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Abstract001

Retrieval-Augmented Generation (RAG) sys-002
tems address the factual inaccuracies limita-003
tion of Large Language Models (LLMs). How-004
ever, the absence of principled methodologies005
for extracting facts has led current RAG sys-006
tems to uninformative fact-abstractions. To ad-007
dress these challenges, we propose two princi-008
ples for fact abstraction in RAG systems: the009
Information-Maximization Principle and the010
Multi-Perspective Principle. These principles011
reformulate the task of extracting facts into an012
optimization problem based on information-013
theoretic quantities, providing a reliable frame-014
work for fact abstraction. Building on these015
principles, we introduce the Structural Entropy-016
Based Multi-Perspective Abstraction for Re-017
trieval Technique (SMART). Extensive exper-018
iments on three real-world datasets demon-019
strate that SMART significantly improves RAG020
systems, achieving notable gains in multi-021
hop/perspective question-answering tasks 1.022

1 Introduction023

Although effective in various tasks, Large Lan-024

guage Models (LLMs) often exhibit factual inaccu-025

racies due to their lack of task-specific real-world026

knowledge (Hu et al., 2023; Chen et al., 2024). In-027

formation Retrieval (IR) techniques have emerged028

as essential tools for accessing relevant information029

in LLM-based systems, forming the foundation of030

Retrieval-Augmented Generation (RAG) systems031

(Lewis et al., 2020; Gao et al., 2023; Salemi et al.,032

2024). Research on RAG systems reveals that the033

requirements for IR models in such systems dif-034

fer from those of traditional IR, which primarily035

focuses on retrieving precise most relevant infor-036

mation for a given query. In the context of RAG037

systems, while LLMs can process complex knowl-038

edge, the key challenge lies in retrieving sufficient039

relevant information to provide adequate context040

1https://anonymous.4open.science/r/SMART_CODES/.

for generation. LLMs require IR methods to sup- 041

ply not only question-relevant information but also 042

latent and comprehensive knowledge beyond what 043

is explicitly stated in documents. 044

Studies such as (Hu et al., 2024; Mavromatis 045

and Karypis, 2024; Wang et al., 2024a) suggest 046

that ideal generation often requires multi-hop rela- 047

tionships between entities, which are implied but 048

not explicitly stated in the documents. Additionally, 049

(Guo et al., 2024; Edge et al., 2024) demonstrate 050

that incorporating latent hierarchical abstractions 051

can enhance the generation process. Furthermore, 052

(Salemi et al., 2024; Feng et al., 2024) emphasize 053

that considering diverse perspectives on the same 054

fact enriches the analysis. Based on these stud- 055

ies, we classify applicable facts in a database into 056

two types: 1) Explicit facts, which are directly 057

extracted from document chunks (e.g., “Cows pro- 058

duce milk”, “Cats produce milk”, “Dogs produce 059

milk”, “Bats produce milk”, “Chicken do not pro- 060

duce milk” and “Ducks cannot produce milk”;and 061

2) Implicit facts, which cannot be directly extracted 062

but are inferred by combining explicit facts. For 063

example, from the above explicit facts, one can 064

infer: “A group of animals, including cows, cats, 065

dogs, and bats, share biological similarities as milk 066

producers.” and “There are other animals that do 067

not produce milk”. Implicit facts can come from 068

multiple perspectives. For instance, animals could 069

also be categorized based on their habitat traits, 070

providing alternative viewpoints. 071

Humans excel at extracting multi-perspective im- 072

plicit facts by combining or comparing known facts. 073

However, existing IR methods in RAG systems 074

struggle to reliably handle implicit facts. Although 075

(Guo et al., 2024; Edge et al., 2024) highlight the 076

importance of implicit facts, most approaches cap- 077

ture them using heuristic designs, making it unclear 078

whether the retrieved facts align with the task’s de- 079

mands. Unlike traditional IR tasks, IR for RAG 080

systems lacks guiding principles, leading to over- 081
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looked critical information and incomplete retrieval082

