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ABSTRACT

The sheer size of modern neural networks necessitates pruning techniques to over-
come the significant computational challenges posed by model serving. However,
existing pruning techniques fail to capture the nonlinear correlation between pa-
rameters and gradient, which is crucial in the pruning process, thus leading to
low accuracy under high sparsity. In this work, we propose CoPruning, a
new pruning framework, which uses a copula function based joint distribution
model that precisely captures the intricate nonlinear correlation between param-
eters and gradient, enabling more insightful pruning decisions. Additionally, we
integrate a local optimization approach within CoPruning to better capture rel-
ative change in parameters within their local context, providing new metrics for
achieving finer-grained optimization. Extensive experiments on various networks
reveal CoPruning’s comparable performance to state-of-the-art (SoTA) pruning
algorithms. CoPruning outperforms the SoTA with 3.09%, 1.87%, and 2.19%
higher accuracy on MLPNet, ResNet20, and ResNet50 at 0.98 sparsity, respec-
tively, and 10.43% higher accuracy on MobileNetV1 at 0.9 sparsity on ImageNet.

1 INTRODUCTION

Neural networks have emerged as a cornerstone of modern machine learning, facilitating ground-
breaking advancements across diverse application domains, spanning from image recognition to
natural language processing (Devlin et al., 2019; OpenAI, 2023). Nevertheless, as networks become
larger and more intricate, e.g., ChatGPT, they impose substantial computational burdens, presenting
formidable challenges in deployment, especially in resource-constrained environments such as mo-
bile devices and embedded systems (Chen et al., 2016). To tackle these challenges, network pruning
is regarded as a key technique to reduce the size and storage requirements of neural networks while
maintaining or minimally impacting their performance by removing redundant parameters (such
as neurons, filters, or connections) from the network (Li et al., 2017). In the field of neural net-
work pruning, pruning methods are generally categorized into structured pruning and unstructured
pruning. Structured pruning typically retains the original structure of the neural network while
reducing unnecessary connections and weights, improving computational efficiency without signif-
icantly degrading performance. For instance, Huang & Lee (2022) proposed a strategy for training
structured neural networks through manifold identification and variance reduction, while Molchanov
et al. (2017c) focused on pruning convolutional neural networks (CNNs) for resource-efficient in-
ference. Other relevant works include Sze et al. (2017) and Anwar et al. (2017), who further explore
structured pruning in neural networks. Additionally, Fang et al. (2023) and Yang et al. (2024) studied
structured pruning in large-scale language models, while He et al. (2017) focused on accelerating
very deep neural networks through channel pruning. On the other hand, unstructured pruning
allows the removal of individual weights, often resulting in a more sparse network. For example,
He et al. (2022) investigated how sparse pruning exacerbates overfitting, while Han et al. (2016)
studied deep compression and its efficient inference engine. Similarly, Molchanov et al. (2017a) uti-
lized variational dropout to sparsify deep neural networks, and Frantar et al. (2022) ensured speedup
guarantees through accurate pruning. Other notable unstructured pruning methods include Guo et al.
(2016), who proposed dynamic network surgery, and Aghasi et al. (2017), who introduced convex
pruning methods that provide performance guarantees for deep neural networks.
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In neural networks, the relationship between model parameters and gradient is typically nonlinear,
influenced by several factors. First, the use of nonlinear activation functions, such as ReLU and Sig-
moid, results in a nonlinear mapping between the network’s input and output, which directly impacts
the correlation between the parameters and gradient Zubair & Singha (2020a). Second, the back-
propagation algorithm propagates gradient through multiple layers, where each layer’s nonlinear
transformation further enforces this nonlinear relationship (Agarwal & Ramampiaro, 2024a). More-
over, the loss function is often nonlinear (e.g., cross-entropy or mean square error), meaning that
the gradient’s relationship with parameters is highly dependent on the nonlinearity of the loss itself
Zubair & Singha (2020b). Finally, optimization algorithms, such as Adam and RMSprop, dynam-
ically adjust learning rates based on the gradient’s history, further complicating and nonlinearizing
the parameter updates (Agarwal & Ramampiaro, 2024b). These factors collectively contribute to
the nonlinear correlation between parameters and gradient in deep learning models.

Applying nonlinear relationships to predict models can effectively enhance the performance of mod-
els (Kulathunga et al., 2020). Many traditional pruning methods rely on relatively simple criteria,
such as magnitude-based thresholds (Han et al., 2015) or heuristic techniques (Molchanov et al.,
2017b). While these approaches have proven effective in various scenarios, they often simplify the
modeling of dependencies between network parameters and gradient, which may not adequately
account for the complex, nonlinear correlations present in neural networks. As a result, this simpli-
fication can lead to less accuracy.

We propose CoPruning, which is a novel framework that use copula function to model the nonlin-
ear correlation between parameters and gradient. By disentangling the marginal distributions from
their dependency structure, copulas offer a more flexible and accurate means of capturing nonlin-
ear interactions. This challenges the traditional linear assumptions and provides a more precise
foundation for pruning decisions. CoPruning integrates a local optimization approach to capture
relative changes in parameters within their local context. Through rigorous experiments, we show
that CoPruning outperforms traditional pruning methods across multiple performance metrics.
Our method achieves not only higher pruning efficiency but also significantly improves model ac-
curacy and robustness, particularly under extreme sparsity, highlighting its superiority in practical
applications.

