
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COPRUNING : EXPLORING THE PARAMETER-
GRADIENT NONLINEAR CORRELATION FOR NEURAL
NETWORK PRUNING USING COPULA FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The sheer size of modern neural networks necessitates pruning techniques to over-
come the significant computational challenges posed by model serving. However,
existing pruning techniques fail to capture the nonlinear correlation between pa-
rameters and gradient, which is crucial in the pruning process, thus leading to
low accuracy under high sparsity. In this work, we propose CoPruning, a
new pruning framework, which uses a copula function based joint distribution
model that precisely captures the intricate nonlinear correlation between param-
eters and gradient, enabling more insightful pruning decisions. Additionally, we
integrate a local optimization approach within CoPruning to better capture rel-
ative change in parameters within their local context, providing new metrics for
achieving finer-grained optimization. Extensive experiments on various networks
reveal CoPruning’s comparable performance to state-of-the-art (SoTA) pruning
algorithms. CoPruning outperforms the SoTA with 3.09%, 1.87%, and 2.19%
higher accuracy on MLPNet, ResNet20, and ResNet50 at 0.98 sparsity, respec-
tively, and 10.43% higher accuracy on MobileNetV1 at 0.9 sparsity on ImageNet.

1 INTRODUCTION

Neural networks have emerged as a cornerstone of modern machine learning, facilitating ground-
breaking advancements across diverse application domains, spanning from image recognition to
natural language processing (Devlin et al., 2019; OpenAI, 2023). Nevertheless, as networks become
larger and more intricate, e.g., ChatGPT, they impose substantial computational burdens, presenting
formidable challenges in deployment, especially in resource-constrained environments such as mo-
bile devices and embedded systems (Chen et al., 2016). To tackle these challenges, network pruning
is regarded as a key technique to reduce the size and storage requirements of neural networks while
maintaining or minimally impacting their performance by removing redundant parameters (such
as neurons, filters, or connections) from the network (Li et al., 2017). In the field of neural net-
work pruning, pruning methods are generally categorized into structured pruning and unstructured
pruning. Structured pruning typically retains the original structure of the neural network while
reducing unnecessary connections and weights, improving computational efficiency without signif-
icantly degrading performance. For instance, Huang & Lee (2022) proposed a strategy for training
structured neural networks through manifold identification and variance reduction, while Molchanov
et al. (2017c) focused on pruning convolutional neural networks (CNNs) for resource-efficient in-
ference. Other relevant works include Sze et al. (2017) and Anwar et al. (2017), who further explore
structured pruning in neural networks. Additionally, Fang et al. (2023) and Yang et al. (2024) studied
structured pruning in large-scale language models, while He et al. (2017) focused on accelerating
very deep neural networks through channel pruning. On the other hand, unstructured pruning
allows the removal of individual weights, often resulting in a more sparse network. For example,
He et al. (2022) investigated how sparse pruning exacerbates overfitting, while Han et al. (2016)
studied deep compression and its efficient inference engine. Similarly, Molchanov et al. (2017a) uti-
lized variational dropout to sparsify deep neural networks, and Frantar et al. (2022) ensured speedup
guarantees through accurate pruning. Other notable unstructured pruning methods include Guo et al.
(2016), who proposed dynamic network surgery, and Aghasi et al. (2017), who introduced convex
pruning methods that provide performance guarantees for deep neural networks.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In neural networks, the relationship between model parameters and gradient is typically nonlinear,
influenced by several factors. First, the use of nonlinear activation functions, such as ReLU and Sig-
moid, results in a nonlinear mapping between the network’s input and output, which directly impacts
the correlation between the parameters and gradient Zubair & Singha (2020a). Second, the back-
propagation algorithm propagates gradient through multiple layers, where each layer’s nonlinear
transformation further enforces this nonlinear relationship (Agarwal & Ramampiaro, 2024a). More-
over, the loss function is often nonlinear (e.g., cross-entropy or mean square error), meaning that
the gradient’s relationship with parameters is highly dependent on the nonlinearity of the loss itself
Zubair & Singha (2020b). Finally, optimization algorithms, such as Adam and RMSprop, dynam-
ically adjust learning rates based on the gradient’s history, further complicating and nonlinearizing
the parameter updates (Agarwal & Ramampiaro, 2024b). These factors collectively contribute to
the nonlinear correlation between parameters and gradient in deep learning models.