of implicit facts. This raises a pivotal question:083

How can we design an IR system that provides084

LLMs with implicit facts in addition to explicit facts085

to effectively address information gaps in RAG sys-086

tems?087

In this paper, we address this question in two088

steps. First, by analyzing the intrinsic knowledge089

structure of implicit facts, we propose two prin-090

ciples for abstracting such facts from documents.091

Second, based on these principles, we introduce the092

Structural entropy-based Multi-perspective Anal-093

ysis for Retrieval Technique (SMART), a plug-in094

framework that enhances RAG systems by provid-095

ing comprehensive context, including both explicit096

and implicit facts from multiple perspectives.097

Specifically, we analyze the knowledge structure098

of implicit facts using Structural Information The-099

ory. Inspired by prior research on graph analysis,100

we observe that the usefulness of an extracted fact101

can be evaluated by analyzing the information con-102

tent of its corresponding encoding tree. To this end,103

we define two principles for fact abstraction:104

P1. Information-maximization principle de-105

fines optimiation problem of extracting infor-106

mative implicit facts.107

P2. Multi-perspective principle transform the108

goal of exploring implicit facts diversity into109

mathematical constraints110

By adhering to these principles, the fact abstraction111

task becomes an optimization problem, simplifying112

its application in RAG systems.113

In the SMART framework, a GNN-based ap-114

proach extracts informative multi-perspective im-115

plicit facts under the guidance of a loss function116

derived from the fact abstraction principles. This117

GNN-based abstractor captures the most relevant118

implicit facts and augments the database with these119

facts, bridging information gaps left by explicit120

facts. Additionally, SMART replaces the original121

retriever in RAG systems with a comprehensive122

retrieval model that retrieves both explicit and im-123

plicit facts. This design enables SMART to provide124

RAG systems with sufficient context for genera-125

tion.126

Through extensive experiments on three real-127

world datasets, we demonstrate that SMART signif-128

icantly improves RAG system performance, achiev-129

ing up to 11%, 2%, and 11% increases in answer130

accuracy on the MultiHop, TriviaQA, and Hot- 131

potQA datasets, respectively. We also generate 132

multi-hop and 2–4 perspective QA sets based on 133

these datasets. SMART achieves 11%, 3%, and 134

11% improvements in multi-perspective scenarios, 135

establishing itself as a powerful IR framework that 136

equips LLMs with both explicit and implicit knowl- 137

edge across diverse perspectives. The main contri- 138

butions of this paper are summarized as follows: 139

• Introduction of fact abstraction principles, 140

based on Structural Information Theory, to 141

guide implicit fact extraction in RAG systems. 142

• Design of the Structural entropy-based Multi- 143

perspective Analysis for Retrieval Technique 144

to enhance RAG systems’ information re- 145

trieval capabilities. 146

• Experimental validation demonstrating that 147

SMART improves RAG system performance. 148

2 Related Works 149

Recent studies have rapidly expanded the IR tool- 150

box to develop methods capable of addressing the 151

comprehensive knowledge demands of RAG sys- 152

tems. A significant portion of research focuses on 153

improving the quality of relevance-based retrieval. 154

These studies highlight the contributions of effec- 155

tive IR models and propose various approaches to 156

constructing robust IR tools for RAG systems, such 157

as fine-tuning LLMs to cooperate with IR mod- 158

els (Zhang et al., 2024) and modifying IR models 159

based on LLM knowledge distillation (Salemi et al., 160

2024). While these methods demonstrate impres- 161

sive progress, they overlook a critical limitation 162

of relevance-only retrieval workflows: information 163

with latent relevance to the query is often ignored 164

by smaller IR models. Research has shown that 165

such omissions can substantially hinder the perfor- 166

mance of LLMs, which excel at handling complex, 167

real-world knowledge. For example, (Mavromatis 168

and Karypis, 2024) demonstrates that providing 169

all documents of the entities in the shortest paths 170

connecting queried entities and answer candidates 171

is more effective than retrieving only documents 172

directly relevant to the answer candidates. Simi- 173

larly, (Hu et al., 2024) underscores the importance 174

of latent relational graph structures in documents 175

for RAG systems. These findings suggest that ex- 176

tracting relations between entities in documents is 177

essential for effective IR in RAG systems. How- 178

ever, many existing methods fail to consider hierar- 179

2



chical abstractions that cannot be directly extracted180

from the provided documents. This oversight leads181

to an overemphasis on local information while ne-182

glecting the retrieval of global information across183

all provided documents. To address this, (Edge184

et al., 2024) introduces an IR framework that gen-185

erates hierarchical abstractions of documents using186

pre-defined hierarchical clustering methods. Addi-187

tionally, (Guo et al., 2024) proposes a mechanism188

to aggregate information across multiple related189

entities and relationships, enabling the retrieval190

of high-level document abstractions. These ap-191

proaches successfully improve generation results192

by leveraging hierarchical abstractions. However,193

their predefined mechanisms are not optimized for194

effective information retrieval and may fail to close195

the information gaps in the original documents.196

Furthermore, studies on LLMs reveal that incor-197

porating multiple perspectives on the same fact198

can enhance analytical comprehensiveness and im-199

prove generation results (Salemi et al., 2024; Feng200

et al., 2024). Despite this, existing RAG research201

lacks sufficient exploration into retrieving diverse202

perspective-based information for LLMs.203

Our work is also inspired by research on struc-204

tural entropy. Measuring information in structural205

data has been regarded as a significant challenge in206

21st-century computer science. Structural entropy207

has been extensively studied as a tool to analyze208

the information embodied in structural representa-209

tions (Brooks Jr, 2003). Numerous entropy mea-210

sures have been developed to study the topology211

of networks (Dehmer, 2008; Anand and Bianconi,212

2009). For instance, Infomap (Rosvall et al., 2009)213

analyzes graphs using random walks, while (Li214

and Pan, 2016; Li et al., 2016) employ structural215

entropy to evaluate network properties. Further-216

more, (Liu et al., 2019) introduces residual entropy217

derived from noise generation for community de-218

tection. Despite these advancements, structural219

entropy techniques have yet to be applied in studies220

of LLM-based systems.221

3 Problem Formulation222

