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ABSTRACT

In time-series classification, interpretable models can bring additional insights but
be outperformed by deep models since human-understandable features have limited
expressivity and flexibility. In this work, we present InterpGN, a framework that in-
tegrates an interpretable model and a deep neural network. Within this framework,
we introduce a novel gating function design based on the confidence of the inter-
pretable expert, preserving interpretability for samples where interpretable features
are significant while also identifying samples that require additional expertise. For
the interpretable expert, we incorporate shapelets to effectively model shape-level
features for time-series data. We introduce a variant of Shapelet Transforms to
build logical predicates using shapelets. Our proposed model achieves comparable
performance with state-of-the-art deep learning models while additionally provid-
ing interpretable classifiers for various benchmark datasets. We further show that
our models improve on quantitative shapelet quality and interpretability metrics
over existing shapelet-learning formulations. Finally, we demonstrate the capabil-
ity of our models to provide interpretability in a real-world application using the
MIMIC-III dataset.

1 INTRODUCTION

Time series classification is a fundamental task for time series (TS) data. Depending on the number of
observed variables, TS classification problems can be categorized as either univariate or multivariate.
Both categories are involved in a wide range of applications. Univariate TS data includes image
outlines, sound, and spectrographs, and multivariate TS data include electroencephalogram (EEG),
electrocardiogram (ECG), and human activity recognition (HAR). These types of TS data appear in
essential applications such as healthcare, neuroscience, and automation. In recent years, there has
been an increasing trend of employing deep learning models to TS classification problems. However,
despite achieving state-of-the-art performance, deep models typically lack interpretability.

Local Explanation: This time-series is
Ischemia because it contains                       
             
   
                            and                 .

Global Explanation:
1. Normal samples should include s12, while
exclude s11 and s1.
2. Ischemia samples should include s11 and
s1, while exclude s12.

Interpretations
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Figure 1: An example of shapelet-based interpretable TS classification on the ECG200 dataset.
(Left) The set of shapelets with various lengths to capture features with different scales. (Middle) A
classifier that associates the shapelets with categories, assigning importance scores to them. (Right)
Two methods to interpret the classifier result in rule-like explanations.
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As a motivating example for interpretable TS classification, consider the problem of classifying ECG
data using machine learning (Neves et al., 2021; Abdullah et al., 2023; Aziz et al., 2021). While
models might be accurate, doctors may hesitate to rely on them without understanding why a patient’s
heartbeat as measured by an ECG was classified as being indicative of reduced bloodflow to the heart
(known as myocardial ischemia). Our model seeks to provide such trust by discovering classifiers
based on understandable concepts, such as those illustrated in Figure 1 (middle), where heartbeats
are classified according to the existence of patterns known as shapelets. In this example, shapelet
s11, representing a downward trend, and s12, representing an upward trend, serve as discriminative
patterns that classify normal and ischemic heartbeats. A doctor may gain confidence in seeing such
patterns with straightforward interpretations, such as in Figure 1 (right), that were deemed important
to the predictions.

Interpretability can be significant from two perspectives. Firstly, in applications such as healthcare
and physical systems where safety is essential, interpreting a model allows us to validate reliability,
trustworthiness, and fairness. Secondly, in challenging tasks, we can gain knowledge about the
problem by interpreting patterns found by machine learning models during training. Existing
interpretable time series methods (Zhao et al., 2023) include post hoc explainability which explain
the behavior of a trained deep learning model often using a surrogate model (Queen et al., 2023), and
self-explainable models for which model predictions are directly interpretable.

In this study, we focus on self-explainable models. A recent self-explainable TS model, Neuro-
Symbolic Time Series Classification (NSTSC) (Yan et al., 2022), combines a neuro-symbolic model
(Riegel et al., 2020) with signal temporal logic (Mehdipour et al., 2021); soft-logic predicates are
defined on each time stamp, and logic rules are learned to describe the classes. Although such
approaches are defined to be interpretable, identifying the logical rules when applied to complex tasks
can result in numerous predicates and logical operators. Furthermore, it is known that interpretability
may lead to lower classification performance due to incomplete coverage of interpretable concepts or
limited expressivity (Koh et al., 2020; Oikarinen et al., 2022; Havasi et al., 2022); such is the case for
Concept Bottleneck Models (CBMs) (Koh et al., 2020), a popular interpretable model in computer
vision. Similarly in TS, time-domain features (such as shapes and trends) are easy to understand but
may not be able to capture other essential features such as those in the frequency domain.

In addition to post-hoc explanations, the literature on combining black-box models with interpretable
models includes approaches such as performing logical reasoning on concepts discovered by deep
models (Lee et al., 2022) or using deep models to select from a set of interpretable primitives, which
are then composed to form the final predictions (Okajima & Sadamasa, 2019). In this paper, with the NEW
goal of maintaining interpretability when appropriate while allowing for additional complexity where
concept-level information is not significant, we propose an Interpretability Gated Network (InterpGN)
that combines an interpretable expert with a deep neural network (DNN) expert. InterpGN uses a
novel gating function to decide whether to use the interpretable expert’s prediction or to rely on the
DNN’s expertise (as likely needed on challenging samples). Our interpretable expert, termed the
Shapelet Bottleneck Model (SBM), introduces a variant of the Shapelet Transform (Lines et al., 2012)
to build expressive yet interpretable predicates based on learned shapelets (Ye & Keogh, 2011) such
as the patterns in Figure 1 (left). Our interpretable expert holds several advantages over existing
methods such as fewer parameters than neuro-symbolic method NSTSC, improved shapelet selection
due to our Shapelet Transform, and better accuracy due to gating on challenging samples.

Our main contributions are summarized as follows: (1) a novel gating function that assigns samples
to experts based on the confidence level of the interpretable expert, (2) a novel variant of the Shapelet
Transform that improves interpretability compared to existing shapelet-based methods, and (3)
quantitative metrics for interpretability and shapelet quality, where we show that our models improve
in both metrics over existing shapelet-learning formulations. We further demonstrate that InterpGN
outperforms state-of-the-art methods on the UEA multivariate TS classification archive (Bagnall
et al., 2018), illustrate the interpretabilityof InterpGN on multivariate TS classification datasets, and FIX
finally apply our framework on a real-world healthcare dataset, MIMIC-III (Johnson et al., 2016).

2 RELATED WORK

Machine Learning Methods for TS Analysis Classical deep learning models such as Multilayer
Perceptron (MLP), Fully Convolutional Network (FCN), and Residual Network (ResNet) (Wang
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et al., 2017) are usually considered as baselines. ROCKET (Dempster et al., 2020) uses random
convolution kernels with various lengths to transform TS data and trains a linear classifier. Another
direction is representation learning that uses unsupervised approaches to learn from positive and
negative samples (Franceschi et al., 2019). For instance, TapNet (Zhang et al., 2020) proposes an
attention prototype network to learn multivariate TS representations and address the issue of limited
labeled data. Time Series Transformer (TST) (Zerveas et al., 2021) reconstructs TS from masked data
to learn a pre-trained model that can be used for multiple types of downstream tasks. Recent works
also find that when combined with deep neural networks such as Transformers (Vaswani et al., 2017),
the patch-based modeling, which segments TS into channel-independent patches, is more effective
than timestamp-based modeling in various tasks (Zuo et al., 2023; Nie et al., 2023; Wu et al., 2023).
Although the above methods may achieve state-of-the-art performance, they lack interpretability.

Interpretable Methods Pattern-based methods usually have some level of interpretability. (Zhao
et al., 2023) surveys many methods for interpretable TS classification. A subset of pattern-based
methods use shapelets, defined as discriminatory subsequences of TS data (Ye & Keogh, 2011)
selected based on information gain. ShapeNet (Li et al., 2021) learns embeddings that encode
subsequences with different lengths into a unified space using triplet loss, and then selects the
most representative shapelets to use with Shapelet Transforms. Shapelets can also be learned using
gradient-based methods (Grabocka et al., 2014), relaxing the definition of shapelets as sequences
with certain patterns. However, with the original formulation, the learned shapelets have poor quality
as they may not look similar to the actual subsequences. ADSN (Ma et al., 2020) improves shapelet
quality using adversarial training. ShapeConv (Qu et al., 2024) initializes the shapelets as the cluster
means of TS subsequence and uses an additional regularization to keep shapelets close to the actual
subsequence during training. Besides shapelet-based methods, a recent pattern-based method RLPAM
(Gao et al., 2022) first transform TS to a sequence of patterns and uses reinforcement learning to
select the most informative patterns for classification.