Applying nonlinear relationships to predict models can effectively enhance the performance of mod-
els (Kulathunga et al., 2020). Many traditional pruning methods rely on relatively simple criteria,
such as magnitude-based thresholds (Han et al., 2015) or heuristic techniques (Molchanov et al.,
2017b). While these approaches have proven effective in various scenarios, they often simplify the
modeling of dependencies between network parameters and gradient, which may not adequately
account for the complex, nonlinear correlations present in neural networks. As a result, this simpli-
fication can lead to less accuracy.

We propose CoPruning, which is a novel framework that use copula function to model the nonlin-
ear correlation between parameters and gradient. By disentangling the marginal distributions from
their dependency structure, copulas offer a more flexible and accurate means of capturing nonlin-
ear interactions. This challenges the traditional linear assumptions and provides a more precise
foundation for pruning decisions. CoPruning integrates a local optimization approach to capture
relative changes in parameters within their local context. Through rigorous experiments, we show
that CoPruning outperforms traditional pruning methods across multiple performance metrics.
Our method achieves not only higher pruning efficiency but also significantly improves model ac-
curacy and robustness, particularly under extreme sparsity, highlighting its superiority in practical
applications.

2 RELATED WORK AND PROBLEM SETUP

2.1 RELATED WORK

Neural network pruning is an essential technique for reducing the complexity of deep neural net-
works, thereby facilitating their seamless deployment in resource-constrained environments. The
key to effective pruning lies in assessing the impact on the loss function E when specific weights
are removed, typically quantified by ∆E. A lot of methods have been developed, ranging from
straightforward first-order approaches to more sophisticated second-order methods that utilize the
Hessian matrix to guide pruning decisions. One of the earliest methods to introduce Hessian-based
pruning is proposed by LeCun et al. (1989) with the Optimal Brain Damage (OBD) method. OBD
uses a second-order derivative (the diagonal elements of the Hessian matrix) to estimate the impact
on the loss function ∆E when a weight, denoted by wq , is removed. The formulation of ∆E is
expressed as

∆E ≈ 1

2
hqqw

2
q , (1)

where hqq represents the diagonal elements of the Hessian matrix H, which is the second derivative
of the loss function E with respect to the weight wq . However, OBD assumes that the Hessian
matrix is diagonally dominant, and ignores the interdependency between weights. To address this
limitation, Hassibi & Stork (1992) introduced the Optimal Brain Surgeon (OBS) method. OBS
expands on OBD by taking into account the full Hessian matrix instead of just the diagonal elements.
In addition, OBS considers the interaction between different weights, thus leading to a more precise
estimation of the pruning impact on the network’s performance. With OBS, ∆E is derived by
employing the inverse of the Hessian matrix, which is expressed as

∆E ≈
w2

q

2[H−1]qq
. (2)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The Combinatorial Brain Surgeon (CBS) method, introduced by Yu et al. (2022), proposes a com-
binatorial optimization approach that considers the interaction between multiple weights. The opti-
mization problem for CBS is formulated as

min
1

2

N∑
i=1

N∑
j=1

(wi − w̄i)Hij(wj − w̄j). (3)

In equation (3), w̄i represents the weights before pruning, and Hij are the elements of the Hessian
matrix that capture the interaction between weights wi and wj . The indices i and j represent different
weights in the neural network.

The CHITA method, proposed by Benbaki et al. (2023), efficiently approximates the Hessian matrix
as

H ≈ 1

n

n∑
i=1

∇ℓi∇ℓTi =
1

n
GTG. (4)

Here, G = [∇ℓ1, . . . ,∇ℓn]T is the matrix containing the gradients for each sample, and ℓi represents
the loss for the i-th sample. This method significantly reduces computational complexity and is
suitable for large-scale network pruning due to avoiding explicit computation of the Hessian matrix.

Chen et al. (2022) formulates the pruning problem as a ridge regression task. The formulation is
expressed as

min
w

Q(w) =
1

2
∥y −Xw∥2 + nλ

2
∥w − w̄∥2. (5)

In (5), X is the gradient matrix, y is the product of the reference weights w̄ and X , and λ is the
regularization parameter. This encourages the weights w to stay close to the reference weights w̄,
which helps to prevent overfitting and enhance generalization.