Basic Components of RAG Systems. Let W223

represent the set of tokens. A query can be defined224

as a positive closure of the token set: Q ∈ W+.225

The collected facts are stored in a database. Denot-226

ing the power set ofW+ as P(W+), the database227

is represented as D ∈ P(W+), where each D ∈ D228

corresponds to a document chunk containing col-229

lected facts. Upon receiving a query, a retriever 230

fIR : W+ × P(W+) → W+ identifies relevant 231

facts to support the LLM2. Let fEmb : W+ → Rℓ 232

denote an embedding function that maps a token 233

sequence to an ℓ-dimensional representation vector. 234

Denote the inner product of two vectors by ⟨·, ·⟩. A 235

vector-based retriever is defined as3: 236

fIR(Q,D) := argmax
D∈D
⟨fEmb(Q), fEmb(D)⟩. 237

LetM :W+ →W+ denote a pre-trained LLM, 238

and let ⊕ denote the concatenation of token se- 239

quences. The answer A ∈ W+ generated by a 240

RAG system is expressed as: 241

A =M(Q⊕ fIR(Q,D)). 242

Representing Facts in the Database with Graphs. 243

In a RAG system, certain facts are directly con- 244

veyed through documents stored in the database 245

D. These are referred to as explicit facts. As 246

the volume of collected explicit facts grows, their 247

knowledge structure becomes increasingly com- 248

plex. Many RAG systems leverage graphs to model 249

these explicit facts, as graphs effectively capture 250

complex relationships between entities and their 251

interactions. A graph G := (V, E) is constructed 252

where nodes V represent entities and edges E repre- 253

sent relationships extracted from D. For example, 254

let vi ∈ V and vj ∈ V represent the entities “cows” 255

and “milk”, respectively, and let e denote the rela- 256

tion “produce”. The fact “Cows produce milk” is 257

represented as the edge (vi, e, vj) ∈ E . Conversely, 258

let vi′ ∈ V represent the entity “ducks”. The ab- 259

sence of an edge between vi′ and vj implies the 260

fact “Ducks do not produce milk”. For simplicity, 261

we represent edges as (vi, vj) instead of (vi, e, vj) 262

in subsequent discussions, as this does not affect 263

the overall analysis. In practice, the graph G is 264

constructed using an entity-relation extraction al- 265

gorithm powered by an LLM. The detailed process 266

is described in Algorithm 2 in Appendix A.1, 267

Additionally, we introduce two functions that 268

model the links between documents and nodes in 269

the graph G during the graph construction process 270

outlined in Algorithm 2. Define fsour : V → W+ 271

2Various types of retrievers exist; in this paper, we use the
widely adopted vector-based retriever as an example. Note that
our proposed method is not restricted to this type of retriever;
it is also applicable to other retrieval approaches.

3In real-world scenarios, the retriever typically retrieves
the top-k results rather than a single maximum. However, for
simplicity, we use the maximum retrieval here, which does
not affect the overall design of the RAG system.
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as a function that maps nodes in the graph G272

to token sequences composed of the document273

chunks in D that reference them. Similarly, de-274

fine fextr : D → P(V) as a function that maps275

document chunks in the database to a set of nodes276

representing the entities they reference. These two277

functions are essential for maintaining relationship278

between nodes and documents within RAG system.279

Recent studies have revealed that RAG systems280

often fail to emulate the human ability to compre-281

hend implied facts from the provided documents282

(Edge et al., 2024; Guo et al., 2024). Most previous283

RAG systems, which primarily focus on explicit284

facts, fail to capture latent information. This limita-285

tion raises a critical research question: How can ab-286

stracted latent information be effectively provided287

to LLMs within a RAG system?288

4 Methodology289

4.1 Principle for Fact Abstraction290

Humans have the ability to extract facts from high-291

level combinations or comparisons of superficial292

explicit facts. We refer to these facts as implicit293

facts. These implicit facts help human construct294

high-level understanding of the world. Implicit295

facts cannot be directly extracted from one specific296

document chunk in the data base. They are inferred297

through combinations of multiple explicit facts.298

Information-max principle. For a RAG system,299

the captured implicit facts are expected to help300

LLM under the world better. Form the view of301

Information, the information quantity of captured302

implicit facts is expected to be as much as possible.303

Thus, the first principle is drawn from quantitative304

analysis of information inside captured implicit305

facts. This principle translate the task of finding306

helpful implicit facts into an optimization problem.307

As discussed above, the facts make up a hi-308

erarchical structure with implicit facts on high-309

level part while explicit facts in the lowest-level310

and explicit facts can be modeled by graphs. To311

model such hierarchical structure, Encoding Tree312

of graphs introduced by (Li and Pan, 2016) is313

proved effective and widely applied (Cao et al.,314

2024).315

In this RAG scenario, we build Encoding Tree316

of graph G. Construct a tree denoted by T , with V317

denoting its node set. Define fchild : V → P(V ) as318

a function returning the child nodes of input node,319

where P(V ) denotes the power set of V . Then,320

leaf node set of T is defined as: 321

Vleaf := {v ∈ V | fchild(v) = ∅}. 322

T is an Encoding Tree of G if all leaf nodes in T
correspond to nodes in G, i.e.:

Vleaf = V.

Define fparent : V → V as a function returning 323

the parent node of input node. The internal node 324

(non-leaf, non-root) set of T is defined as: 325

Vinte := {v ∈ V | fchild(v) ̸= ∅ ∧ fparent(v) ∈ V }. 326

Each inter node v ∈ Vinte represents combina- 327

tion of its children nodes, and thus indicates ab- 328

stract implicit fact derived from its child nodes. 329

For example, let vα ∈ Vinte be a node follows 330

fchild(vα) = {v ∈ V | (v, vj) ∈ E}, where vj ∈ V 331

be the node indicate entity “milk”. Then, from the 332

sub-tree with vα as root, denoted by Tvα , a implicit 333

fact can be implied that “A group of animals, in- 334

cluding cows, cats, dogs, and bats, share biological 335

similarities as milk producers.”. 336

Since the sub-tree structure of each v ∈ Vinte 337

reveals the implicit fact, from information view, 338

capturing sufficient implicit fact is equivalent to 339

making the sub-tree structure of all internal nodes 340

informative. In other words, a RAG system de- 341

mand information content captured by the sub-tree 342

structure of all internal nodes being maximized. 343

Let θv = log |fchild(v)|
|fchild(fparent(v))| . Structural informa- 344

tion theory (Li and Pan, 2016) introduced a tool to 345

evaluate the information content of the sub-tree of 346

an internal node v. Let Nv := fchild(v) denote the 347

set of v’s children: 348

HT (G; v) := θv ×
{∑

E

p(vi ∈ Nv ∧ vj /∈ Nv)

