain.

5.2 Comparison on Multi-Perspective QA

We also compare the performance of the mod-
els on the multi-perspective QA datasets(Table 3).
In addition to Word Coverage, Acc@0.25, and
Acc@(.5, we evaluate Perspective Coverage to
assess how well the models capture multiple per-
spectives. From Table 3, it is evident that SMART
demonstrates a clear advantage in Perspective Cov-
erage, which evaluates the model’s ability to cap-
ture multiple viewpoints—an essential aspect for
multi-perspective QA tasks. It excels in generat-
ing answers that incorporate diverse perspectives
across various datasets, showcasing its strength in



Table 5: Case Study.

Question:What are the key factors contributing to OpenAl’s rapid growth and adoption in various sectors?

No-RAG

Naive-RAG

Graph-RAG

SMART

OpenAl’s rapid growth is
driven by its early devel-
opment of powerful lan-
guage models like GPT-3
and GPT-4, strategic part-
nerships (e.g., with Mi-
crosoft), strong developer-
friendly APIs, commer-
cialization through Chat-
GPT, consistent break-
throughs in Al, successful
monetization, and attract-
ing top talent and invest-
ment.

OpenAl’s growth is fueled
by the potential of genera-
tive Al, with estimates sug-
gesting it could add up to
4.4 trillion in value. Busi-
ness leaders widely recog-
nize AI’s importance, and
global Al spending is pro-
jected to reach 154 billion,
driving further investment
and interest in Al technolo-
gies.

Key factors contributing
to OpenAl’s rapid growth
and adoption in various
sectors include the overar-
ching AI Revolution that
emphasizes the integration
of artificial intelligence
across different indus-
tries, the leadership of
influential figures like
Mark Surman - - - Further-
more, the emergence of
generative Al technologies,
represented by concepts

OpenAl’'s rapid growth
and adoption in various
sectors can be attributed
to several key factors,
including its development
of  advanced Al models
like ChatGPT and GPT-4
Turbo, which have gained
widespread recognition
and usage across indus-
tries. Additionally,
strategic partnerships,
such as that with Mi-
crosoft, - - -

like GPT-X,- - -

addressing the complexities of multi-perspective
question answering.

5.3 Ablation Study

We conduct an ablation study on MultiHop RAG,
where we progressively reduce the number of heads
in the SMART model to observe the impact on per-
formance (Table 4). The results show that increas-
ing the number of heads improves model perfor-
mance across all metrics. From Table 4, it can be
seen that the 5-Head configuration achieves the best
scores in Word Coverage and Acc@0.25, while the
4-Head model performs well in Acc@0.5, balanc-
ing complexity and performance. In terms of Aver-
age Modularity and Average NMI, the 5-Head con-
figuration also leads, capturing diverse perspectives
without significant overhead. Reducing the head
count to 3-Head or 2-Head causes performance to
drop, especially in Acc@0.5, with 2-Head showing
the weakest performance. Overall, the results con-
firm that more heads improve the model’s ability
to handle complex QA tasks, with 5-Head provid-
ing the best trade-off between performance and
computational cost.

5.4 Case Study

Based on the evaluation results, the SMART model
provides the most accurate response, demonstrat-
ing strong relevance and a structured analysis that
effectively aligns with the knowledge base and di-
rectly addresses the core aspects of the question. In
contrast, the Naive RAG model, while presenting
macro-level data on the factors contributing to Ope-

nAl’s growth, lacks specific details about OpenAl
itself, failing to delve into its technological innova-
tions and strategic partnerships. The Graph RAG
model places excessive emphasis on community
aspects, which detracts from focusing on OpenAlI’s
key factors, resulting in a more general response
with insufficient analysis of its technological ad-
vancements and partnerships. As for the No RAG
model, while concise, it lacks depth and data sup-
port due to the absence of an external knowledge
base, making it difficult to capture the complexities
behind OpenAl’s growth, rendering it relatively
basic and unable to compete with the depth of anal-
ysis seen in the other models.