Based on the framework of CHITA and ridge regression, You & Cheng (2024) proposes a SWAP
method that combines linear regression (LR) with optimal transport principles to address noisy prun-
ing scenarios. LR integrates the techniques from Benbaki et al. (2023) and Chen et al. (2022) and is
expressed as:

min
w

Q(w) =
1

n

n∑
i=1

∥xi(w)− yi∥2 + λ∥w − w̄∥2 (6)

where xi(w) = wT∇ℓi represents the modeling result of the model correlation given the current
weights w, and yi = w̄T∇ℓi is the target output, with w̄ being the reference weights.

For noisy pruning scenarios, You & Cheng (2024) developed Entropic Wasserstein Regression
(EWR), which enhances the robustness of pruning by integrating optimal transport with entropy
regularization. The complete optimization problem for EWR is formulated as:

min
w

Q(w) = inf
Π∈Π


n∑

i=1

n∑
j=1

∥xi(w)− yj∥2πij + ϵ

n∑
i=1

n∑
j=1

log

(
aibj
πij

)
πij

+ λ∥w − w̄∥2 (7)

Here, πij represents the transport plan, describing how mass is transferred from xi(w) to yj , mini-
mizing transport cost. The parameters ai and bj correspond to marginal distributions in the optimal
transport problem, and ϵ controls the strength of the entropy regularization term, ensuring smoother
solutions.

This approach provides a more robust solution to pruning in noisy environments by minimizing the
impact of noise while maintaining performance.

2.2 PROBLEM SETUP

To enhance the effectiveness of network pruning, particularly in capturing complex dependencies
between parameters, we propose CoPruning. Our approach introduces a Frank Copula-based
joint distribution and incorporates a local neighborhood analysis of the parameter vector w.

In the modified objective function (8), Ci(s, kr) represents the Frank Copula function, capturing the
joint distribution between the localized gradient results s and the localized weight sum kr. The term

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Hc(s, kr) represents the Copula entropy, measuring the difference in entropy between the current
and reference distributions. Here, s stands for the localized gradient results, reflecting the influence
of localized gradient changes in the parameter space, and kr represents the localized weight sum
ratio, which is derived from the weight vector w within a specific neighborhood radius. The symbol
k̄r is the reference localized weight sum, and w is the parameter vector before optimized. These
components together form the core of our Copula-based pruning framework.

min
k

Q(k) =

n∑
i=1

∥Ci(s, kr)− Ci(s, k̄r)∥2 + α∥Hc(s, kr)−Hc(s, k̄r)∥2 + λ∥kr − k̄r∥2 (8a)

s.t. 0 ≤ s, k, kr ≤ 1 (8b)

3 COPULA FUNCTION BASED PRUNING FRAMEWORK

In this section, we present the theoretical foundation of CoPruning. To enable the fitting of the
Copula function, we must process the gradient and parameters to meet specific requirements. In par-
ticular, the Frank Copula necessitates that the variables u and v are constrained within the interval
[0,1]. This normalization step transforms the gradient and parameters to lie within this range, align-
ing with the requirements for copula fitting. Next, we introduce Sklar’s Theorem, which provides
the mathematical basis for applying Copula functions in modeling dependencies. Subsequently, we
explain how the Frank Copula and Copula entropy are integrated into our pruning method to manage
both local and global dependencies in the network.

In our optimization objective, we define KI and KII for (8) as follows:

KI =

n∑
i=1

∥Ci(s, kr)− Ci(s, k̄r)∥2 (9)

where Ci represents the Copula function, which is employed to handle the joint distribution of the
localized parameters kr and k̄r along with the localized gradients s.

KII = α∥Hc(s, kr)−Hc(s, k̄r)∥2 (10)

where Hc represents the Copula entropy function, which representing the amount of information
contained in the constructed joint distribution of the localized parameters kr and k̄r along with the
localized gradients s.

3.1 LOCAL OPTIMIZATION FOR PRUNING

To enhance the efficiency of the pruning process, we introduce Local optimization, a technique that
allows us to focus on specific regions within the parameter matrix, thereby enabling a more efficient
capture of local dependencies. This approach also facilitates the subsequent handling of parameters
and gradient for Copula fitting. In equation Q(k), the localized model parameters are represented
as kr, while the pre-pruning parameters are denoted as k̄r. Additionally, the gradient information is
represented by s.