}
. (1) 349

Based on (1), they provide the evaluation of the 350

information content of the sub-tree of all internal 351

nodes in T , called the structural entropy of T , de- 352

noted asHT (G): 353

HT (G) =
∑

v∈Vinte

HT (G; v). (2) 354

Structural entropy HT (G) increases with the in- 355

formation content of implicit facts captured by T . 356

Thus, we have the first principle for abstraction of 357

implicit facts, the Information-max Principle: 358
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P1. During fact abstraction, extract implicit359

facts whose corresponding encoding tree360

has the maximized structural information.361

argmax
T
HT (G). (3)362

Specially, we notice that for a balanced T , where363

the number of children at each level is uniform, θ364

becomes constant, and HT (G) approximates the365

graph modularity. This special case aligns with366

the design in GraphRAG(Edge et al., 2024). In367

GraphRAG, the implicit fact abstraction is done368

by applying the Leiden algorithm (Traag et al.,369

2019) which maximize the graph modularity of G.370

Aligning with Information-max Principle provide371

GraphRAG helpful implicit facts and Information-372

max Principle print out the direction for more com-373

mon cases.374

Multi-perspective principle. In real-world sce-375

narios, explicit facts can be analyzed from various376

perspectives, leading to different implicit facts. An-377

alyzing explicit facts from a single perspective risks378

overlooking some implicit relationships. For ex-379

ample, given the explicit fact “Bats produce milk380

and possess wings”, one can infer the implicit fact381

“A group of animals (cows, cats, dogs, bats) that382

produce milk are biologically similar” from the383

perspective of milk production. Conversely, from384

the perspective of possessing wings, the implicit385

fact “A group of animals (chickens, ducks, bats)386

with wings are biologically similar” can be derived.387

These two perspectives cannot be effectively repre-388

sented using a single encoding tree.389

To address this limitation, we employ multiple390

encoding trees to capture implicit facts from differ-391

ent perspectives:392

T = {T | Vleaf = V}. (4)393

Two distinct trees within the ideal encoding tree394

set T should reflect implicit facts abstracted from395

different perspectives. In other words, the internal396

nodes of two different trees in T should contain no397

overlapping information. To model this scenario,398

we use mutual information (MI) (Cover, 1999),399

a widely applied tool. Here, we compute the MI400

between the internal nodes of two distinct encoding401

trees.402

Let T k ∈ T and T k′ ∈ T denote two encoding403

trees, and let V k
inte and V k′

inte represent their internal404

nodes, respectively. Let v ∈ V denote a node ran-405

domly selected from the graph G. The MI between406

the internal nodes is defined as: 407

I(V
k

inte;V
k′

inte ) =
∑

vα∈V k
inte

∑
vβ∈V k′

inte

Pαβ × Hαβ ,

where Pαβ =p(v ∈ fchild(vα) ∩ fchild(vβ)),

Hαβ = log
p(v ∈ fchild(vα) ∩ fchild(vβ))

p(v ∈ fchild(vα))p(v ∈ fchild(vβ))
.

408

For T k and T k′ to capture different perspectives, 409

the condition I(V k
inte;V

k′
inte) = 0 holds. The ideal 410

set T is expected to include all encoding trees re- 411

flecting different perspectives. However, due to 412

the input length limitations of LLMs in RAG sys- 413

tems and the computational cost of constructing 414

encoding trees, it is often impractical to include 415

all such trees. As a practical solution, we select 416

K encoding trees that maximize the information 417

content of implicit facts while ensuring no overlap 418

among them. Thus, let κ ∈ N+, the demanded set 419

of κ encoding trees can be formulated as: 420

{T k | ∀k ̸= k′, I(V k
inte;V

k′
inte) = 0.} (5) 421

However, the constraint in (5) is too restricted that 422

makes it hard to search for the tree set satisfies 423

it. Thus, we transform it into a principle to make 424

multiple encoding trees have the least overlaps, i.e., 425

the Multi-perspective Principle: 426

P2. During fact abstraction, extract implicit 427

facts from views whose corresponding en- 428

coding tree has the minimized mutual in- 429

formation. 430

argmin
T

∑
Tk,Tk′∈T

I(V k
inte;V

k′
inte). (6) 431

Combining the Information-max principle and 432

the Multi-perspective principle, an appropriate goal 433

for implicit fact abstraction of a RAG system can 434

be formulated by optimizing: 435

T̂ = argmin
T

{
−

∑
Tk∈T

HT (G)

+

k ̸=k′∑
Tk,Tk′∈T

I(V k
inte;V

k′
inte)

}
.

(7) 436

4.2 SMART framework 437

Following the fact abstraction principles, we pro- 438

pose Structural entropy-based Multi-perspective 439

Abstraction framework for Retrieval Technique 440

(SMART), a plug-in framework to improve the 441

information retrieval method of RAG systems. 442

SMART include two crucial components, the GNN- 443

based Fact-Abstraction model and the Comprehen- 444

sive Retrieval model. 445
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GNN-based Fact-Abstraction. We apply a446

Graph Neural Network (GNN) based model to447

learn the T̂ . Specifically, let d ∈ N+ denote448

the dimension of GNN learned embeddings. Let449

fGNN : V → Rd denote a GNN model. Then we450

learns embedding H ∈ R|V|×d that represents each451

node of G:452

H = fGNN(G).453

Then, let dm ∈ N be hyper parameters denote the454

node number of learned encoding trees at level m.455

Note that for any T k, d0 is the dimension of GNN456

output,i.e., d0 = d. We apply learnable matrix set457

C = {Ckm | Ckm ∈ Rd(m−1)×dm}, and function458

σ : R→ [0, 1] that maps real value into probabili-459

ties. Thus we obtain indicator matrix Ykm for each460

encoding tree T k at level m:461

Ykm = σ(H ·
κ∏

k=1

Ckm). (8)462

Let Ykm[i, α] be the i-th row α-th column value of463

Ykm, we use it to indicate whether the node vi is in464

the subtree with vα as root:465

vi ∈
{
fchild(· · · fchild(︸ ︷︷ ︸

repeat m times

vα) · · · )
}

if Ykm[i, α] = 1,

vi /∈
{
fchild(· · · fchild(︸ ︷︷ ︸

repeat m times

vα) · · · )
}

if Ykm[i, α] = 0.