6 Conclusion and Future Work

In this paper, we propose two principles for fact
abstraction in RAG systems: the Information-
Maximization Principle and the Multi-Perspective
Principle.  Building on these principles, we
introduce the Structural Entropy-Based Multi-
Perspective Abstraction for Retrieval Technique
(SMART). SMART integrates explicit and implicit
facts with multi-perspective analysis, offering com-
prehensive knowledge to enhance the generation
capabilities of LLMs while mitigating issues such
as factual inaccuracies. Experiments on three real-
world datasets demonstrate that SMART signifi-
cantly outperforms existing RAG frameworks, vali-
dating its effectiveness in handling complex infor-
mation in question-answering tasks.



Limitations

Despite these advancements, the SMART frame-
work has some limitations. First, the use of a struc-
tural entropy-based learning model increases com-
putational complexity. Future work could address
this by incorporating faster techniques, such as
InfoNCE-based methods. Additionally, SMART
currently focuses exclusively on textual data. How-
ever, the fact abstraction principles, being grounded
in information theory, are applicable across modal-
ities. In summary, future work will focus on en-
hancing computational efficiency and extending
SMART to incorporate multimodal data. By ad-
dressing these challenges, SMART has the poten-
tial to become an even more powerful framework
for tackling broader tasks.
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All datasets used in this paper are publicly avail-
able, carry open licenses, contain no personally
identifiable information (PII), and therefore do not
require additional IRB approval. Below we list for
each dataset its source, license, privacy considera-
tions, and ethical compliance.

* MultiHop-RAG

— Source: GitHub repository
https://github.com/yixuantt/
MultiHop-RAG.

— License: Open Data Commons Attribu-
tion (ODC-BY).

— Privacy: Underlying documents are from
publicly accessible news articles and con-
tain no PIL

— Ethics: Public data only; no IRB ap-
proval required.

* HotpotQA
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— Source: Official HotpotQA site and
GitHub (https://curtis.ml.cmu.
edu/datasets/hotpot/).

— License: Creative Commons
Attribution-ShareAlike 4.0 (CC
BY-SA 4.0).

— Privacy: All passages sourced from
Wikipedia, which is public domain; no
PIL

— Ethics: Public data only; no IRB ap-
proval required.

e TriviaQA
— Source: GitHub repository
and TensorFlow Datasets

(tensorflow_datasets.load("trivia_ga")).

— License: Apache License 2.0.

— Privacy: Questions and evidence drawn
from Wikipedia and openly available
web sources; no PII.

— Ethics: Public data only; no IRB ap-
proval required.

For the existing datasets (MultiHop-RAG, Hot-
potQA, TriviaQA), we confirm that their licenses
(ODC-BY, CC-BY-SA 4.0, Apache 2.0) permit our
offline, research-only use and result redistribution.

For the artifacts we produce (the SMART code-
base and the multi-perspective QA samples), we
specify in our repository’s README that they are
released under a CC-BY-4.0 license for research
and non-commercial purposes only, in accordance
with the original datasets’ access conditions.

We used ChatGPT (OpenAl GPT-4) to polish
the language of the manuscript. All text sugges-
tions generated by ChatGPT were reviewed, edited,
and approved by the authors to ensure technical
accuracy and clarity.
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A Technical Appendix

A.1 Entity and Relation Extraction Using
LLM

Let Vp and £p denote the nodes and edges ex-
tracted from a document D:

Algorithm 2 Entity and Relation Extraction Using
LLM
Require: Documents D, LLM M, Entity Extrac-
tion Prompt (including Entity Types), Relation
Extraction Prompt.
Ensure: Extracted entities ) and relationships £
1: Initialize V < 0, € + 0
2: for each document D € D do
3:  Extract entities Vp using M:
4:  Vp < M(D @ Entity Extraction Prompt)
5 Extract relationships £p using M and ex-
tracted Vp:
Ep + M(D & Vp)
Update the global entity and relationship
sets:
V<« VUVp, E«~EUED
8: end for
9: return V, &

el

A.2 Dataset Details

MultiHop RAG (Tang and Yang, 2024) evaluates
multi-hop reasoning by requiring questions to inte-
grate implicit facts from various documents. Cor-
rect answers are derived by combining informa-
tion from multiple sources, making this dataset
a valuable benchmark for RAG systems. Hot-
potQA (Yang et al., 2018) is a Wikipedia-based
dataset containing 113,000 question-answer pairs.
It requires multi-hop reasoning over multiple docu-
ments and provides sentence-level supporting facts
for each question. This feature necessitates the
ability to perform complex analyses and generate
explainable answers. TriviaQA (Joshi et al., 2017)
comprises over 650,000 question-answer-evidence
triples, with each question associated with six sup-
porting documents. This dataset challenges models
to synthesize information from multiple sources
of evidence, pushing the limits of their reasoning
capabilities.

A.3 Baseline Details

Naive RAG (Lewis et al., 2020): This baseline uses
a traditional RAG model that retrieves documents
based on explicit facts and generates answers from
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these retrieved documents without considering im-
plicit facts. While it effectively handles simpler
questions, it may struggle with complex multi-hop
reasoning and integrating information from diverse
perspectives. GRAG (Edge et al., 2024) is a RAG
variant that introduces a structured, hierarchical
approach to retrieval-augmented generation. In-
stead of relying on flat document representations,
it extracts a knowledge graph from raw text, builds
a community hierarchy, and generates summaries
for these communities. By considering the rela-
tionships between documents and abstracting hid-
den facts within these structures, GRAG aims to
improve the quality of generated answers, espe-
cially for multi-hop and multi-perspective ques-
tions. LightRAG(Guo et al., 2024) incorporates
implicit facts into the retrieval process through
a more efficient, dual-level retrieval system. By
combining low-level and high-level knowledge dis-
covery, LightRAG uses graph structures integrated
with vector representations, allowing for efficient
retrieval of related entities and their relationships.
This method significantly improves retrieval accu-
racy and response times while reducing computa-
tional costs, making it suitable for large-scale, real-
time applications. These baselines were chosen to
demonstrate the impact of explicitly considering
implicit facts, which is a key feature of our SMART
framework.

A.4 Implementation

For the implementation of our baseline models,
we use the settings and hyperparameters provided
in their respective papers. Specifically, for Naive
RAG (Lewis et al., 2020), we follow the setup
described in the original RAG paper. For GRAG,
the implementation follows the settings in the paper
by Edge et al. (Edge et al., 2024). For LightRAG,
we use the parameters recommended by Guo et al.
(Guo et al., 2024).

For our SMART model, we use the following
settings:

e x: The number of trees (head count) in our
model. The default value is 3, which corre-
sponds to three heads or three trees.

* m: The number of layers in each tree. The
default value is 3.

* \: The weight for the NMI (Normalized Mu-
tual Information) term. The default value is
1.



* u: The parameter for the Parent-Children bal-
ance in a tree, set to le-3 as the default value.

We use ChatGPT-40 mini (Achiam et al., 2023)
for both entity extraction and answer generation
tasks. ChatGPT-40 mini is the same model used
for entity extraction and generating answers, en-
suring consistency across tasks. The multilingual-
eS-large (Wang et al., 2024b) model is used for
document embeddings. The prompt settings for
entity extraction, report generation, and answering
tasks are detailed in Table 6.

For the hardware, we use a high-performance
system equipped with a NVIDIA GeForce RTX
4090 GPU for efficient training and inference.
The system is powered by a 16-core CPU and is
equipped with 80 GB of RAM, ensuring smooth
processing and fast computation for large-scale
models and datasets.

A.5 Evaluation Metrics

To evaluate the performance of the models, we
use the following metrics: Word Coverage (Sipos
et al., 2012): Measures the percentage of words in
the ground truth answer that are also present in the
generated answer.