3 PROBLEM FORMULATIONS

Notation Let D = {(xi, yi)|i = 1, . . . , N} denotes a TS classification dataset with N samples,
where xi ∈ RM×T is a TS sample and yi ∈ {1, . . . , C} is the class label. Here, M is the number
of variables, T is the length in timestamps, and C is the number of categories. A multivariate TS
sample xi can be viewed as a set of univariate TS samples where xm

i ∈ RT denotes the TS of the
mth variable. xm

i,t1:t2
denotes a subsequence of xm

i between timestamps t1 and t2.

Shapelets Shapelets were originally defined as discriminative TS subsequences to distinguish
different categories (Ye & Keogh, 2011). Learning Time-series Shapelets (LTS) (Grabocka et al.,
2014) combines Shapelet Transform with gradient-based optimization to learn a set of shapelets from
scratch, where the definition of shapelets is relaxed to be short sequences with certain patterns. In
this work, we follow the definition of LTS where the shapelets are the model’s parameter to train.

Shapelet-based TS Modeling Independently modeling each channel of a multivariate TS has been
demonstrated to be an effective approach (Wu et al., 2023; Nie et al., 2023). In this paper, we consider
a similar approach by formulating univariate shapelets for each variable separately. Let

S = {sm,l
k |k = 1, . . . ,K;m = 1, . . . ,M ; l ∈ L}

denote a set of shapelets, where sm,l
k ∈ Rl denotes a shapelet on the mth channel with length l

and index k, i.e., we learn K shapelets for each possible length and channel. In this paper, we
consider shapelets with multiple lengths where L = {max(⌈δT ⌉, 3)|δ = 0.05, 0.1, 0.2, 0.3, 0.5, 0.8}.
Therefore, S has a total of MK|L| shapelets.

Interpretability Existing methods gain different levels of interpretability by inputting interpretable
features (Zuo et al., 2023) into a simple model such as a linear layer (Ma et al., 2020; Qu et al., 2024)
or SVM (Li et al., 2021). However, such approaches usually fail to provide explanations of their
predictions based on distances features. For the interpretable expert, we build logical predicates using
shapelets and the classifier directly provides rule-like explanations. Combining interpretable features
with logic allows this approach to select essential shapelets since model weights associated with
shapelets represent corresponding importance to predictions (Riegel et al., 2020).
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Figure 2: Overview of InterpGN.

4 THE MIXTURE-OF-EXPERTS FRAMEWORK: INTERPGN

In this section, we present the details of Interpretability Gated Networks (InterpGN). We first discuss
the proposed variant of Shapelet Transforms to build logical predicates and the formulations of the
Shapelet Bottleneck Model (SBM), and then discuss how explanations can be derived from SBM.
Lastly, we present the novel gating function used by InterpGN along with the training procedure. An
overview of InterpGN is given in Figure 2.

4.1 BUILDING LOGICAL PREDICATES USING SHAPELETS
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Figure 3: Comparison between shapelets
learned by (left) radial basis function (RBF)
based predicates and (right) threshold based
predicates. The three most important shapelets
are visualized.

A straightforward way to express predictions with
logical classifiers is to use predicates built on fea-
tures such as distances. Mueen et al. (2011) con-
structed a logical predicate with a threshold dis-
tance; however, when combined with LTS, we find
this approach reduces shapelet quality (essential
shapelets are not similar to the TS) as well as in-
terpretability (notion of distance can vary across
datasets) since the threshold distance does not di-
rectly reflect the existence of a shapelet (see Figure
3 for an example). Therefore, analogous to con-
cepts in CBM, we view shapelets as interpretable
concepts for TS and build logical predicates directly
from shapelet distances. Consider the distance between sm,l

k and xm
i defined as:

dm,l
i,k = min

t=1,...,T−l
dist(sm,l

k , xm
i,t:t+l), (1)

where dist(sm,l
k , xm

i,t:t+l) is the Euclidean distance between the two sequences. We introduce a
variant of the Shapelet Transform, formally defined by

pm,l
i,k = max

t=1...,T−l
e−(ϵ·dist(x

m
i,t:t+l,s

m,l
k ))

2

(2)

using a Gaussian radial basis function on the distance to measure the likelihood that sm,l
k exists

in xm
i , where ϵ is a scaling parameter that controls the steepness of the kernel. We say that the

set of shapelets S transforms each sample xi ∈ D to predicates pi ∈ RMK|L|, where pi =[
pm,l
i,k | k = 1, . . . ,K; m = 1, . . . ,M ; l ∈ L

]
.
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4.2 SHAPELET BOTTLENECK MODEL - THE INTERPRETABLE EXPERT

When constructing the SBM, we adopt a similar approach to LTS and CBM to preserve interpretability
and produce rule-like classifiers. Formally, the predicates pi are fed into a linear layer to compute the
outputs

ri,c =
∑

k=1,...,K;m=1,...,M ;l∈L

wm,l
c,k pm,l

i,k , ∀c ∈ {1, . . . , C}. (3)

The SBM’s output is ri ∈ RC = [ri,1, . . . , ri,C ]. An overview of SBM is given in Figure 2. Note
that the different shapelet lengths are illustrated vertically under the Shapelet Bottleneck; each row
allows shapelets of length l across all variables.

Training SBM is end-to-end differentiable and trained using gradient-based optimization. The
parameters to be trained include the linear classifier weights wm,l

c,k and the shapelets sm,l
k , both of

which are randomly initialized. In practice, gradients of the max operator in Equation 2 can be NEW
substituted by gradients of softmax using straight-through estimation. The objective function
contains the following three loss functions:

• Classification loss: softmax cross-entropy loss Lce on (ri, yi),
• Shapelet diversity loss (Ma et al., 2020) to regulate learning redundant shapelets:

Ldiv =
1

2KM |L|

M∑
m=1

∑
l∈L

K∑
k1=1

K∑
k2=1
k2 ̸=k1

e−∥sm,l
k1

−sm,l
k2

∥2 , (4)

• L1 regularization Lreg on the classifier weights wm,l
c,k to encourage sparsity, select the most

informative concepts, and produce simple classifiers.

The overall loss function is
Lint = Lce + λdivLdiv + λregLreg, (5)

where λdiv, and λreg are hyperparameters.

4.3 INTERPRETATIONS

A concept probability pm,l
i,k is a logical predicate whose value measures the existence of shapelet sm,l

k .
The linear classifier behaves like weighted linear logic analogous to the operators in Riegel et al.
(2020), where weights wm,l

c,k specify the importance of shapelet sm,l
k to class c. We propose two ways

to interpret the model.

Local Explainability Local explanations answer why the classification decision for a sample xi

was made. In SBM, the explanation has the form of “sample xi belongs to class c because xi contains
shapelet sm,l

k ”, whose corresponding wm,l
c,k p

m,l
i,k is significant. Consider Figure 1 in the Introduction

where we visualize the two shapelets with the largest wm,l
c,k p

m,l
i,k for each class. Such interpretations

allow us to visually validate the correctness of learned shapelets and classifiers. Note that, to the best
of our knowledge, most existing shapelet-based methods (Qu et al., 2024) and post-hoc explanation
methods (Queen et al., 2023) only provide local explainability.

Global Explainability Global explanations provide knowledge about the classification problem,
expressed in SBM by inductive logics without pertaining to particular samples. SBM offers the
following global explanation: (1) wm,δ

c,k > 0: samples in class c should contain sm,δ
k , (2) wm,δ

c,k = 0:
sm,δ
k is unrelated to class c, (3) wm,δ

c,k < 0: samples in class c should not contain sm,δ
k .

Most figures in this paper visualize shapelets with the highest weights in the linear classifier, validating
the correctness of the global explanation. For some challenging tasks, we use local explanations to
provide visually better explanations for specific samples. Note the difference between local and global
explainability: local explanations discuss what does occur in a sample whereas global explanations
discuss what should occur in a sample.

5
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4.4 MIXTURE-OF-EXPERTS GATING

In the previous section, the shapelet bottleneck transforms TS into low-dimensional representations
in the form of logical predicates. While the max operator in Equation (2) makes the classifier more
interpretable, it also reduces expressiveness. For example, the predicates can only measure the
existence of shapelets but lose information about the number of occurrences and corresponding
timestamps. In TS with discriminative features in other domains, such as the frequency domain
instead of the time domain, the shapelet bottleneck may not capture essential features for classification.
To address this limitation, we employ a Mixture-of-Experts approach to build a partially-interpretable
hybrid model.

A Mixture-of-Experts (MoE) combines the output of multiple expert models with a gating network
(Shazeer et al., 2017). Experts have different structures to capture different aspects of the data and
the gating network assigns the work to the experts. IME (Ismail et al., 2023) views a simple model
(such as linear regression or soft decision tree) as an interpretable gating network. From a different
perspective, the interpretable expert itself can serve as the gating network, which reduce the number
of parameters and improves interpretability. We introduce a gating function to assign the work to FIX
experts based on the confidence level of the interpretable expert.