(9)466

Then, with (9), we are able to construct every467

T k ∈ T Let µ ∈ R and λ ∈ R denote a hyper-468

parameters, 1⃗m = 1dm×1 denote a vector with all469

elements be 1, and A ∈ [0, 1]|V|×|V| denote the nor-470

malized adjacency matrix of graph G. Applying the471

indicator matrix in (8), the search for T̂ following472

(7) can be reformulated as an optimization problem473

to minimize L:474

L = −
∑
km

Ykm[i, j](A[i, j] − µ
∑
i′j′

A[i, j
′
]A[i

′
, j])

+ λ
∑

k ̸=k′,m

(Ykm ⊗ Yk′m · 1⃗m) log
(Ykm ⊗ Yk′m · 1⃗m)

(Ykm1⃗m) × (Yk′m · 1⃗m)

(10)475

Thus, we can train GNN model {GNN and update476

learnable matrix set C with back propagation mini-477

mizing loss L. After training process, the learned478

encoding tree set T̂ can be constructed according479

to indicator matrix set {Ykm}.480

Comprehensive Retrieval. With Encoding trees481

constructed by (10), the implicit facts are indicated482

by internal nodes of these encoding trees. Then we483

transform the abstract tree structure into documents484

chunks that LLM can understand. We apply the 485

function fsour in Section 3 to generate description, 486

i.e., token sequence, for node vi in graph G, by 487

mapping it to documents it was mentioned in D. 488

Define D̂k
i ∈ W+ denote the description of vi ∈ 489

V k of encoding tree T k. D̂k
i is constructed by : 490

D̂k
i =

{
fsour(vi) if vi ∈ V k

leaf

M(T k
vi) if vi ∈ V k

inte.
(11) 491

Then we form a SMART adaption of RAG sys- 492

tem with retriever fIR and database D. Let
∑

for 493

documents denote concatenate all included docu- 494

ment chunks, V ′ = fextr(fIR(Q,D)) ⊂ V denote 495

the entities mentioned in the returned documents in 496

fIR(Q,D). This SMART adaption of RAG system 497

retrieves information with F(Q,D, fIR): 498

F(Q,D, fIR) = fIR(Q,D) ⊕
∑

vi∈V′

∑
m

∑
Ykm[iα]=1

D̂
k
α. (12) 499

The over all process of SMART is described in 500

Algorithm 1: 501

Algorithm 1 SMART framework
Require: Documents D, LLMM, Basic retriever

fIR, Query Q.
Ensure: answer A

1: Construct graph G with Algorithm 2
2: Train the GNN-based fact abstracter with (10)
3: Construct encoding trees T̂ according to (9)
4: for each encoding tree T k ∈ T̂ do
5: for each internal node vα ∈ V k

inte do
6: Generate description D̂k

i according to
(11)

7: end for
8: end for
9: Retrieve context with F(Q,D, fIR) by (12)

10: Generate answer A =M(Q⊕F(Q,D, fIR)
11: return A

Table 1: Dataset Statistics

Dataset Basic Statistics Multi-perspective
Entity Count Relation Count Document Count Perspective Count QA Count

MultiHop RAG 39 359 29 523 600

1 500
2 677
3 6 779
4 2 544

HotpotQA 73 643 64 659 1 000

1 428
2 1 572
3 2 668
4 2 262

TriviaQA 169 374 150 583 1 700

1 300
2 419
3 2 581
4 2 415
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Table 2: Comparison on Original QA

Word Coverage Acc@0.25 Acc@0.5

Model Multihop RAG HotpotQA TriviaQA Multihop RAG HotpotQA TriviaQA Multihop RAG HotpotQA TriviaQA

RAG 0.75 0.18 0.73 0.75 0.49 0.73 0.74 0.01 0.73
GRAG 0.70 0.36 0.71 0.73 0.84 0.74 0.71 0.08 0.72
LightRAG 0.70 0.42 0.68 0.70 0.90 0.70 0.69 0.10 0.67
SMART 0.80 0.42 0.81 0.83 0.92 0.82 0.81 0.14 0.79
Impro. ↑ 0.07 0.00 ↑ 0.11 ↑ 0.11 ↑ 0.02 ↑ 0.11 ↑ 0.09 ↑ 0.4 ↑ 0.08

Table 3: Comparison on Multi-Perspective QA

Word Coverage Acc@0.25 Acc@0.5 Perspective Coverage

Model Multihop RAG HotpotQA TriviaQA Multihop RAG HotpotQA TriviaQA Multihop RAG HotpotQA TriviaQA Multihop RAG HotpotQA TriviaQA

RAG 0.72 0.25 0.71 0.72 0.52 0.69 0.71 0.03 0.66 0.18 0.15 0.20
GRAG 0.75 0.38 0.66 0.74 0.83 0.75 0.74 0.10 0.73 0.52 0.25 0.47
LightRAG 0.76 0.45 0.69 0.76 0.89 0.74 0.70 0.15 0.74 0.58 0.38 0.51
SMART 0.81 0.47 0.82 0.84 0.92 0.83 0.82 0.18 0.79 0.78 0.65 0.73
Impro. ↑ 0.07 ↑ 0.04 ↑ 0.15 ↑ 0.11 ↑ 0.03 ↑ 0.11 ↑ 0.11 ↑ 0.20 ↑ 0.07 ↑ 0.34 ↑ 0.71 ↑ 0.43