2 RELATED WORK AND PROBLEM SETUP

2.1 RELATED WORK

Neural network pruning is an essential technique for reducing the complexity of deep neural net-
works, thereby facilitating their seamless deployment in resource-constrained environments. The
key to effective pruning lies in assessing the impact on the loss function E when specific weights
are removed, typically quantified by ∆E. A lot of methods have been developed, ranging from
straightforward first-order approaches to more sophisticated second-order methods that utilize the
Hessian matrix to guide pruning decisions. One of the earliest methods to introduce Hessian-based
pruning is proposed by LeCun et al. (1989) with the Optimal Brain Damage (OBD) method. OBD
uses a second-order derivative (the diagonal elements of the Hessian matrix) to estimate the impact
on the loss function ∆E when a weight, denoted by wq , is removed. The formulation of ∆E is
expressed as

∆E ≈ 1

2
hqqw

2
q , (1)

where hqq represents the diagonal elements of the Hessian matrix H, which is the second derivative
of the loss function E with respect to the weight wq . However, OBD assumes that the Hessian
matrix is diagonally dominant, and ignores the interdependency between weights. To address this
limitation, Hassibi & Stork (1992) introduced the Optimal Brain Surgeon (OBS) method. OBS
expands on OBD by taking into account the full Hessian matrix instead of just the diagonal elements.
In addition, OBS considers the interaction between different weights, thus leading to a more precise
estimation of the pruning impact on the network’s performance. With OBS, ∆E is derived by
employing the inverse of the Hessian matrix, which is expressed as

∆E ≈
w2

q

2[H−1]qq
. (2)
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The Combinatorial Brain Surgeon (CBS) method, introduced by Yu et al. (2022), proposes a com-
binatorial optimization approach that considers the interaction between multiple weights. The opti-
mization problem for CBS is formulated as

min
1

2

N∑
i=1

N∑
j=1

(wi − w̄i)Hij(wj − w̄j). (3)

In equation (3), w̄i represents the weights before pruning, and Hij are the elements of the Hessian
matrix that capture the interaction between weights wi and wj . The indices i and j represent different
weights in the neural network.

The CHITA method, proposed by Benbaki et al. (2023), efficiently approximates the Hessian matrix
as

H ≈ 1

n

n∑
i=1

∇ℓi∇ℓTi =
1

n
GTG. (4)

Here, G = [∇ℓ1, . . . ,∇ℓn]T is the matrix containing the gradients for each sample, and ℓi represents
the loss for the i-th sample. This method significantly reduces computational complexity and is
suitable for large-scale network pruning due to avoiding explicit computation of the Hessian matrix.

Chen et al. (2022) formulates the pruning problem as a ridge regression task. The formulation is
expressed as

min
w

Q(w) =
1

2
∥y −Xw∥2 + nλ

2
∥w − w̄∥2. (5)

In (5), X is the gradient matrix, y is the product of the reference weights w̄ and X , and λ is the
regularization parameter. This encourages the weights w to stay close to the reference weights w̄,
which helps to prevent overfitting and enhance generalization.

Based on the framework of CHITA and ridge regression, You & Cheng (2024) proposes a SWAP
method that combines linear regression (LR) with optimal transport principles to address noisy prun-
ing scenarios. LR integrates the techniques from Benbaki et al. (2023) and Chen et al. (2022) and is
expressed as:

min
w

Q(w) =
1

n

n∑
i=1

∥xi(w)− yi∥2 + λ∥w − w̄∥2 (6)

where xi(w) = wT∇ℓi represents the modeling result of the model correlation given the current
weights w, and yi = w̄T∇ℓi is the target output, with w̄ being the reference weights.

For noisy pruning scenarios, You & Cheng (2024) developed Entropic Wasserstein Regression
(EWR), which enhances the robustness of pruning by integrating optimal transport with entropy
regularization. The complete optimization problem for EWR is formulated as:

min
w

Q(w) = inf
Π∈Π


n∑

i=1

n∑
j=1

∥xi(w)− yj∥2πij + ϵ

n∑
i=1

n∑
j=1

log

(
aibj
πij

)
πij

+ λ∥w − w̄∥2 (7)

Here, πij represents the transport plan, describing how mass is transferred from xi(w) to yj , mini-
mizing transport cost. The parameters ai and bj correspond to marginal distributions in the optimal
transport problem, and ϵ controls the strength of the entropy regularization term, ensuring smoother
solutions.

This approach provides a more robust solution to pruning in noisy environments by minimizing the
impact of noise while maintaining performance.

2.2 PROBLEM SETUP

To enhance the effectiveness of network pruning, particularly in capturing complex dependencies
between parameters, we propose CoPruning. Our approach introduces a Frank Copula-based
joint distribution and incorporates a local neighborhood analysis of the parameter vector w.

In the modified objective function (8), Ci(s, kr) represents the Frank Copula function, capturing the
joint distribution between the localized gradient results s and the localized weight sum kr. The term

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Hc(s, kr) represents the Copula entropy, measuring the difference in entropy between the current
and reference distributions. Here, s stands for the localized gradient results, reflecting the influence
of localized gradient changes in the parameter space, and kr represents the localized weight sum
ratio, which is derived from the weight vector w within a specific neighborhood radius. The symbol
k̄r is the reference localized weight sum, and w is the parameter vector before optimized. These
components together form the core of our Copula-based pruning framework.

min
k

Q(k) =

n∑
i=1

∥Ci(s, kr)− Ci(s, k̄r)∥2 + α∥Hc(s, kr)−Hc(s, k̄r)∥2 + λ∥kr − k̄r∥2 (8a)

s.t. 0 ≤ s, k, kr ≤ 1 (8b)

3 COPULA FUNCTION BASED PRUNING FRAMEWORK

In this section, we present the theoretical foundation of CoPruning. To enable the fitting of the
Copula function, we must process the gradient and parameters to meet specific requirements. In par-
ticular, the Frank Copula necessitates that the variables u and v are constrained within the interval
[0,1]. This normalization step transforms the gradient and parameters to lie within this range, align-
ing with the requirements for copula fitting. Next, we introduce Sklar’s Theorem, which provides
the mathematical basis for applying Copula functions in modeling dependencies. Subsequently, we
explain how the Frank Copula and Copula entropy are integrated into our pruning method to manage
both local and global dependencies in the network.