The outputs ri minimizes Lce during training. Denote r̂i = softmax(ri) with components r̂i,c
corresponding to Equation (3). Then the optimal r̂i is a one-hot vector with r̂i,c = 1 if yi = c.
Diversity of r̂i,c thus measures confidence of the model. When combining an interpretable model
and a DNN with MoE, the use of DNN should be inverse proportional to the confidence level of the
interpretable model to maximize interpretability. Therefore, we design the gating function

η(xi) =
C ·

∑C
c=1(r̂i,c)

2 − 1

C − 1
, (6)

which is a modified Gini Index that measures the diversity of variables in r̂i. Intuitively, η(xi) = 0
when values in r̂i are identical, and η(xi) = 1 when r̂i is a one-hot vector. During training, the
output of the hybrid model is then a mixture of the outputs of the interpretable expert and the DNN
with ratio η(xi):

hi = ri · η(xi) + zi · (1− η(xi)), (7)

where zi is the output of the DNN with input xi. During inference, we activate only the SBM and
discard the DNN if the confidence of SBM is high. Specifically, given a gating value η, we set
η(xi) = 1 if η(x1) > η. NEW

4.5 TRAINING OF INTERPGN

The overall objective of the InterpGN framework is to minimize Lhybrid = βLint + L̄ce. Here, L̄ce
is another softmax cross-entropy loss on (hi, yi) to optimize the overall performance of the hybrid
model. β ∈ [0, 1] is a scalar to weight the training of the interpretable expert, which is set to be either
a constant hyperparameter or decaying with a cosine schedule. Intuitively, the Lint term directly
optimizes the SBM component, which ensure that the SBM is actively encouraged to find meaningful
shapelets. This design prevents InterpGN from collapsing into a pure DNN model whenever the
shapelet-based features are useful (see Figure 22 and Figure 23). The hybrid model is still end-to-end NEW
differentiable and trained using gradient-based optimizations methods.

5 EXPERIMENTS

We first compare InterpGN against various methods on the UEA multivariate TS classification archive,
presenting insights gained from visualizing concept representations. Results from SBM without the
additional expert are also given. We then demonstrate the benefits of our models on the real-world
application of in-hospital mortality early prediction (Harutyunyan et al., 2019) using the MIMIC III
dataset. We conclude with ablation studies on the effects of each component in our model. As a basic
InterpGN design, we combine the SBM with a Fully Convolutional Network (FCN) since it has best
performance among the three basic deep models for TS classification (Wang et al., 2017). Details of
the experimental setup are provided in Appendix A.
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Table 1: Comparison on 30 datasets from the UEA archive. The best accuracy for each dataset is
marked with bold, the second-best is marked with italic, and the third-best is marked with underline.

Classical Deep Learning With Interpretable Features Ours

Dataset STRF DTW FCN TS2Vec TimesNet TST PatchTST SVP-T ShapeNet RLPAM ShapeConv SBM InterpGN

Avg. Accuracy 0.645 0.650 0.740 0.704 0.708 0.709 0.666 0.730 0.697 0.740 0.743 0.718 0.746
Avg. Rank 9.667 8.966 4.800 7.433 7.621 6.815 9.679 5.067 6.300 5.333 5.600 6.033 4.233
Num. Top-1 2 1 6 1 0 5 0 5 2 7 2 3 7
Num. Top-3 2 1 14 2 4 9 2 12 5 14 10 11 11
Wins/Draws 27 27 18 26 20 18 24 18 22 18 19 19 -
Losses 3 2 12 4 9 9 4 12 8 12 11 11 -
Wilcoxon p-value 0.000 0.000 0.451 0.000 0.000 0.004 0.000 0.392 0.026 0.332 0.073 0.065 -

5.1 MULTIVARIATE TIME SERIES CLASSIFICATION

First, we evaluate the performance of InterpGN on 30 datasets from the UEA multivariate TS
classification archive and compare with baseline methods including (1) classical search-based method:
Shapelet Transform with Random Forest Classifier (STRF) and DTW (Chen et al., 2013), (2) black-
box deep learning methods: FCN (Wang et al., 2017), TS2Vec (Yue et al., 2022), TimesNet (Wu
et al., 2023), TST (Zerveas et al., 2021), PatchTST (Nie et al., 2023), SVP-T (Zuo et al., 2023),
and (3) methods with interpretable features: ShapeNet (Li et al., 2021), RLPAM (Gao et al., 2022),
ShapeConv (Qu et al., 2024). FIX

Table 1 presents average classification accuracy across the UEA datasets; the full results are included
in Table 6 of Appendix B.1. Based on the average rank across the 30 datasets, InterpGN outperforms
the baseline methods and SBM achieves comparable performance without help from the FCN.

5.1.1 INTERPRETABILITY

In addition to its effective performance, SBM provides interpretable logical classifiers. Figure 4
visualizes shapelets learned by SBM on a multivariate TS dataset from global explanations, where
the blue shapelets have the highest positive weights and the red shapelets have the lowest negative
weights. Figure 4 visually confirms that the models capture discriminative shapelet features.

Angle Square
Straight
Left

Straight
Right

Straight
Up

Straight
Down

CW
Circle

CCW
Circle

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Visualization of the UGL dataset from the UEA archive with accelerometer readings of
eight gestures. For example, in (g), the classifier can be interpreted as: a “CW Circle” gesture should
contain the blue shapelet but not the red shapelet in channel 1.

5.1.2 SHAPELET BOTTLENECK REPRESENTATION

We explore the effectiveness of the shapelet predicates by viewing probabilities pi as representations
for TS data. Figure 5 displays the EP dataset using the dimensionality reduction technique t-SNE
(van der Maaten & Hinton, 2008). Representations learned by SBM and InterpGN are clearly more
separable than the raw TS data. While a few samples are mixed into incorrect clusters (e.g., blue
mixed into green), the DNN in the InterpGN model can make corrections and result in better accuracy
than SBM. Shading intensity of data points in Figure 5 (c) represents η(xi). Intuitively, predictions FIX
of shaded points are interpretable as they are based on SBM while lighter points rely more on the
DNN. We observe that most transparent points lie along the cluster boundaries, meaning InterpGN
learns to use interpretable logical classifier for easier-to-classify samples while relying on the DNN
to classify the difficult boundary samples which can be identified as requiring additional expertise. In
Figure 17, we further present the behavior of InterpGN by visualizing the distribution of η(xi). We
can conclude that the predictions of InterpGN is consistent with SBM when η(xi) is high, preserving
interpretability for those samples.
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and

(a) (b) (c)

Figure 5: t-SNE dimensionality reduction of (a) raw data xi, (b) pi of SBM, and (c) pi of InterpGN
on the EP dataset. Each color represents samples with a specific label. Samples with low η(xi)
from InterpGN lie on the boundary, i.e., are more difficult to predict and can benefit from additional
expertise.

5.2 PREDICTING IN-HOSPITAL MORTALITY

The MIMIC-III dataset contains electronic healthcare records from ICU patients. We follow the
procedure in (Harutyunyan et al., 2019) to preprocess and generate data to predict in-hospital mortality
based on patient records from the first 48 hours after entering an ICU. Setup details are provided in
Appendix A.2. Table 2 shows results illustrating how InterpGN helps SBM on the difficult samples.

Table 2: Results for in-hospital mortality predica-
tion on the MIMIC-III dataset.

Metric STRF FCN SBM InterpGN

Accuracy 0.653 0.693 0.658 0.703
F1 0.639 0.675 0.657 0.657
Recall 0.615 0.634 0.657 0.569
Precision 0.666 0.734 0.659 0.784
ROC-AUC 0.653 0.698 0.658 0.703

Interpretability Clinical records from the
MIMIC-III dataset are challenging due to sam-
ple diversity and missing values. Figure 6 high-
lights an example of local explanations on two
samples. For better representation, we visualize
the five most essential shapelets on their cor-
responding channels and omit other channels.
The model captures long-term discriminative
trends in three channels, HR, MBP and OS. The
shapelets and classifier can be interpreted as: the
first patient passed away due to decreasing HR, increasing MBP, and drop in OS; whereas the second
survived because of increasing HR after a local drop, rapid decrease in MBP, and steady OS. In
real-world scenarios, these interpretations could bring more insights to clinical applications than
DNNs that only provide black-box predictions.

Time (hours) Time (hours) Time (hours) Time (hours)

Patient Did Not Survive Patient Survived

Figure 6: Local explanations of SBM for in-hospital mortality predication. The variables in the figure
are: Heart Rate (HR), Mean Blood Pressure (MBP), Oxygen Saturation (OS), Respiratory Rate (RR),
and Temperature (Temp).