Table 4: Ablation Study on Head Count

Head Count Ave. Modularity Ave. NMI Word Coverage Acc@0.25 Acc@0.5
2-head 0.680 0.410 0.70 0.73 0.71
3-Head 0.625 0.480 0.75 0.77 0.74
4-Head 0.762 0.510 0.78 0.80 0.76
5-Head 0.789 0.395 0.77 0.81 0.78
6-Head 0.785 0.360 0.78 0.79 0.77

5 Experiments502

Datasets. We evaluate our SMART framework503

using three widely utilized question answering504

(QA) datasets: MultiHop RAG, HotpotQA, and505

TriviaQA. These datasets were chosen due to their506

inherent complexity in multi-hop reasoning and507

their natural incorporation of multi-perspective an-508

swers. Each dataset contains questions that re-509

quire synthesizing knowledge from multiple doc-510

uments, emphasizing the importance of implicit511

multi-perspective reasoning in QA tasks. For gen-512

erating multi-perspective questions, we use the513

ChatGPT-4o mini (Achiam et al., 2023) to gener-514

ate questions from the datasets by providing multi-515

ple documents and ask it to generate questions that516

demand knowledge from all provided documents,517

including different perspectives. For detailed statis-518

tics of the datasets, please refer to Table 1519

Baselines We compare our SMART framework520

against several popular RAG approach es: Naive521

RAG (Lewis et al., 2020), GRAG (Edge et al.,522

2024) and LightRAG(Guo et al., 2024). While523

Naive RAG focuses on explicit facts, both GRAG524

and LightRAG attempt to enhance performance525

by incorporating implicit facts, but with varying526

degrees of complexity and efficiency. By com-527

paring these models, we can better highlight the528

advantages of the SMART framework in han-529

dling multi-hop and multi-perspective question- 530

answering tasks. To evaluate the performance of 531

the models, we use the Word Coverage, Accuracy, 532

Perspective Coverage and Average Modularity. For 533

more about baseline, implementation and evalua- 534

tion, please refer to Appendix A.3, A.4 and A.5 535

5.1 Comparison on Original QA 536

Firstly, we evaluate the performance of the baseline 537

models and our SMART model on the original QA 538

datasets, as shown in Table 2. SMART consistently 539

outperforms other models across all evaluation met- 540

rics when applied to original QA tasks. It achieves 541

the highest scores in Word Coverage, indicating 542

its superior ability to generate more relevant and 543

comprehensive answers. Similarly, SMART excels 544

in Acc@0.25 and Acc@0.5, further confirming its 545

effectiveness in producing accurate and precise an- 546

swers across different datasets. From Table 2, it 547

is clear that SMART surpasses RAG, GRAG, and 548

LightRAG in handling original QA tasks, validat- 549

ing its superior performance in this domain. 550

5.2 Comparison on Multi-Perspective QA 551

We also compare the performance of the mod- 552

els on the multi-perspective QA datasets(Table 3). 553

In addition to Word Coverage, Acc@0.25, and 554

Acc@0.5, we evaluate Perspective Coverage to 555

assess how well the models capture multiple per- 556

spectives. From Table 3, it is evident that SMART 557

demonstrates a clear advantage in Perspective Cov- 558

erage, which evaluates the model’s ability to cap- 559

ture multiple viewpoints—an essential aspect for 560

multi-perspective QA tasks. It excels in generat- 561

ing answers that incorporate diverse perspectives 562

across various datasets, showcasing its strength in 563
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Table 5: Case Study.

Question:What are the key factors contributing to OpenAI’s rapid growth and adoption in various sectors?
No-RAG Naive-RAG Graph-RAG SMART
OpenAI’s rapid growth is
driven by its early devel-
opment of powerful lan-
guage models like GPT-3
and GPT-4, strategic part-
nerships (e.g., with Mi-
crosoft), strong developer-
friendly APIs, commer-
cialization through Chat-
GPT, consistent break-
throughs in AI, successful
monetization, and attract-
ing top talent and invest-
ment.

OpenAI’s growth is fueled
by the potential of genera-
tive AI, with estimates sug-
gesting it could add up to
4.4 trillion in value. Busi-
ness leaders widely recog-
nize AI’s importance, and
global AI spending is pro-
jected to reach 154 billion,
driving further investment
and interest in AI technolo-
gies.

Key factors contributing
to OpenAI’s rapid growth
and adoption in various
sectors include the overar-
ching AI Revolution that
emphasizes the integration
of artificial intelligence
across different indus-
tries, the leadership of
influential figures like
Mark Surman · · · Further-
more, the emergence of
generative AI technologies,
represented by concepts
like GPT-X,· · ·