Acc@0.25 and Acc@0.5 (Raffel et al., 2020):
These metrics measure the accuracy of the gener-
ated answer compared to the ground truth, with
thresholds of 0.25 and 0.5, respectively. These
thresholds represent the percentage of words in the
generated answer that must match the ground truth
answer to be considered correct.

Perspective Coverage: This metric evaluates
how well the model captures multiple perspectives
in the generated answers. A higher coverage indi-
cates that the model is considering multiple angles
and contexts when generating the answer.

Average Modularity (Traag et al., 2019) and
Average NMI (Normalized Mutual Information)
(Cover, 1999): These metrics are used to evaluate
the effectiveness of the multi-perspective approach
in our SMART framework. Average Modularity
is used to assess the quality of clustering by mea-
suring how well the model groups related facts or
perspectives together. A higher modularity score
indicates more meaningful and coherent clusters.
Average NMI is used to evaluate the diversity be-
tween the multiple heads generated by the SMART
framework. It measures how distinct the perspec-
tives captured by the model are, with higher values
indicating greater diversity and separation between
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the generated heads.



Table 6: Prompt Settings for Different Tasks.

Task

Prompt

Entity and Relationship
Extraction

Goal:

Given a text document and a list of predefined entity types (as a hyperparameter,
which can be passed externally), identify all entities of the specified types from
the text and the relationships between the identified entities.
Steps:
1. Identify all entities. For each identified entity, extract the following informa-
tion:

- entity_name: Name of the entity (capitalized).

- entity_type: One of the entity types from the provided list (e.g.,
[Person, Organization, Location, Event, Product, Concept, Time]).

- entity_description: A comprehensive description of the entity’s at-
tributes and activities.

Format each entity output as a JSON entry, following the structure:

{{"name": <entity name>, "type": <type>, "description": <entity de-
scription>} }
2. From the entities identified in step 1, identify all pairs of (source_entity,
target_entity) that are clearly related.
For each related entity pair, extract the following details:

- source_entity: The name of the source entity as identified in step 1.

- target_entity: The name of the target entity as identified in step 1.

- relationship_description: An explanation of why the source entity
and the target entity are related.

- relationship_strength: An integer score between 1 and 10, indicating
the strength of the relationship between the source and target entity.

Format each relationship as a JSON entry, following the structure:

{{"source": <source_entity>, "target": <target_entity>, "relationship":
<relationship_description>, "relationship_strength": <relationship_strength>}}
3. Return the results as a single list of JSON entities and relationships identified
in steps 1 and 2, in English.

Report Generation

Goal:

Write a comprehensive assessment report of a community as a community
analyst. The report should provide an overview of the community’s key entities
and their relationships.

Report Structure:

The report should include the following sections:

- TITLE: The community’s name representing its key entities. The title
should be short but specific and, when possible, include representative named
entities.

- SUMMARY: An executive summary of the community’s overall
structure, how its entities are related to each other, and key points associated
with these entities.

- DETAILED FINDINGS: A list of 5-10 key insights about the com-
munity. Each insight should include a short summary, followed by explanatory
paragraphs grounded with concrete examples.

Answer Generation

Goal:

Generate a response to the following question based on the provided report:
Question: {question}

Instructions:

- Use the data provided in the report below as the primary context for generating

the response.

- If you don’t know the answer or if the input report does not contain sufficient

information, respond with: "Information not found in the report."

- Provide the id of the findings used to generate your response.

13



	Introduction
	Related Works
	Problem Formulation
	Methodology
	Principle for Fact Abstraction
	SMART framework

	Experiments
	Comparison on Original QA
	Comparison on Multi-Perspective QA
	Ablation Study
	Case Study

	Conclusion and Future Work
	Technical Appendix
	Entity and Relation Extraction Using LLM
	Dataset Details
	Baseline Details
	Implementation
	Evaluation Metrics