5.3 EFFECTS OF HYPERPARAMETERS ON INTERPRETABILITY AND SHAPELET QUALITY

Analogous to the results presented in Figure 1 and Section 5.1.1, existing interpretable models
mainly demonstrate qualitative results on interpretability by visualizing the interpretable features (Ma
et al., 2020; Qu et al., 2024). However, there remains a lack of quantitative metrics to measure the
level of interpretability and quality of features. Therefore, we introduce two additional metrics to FIX
quantitatively assess the interpretable models.
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Interpretability metric: Naturally, the prediction from the model is considered more interpretable if
fewer features are needed to simulate and understand the prediction. With a linear classifier taking
logical predicates as inputs, interpretability of SBM can be measured by the sparsity of the classifier
weights since fewer shapelets contribute to the prediction as weight sparsity increases. As a metric for
sparsity, we choose three empirical thresholds and compute the ratio of weights above each threshold.
Formally, the sparsity metrics are defined as

ratio =
1

|W|
∑
w∈W

1(|w| > t), for t ∈ {1, 0.5, 0.1}. (8)

Additionally, as a relative sparsity measurement, we also compute the Gini coefficient of |w|. NEW

Shapelet quality metric: In order to produce reliable representations in shapelet-based models,
the shaplets need to be “close” to the actual TS subsequences. Therefore, shapelet quality can be
measured by shapelet distances (defined by Equation 1). In a prediction, more important shapelets
should be expected to have higher quality. Therefore, for our SBM, the shapelet quality metric is
defined as

shapelet error =
1(ŷi = yi)

MK|L|

M∑
m=1

∑
l∈L

K∑
k=1

max(0, wm,l
yi,k

)d(xm
i , sm,l

k ), (xi, yi) ∈ Dtest (9)

which measures the shapelet distances for samples that are correctly classified, averaged over all
shapelets in SBM and weighted by their corresponding classifier weight if wm,l

c,k > 0. Low shapelet
error reflects that the essential shapelets for the prediction are close to the actual TS subsequences
which represent high shapelet quality.

Results and Analysis We conduct an ablation study on the effect of hyperparameters on classi-
fication accuracy, interpretability, shapelet quality, and interpretable expert utility. Details for the
ablation study setup are summarized in Appendix A.4. The results are summarized in Tables 7, 8, 9
and Figures 18, 19, 20, 21, which lead to the following respective conclusions:

• Number of shapelet K determines the expressiveness of SBM. Table 7 shows that increasing K
improving accuracy while additionally improving shapelet quality since the shapelet could capture
more sample-specific patterns. Although the classifier weights also become sparser, the absolute
number of weights above the threshold values may also increase. Therefore, the effect of K on
interpretability may not be clearly concluded. In InterpGN, the SBM utility rate η also increase as K
increase since the SBM becomes more expressive.

• Schedule of of loss weighting β controls the training of the interpretable expert in InterpGN. If
β decays with a cosine schedule, the SBM no longer trains on samples that cannot be confidently
predicted as the models get trained. Table 8 shows that, compared to a constant schedule, models
trained with the cosine schedule result in slightly worse accuracy but improve in both shapelet quality
and interpretability since the SBMs focus more on samples where shapelet features are useful. As
less samples are fitted, η also decreases.

• Predicate type defines the method of building logical predicates from shapelet distances. In our
models, the SBM uses the RBF predicates defined in Equation 2. Another commonly used formulation
is a linear predicate (Mueen et al., 2011; Yan et al., 2022) which computes threshold-based predicates
by pm,l

i,k = sigmoid(cm,l
k − dm,l

i,k ) where cm,l
k is the threshold value to learn. Table 9 shows that our

RBF predicates outperform linear predicates in accuracy, shapelet quality, and interpretability.

• ϵ affects the steepness of the RBF kernels. A large ϵ defines a tight kernel and pushes the shapelet
to be close to the TS data. Figure 18 demonstrates that increasing ϵ improves shapelet quality in the
SBM but significantly reduces the accuracy for ϵ ≥ 5. ϵ = 1 offers the best balance between shapelet
quality and accuracy.

• Weight regularization λreg affects the sparsity of classifier weights and the number of shapelets
contributing to the predictions. Figure 21 shows that increasing λreg improves interpretability without
significantly affecting the accuracy for 0 ≤ λreg ≤ 1.

• Shapelet diversity regularization λdiv encourages learning different shapelets. Figure 20 leads us
to conclude that λdiv does not have a significant effect on the three metrics.

9
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• Gating value η controls the threshold of discarding the DNN during inference. Prediction of
samples with η(xi) > η only rely on the SBM, maximizing their interpretability. Figure 19 shows
that reducing the gating value results in slight degrade in accuracy, where the difference in average
accuracy between using η = 0.5 and η = 1 is 0.004. NEW

Finally, we perform additional ablation studies on the architecture of the DNN expert within the
InterpGN model. Specifically, we experiment with four supervised deep learning models: FCN,
Transformer, PatchTST, and TimesNet. Table 3 reports the average test accuracy and utility for
these cases on a subset of the UEA datasets. Among the tested architectures, InterpGN with FCN
achieves the highest accuracy on most datasets. Interestingly, we observe that the choice of DNN
significantly affects eta for each dataset, reflecting the compatibility between the SBM and the DNN.
This highlights a complex relationship between the features learned by the SBM and those captured
by different DNN architectures, which may worth more in-depth study. NEW

Table 3: Ablation on the architecture of the DNN expert in InterpGN. The best performance for each
dataset is highlighted with bold.

DNN Expert of InterpGN: FCN Transformer PatchTST TimesNet

Dataset accu. η accu. η accu. η accu. η

EthanolConcentration 0.281 0.014 0.300 0.446 0.276 0.612 0.277 0.001
FaceDetection 0.658 0.708 0.663 0.664 0.661 0.619 0.682 0.638
Handwriting 0.612 0.011 0.268 0.020 0.238 0.012 0.319 0.012
Heartbeat 0.762 0.629 0.737 0.435 0.735 0.898 0.741 0.478
JapaneseVowels 0.989 0.818 0.982 0.871 0.944 0.825 0.972 0.806
SelfRegulationSCP1 0.901 0.520 0.881 0.097 0.835 0.169 0.896 0.274
SelfRegulationSCP2 0.571 0.056 0.556 0.361 0.556 0.496 0.570 0.001
SpokenArabicDigits 0.997 0.976 0.994 0.986 0.994 0.986 0.995 0.977
UWaveGestureLibrary 0.912 0.504 0.814 0.068 0.799 0.224 0.850 0.643

6 CONCLUSION AND LIMITATIONS

In this paper, we address the limitations of existing TS classification methods. We introduce InterpGN,
which leverages the trade-off between interpretability and performance. We present a variant of the
Shapelet Transform to build logical predicates from shapelets and propose a novel gating function
design based on confidence of the interpretable model. Our experiments demonstrate that InterpGN
outperforms existing methods while preserving interpretability for most samples. We also interpreted
and analyzed patterns and classifiers learned by the models on various datasets, and applied our models
to the MIMIC-III dataset to provide interpretable logics and discover knowledge on a real-world task.

We note two limitations of our study. Firstly, in some classification rules, the most important
shapelet for class c may not look similar to subsequences of TS in class c. Such rules tend to have
interpretations with form “xi belongs to class c since it does not contain the essential shapelets for
c′ ̸= c” or “xi belongs to class c since other c′ ̸= c do not contain shapelet s”. For example, the
blue shapelet in Figure 4 (a) may not capture the essential trend for the “Angle” movement but it
can still be correctly categorized since it does not contain the essential shapelets for other categories.
Secondly, note that we have studied a simple design which includes one interpretable expert and one
DNN. Analogous to the MoE (Shazeer et al., 2017) framework, InterpGN can scale up by integrating
more experts. For example, multiple interpretable models can be included using a hierarchical
gating approach, while multiple DNN models can be combined using the original MoE approach.
Additionally, we only consider a linear classifier since it is the easiest model to interpret and provides
importance to rate the shapelets. Advanced interpretable structures, such as attention-based methods FIX
or graph neural networks, could effectively capture additional information about TS data, such as
dependencies between shapelets from different channels. We present a preliminary study of two
non-linear classifiers in Appendix C.2 and reserve more exploration for future work.
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A EXPERIMENTAL SETUP

Environment. All the experiments are implemented using Python 3.11 and PyTorch 2.1.2. All the
experiments run on a NVIDIA V100-SXM2-32GB GPUs. The SBM and InterpGN are trained on a
single GPU. The STRF is implemented using Random Shapelet Transforms from the Aeon Toolkit 1 FIX
and Random Forest Classifiers from the Scikit-learn package, which runs on CPU using 64 threads.