In our optimization objective, we define KI and KII for (8) as follows:

KI =

n∑
i=1

∥Ci(s, kr)− Ci(s, k̄r)∥2 (9)

where Ci represents the Copula function, which is employed to handle the joint distribution of the
localized parameters kr and k̄r along with the localized gradients s.

KII = α∥Hc(s, kr)−Hc(s, k̄r)∥2 (10)

where Hc represents the Copula entropy function, which representing the amount of information
contained in the constructed joint distribution of the localized parameters kr and k̄r along with the
localized gradients s.

3.1 LOCAL OPTIMIZATION FOR PRUNING

To enhance the efficiency of the pruning process, we introduce Local optimization, a technique that
allows us to focus on specific regions within the parameter matrix, thereby enabling a more efficient
capture of local dependencies. This approach also facilitates the subsequent handling of parameters
and gradient for Copula fitting. In equation Q(k), the localized model parameters are represented
as kr, while the pre-pruning parameters are denoted as k̄r. Additionally, the gradient information is
represented by s.

Using a sliding window of size r × r, we normalize the parameter values based on their local
neighborhoods. For each element Wi,j in the parameter matrix, we compute the sum of the absolute
values within the window centered at Wi,j :

Sumi,j =

⌊r/2⌋∑
m=−⌊r/2⌋

⌊r/2⌋∑
n=−⌊r/2⌋

|Wi+m,j+n|. (11)

Each element is then updated according to the following formula:

W ′
i,j =

|Wi,j |
Sumi,j

. (12)

4
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r=3

w3n+3

Figure 1: The Local optimization process applied to a parameter matrix.

This normalization not only ensures that the gradient and parameters fall within the required interval
[0,1], but also highlights the relative importance of parameters within localized regions. This sen-
sitivity to local dependencies allows the pruning process to remain both efficient and effective. As
illustrated in Figure 1, the parameter r denotes the radius of the local window used for calculating
the localized weight sum, which captures the dependencies within a specific neighborhood of the
parameter space.

3.2 SKLAR’S THEOREM AND COPULA FUNCTIONS

Copula function is fundamentally grounded in Sklar’s Theorem, which provides a framework for
understanding the correlations between multivariate distributions. By separating the marginal dis-
tributions from their dependence structure, Copula functions enable the analysis of complex depen-
dencies among random variables while preserving the individual characteristics of each marginal
distribution.

Proposition 1 (Sklar’s Theorem) Sklar’s Theorem (Sklar, 1959) states that any multivariate joint
distribution can be decomposed into its marginal distribution function and a Copula function. Specif-
ically, denote by H(x1, x2, . . . , xn) an n-dimensional joint distribution function, and denote by
F1(x1), F2(x2), . . . , Fn(xn) its marginal distribution functions. Then there exists a n-dimensional
Copula function C such that for all x1, x2, . . . , xn,

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn))

Here, the Copula function C captures the dependency structure between the marginal distributions.
This allows for the separate study of marginal distributions and the correlation structure between
variables, thus providing a powerful tool for analyzing complex multivariate distributions. This
characteristic makes Copula functions exceptionally valuable in our framework, as preserving the
dependency structure between network parameters is crucial for maintaining performance during
pruning.

Next, I will introduce the copula function used in the pruning process. Copula functions can be
classified into various types, such as Gaussian, t, and Archimedean copulas. Each type is suited for
different dependency structures among variables. Among these, we utilize the Frank Copula, which
is particularly advantageous due to its ability to model both positive and negative dependencies
without imposing strict restrictions on the marginal distributions. This flexibility is crucial in our
optimization framework, where the strength of dependencies can vary across different regions of the
network.

We use the Frank Copula, a type of Archimedean copula characterized by the parameter θ. A key
property of the Frank Copula is that as θ approaches zero, it degenerates into the independence
copula, which means the variables become independent. This characteristic is crucial in our opti-
mization framework, where the strength of dependencies can vary across different regions of the
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network. The Frank Copula function in (9) is expressed as

Cθ(u, v) = −
1

θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
(13)

where u and v are the marginal distributions of the variables, and θ controls the strength of the
dependence. To estimate θ, we use Kendall’s tau (τb), which measures the correlation between two
variables. The relationship between Kendall’s tau and θ is expressed as

τb = 1− 4

θ

(
1− 1

θ

∫ θ

0

t

et − 1
dt

)
(14)

Given Kendall’s tau, we can estimate θ numerically.

3.3 CORRELATION MODELING USING COPULA

The Copula function can capture the nonlinearity, asymmetry, and correlation of distribution tails
between variables, which plays an important role in extreme value analysis and predicting extreme
events (Nelsen, 2000). A simple proof of the nonlinear correlation between parameters and gradients
is provided in A.1.

Next, we will explain the process of modeling dependence using copulas. The analysis of modeling
nonlinear dependence using copula functions is primarily featured in Karra (2018). Moreover, The
correlation between copulas and tail dependence coefficients is essential for understanding how
extreme events are correlated between two variables. Copula functions describe the joint dependence
structure between two random variables, separating the marginal distributions from the dependency
structure. In cases where we are particularly interested in the behavior of variables in the tails of
their distributions, tail dependence coefficients provide a quantitative measure of how likely it is that
both variables take on extreme values simultaneously. These coefficients can be computed based on
the copula function, which allows us to examine the upper and lower extremes of joint distributions.

The upper tail dependence coefficient (λU ) describes the degree of dependence between two vari-
ables in the upper tails of their distributions, where both variables take on large values. In terms of
copulas, this coefficient can be expressed as:

λU = lim
w→1−

1− 2w + C(w,w)

1− w

Here, w represents the probability level as both marginal distributions approach their upper extremes
(i.e., u, v → 1), and C(w,w) is the copula function that captures the joint distribution of the two
variables. As w approaches 1, the formula quantifies the extent to which extreme values in one
variable are associated with extreme values in the other. A larger λU indicates stronger dependence
in the upper tails.