OpenAI’s rapid growth
and adoption in various
sectors can be attributed
to several key factors,
including its development
of advanced AI models
like ChatGPT and GPT-4
Turbo, which have gained
widespread recognition
and usage across indus-
tries. · · · Additionally,
strategic partnerships,
such as that with Mi-
crosoft, · · ·

addressing the complexities of multi-perspective564

question answering.565

5.3 Ablation Study566

We conduct an ablation study on MultiHop RAG,567

where we progressively reduce the number of heads568

in the SMART model to observe the impact on per-569

formance (Table 4). The results show that increas-570

ing the number of heads improves model perfor-571

mance across all metrics. From Table 4, it can be572

seen that the 5-Head configuration achieves the best573

scores in Word Coverage and Acc@0.25, while the574

4-Head model performs well in Acc@0.5, balanc-575

ing complexity and performance. In terms of Aver-576

age Modularity and Average NMI, the 5-Head con-577

figuration also leads, capturing diverse perspectives578

without significant overhead. Reducing the head579

count to 3-Head or 2-Head causes performance to580

drop, especially in Acc@0.5, with 2-Head showing581

the weakest performance. Overall, the results con-582

firm that more heads improve the model’s ability583

to handle complex QA tasks, with 5-Head provid-584

ing the best trade-off between performance and585

computational cost.586

5.4 Case Study587

Based on the evaluation results, the SMART model588

provides the most accurate response, demonstrat-589

ing strong relevance and a structured analysis that590

effectively aligns with the knowledge base and di-591

rectly addresses the core aspects of the question. In592

contrast, the Naive RAG model, while presenting593

macro-level data on the factors contributing to Ope-594

nAI’s growth, lacks specific details about OpenAI 595

itself, failing to delve into its technological innova- 596

tions and strategic partnerships. The Graph RAG 597

model places excessive emphasis on community 598

aspects, which detracts from focusing on OpenAI’s 599

key factors, resulting in a more general response 600

with insufficient analysis of its technological ad- 601

vancements and partnerships. As for the No RAG 602

model, while concise, it lacks depth and data sup- 603

port due to the absence of an external knowledge 604

base, making it difficult to capture the complexities 605

behind OpenAI’s growth, rendering it relatively 606

basic and unable to compete with the depth of anal- 607

ysis seen in the other models. 608

6 Conclusion and Future Work 609

In this paper, we propose two principles for fact 610

abstraction in RAG systems: the Information- 611

Maximization Principle and the Multi-Perspective 612

Principle. Building on these principles, we 613

introduce the Structural Entropy-Based Multi- 614

Perspective Abstraction for Retrieval Technique 615

(SMART). SMART integrates explicit and implicit 616

facts with multi-perspective analysis, offering com- 617

prehensive knowledge to enhance the generation 618

capabilities of LLMs while mitigating issues such 619

as factual inaccuracies. Experiments on three real- 620

world datasets demonstrate that SMART signifi- 621

cantly outperforms existing RAG frameworks, vali- 622

dating its effectiveness in handling complex infor- 623

mation in question-answering tasks. 624
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Limitations625

Despite these advancements, the SMART frame-626

work has some limitations. First, the use of a struc-627

tural entropy-based learning model increases com-628

putational complexity. Future work could address629

this by incorporating faster techniques, such as630

InfoNCE-based methods. Additionally, SMART631

currently focuses exclusively on textual data. How-632

ever, the fact abstraction principles, being grounded633

in information theory, are applicable across modal-634

ities. In summary, future work will focus on en-635

hancing computational efficiency and extending636

SMART to incorporate multimodal data. By ad-637

dressing these challenges, SMART has the poten-638

tial to become an even more powerful framework639

for tackling broader tasks.640
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A Technical Appendix817

A.1 Entity and Relation Extraction Using818

LLM819

Let VD and ED denote the nodes and edges ex-820

tracted from a document D:821

Algorithm 2 Entity and Relation Extraction Using
LLM
Require: Documents D, LLMM, Entity Extrac-

tion Prompt (including Entity Types), Relation
Extraction Prompt.

Ensure: Extracted entities V and relationships E
1: Initialize V ← ∅, E ← ∅
2: for each document D ∈ D do
3: Extract entities VD usingM:
4: VD ←M(D ⊕ Entity Extraction Prompt)
5: Extract relationships ED using M and ex-