A.1 UEA MULTIVARIATE TIME-SERIES CLASSIFICATION ARCHIVE

Table 4: Default hyperparameters.

Hyperprameter Default value

Number of shapelet K = 10
Steepness of RBF kernels ϵ = 1
Diversity loss weight λdiv = 0.1
Sparsity loss weight λreg = 0.1
β schedule constant
Inference gating value η = 1
Optimizer Adam
Learning rate 0.005
Weight decay 0
Batch size 32

The UEA multivariate TS classification archive
(Bagnall et al., 2018) contains 30 datasets col-
lected from various domains. Details of the
30 datasets are provided in Table 5. Data pre-
processing and training procedure follow the
benchmarking repository provided by Wu et al.
(2023) 2. The default hyperparameter to produce
results in Table 1 and Table 6 are summarized in
Table4. For each dataset, we train the models on NEW
the default training split with 5 different random
seeds and report the average accuracy on the test
split. Statistics on experiment variations could
refer to Appendix B.4.

The metrics in Table 1 and Table 6 are: NEW

• Avg. Accuracy: Average test accuracy.
• Avg. Rank: Average ranking of the method among all baseline methods.
• Num. Top-1: Number of datasets the method performs the best among all baseline methods.
• Num. Top-3: Number of datasets the method achieves top-3 accuracy among all baseline

datasets.
• Wins/Draws: Number of datasets that InterpGN achieves better/same accuracy compared to

other baseline methods.
• Looses: Number of datasets that InterpGN achieves worse accuracy compared to other

baseline methods.
• P-value: p-value in the Wilcoxon signed-rank test, which measures if the performance of

InterpGN is statistically significant compared to the baseline methods. A small p-value
indicates significance, while a large p-value indicates the InterpGN and the baseline method
have comparable performance on the UEA datasets.

1The Aeon Toolkit is available at www.aeon-toolkit.org
2The benchmarking repository is available at https://github.com/thuml/

Time-Series-Library
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Table 5: Information of the 30 benchmark datasets from the UEA archive.

Dataset Dataset Code Train Size Test Size Variables Length Categories
Ntrain Ntest M T C

ArticularyWordRecognition AWR 275 300 9 144 25
AtrialFibrillation AF 15 15 2 640 3
BasicMotions BM 40 40 6 100 4
CharacterTrajectories CT 1422 1436 3 119 20
Cricket CK 108 72 6 1197 12
DuckDuckGeese DDG 50 50 1345 270 5
ERing ER 30 270 4 65 6
EigenWorms EW 128 131 6 17948 5
Epilepsy EP 137 138 3 206 4
EthanolConcentration EC 261 263 3 1751 4
FaceDetection FD 5890 3524 144 62 2
FingerMovements FM 316 100 28 50 2
HandMovementDirection HM 160 74 10 400 4
Handwriting HW 150 580 3 52 26
Heartbeat HB 204 205 61 405 2
InsectWingbeat IW 25000 25000 200 22 10
JapaneseVowels JV 270 370 12 29 9
LSST LSST 2459 2466 6 36 14
Libras LB 180 180 2 45 15
MotorImagery MI 278 100 64 3000 2
NATOPS NT 180 180 24 51 6
PEMS-SF PM 267 173 263 144 7
PenDigits PD 7494 3498 2 8 10
PhonemeSpectra PH 3315 3353 11 217 39
RacketSports RS 151 152 6 30 4
SelfRegulationSCP1 SCP1 268 293 6 896 2
SelfRegulationSCP2 SCP2 200 180 7 1152 2
SpokenArabicDigits SAD 6599 2199 13 93 10
StandWalkJump SWJ 12 15 4 2500 3
UWaveGestureLibrary UGL 120 320 3 315 8

A.2 PREDICTING IN-HOSPITAL MORTALITY ON MIMIC-III

From the original MIMIC-III dataset, we first extract time-series and impute missing values using
the method proposed by Harutyunyan et al. (2019). For predicting in-hospital mortality, the data is
highly imbalance, with more than 80% positive samples (patient survived). Therefore we randomly
select a subset of 1500 positive and 1500 negative samples to evaluate our models. A sample in the
dataset is a TS with M = 9 and T = 48. We further divide the subset into 80% training and 20%
validation to evaluate the performance using 5-fold cross validation. Omitting categorical variables in
the MIMIC-III datasets, the TS data has the following 9 variabels:

1. Diastolic blood pressure (DBP),

2. Fraction inspired oxygen (FIO),

3. Heart Rate (HR),

4. Mean blood pressure (MBP),

5. Oxygen saturation (OS),

6. Respiratory rate (RR),

7. Systolic blood pressure (SBP),

8. Temperature (Temp),

9. Glucose (Glu).
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A.3 LIMITATION IN IMPLEMENTATION

When combining shapelet learning with modern deep learning frameworks such as PyTorch, the
learning suffers from a memory overhead. Intuitively, the transformations in Equation 1 and Equation
2 slide sm,l

k over xi and take the minimum/maximum, which is analogous to a convolution layer with
pooling. In practice, for efficiency concern, the memory cost of this operation is O(T · l). When T is
large (e.g. T > 2000) this operation requires numerous GPU memory, mainly due to the unnecessary
intermediate variables and gradients are retained . However, the traditional convolution operation NEW
does not suffer from this because of low-level optimizations from CUDA, which does not retain the
intermediate gradients. Note that ShapeConv (Qu et al., 2024) makes a connection between shapelet
transform and convolution by:

d(xm
i , sm,l

k ) = −2 max
j=1,...,T−l+1

[
sm,l
k ∗ xm

i −
∥sm,l

k ∥22 + ∥xm
i ∥22

2

]
, (10)

where sm,l
k ∗ xm

i is the convolution (cross-correlation) operation. However, we found that, in actual
implementations, the additional norm term still suffers from the memory overhead.

To address this memory limitation on very long sequences, we provide two implementations for the
time-memory trade-off: NEW

1. A time-efficient implementation using large matrix operations:

x = x.unfold(2, shapelet_length, 1)
x = x.permute((0, 2, 1, 3)).unsqueeze(2)
d = dist(x - shapelets).mean(dim=-1)

2. A memory-efficient implementation using loops:

class ShapeletDistanceFunc(torch.autograd.Function):
def forward(ctx, x, s):

ctx.save_for_backward(x, s)
output = torch.cat([dist(s - x[:, :, i:i+s.shape[-1]])

for i in range(x.shape[-1] - s.shape[-1]+1)], dim=1)
return output

def backward(ctx, grad_output):
# Compute gradient of s
return 0, grad_s

def ShapeletDistance(x, s):
return ShapeletDistanceFunc.apply(x, s)

d = ShapeletDistance(x, shapelet)

On the largest datasets, this memory-efficient implementation takes less than 12 GB of GPU
memory, but requires significantly more time to compute.

Another method to mitigate this issue is by using stride. For example, compared to traditional convo-
lution operation Conv1d(), sm,l

k transforms xi into pm,l
i,k using Equation 2 with in channels = 1,

out channels = 1, kernel size = l, stride = 1, padding = 1, and dilation = 1.
Memory cost reduces as stride increase. When l is large, this would not bring significant effects
since the learned shapelets are abstracted patterns. In practice, we find that setting stride = log(l)
results in the same level of performance as stride = 1 on most datasets.

A.4 ABLATION STUDY SETUP

Ablation study in Section 5.3 is conducted on a subset of the UEA datasets which include 26 out
of 30 datasets. We exclude DuckDuckGeese, EigenWorms, MotorImagery, and PEMS-SF
because their dimensions lead to the issue discussed in Appendix A.3, making them inefficient to
conduct large-scale hyperparameter study. For each ablation case, we only change the hyperparameter
of interest and keeping other hyperparameters as the default values. A summary of the ablation results
are presented in Section 5.3 and detailed results are included in Appendix B.4.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 FULL RESULTS ON 30 DATASETS FROM THE UEA ARCHIVE

For the performance of baseline methods, we reproduce STRF, FCN, TimesNet and PatchTST to
obtain their performance on the UEA datasets. Performance of DTW and TS2Vec are obtained from
Yue et al. (2022). Performance of TST and SVP-T are obtained from Zuo et al. (2023). Performance
of ShapeNet, RLPAM, and ShapeConv are obtained from the corresponding paper.

Due to the limitations in model architectures, some method may fail on certain datasets. For example,
TimesNet and PatchTST fail on the EigenWorms datasets as the time series exceed their input length
limits. For fair comparison, in Table 6, we additionally report the statistics of the methods with “N/A”
dropped, keeping the datasets where all the method have a valid result.