Similarly, the lower tail dependence coefficient (λL) quantifies the degree of dependence between
two variables when both are near the lower ends of their distributions, that is, when both variables
take on very small values. This coefficient can be computed using the following formula:

λL = lim
w→0+

C(w,w)

w

In this expression, w again represents the probability level, but here it approaches 0, indicating that
we are examining the behavior in the lower tails of the marginal distributions (i.e., u, v → 0). The
copula function C(w,w) describes the joint behavior of the two variables as they both take on small
values. A nonzero λL suggests that there is a significant degree of dependence between the two
variables in the lower tails of their distributions.

Thus, the upper and lower tail dependence coefficients provide a more detailed view of how two
variables co-move in the extremes, beyond what can be captured by linear correlation measures.

3.4 OPTIMIZATION OBJECTIVE WITH COPULA ENTROPY

In CoPruning, we integrate Copula entropy, a concept introduced by Ma & Sun (2011), to account
for the complexity and information content within the dependency structure. The second term KII =

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

α∥Hc(s, kr) − Hc(s, k̄r)∥2 represents the difference in Copula entropy before and after pruning,
where Hc denotes the Copula entropy. This term helps to maintain the structural complexity of the
dependencies in the network.

The Copula entropy in (10) is expressed as

Hc = −
∫
[0,1]n

C(u1, u2, . . . , un) logC(u1, u2, . . . , un) du1 du2 . . . dun (15)

According to Ma & Sun (2011), Copula entropy quantifies the information contained in the depen-
dence structure of random variables, making it a valuable measure in our optimization framework.
By minimizing the difference in Copula entropy before and after pruning, we can ensure that the
model retains its original dependency structure. This approach preserves the statistical properties of
the network and maintains its performance.

4 ALGORITHM DESIGN

The proposed algorithm CoPruning tackles the network pruning problem as defined in (8). In-
spired by Chen et al. (2022), CoPruning incrementally adjusts the sparsity of the weight vector w
by using a descending sequence of non-zero elements r0, . . . , rT . It localizes weights and gradients
to form joint distributions and copula entropy, allowing for a more precise evaluation of redundant
parameters in neural networks. By computing the differences in these joint distributions and copula
entropy at each pruning stage, CoPruning effectively reduces the network complexity while main-
taining or enhancing performance. The following pseudocode outlines the steps of the CoPruning
algorithm:

Algorithm 1 Copula function based Pruning (CoPruning)

Input: Number of pruning stages T , initial weights w̄, target sparsity sp, regularization parameters
λ, ϵ, batches B0, B1, . . . , BT , optimization step size τ > 0

Output: Post-pruning weights w, satisfying ∥w∥ ≤ sp
1: Set r0, r1, . . . , rT as a descending sequence, with r0 > p and rT = sp
2: for t = 0 to T do
3: Compute localized gradients lr = [∇ℓ1(k̄r), . . . ,∇ℓn(k̄r)]T using batch Bt

4: Use local optimization approach k
(0)
r ← w, k̄r ← w̄, localized gradients s(0)r ← lr

5: Construct joint distributions Ci(s, k
(t)
r ) and Ci(s, k̄r)

6: Compute Copula entropiesHc(s, k
(t)
r ),Hc(s, k̄r)

7: Compute the derivative of the pruning function with respect to kr
8: ∇Q← 2

∑n
i=1(Ci(s, k

(t)
r )−Ci(s, k̄r))

∂Ci

∂kr
+2α(Hc(s, k

(t)
r )−Hc(s, k̄r))

∂Hc

∂kr
+2λ(k

(t)
r −k̄)

9: k
(t+1/2)
r ← k

(t)
r − τ∇Q

10: k
(t+1)
r ← Select from k

(t+1/2)
r the rt components with the largest absolute values; set others

to zero
11: end for
12: w ← k

(T+1)
r

Weights Update and Step Size Selection. The weights kr are updated using stochastic gradient
descent (SGD) paired with the iterative hard thresholding (IHT) algorithm. For simplicity, we denote
the derivative of Q(k) as ∇Q, with a detailed derivation available in A.3. The expression for ∇Q
is given by:

∇Q = 2

n∑
i=1

(Ci(s, kr)− Ci(s, k̄r))
∂Ci

∂kr
+ 2α(Hc(s, kr)−Hc(s, k̄r))

∂Hc

∂kr
+ 2λ(kr − k) (16)

Following the weight updates driven by SGD (as seen in line 9 of Algorithm 1), the IHT method is
applied. IHT retains the top rt components of the weight vector kr with the largest magnitudes and
sets the remaining components to zero, ensuring adherence to the sparsity criteria. A crucial step in

7
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the optimization process is the choice of the step size τ (referenced in line 9), as also suggested in
Chen et al. (2022).

At the final stage of the algorithm, the localized weights kr are mapped back to the original weight
vector w. This mapping ensures a one-to-one correspondence between the positions in w and kr,
preserving the largest sp elements in kr within w.

5 NUMERICAL RESULT

Table 1: Performance Comparison Across Different Sparsity Levels

Network Sparsity MP WF CBS CHITA LR CoPruning (ours)

MLPNet
on

MNIST
(93.97%)

0.5 93.93 94.02 93.96 93.97 95.26 (± 0.03) 95.26 (± 0.05)

0.6 93.78 93.82 93.96 93.94 95.13 (± 0.02) 95.13 (± 0.07)

0.7 93.62 93.77 93.98 93.80 94.93 (± 0.03) 94.98 (± 0.06)

0.8 92.89 93.57 93.90 93.59 94.82 (± 0.04) 94.91 (± 0.12)

0.9 90.30 91.69 93.14 92.46 94.32 (± 0.05) 94.34 (± 0.15)

0.95 83.64 85.54 88.92 88.09 92.82 (± 0.06) 92.92 (± 0.09)