tracted VD:
6: ED ←M(D ⊕ VD)
7: Update the global entity and relationship

sets:
V ← V ∪ VD, E ← E ∪ ED

8: end for
9: return V, E

A.2 Dataset Details822

MultiHop RAG (Tang and Yang, 2024) evaluates823

multi-hop reasoning by requiring questions to inte-824

grate implicit facts from various documents. Cor-825

rect answers are derived by combining informa-826

tion from multiple sources, making this dataset827

a valuable benchmark for RAG systems. Hot-828

potQA (Yang et al., 2018) is a Wikipedia-based829

dataset containing 113,000 question-answer pairs.830

It requires multi-hop reasoning over multiple docu-831

ments and provides sentence-level supporting facts832

for each question. This feature necessitates the833

ability to perform complex analyses and generate834

explainable answers. TriviaQA (Joshi et al., 2017)835

comprises over 650,000 question-answer-evidence836

triples, with each question associated with six sup-837

porting documents. This dataset challenges models838

to synthesize information from multiple sources839

of evidence, pushing the limits of their reasoning840

capabilities.841

A.3 Baseline Details842

Naive RAG (Lewis et al., 2020): This baseline uses843

a traditional RAG model that retrieves documents844

based on explicit facts and generates answers from845

these retrieved documents without considering im- 846

plicit facts. While it effectively handles simpler 847

questions, it may struggle with complex multi-hop 848

reasoning and integrating information from diverse 849

perspectives. GRAG (Edge et al., 2024) is a RAG 850

variant that introduces a structured, hierarchical 851

approach to retrieval-augmented generation. In- 852

stead of relying on flat document representations, 853

it extracts a knowledge graph from raw text, builds 854

a community hierarchy, and generates summaries 855

for these communities. By considering the rela- 856

tionships between documents and abstracting hid- 857

den facts within these structures, GRAG aims to 858

improve the quality of generated answers, espe- 859

cially for multi-hop and multi-perspective ques- 860

tions. LightRAG(Guo et al., 2024) incorporates 861

implicit facts into the retrieval process through 862

a more efficient, dual-level retrieval system. By 863

combining low-level and high-level knowledge dis- 864

covery, LightRAG uses graph structures integrated 865

with vector representations, allowing for efficient 866

retrieval of related entities and their relationships. 867

This method significantly improves retrieval accu- 868

racy and response times while reducing computa- 869

tional costs, making it suitable for large-scale, real- 870

time applications. These baselines were chosen to 871

demonstrate the impact of explicitly considering 872

implicit facts, which is a key feature of our SMART 873

framework. 874

A.4 Implementation 875

For the implementation of our baseline models, 876

we use the settings and hyperparameters provided 877

in their respective papers. Specifically, for Naive 878

RAG (Lewis et al., 2020), we follow the setup 879

described in the original RAG paper. For GRAG, 880

the implementation follows the settings in the paper 881

by Edge et al. (Edge et al., 2024). For LightRAG, 882

we use the parameters recommended by Guo et al. 883

(Guo et al., 2024). 884

For our SMART model, we use the following 885

settings: 886

• κ: The number of trees (head count) in our 887

model. The default value is 3, which corre- 888

sponds to three heads or three trees. 889

• m: The number of layers in each tree. The 890

default value is 3. 891

• λ: The weight for the NMI (Normalized Mu- 892

tual Information) term. The default value is 893

1. 894
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• µ: The parameter for the Parent-Children bal-895

ance in a tree, set to 1e-3 as the default value.896

We use ChatGPT-4o mini (Achiam et al., 2023)897

for both entity extraction and answer generation898

tasks. ChatGPT-4o mini is the same model used899

for entity extraction and generating answers, en-900

suring consistency across tasks. The multilingual-901

e5-large (Wang et al., 2024b) model is used for902

document embeddings. The prompt settings for903

entity extraction, report generation, and answering904

tasks are detailed in Table 6.905

For the hardware, we use a high-performance906

system equipped with a NVIDIA GeForce RTX907

4090 GPU for efficient training and inference.908

The system is powered by a 16-core CPU and is909

equipped with 80 GB of RAM, ensuring smooth910

processing and fast computation for large-scale911

models and datasets.912

A.5 Evaluation Metrics913

To evaluate the performance of the models, we914

use the following metrics: Word Coverage (Sipos915

et al., 2012): Measures the percentage of words in916

the ground truth answer that are also present in the917

generated answer.918

Acc@0.25 and Acc@0.5 (Raffel et al., 2020):919

These metrics measure the accuracy of the gener-920

ated answer compared to the ground truth, with921

thresholds of 0.25 and 0.5, respectively. These922

thresholds represent the percentage of words in the923

generated answer that must match the ground truth924

answer to be considered correct.925

Perspective Coverage: This metric evaluates926

how well the model captures multiple perspectives927

in the generated answers. A higher coverage indi-928

cates that the model is considering multiple angles929

and contexts when generating the answer.930

Average Modularity (Traag et al., 2019) and931

Average NMI (Normalized Mutual Information)932

(Cover, 1999): These metrics are used to evaluate933

the effectiveness of the multi-perspective approach934

in our SMART framework. Average Modularity935

is used to assess the quality of clustering by mea-936

suring how well the model groups related facts or937

perspectives together. A higher modularity score938

indicates more meaningful and coherent clusters.939

Average NMI is used to evaluate the diversity be-940

tween the multiple heads generated by the SMART941

framework. It measures how distinct the perspec-942

tives captured by the model are, with higher values943

indicating greater diversity and separation between944

the generated heads. 945
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Table 6: Prompt Settings for Different Tasks.

Task Prompt
Entity and Relationship
Extraction

Goal:

Given a text document and a list of predefined entity types (as a hyperparameter,
which can be passed externally), identify all entities of the specified types from
the text and the relationships between the identified entities.
Steps:
1. Identify all entities. For each identified entity, extract the following informa-
tion:

- entity_name: Name of the entity (capitalized).
- entity_type: One of the entity types from the provided list (e.g.,

[Person, Organization, Location, Event, Product, Concept, Time]).
- entity_description: A comprehensive description of the entity’s at-

tributes and activities.
Format each entity output as a JSON entry, following the structure:
{{"name": <entity name>, "type": <type>, "description": <entity de-

scription>}}
2. From the entities identified in step 1, identify all pairs of (source_entity,
target_entity) that are clearly related.
For each related entity pair, extract the following details:

- source_entity: The name of the source entity as identified in step 1.
- target_entity: The name of the target entity as identified in step 1.
- relationship_description: An explanation of why the source entity

and the target entity are related.
- relationship_strength: An integer score between 1 and 10, indicating

the strength of the relationship between the source and target entity.
Format each relationship as a JSON entry, following the structure:
{{"source": <source_entity>, "target": <target_entity>, "relationship":

<relationship_description>, "relationship_strength": <relationship_strength>}}
3. Return the results as a single list of JSON entities and relationships identified
in steps 1 and 2, in English.

Report Generation Goal:
Write a comprehensive assessment report of a community as a community
analyst. The report should provide an overview of the community’s key entities
and their relationships.
Report Structure:
The report should include the following sections:

- TITLE: The community’s name representing its key entities. The title
should be short but specific and, when possible, include representative named
entities.

- SUMMARY: An executive summary of the community’s overall
structure, how its entities are related to each other, and key points associated
with these entities.

- DETAILED FINDINGS: A list of 5-10 key insights about the com-
munity. Each insight should include a short summary, followed by explanatory
paragraphs grounded with concrete examples.

Answer Generation Goal:
Generate a response to the following question based on the provided report:

Question: {question}
Instructions:
- Use the data provided in the report below as the primary context for generating
the response.
- If you don’t know the answer or if the input report does not contain sufficient
information, respond with: "Information not found in the report."
- Provide the id of the findings used to generate your response.
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