Table 6: Accuracy and comparison of the methods on 30 datasets from the UEA archive. The best
accuracy for each dataset is marked with bold, the second-best is marked with italic, and the third-best
is marked with underline. The average and median standard deviation of InterpGN are 0.008 and
0.006.

Classical Deep Learning With Interpretable Features Ours

Dataset STRF DTW FCN TS2Vec TimesNet TST PatchTST SVP-T ShapeNet RLPAM ShapeConv SBM InterpGN

ArticularyWordRecognition 0.917 0.987 0.991 0.987 0.973 0.983 0.927 0.993 0.987 0.923 0.994 0.993 0.991
AtrialFibrillation 0.267 0.200 0.213 0.200 0.333 0.200 0.333 0.400 0.400 0.733 0.521 0.493 0.253
BasicMotions 0.925 0.975 1.000 0.975 0.975 0.965 0.700 1.000 1.000 1.000 0.997 1.000 1.000
CharacterTrajectories 0.849 0.989 0.996 0.995 0.987 N/A 0.976 0.990 0.980 0.978 0.981 0.976 0.997
Cricket 0.944 1.000 0.997 0.972 0.903 0.958 0.889 1.000 0.986 1.000 0.998 0.975 1.000
DuckDuckGeese 0.380 0.600 0.684 0.680 0.580 0.480 0.220 0.700 0.725 0.700 0.648 0.416 0.512
EigenWorms 0.672 0.618 0.715 0.847 N/A N/A N/A 0.923 0.878 0.908 0.802 0.553 0.695
Epilepsy 0.978 0.964 0.986 0.964 0.877 0.920 0.913 0.986 0.987 0.978 0.972 0.991 0.983
ERing 0.889 0.133 0.890 0.874 0.927 0.933 0.937 0.937 0.133 0.819 0.774 0.963 0.939
EthanolConcentration 0.677 0.323 0.293 0.308 0.285 0.337 0.259 0.331 0.312 0.369 0.253 0.307 0.281
FaceDetection 0.567 0.529 0.577 0.501 0.677 0.681 0.668 0.512 0.602 0.621 0.635 0.660 0.658
FingerMovements 0.500 0.530 0.634 0.480 0.530 0.776 0.580 0.600 0.580 0.640 0.587 0.594 0.620
HandMovementDirection 0.419 0.231 0.432 0.338 0.595 0.608 0.514 0.392 0.338 0.635 0.413 0.454 0.449
Handwriting 0.104 0.286 0.615 0.515 0.311 0.305 0.251 0.433 0.452 0.522 0.527 0.120 0.612
Heartbeat 0.746 0.717 0.752 0.683 0.732 0.712 0.722 0.790 0.756 0.779 0.784 0.733 0.762
InsectWingbeat 0.208 N/A 0.654 0.466 0.652 0.684 0.580 0.184 0.250 0.352 0.509 0.515 0.559
JapaneseVowels 0.676 0.949 0.994 0.984 0.954 0.994 0.935 0.978 0.984 0.935 0.993 0.964 0.989
Libras 0.817 0.870 0.954 0.867 0.761 0.844 0.761 0.833 0.856 0.794 0.887 0.807 0.968
LSST 0.491 0.551 0.415 0.537 0.382 0.381 0.519 0.666 0.590 0.643 0.608 0.636 0.601
MotorImagery 0.510 0.500 0.576 0.510 0.610 N/A N/A 0.650 0.610 0.610 0.674 0.624 0.590
NATOPS 0.794 0.883 0.983 0.928 0.833 0.900 0.756 0.906 0.833 0.950 0.937 0.879 0.984
PEMS-SF 0.925 0.711 0.830 0.682 0.844 0.919 0.809 0.867 0.751 0.632 0.801 0.885 0.862
PenDigits 0.855 0.977 0.989 0.989 0.984 0.974 0.974 0.938 0.977 0.982 0.968 0.960 0.989
PhonemeSpectra 0.155 0.151 0.326 0.233 0.146 0.088 0.081 0.176 0.298 0.175 0.192 0.256 0.323
RacketSports 0.842 0.803 0.908 0.855 0.855 0.829 0.757 0.842 0.882 0.868 0.863 0.888 0.897
SelfRegulationSCP1 0.846 0.775 0.915 0.812 0.908 0.925 0.795 0.884 0.782 0.802 0.858 0.870 0.901
SelfRegulationSCP2 0.489 0.539 0.580 0.578 0.539 0.589 0.506 0.600 0.578 0.632 0.624 0.524 0.571
SpokenArabicDigits 0.679 0.963 0.996 0.988 0.988 0.993 0.977 0.986 0.975 0.621 0.979 0.993 0.997
StandWalkJump 0.467 0.200 0.427 0.467 0.533 0.267 0.467 0.467 0.533 0.667 0.587 0.600 0.480
UWaveGestureLibrary 0.762 0.903 0.890 0.906 0.863 0.903 0.828 0.941 0.906 0.944 0.936 0.902 0.912

Avg. Accuracy 0.645 0.650 0.740 0.704 0.708 0.709 0.666 0.730 0.697 0.740 0.743 0.718 0.746
Avg. Rank 9.667 8.966 4.800 7.433 7.621 6.815 9.679 5.067 6.300 5.333 5.600 6.033 4.233
Num. Top-1 2 1 6 1 0 5 0 5 2 7 2 3 7
Num. Top-3 2 1 14 2 4 9 2 12 5 14 10 11 11
Wins/Draws 27 27 18 26 20 18 24 18 22 18 19 19 -
Losses 3 2 12 4 9 9 4 12 8 12 11 11 -
Wilcoxon p-value 0.000 0.000 0.451 0.000 0.000 0.004 0.000 0.392 0.026 0.332 0.073 0.065 -

Statistics without N/A
Avg. Accuracy 0.658 0.644 0.741 0.704 0.703 0.710 0.657 0.737 0.700 0.745 0.744 0.726 0.751
Avg. Rank 9.615 9.038 4.846 7.654 8.000 7.038 9.885 5.115 6.308 5.231 5.692 5.846 4.115
Num. Top-1 2 1 6 1 0 4 0 4 2 7 1 3 6
Num. Top-3 2 1 12 1 3 8 2 10 4 13 9 10 10
Wins/Draws 23 24 16 23 19 18 23 16 20 16 17 16 -
Losses 3 2 10 3 7 8 3 10 6 10 9 10 -
Wilcoxon p-value 0.000 0.000 0.334 0.000 0.000 0.014 0.000 0.344 0.026 0.367 0.049 0.089 -
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B.2 ADDITIONAL INTERPRETABILITY ANALYSIS

B.2.1 FAITHFULNESS

We follow Alvarez Melis & Jaakkola (2018) to asses the faithfulness of shapelets learned by the SBM.
Specifically, for each concept (i.e., shapelet predicate p), we measure its relevance by calculating the
change in the probability of a certain prediction before and after removing it (i.e., set p = 0). The
faithfulness score is then determined by the correlation between the relevance of a shapelet concept
and its assigned importance w. Aggregating results across all samples in the dataset, we generate the
box plots shown in Figure 7. Across all five datasets, regardless of the varying performance levels of
the SBM, we observe consistently high faithfulness estimates. NEW

BM EP SCP1 SCP2 UGL
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

Fa
ith

fu
ln

es
s E

st
im

at
e

Figure 7: Faithfulness estimate: aggregated correlation statistics between shapelet concept relevance
and importance.
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B.2.2 VISUALIZATION OF EXPLANATIONS

Global explanations . We visualize the global explanations of the UWaveGestureLibrary, BasicMo-
tions, SelfRegulationSCP1, and SelfRegulationSCP2 datasets. We choose these datasets since their
dimensions are favored for visualizations (i.e., M and C are not too high). UWaveGestureLibrary
and BasicMotions are representitives for human motion data; SelfRegulationSCP1 and SelfReg-
ulationSCP2 are representitives for EEG data. In each figure, for each category, we visualize the
time-series samples (left, in gray), the top-5 positively relevant shapelets (middle, in blue), and the
top-5 negatively relevant shapelets (right, in red). NEW

Figure 8: Global explanations of the SBM on the UWaveGestureLibrary dataset. (Part 1)
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Figure 9: Global explanations of the SBM on the UWaveGestureLibrary dataset. (Part 2)
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Figure 10: Global explanations of the SBM on the BasicMotions dataset.
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Figure 11: Global explanations of the SBM on the SelfRegulationSCP1 dataset. For clarity, we
visualize 30 time-series samples.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 12: Global explanations of the SBM on the SelfRegulationSCP2 dataset. For clarity, we
visualize 30 time-serie samples.
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Local explanations. We visualize the local explanations for the four datasets. In each Figure, a
sub-figure visualizes a time-series sample (in gray) along with the top-5 most important shapelets.
The color of each shapelet indicates its importance, with blue representing the highest importance,
followed by orange, green, red, and purple for progressively lower importance. NEW