0.98 32.25 38.26 55.45 46.25 84.43 (± 0.10) 86.34 (± 0.20)

ResNet20
on

CIFAR10
(91.36%)

0.5 88.44 90.23 90.58 90.60 92.06 (± 0.04) 91.97 (± 0.06)

0.6 85.24 87.96 88.88 89.22 91.98 (± 0.09) 91.95 (± 0.10)

0.7 78.79 81.05 81.84 84.12 91.09 (± 0.10) 91.52 (± 0.16)

0.8 54.01 62.63 51.28 57.90 89.00 (± 0.12) 90.38 (± 0.19)

0.9 11.79 11.49 13.68 15.60 87.63 (± 0.11) 87.52 (± 0.21)

0.95 - - - - 80.25 (± 0.17) 81.60 (± 0.14)

0.98 - - - - 68.15 (± 0.27) 70.02 (± 0.18)

ResNet50
on

CIFAR10
(92.78%)

0.95 - - - - 83.75 (± 0.14) 84.37 (± 0.11)

0.98 - - - - 81.04 (± 0.14) 83.23 (± 0.09)

MobileNet
V1
on

ImageNet
(71.95%)

0.5 62.61 68.91 70.21 70.42 70.12 (± 0.13) 69.54 (± 0.11)

0.6 41.94 60.90 66.37 67.30 70.05 (± 0.22) 68.51 (± 0.20)

0.7 6.78 29.36 55.11 59.40 68.15 (± 0.17) 67.78 (± 0.13)

0.8 0.11 0.24 16.38 29.78 65.72 (± 0.19) 65.69 (± 0.12)

0.9 - - - - 47.65 (± 0.15) 58.08 (± 0.28)

In this section, we present the experimental results of various pruning methods across different spar-
sity levels on multiple neural network architectures. Specifically, the table compares MP (Han et al.,
2015), WF (Singh & Alistarh, 2020), CBS (Yu et al., 2022), CHITA (Benbaki et al., 2023), LR (Chen
et al., 2022), and our proposed method CoPruning on MLPNet (MNIST dataset), ResNet20 and
ResNet50 (CIFAR-10 dataset), and MobileNet V1 (ImageNet dataset). The LR method is imple-
mented in You & Cheng (2024), and its pruning data is included in the table for comparison. Best
performance is indicated by boldface, allowing a margin of 0.1 for slight variations.

Based on the data in table 1, we observe that our proposed CoPruning method performs similarly
to the Linear Regression (LR) method at low sparsity levels. However, at higher sparsity levels,
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the performance of the CoPruning method is significantly better than that of the LR method.
Particularly at sparsity levels of 0.9 and 0.95, CoPruning shows a notable increase in accuracy
compared to LR, demonstrating the robustness and efficacy of the method under extreme sparsity
conditions. Our experiments were conducted on a range of pre-trained neural network models, each
chosen for their widespread use in benchmarking. The models include MLPNet (30K parameters)
trained on the MNIST dataset (Lecun et al., 1998), ResNet20 (200K parameters) and ResNet50
(25M parameters) (He et al., 2016), both trained on the CIFAR-10 dataset (Krizhevsky, 2009), and
MobileNetV1 (4.2M parameters) (Howard et al., 2017), trained on the ImageNet dataset (Deng et al.,
2009). Each network was selected to represent a variety of architectures and scales, providing a
comprehensive evaluation across different types of models and data. For more detailed experimental
settings, please refer to A.4.

The results highlight the effectiveness of the CoPruning method, particularly in conditions of
extreme sparsity. When sparsity levels reach 0.9 and above, CoPruning significantly outper-
forms traditional methods, maintaining high accuracy even in highly sparse networks. This robust-
ness makes CoPruning particularly suitable for deployment in resource-constrained environments,
where maintaining model accuracy despite pruning is critical.

Table 2: Performance at High Sparsity Levels with Noise

Network Sparsity EWR CoPruning (proposed)

MLPNet
(93.97%)

0.95 + σ 90.50 (± 0.07) 92.82 (± 0.09)

0.98 + σ 83.69 (± 0.10) 85.94 (± 0.16)

ResNet20
(91.36%)

0.95 + σ 79.05 (± 0.16) 81.49 (± 0.22)

0.98 + σ 68.01 (± 0.25) 70.26 (± 0.31)

ResNet50
(92.78%)

0.95 + σ 84.92(± 0.22) 85.78 (± 0.22)

0.98 + σ 82.94 (± 0.17) 85.59 (± 0.19)

MobileNet
(71.95%)

0.8 + σ 63.62 (± 0.15) 65.59 (± 0.19)

0.9 + σ 47.98 (± 0.16) 58.26 (± 0.23)

The results in Table 2 illustrate the performance of EWR (You & Cheng, 2024) and our proposed
method at high sparsity levels with noise. In particular, noise σ (representing 20% of parameters
with noise) is added at sparsity levels 0.95 and 0.98 across four different network architectures:
MLPNet, ResNet20, ResNet50, and MobileNet. It can be observed that CoPruning consistently
outperforms EWR in most cases under high sparsity conditions, even with added noise.

Table 3: Accuracy Comparison of ResNet20 with and without Local optimization

Local optimization Parameter r No Local Opt. (%) With Local Opt. (%)

10

69.58

60.79

50 63.84

100 66.33

200 68.49

500 70.32

1000 70.71

1500 70.02
√
n 70.72
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The results in Table 3 show the accuracy comparison of ResNet20 with and without the Local op-
timization strategy, under a target sparsity of 0.98. The Local optimization parameter r represents
the size of the local area, and as r increases, the effect of the Local optimization strategy becomes
more extensive. The data in the table reflect the performance of ResNet20 under different Local op-
timization parameters. Without Local optimization, the network’s accuracy does not change, while
with the Local optimization strategy applied, the network’s accuracy significantly improves as the
Local optimization parameter r increases. For example, at r = 10, the accuracy reaches 60.79%,
and at r = n (representing globalization), the accuracy reaches the highest value of 70.72%. This
indicates that the Local optimization strategy effectively improves the network’s performance under
noise and high sparsity with selecting an appropriate Local optimization parameter.

6 CONCLUSIONS AND FUTURE IMPACT

In this paper, we introduced the CoPruningmethod, which exhibits significant advantages in high-
sparsity settings and performs well even in the presence of noise. Our experiments demonstrated that
CoPruning maintains high accuracy at extreme sparsity levels, outperforming traditional methods
like Linear Regression (LR) and Entropic Wasserstein Regression (EWR). It proved effective across
various neural network architectures, showcasing its robustness and suitability for challenging prun-
ing conditions.

Looking forward, CoPruning’s ability to handle high sparsity and noise makes it a promising tool
for deploying neural networks in resource-limited environments where memory and computation
are critical. The principles behind CoPruning may inspire further research in optimizing neural
networks for edge computing and other scenarios requiring efficient compression and robustness.
Future work could explore its application to more diverse tasks and datasets, as well as its integration
with other compression and optimization techniques to expand its potential.
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Abe Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de
Statistique de l’Université de Paris, 8:229–231, 1959.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017. doi: 10.
1109/jproc.2017.2761740.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse,
2024.

Lei You and Hei Victor Cheng. Swap: Sparse entropic wasserstein regression for robust network
pruning. In International Conference on Learning Representations (ICLR), 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian Zhe. The combinatorial brain surgeon:
Pruning weights that cancel one another in neural networks. In Kamalika Chaudhuri, Stefanie
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A APPENDIX

A.1 NONLINEAR PROOF OF THE RELATIONSHIP BETWEEN PARAMETERS AND GRADIENTS

The nonlinear relationship between model parameters and gradients in neural networks can be ex-
plained through several mathematical components. Starting with the neural network’s output, which
is typically given by:

y = f(Wx+ b)

where W is the weight matrix, x is the input vector, b is the bias term, and f is the activation
function. The most common activation functions, such as ReLU, Sigmoid, and Tanh, are nonlinear.
The loss function, denoted as L, is a measure of how far the predicted output y is from the target t.
For simplicity, using a quadratic loss function:

L =
1

2
(y − t)2

we calculate the gradient of L with respect to W through the chain rule:

∂L

∂W
= (y − t) · f ′(Wx+ b) · x

Here, f ′(Wx+b) is the derivative of the activation function, and since f is nonlinear, f ′(Wx+b) is
also nonlinear. This introduces a nonlinear relationship between the parameters W and the gradient
∂L
∂W , implying that the gradient does not change linearly with W .

In deeper networks, backpropagation involves the propagation of the gradients through multiple
layers. For each layer l, the gradient at a hidden layer depends on the chain rule applied to all
subsequent layers:

∂L

∂Wl
=

∂L

∂hl
· f ′(hl) · xl

where hl is the input to the l-th layer, and f ′(hl) is the derivative of the activation function at that
layer. Because f ′(hl) is nonlinear, each layer introduces additional nonlinearity into the gradients,
making the relationship between the final parameters and gradients even more complex and nonlin-
ear.

The nonlinearity is further exacerbated by the choice of the loss function. For instance, a widely
used loss function in classification tasks is cross-entropy:

L = −
∑

t log(y)

The gradient of this loss function with respect to W is:

∂L

∂W
= −

∑ t

y
· ∂y

∂W

Since y is a nonlinear function of W , the gradient of the cross-entropy loss also exhibits nonlinearity
with respect to the model parameters.

Modern optimization algorithms, such as Adam and RMSprop, introduce further complexity in the
parameter update rule. Adam, for example, updates weights using the following equation:

Wt+1 = Wt − α
m̂t√
v̂t + ϵ
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where m̂t and v̂t are the first and second moment estimates of the gradients, respectively, and α
is the learning rate. These moment-based adjustments, which rely on previous gradients, introduce
additional nonlinearity into the parameter update process. Therefore, even though Adam uses gradi-
ents for optimization, the relationship between the parameter updates and gradients becomes highly
nonlinear due to these adaptive adjustments.

In summary, the combination of nonlinear activation functions, the accumulation of nonlinearities
through backpropagation, nonlinear loss functions, and adaptive optimization algorithms collec-
tively result in a highly nonlinear relationship between the parameters and gradients in neural net-
works.

A.2 PROOF OF SKLAR’S THEOREM

Proposition 1 (Sklar’s Theorem) Sklar’s Theorem (Sklar, 1959) states that any multivari-
ate joint distribution can be decomposed into its marginal distributions and a Copula func-
tion. Specifically, let H(x1, x2, . . . , xn) be an n-dimensional joint distribution function, and let
F1(x1), F2(x2), . . . , Fn(xn) be its marginal distribution functions. Then there exists a Copula func-
tion C(u1, u2, . . . , un) such that:

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (17)

Here, the Copula function C captures the dependency structure between the marginal distributions.
This property makes Copula functions particularly valuable in our framework, where preserving the
dependency structure between network parameters is essential for maintaining performance during
pruning.

Sklar’s Theorem establishes a fundamental relationship between any multivariate joint distribution
function and its marginals through a Copula function. First, let’s define the pseudo-inverse F−1

i of
each marginal distribution function Fi by

F−1
i (ui) = inf{xi ∈ R : Fi(xi) ≥ ui}

for ui ∈ [0, 1]. We construct a Copula function C : [0, 1]n → [0, 1] using these inverses and the
joint distribution function H , such that

C(u1, u2, . . . , un) = H(F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
n (un)).

To validate that C is indeed a Copula, we need to demonstrate it is both grounded and n-increasing.
The function C is grounded because if any ui = 0, then C(u1, . . . , un) = 0. It is n-increasing as
the volume VC under the Copula over any hyperrectangle in [0, 1]n is non-negative, which follows
from the n-increasing nature of H and the non-decreasing property of F−1

i . The uniform margins
condition is satisfied because the projection of C over any axis returns ui, which means

C(1, . . . , 1, ui, 1, . . . , 1) = ui.