Figure 13: Local explanations of the SBM on the UWaveGestureLibrary dataset.
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Figure 14: Local explanations of the SBM on the BasicMotions dataset.
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The local explanations reflect the limitation we discussed in Section 6, where explanations for certain
categories may appear counterfactual. For example, in the BasicMotions dataset, the most important
shapelets for Category 1 may not represent the most characteristic features of that category. Despite
this, the SBM can still make accurate predictions due to the strong feature representation for other
categories. This issue becomes more pronounced in datasets with two categories, such as SelfRegula-
tionSCP1 and SelfRegulationSCP2. These findings suggest that for binary classification tasks, using
a single binary classifier with one unified ”rule” might be a more effective and reasonable design,
rather than assigning a separate ”rule” to each class. NEW

Figure 15: Local explanations of the SBM on the SelfRegulationSCP1 dataset.
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Figure 16: Local explanations of the SBM on the SelfRegulationSCP2 dataset.
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B.3 BEHAVIOR OF THE INTERPRETABILITY GATING FUNCTION

In Figure 17, we present the relationship between values of η(xi) and predictions of InterpGN to fur-
ther study the behavior of the proposed interpretability gating function. We conclude that InterpGN’s
predictions is consistent with SBM’s predictions when η(xi) is high, preserving interpretability for
those samples. The DNN makes corrections when η(xi) is low to improve performance. Note that
there are cases where the DNN changes SBM’s predictions to incorrect, suggesting that InterpGN’s
performance can be further improved using more advanced DNNs.

Figure 17: Histogram of values η(xi), and the prediction consistency between the interpretable expert
and InterpGN.
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B.4 ABLATION STUDY RESULTS

Table 7: Number of shapelet

model K accu. quality |w| > 1 |w| > 0.5 |w| > 0.1 Gini(|w|) η

SBM 5 0.725 0.129 0.057 0.179 0.644 0.454 -
SBM 10 0.733 0.098 0.032 0.097 0.531 0.461 -

InterpGN 5 0.752 0.126 0.051 0.179 0.634 0.443 0.507
InterpGN 10 0.758 0.093 0.026 0.099 0.514 0.450 0.542

Table 8: β schedule of InterpGN

β K accu. quality |w| > 1 |w| > 0.5 |w| > 0.1 Gini(|w|) η

constant 5 0.752 0.126 0.051 0.179 0.634 0.443 0.507
constant 10 0.758 0.093 0.026 0.099 0.514 0.450 0.542
cosine 5 0.751 0.108 0.039 0.123 0.574 0.457 0.445
cosine 10 0.753 0.083 0.022 0.076 0.459 0.457 0.482

Table 9: Predicate types in SBM

Predicate K accu. quality |w| > 1 |w| > 0.5 |w| > 0.1

RBF 5 0.725 0.129 0.057 0.179 0.644
RBF 10 0.733 0.098 0.032 0.097 0.531

Linear 5 0.711 0.168 0.071 0.177 0.544
Linear 10 0.722 0.119 0.048 0.117 0.446

0.5 1.0 2.0 5.0 10.0

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

SBM
InterpGN

0.5 1.0 2.0 5.0 10.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Sh
ap

el
et

 e
rr

or

SBM
InterpGN

Figure 18: Ablation on ϵ
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Figure 19: Ablation on η
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Figure 20: Ablation on λdiv
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Figure 21: Ablation on λreg
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Table 10: Full results and variations on number of shapelets K

model K accu. quanlity |w| > 1 |w| > 0.5 |w| > 0.1 η

SBM 5 0.725 ± 0.01 0.129 ± 0.02 0.057 ± 0.012 0.179 ± 0.053 0.644 ± 0.067 -
SBM 10 0.733 ± 0.007 0.098 ± 0.015 0.032 ± 0.008 0.097 ± 0.024 0.531 ± 0.054 -

InterpGN 5 0.752 ± 0.008 0.126 ± 0.02 0.051 ± 0.013 0.179 ± 0.032 0.634 ± 0.049 0.507 ± 0.047
InterpGN 10 0.758 ± 0.009 0.093 ± 0.01 0.026 ± 0.005 0.099 ± 0.017 0.514 ± 0.059 0.542 ± 0.044

Table 11: Full results and variations on β schedule in InterpGN

β schedule K accu. quanlity |w| > 1 |w| > 0.5 |w| > 0.1 η

constant 5 0.752 ± 0.008 0.126 ± 0.02 0.051 ± 0.013 0.179 ± 0.032 0.634 ± 0.049 0.507 ± 0.047
constant 10 0.758 ± 0.009 0.093 ± 0.01 0.026 ± 0.005 0.099 ± 0.017 0.514 ± 0.059 0.542 ± 0.044
cosine 5 0.751 ± 0.008 0.108 ± 0.015 0.039 ± 0.01 0.123 ± 0.027 0.574 ± 0.053 0.445 ± 0.042
cosine 10 0.753 ± 0.008 0.083 ± 0.01 0.022 ± 0.006 0.076 ± 0.014 0.459 ± 0.054 0.482 ± 0.045

Table 12: Full results and variations on ϵ

model ϵ accu. quanlity |w| > 1 |w| > 0.5 |w| > 0.1 η

SBM 0.5 0.721 ± 0.01 0.141 ± 0.018 0.034 ± 0.006 0.087 ± 0.014 0.388 ± 0.053 -
SBM 1 0.733 ± 0.007 0.098 ± 0.015 0.032 ± 0.008 0.097 ± 0.024 0.531 ± 0.054 -
SBM 2 0.726 ± 0.01 0.092 ± 0.01 0.047 ± 0.009 0.181 ± 0.043 0.619 ± 0.028 -
SBM 5 0.571 ± 0.032 0.026 ± 0.004 0.053 ± 0.007 0.099 ± 0.01 0.162 ± 0.013 -
SBM 10 0.395 ± 0.026 0.02 ± 0.003 0.041 ± 0.007 0.07 ± 0.007 0.09 ± 0.006 -

InterpGN 0.5 0.753 ± 0.009 0.108 ± 0.015 0.019 ± 0.005 0.056 ± 0.011 0.298 ± 0.046 0.292 ± 0.063
InterpGN 1 0.753 ± 0.008 0.083 ± 0.01 0.022 ± 0.006 0.076 ± 0.014 0.459 ± 0.054 0.482 ± 0.045
InterpGN 2 0.747 ± 0.01 0.096 ± 0.008 0.044 ± 0.007 0.175 ± 0.026 0.643 ± 0.033 0.635 ± 0.038
InterpGN 5 0.732 ± 0.018 0.028 ± 0.006 0.047 ± 0.008 0.093 ± 0.012 0.163 ± 0.015 0.366 ± 0.044
InterpGN 10 0.741 ± 0.011 0.015 ± 0.003 0.03 ± 0.009 0.059 ± 0.01 0.08 ± 0.011 0.148 ± 0.024

Table 13: Full results and variations on λreg

model λreg accu. quanlity |w| > 1 |w| > 0.5 |w| > 0.1 η

SBM 0 0.734 ± 0.007 0.148 ± 0.024 0.056 ± 0.009 0.143 ± 0.027 0.613 ± 0.064 -
SBM 0.1 0.733 ± 0.007 0.098 ± 0.015 0.032 ± 0.008 0.097 ± 0.024 0.531 ± 0.054 -
SBM 0.5 0.733 ± 0.007 0.074 ± 0.01 0.021 ± 0.006 0.068 ± 0.018 0.432 ± 0.048 -
SBM 1 0.732 ± 0.007 0.059 ± 0.006 0.016 ± 0.003 0.054 ± 0.012 0.343 ± 0.042 -
SBM 5 0.727 ± 0.009 0.023 ± 0.002 0.007 ± 0.001 0.023 ± 0.004 0.128 ± 0.015 -
SBM 10 0.709 ± 0.01 0.014 ± 0.001 0.005 ± 0.001 0.015 ± 0.003 0.07 ± 0.009 -