Finally, to prove that the joint distribution H can be completely reconstructed using C and the
marginal distributions Fi, we observe that substituting Fi(xi) into C gives

C(F1(x1), F2(x2), . . . , Fn(xn)) = H(F−1
1 (F1(x1)), F

−1
2 (F2(x2)), . . . , F

−1
n (Fn(xn))).

Since F−1
i (Fi(xi)) = xi almost everywhere, particularly when Fi are continuous, we obtain

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)),

thus completing the proof of Sklar’s Theorem. This result shows that the Copula C effectively
captures all dependencies between the variables as encoded by H .
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A.3 DERIVATIVE OF Q(k)

For the weight matrix W and the gradient matrix L, a given parameter r is used to compute local
sums and normalize each element. The computation follows these formulas:

For the weight matrix W :

Sumi,j =

⌊r/2⌋∑
m=−⌊r/2⌋

⌊r/2⌋∑
n=−⌊r/2⌋

|Wi+m,j+n| (18)

ki,j =
|Wi,j |
Sumi,j

(19)

For the gradient matrix L:

SumL
i,j =

⌊r/2⌋∑
m=−⌊r/2⌋

⌊r/2⌋∑
n=−⌊r/2⌋

|Li+m,j+n| (20)

si,j =
|Li,j |

SumL
i,j

(21)

These formulas allow the transformation of the original matrices into their normalized forms k and
s, using localized sums based on the neighborhood size specified by r.

The optimization problem Q(k) leverages the normalized matrices s and k obtained from the previ-
ous calculations. The objective function and its constraints are defined as:

min
k

Q(k) =

n∑
i=1

∥Ci(sr, kr)−Ci(sr, k̄r)∥2 +α∥Hc(sr, kr)−Hc(sr, k̄r)∥2 +λ∥kr − k̄r∥2 (22)

The derivative of Q(k) with respect to kr is calculated as follows:

∇Q = 2

n∑
i=1

(Ci(sr, kr)−Ci(sr, k̄r))
∂Ci

∂kr
+2α(Hc(sr, kr)−Hc(sr, k̄r))

∂Hc

∂kr
+2λ(kr−k) (23)

This formulation provides the necessary framework to compute the gradient of the objective func-
tion, which is essential for optimizing kr effectively.

The Frank Copula for variables sr and kr is given by:

C(sr, kr) = −
1

kr
log

(
1 +

(e−krsr − 1)(e−kr(1−sr) − 1)

e−kr − 1

)
(24)

To simplify the derivative calculation, we define three intermediate functions:

f(kr) = e−krsr − 1, g(kr) = e−kr(1−sr) − 1, h(kr) = e−kr − 1

Using these definitions, the derivative of the Frank Copula with respect to kr is calculated as follows:

∂C

∂kr
=

1

k2r
log

(
1 +

f(kr)g(kr)

h(kr)

)
− 1

kr

(
(f ′(kr)g(kr) + f(kr)g

′(kr))h(kr)− f(kr)g(kr)h
′(kr)

h(kr)2

)
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Where the derivatives of f , g, and h are:

f ′(kr) = −sre−krsr , g′(kr) = −(1− sr)e
−kr(1−sr), h′(kr) = −e−kr

This formulation helps clarify the derivative calculation by isolating the exponential terms and their
interactions.

The entropyHc of a copula C can generally be expressed as:

Hc = −
∫ ∫

C(u, v; kr) logC(u, v; kr) du dv

This formula represents the entropy measure of the dependence structure encoded by the copula C,
where u and v are the marginal distributions integrated over their respective domains.

The derivative of the copula entropy with respect to the parameter kr involves calculating the rate of
change of the entropy as the copula parameter changes. It is given by:

∂Hc

∂kr
= −

∫ ∫ (
∂C(u, v; kr)

∂kr
logC(u, v; kr) +

∂C(u,v;kr)
∂kr

C(u, v; kr)

)
du dv

This derivative takes into account both the direct effect of changes in kr on C and the change in the
entropy due to the adjustment of the copula function.

A.4 EXPERIMENTAL SETUP

The experimental framework leverages robust hardware configurations to manage the demand-
ing computation required for model training and pruning. Initially, the models—MLPNet and
ResNet20—are trained using a single NVIDIA RTX A4080 16 GB GPU, while ResNet50 and Mo-
bileNetV1 are trained on an NVIDIA RTX A5000 24 GB GPU. The training durations were ap-
proximately 0.5 hours for both MLPNet and ResNet20, while ResNet50 and MobileNetV1 required
around 1 day each, highlighting the significant computational effort, especially when handling Ima-
geNet data. The pre-pruning accuracy for each model is systematically documented in Table 1.

For the pruning phases, we utilized a single NVIDIA RTX A4080 16 GB GPU. Given the intensive
nature of training and pruning MobileNetV1, employing efficient processing strategies is strongly
advised to optimize resource utilization and efficiency. Our pruning method resulted in a 4x reduc-
tion in memory usage compared to the original model.

In the detailed pruning schedule outlined in Table 1, we specified the pruning stages for LR and
CoPruning to be 15 for MLPNet and ResNet20, 10 for MobileNetV1, and 10 for ResNet50. In
Table 2, the pruning stages for CoPruning is set to 15 for ResNet50, and remain the same as
described above for other models. The sparsity levels k1, k2, . . . , kT in Algorithm 1 adhere to an
exponential gradual pruning schedule kt = kT + (k0 − kT ) · (1 − t

T )
3, with the initial sparsity k0

set to zero. Additionally, the fisher sample size is configured as per the suggestions in You & Cheng
(2024), which is replicated in Table 4 of this document for reference.

Table 4: Model Configurations for Various Methods

Model
WF & CBS LR & EWR CoPruning

Sample / Batch Sample / Batch Sample / Batch

MLPNet 1000 / 1 1000 / 1 1000 / 1

ResNet20/50 1000 / 1 1000 / 1 1000 / 1

MobileNet 400 / 2400 1000 / 16 1000 / 16
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A.5 VISUALIZING PARAMETER DISTRIBUTIONS USING COPULA DURING PRUNING PHASES

In the pruning process of the ResNet20 network trained on CIFAR-10, we utilized Copula functions
to model and preserve dependencies among the network parameters at various pruning stages. This
section visually presents the effectiveness of Copula functions in fitting the parameter distributions
at stages 1, 4, 8, and 12.

In addition to capturing the interdependencies, we also examine the marginal distributions of s and
k, which represent localized transformations of the parameters w and l, respectively. These marginal
distributions allow us to better understand the behavior of individual parameters during the pruning
process. By analyzing s and k, we can gain insights into how individual parameter distributions
evolve and how pruning affects localized regions of the network.

The following figures demonstrate the Copula-based joint parameter distributions as well as the
marginal distributions of s and k at key pruning stages, providing a comprehensive view of how
parameter dependencies and localized behaviors are preserved throughout the process.

Figure 2 shows the Copula-based joint parameter distributions at stages 1, 4, 8, and 12, while Figure
3 displays the marginal distributions of s and k, representing the localized parameter distributions.

(a) Joint Distribution - Stage 1 (b) Joint Distribution - Stage 4

(c) Joint Distribution - Stage 8 (d) Joint Distribution - Stage 12

Figure 2: Copula-based joint parameter distributions during stages 1, 4, 8, and 12.
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(b) Marginal Distribution of k

Figure 3: Marginal distributions of ‘s‘ and ‘k‘, representing the localized parameter distributions.

A.6 COMPARISON OF PRUNING METHODS UNDER DIFFERENT SPARSITY LEVELS

This appendix section provides a detailed comparison of the CoPruning and EWR pruning methods
applied to MLPNet and ResNet20 models under two different sparsity conditions, 25% and 40%.
The accuracy is shown with standard deviation to indicate the variability of the results.

Table 5: Performance Comparison of CoPruning and EWR Pruning Methods under Different Spar-
sity Levels and Noise Conditions

Model Pruning Method

Accuracy (%)

Sparsity 0.95

(30% Noise)

Sparsity 0.95

(50% Noise)

Sparsity 0.98

(30% Noise)

Sparsity 0.98

(50% Noise)

MLPNet
CoPruning 92.87 (± 0.14) 92.93 (± 0.11) 85.72 (± 0.20) 85.81 (± 0.19)

EWR 92.88 (± 0.09) 92.89 (± 0.10) 85.52(± 0.11) 85.70 (± 0.13)

ResNet20
CoPruning 81.22 (± 0.24) 81.28 (± 0.15) 69.23 (± 0.18) 69.42 (± 0.21)

EWR 81.13 (± 0.15) 81.30 (± 0.16) 68.97 (± 0.18) 68.76 (± 0.19)

The slight increase in accuracy with higher noise levels is due to the role of noise in preventing
overfitting and enhancing generalization, as noted by Neelakantan et al. (2015). Additionally, noise
helps smooth gradient updates, allowing models to escape local minima and improve robustness
during training (Zhang et al., 2023).

A.7 AVERAGE LOSS COMPARISON

In this part, we provide a detailed comparison of the average loss across different noise config-
urations during the training process. We investigate how varying noise standard deviations and
proportions affect the training dynamics under sparsity levels of 0.95 and 0.98.

Figure 4 illustrates the comparison of average loss across epochs for different sparsity levels, com-
paring noise standard deviations 6 (proportion 0.5) and 4 (proportion 0.25) for sparsity levels 0.95
and 0.98 respectively. Results are based on ResNet20 training on the CIFAR-10 dataset.

Figure 5 presents a similar comparison for MLPNet training on the MNIST dataset, highlighting the
effect of noise configurations under the same sparsity levels.
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Figure 4: Comparison of average loss across epochs for different sparsity levels, comparing noise
standard deviations 6 (proportion 0.5) and 4 (proportion 0.25) for sparsity levels 0.95 and 0.98
respectively. Results are based on ResNet20 training on the CIFAR-10 dataset.
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Figure 5: Comparison of average loss across epochs for different sparsity levels, comparing noise
standard deviations 6 (proportion 0.5) and 4 (proportion 0.25) for sparsity levels 0.95 and 0.98
respectively. Results are based on MLPNet training on the MNIST dataset.
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A.8 PRUNING RESULTS FOR DIFFERENT MODELS
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Figure 6: Top1 Accuracy vs Sparsity for Three Models

Similarly, Figure 7 shows the Top5 accuracy for the same models. The trend mirrors that of Top1
accuracy, with all models experiencing a decrease in accuracy as the sparsity increases. However, the
Top5 accuracies tend to decline more gradually, maintaining better performance at higher sparsity
levels.

In this appendix, we present the pruning results for three different models using the CoPruning
method. The models included in this comparison are MobileNet v1, MLPNet on MNIST, and
ResNet20 on CIFAR10.

The pruning process was designed to progressively reduce the number of parameters in each model
to achieve a target sparsity level of 0.9. This was done over 9 pruning stages, where at each stage, a
fraction of weights was pruned. At each sparsity level, the models were retrained, and the Top1 and
Top5 accuracies were recorded. The results are shown in Figures 6 and 7.

Figure 6 shows the Top1 accuracy of the three models as a function of sparsity. As expected, as the
sparsity increases, the accuracy of each model decreases, though the rate of decline varies between
models. The target sparsity of 0.9 was achieved at the final stage.
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Figure 7: Top-5 Accuracy vs Sparsity for Three Models
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