InterpGN 0 0.753 ± 0.008 0.113 ± 0.015 0.037 ± 0.007 0.105 ± 0.014 0.535 ± 0.06 0.51 ± 0.051
InterpGN 0.1 0.753 ± 0.008 0.083 ± 0.01 0.022 ± 0.006 0.076 ± 0.014 0.459 ± 0.054 0.482 ± 0.045
InterpGN 0.5 0.752 ± 0.008 0.064 ± 0.007 0.014 ± 0.004 0.051 ± 0.009 0.351 ± 0.053 0.468 ± 0.042
InterpGN 1 0.755 ± 0.008 0.051 ± 0.006 0.011 ± 0.003 0.04 ± 0.007 0.275 ± 0.04 0.447 ± 0.06
InterpGN 5 0.751 ± 0.009 0.017 ± 0.004 0.004 ± 0.001 0.012 ± 0.004 0.09 ± 0.026 0.287 ± 0.085
InterpGN 10 0.75 ± 0.011 0.009 ± 0.002 0.002 ± 0.001 0.007 ± 0.003 0.041 ± 0.016 0.208 ± 0.071
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Table 14: Full results and variations on λdiv

model λdiv accu. quanlity |w| > 1 |w| > 0.5 |w| > 0.1 η

SBM 0 0.733 ± 0.007 0.096 ± 0.014 0.034 ± 0.007 0.102 ± 0.023 0.523 ± 0.063 -
SBM 0.01 0.733 ± 0.007 0.092 ± 0.012 0.03 ± 0.006 0.098 ± 0.021 0.522 ± 0.057 -
SBM 0.1 0.733 ± 0.007 0.098 ± 0.015 0.032 ± 0.008 0.097 ± 0.024 0.531 ± 0.054 -
SBM 0.5 0.733 ± 0.008 0.101 ± 0.016 0.032 ± 0.008 0.098 ± 0.024 0.525 ± 0.062 -
SBM 1 0.733 ± 0.007 0.1 ± 0.017 0.031 ± 0.01 0.096 ± 0.026 0.522 ± 0.063 -
SBM 5 0.734 ± 0.007 0.107 ± 0.015 0.031 ± 0.006 0.094 ± 0.023 0.518 ± 0.062 -

InterpGN 0 0.754 ± 0.008 0.08 ± 0.009 0.021 ± 0.004 0.073 ± 0.013 0.464 ± 0.059 0.499 ± 0.058
InterpGN 0.01 0.752 ± 0.008 0.082 ± 0.008 0.023 ± 0.004 0.077 ± 0.012 0.455 ± 0.062 0.486 ± 0.051
InterpGN 0.1 0.753 ± 0.008 0.083 ± 0.01 0.022 ± 0.006 0.076 ± 0.014 0.459 ± 0.054 0.482 ± 0.045
InterpGN 0.5 0.754 ± 0.008 0.088 ± 0.01 0.023 ± 0.005 0.076 ± 0.013 0.466 ± 0.056 0.492 ± 0.046
InterpGN 1 0.753 ± 0.008 0.088 ± 0.009 0.021 ± 0.004 0.074 ± 0.011 0.467 ± 0.059 0.501 ± 0.052
InterpGN 5 0.753 ± 0.008 0.098 ± 0.013 0.026 ± 0.008 0.079 ± 0.013 0.465 ± 0.061 0.495 ± 0.042

B.5 TRAINING CURVES

In Figure 22 and Figure 23, we visualize the loss and η during the training of InterpGN. The figures
present how the loss function design Lhybrid = βLint + L̂ce could encourage the use of SBM during
training, preventing the InterpGN from collapsing into a pure DNN when possible. NEW
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Figure 22: Training curves for InterpGN on the BasicMotions dataset: (left) Lhybrid and (right) average
η.
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Figure 23: Training curves for InterpGN on the UWaveGestureLibrary dataset: (left) Lhybrid and
(right) average η.
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C PRELIMINARY RESULTS ON EXTENDED DESIGNS

C.1 SHAPELET DISTANCE MEASUREMENTS

In this paper, as defined in Equation 1, we follow the conventional definition of shapelet distance
and use Euclidean distance, but the shapelet distance can be general and replaced by other metrics.
Here we explore two alternative distance measures: cosine similarity and Pearson correlation. These
metrics may offer favorable properties compared to Euclidean distance in some cases. For instance,
cosine similarity can capture shapelets that are invariant to changes in offset. Table 15 presents the
classification accuracy of SBM variants utilizing these three distance measures. The results indicate
that cosine similarity and Pearson correlation can yield better performance on certain datasets, but no
metric can be universally better than others. This suggests that the choice of shapelet distance metric
could possibly serve as a hyperparameter requiring dataset-specific tuning depending on the needs.
For example, motion datasets such as UWaveGestureLibrary may benefit from cosine similarity
due to the presence of offset-invariant shapelet features. In Figure 24, we visualize an example of
local explanations of SBM using euclidean distance and cosine similarity as the shapelet distance
measurement, which suggests that they both could learn high-quality shapelets. NEW

Table 15: Classification accuracy of the SBM using three shapelet distance metrics. The best accuracy
for each dataset is marked with bold. The training of SBM using Pearson correlation fails on the
Epilepsy and UWaveGestureLibrary dataset due to infinite gradients.

Distance metric: Euclidean Cosine Pearson

BasicMotions 1.000 0.960 0.965
Epilepsy 0.993 0.994 -
SelfRegulationSCP1 0.859 0.856 0.858
SelfRegulationSCP2 0.528 0.549 0.557
UWaveGestureLibrary 0.909 0.947 -

(a) SBM with Euclidean Distance (b) SBM with Cosine Similarity

Figure 24: Local explanations of SBM using (a) euclidean distance and (b) cosine similarity as the
shapelet distance measurement.

C.2 CLASSIFIER ARCHITECTURE IN SBM

In this paper, we focus on using a linear classifier with shapelet predicates, in line with existing
shapelet-based methods. While the linear classifier is often preferred for its interpretability, its
simplicity introduces limitations such as neglect of the interaction/correlation among shapelets, as
discussed in Section 6. To mitigate the issues, we present two additional classifier architectures: a
bi-linear classifier and an attention-based classifier. Here, for simplicity, we denote the set of shapelets
predicates as pi = [pi,1, . . . , pi,|S|]. Specifically, they are formulated as NEW

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

• Bi-linear classifier:

ri,c =

|S|∑
k=1

wk pi,k +

|S|∑
k=1

|S|∑
j=1

1(k ̸= j)wj,k pi,k pi,j . (11)

• Attention-based classifier:

ri,c =

|S|∑
k=1

wk · attention(Q(pi) + PE,K(pi) + PE, pi,k), (12)

where attention is the scaled dot-product attention, PE denotes the positional em-
beddings, Q and K are learnable linear projections. In our implementations, we keep
low-dimensional projections Q : R1 7→ R16 and K : R1 7→ R16.

Compared to the linear classifier, the bi-linear and attention-based classifiers can capture rela-
tionships between shapelet concepts while retaining some level of interpretability. For exam-
ple, the bi-linear classifier could express “shapelet sk and sj both exist in xi”. Although the
attention mechanism (i.e., Q and K projections) may not be considered as fully interpretable,
attention(Q(pi) + PE,K(pi) + PE, pi,k) produces predicates that combines shapelet predi-
cates based on attention weights, which preserves some level of interpretability

In Table 16 we compare the three SBM classifier architectures on a subset of the UEA datasets. Our
results indicate that the advanced classifiers improve performance for both SBM and InterpGN on
certain datasets. Interestingly, the bi-linear classifier learns shapelets of higher quality compared to
the other two classifiers. Considering the simplicity, good interpretability of linear classifier and its
comparable performance to more advanced classifiers on most datasets, we suggest that it is still
favorable to use linear classifier in practice; however it is good to try more advanced classifiers to
achieve better performance. We will also leave the exploration of other advanced classifiers (such as
energy-based or graph-based ones) for future work. NEW

Table 16: Classification accuracy and shapelet quality for the three SBM classifier architectures. The
best accuracy for each dataset and model is marked with bold. The best shapelet quality for each
dataset and model is marked with underline.

Model: SBM InterpGN

Classifier: Linear Bi-linear Attention Linear Bi-linear Attention

Metric: accu. quality accu. quality accu. quality accu. quality accu. quality accu. quality

BasicMotions 1.000 0.044 1.000 0.014 1.000 0.037 1.000 0.039 1.000 0.018 1.000 0.036
Epilepsy 0.993 0.108 1.000 0.014 0.974 0.094 0.983 0.082 1.000 0.022 0.988 0.097
SelfRegulationSCP1 0.859 0.079 0.859 0.019 0.835 0.047 0.913 0.057 0.882 0.019 0.891 0.056
SelfRegulationSCP2 0.528 0.093 0.536 0.019 0.573 0.084 0.571 0.063 0.544 0.017 0.583 0.049
UWaveGestureLibrary 0.909 0.093 0.902 0.026 0.848 0.083 0.912 0.071 0.916 0.031 0.911 0.070
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