Using a sliding window of size r × r, we normalize the parameter values based on their local
neighborhoods. For each element Wi,j in the parameter matrix, we compute the sum of the absolute
values within the window centered at Wi,j :

Sumi,j =

⌊r/2⌋∑
m=−⌊r/2⌋

⌊r/2⌋∑
n=−⌊r/2⌋

|Wi+m,j+n|. (11)

Each element is then updated according to the following formula:

W ′
i,j =

|Wi,j |
Sumi,j

. (12)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

w1 w2 w3

wn+2 wn+3

w2n+1 w2n+2 w2n+3

... ... wn

wn+1 ... ... w2n

... ... w3n

w3n+1 w3n+2 ... ... w4n

w4n+1 w4n+2 w4n+3 ... ... w5n

r=3

w3n+3

Figure 1: The Local optimization process applied to a parameter matrix.

This normalization not only ensures that the gradient and parameters fall within the required interval
[0,1], but also highlights the relative importance of parameters within localized regions. This sen-
sitivity to local dependencies allows the pruning process to remain both efficient and effective. As
illustrated in Figure 1, the parameter r denotes the radius of the local window used for calculating
the localized weight sum, which captures the dependencies within a specific neighborhood of the
parameter space.

3.2 SKLAR’S THEOREM AND COPULA FUNCTIONS

Copula function is fundamentally grounded in Sklar’s Theorem, which provides a framework for
understanding the correlations between multivariate distributions. By separating the marginal dis-
tributions from their dependence structure, Copula functions enable the analysis of complex depen-
dencies among random variables while preserving the individual characteristics of each marginal
distribution.

Proposition 1 (Sklar’s Theorem) Sklar’s Theorem (Sklar, 1959) states that any multivariate joint
distribution can be decomposed into its marginal distribution function and a Copula function. Specif-
ically, denote by H(x1, x2, . . . , xn) an n-dimensional joint distribution function, and denote by
F1(x1), F2(x2), . . . , Fn(xn) its marginal distribution functions. Then there exists a n-dimensional
Copula function C such that for all x1, x2, . . . , xn,

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn))

Here, the Copula function C captures the dependency structure between the marginal distributions.
This allows for the separate study of marginal distributions and the correlation structure between
variables, thus providing a powerful tool for analyzing complex multivariate distributions. This
characteristic makes Copula functions exceptionally valuable in our framework, as preserving the
dependency structure between network parameters is crucial for maintaining performance during
pruning.

Next, I will introduce the copula function used in the pruning process. Copula functions can be
classified into various types, such as Gaussian, t, and Archimedean copulas. Each type is suited for
different dependency structures among variables. Among these, we utilize the Frank Copula, which
is particularly advantageous due to its ability to model both positive and negative dependencies
without imposing strict restrictions on the marginal distributions. This flexibility is crucial in our
optimization framework, where the strength of dependencies can vary across different regions of the
network.

We use the Frank Copula, a type of Archimedean copula characterized by the parameter θ. A key
property of the Frank Copula is that as θ approaches zero, it degenerates into the independence
copula, which means the variables become independent. This characteristic is crucial in our opti-
mization framework, where the strength of dependencies can vary across different regions of the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

network. The Frank Copula function in (9) is expressed as

Cθ(u, v) = −
1

θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
(13)

where u and v are the marginal distributions of the variables, and θ controls the strength of the
dependence. To estimate θ, we use Kendall’s tau (τb), which measures the correlation between two
variables. The relationship between Kendall’s tau and θ is expressed as

τb = 1− 4

θ

(
1− 1

θ

∫ θ

0

t

et − 1
dt

)
(14)

Given Kendall’s tau, we can estimate θ numerically.

3.3 CORRELATION MODELING USING COPULA

The Copula function can capture the nonlinearity, asymmetry, and correlation of distribution tails
between variables, which plays an important role in extreme value analysis and predicting extreme
events (Nelsen, 2000). A simple proof of the nonlinear correlation between parameters and gradients
is provided in A.1.

Next, we will explain the process of modeling dependence using copulas. The analysis of modeling
nonlinear dependence using copula functions is primarily featured in Karra (2018). Moreover, The
correlation between copulas and tail dependence coefficients is essential for understanding how
extreme events are correlated between two variables. Copula functions describe the joint dependence
structure between two random variables, separating the marginal distributions from the dependency
structure. In cases where we are particularly interested in the behavior of variables in the tails of
their distributions, tail dependence coefficients provide a quantitative measure of how likely it is that
both variables take on extreme values simultaneously. These coefficients can be computed based on
the copula function, which allows us to examine the upper and lower extremes of joint distributions.

The upper tail dependence coefficient (λU ) describes the degree of dependence between two vari-
ables in the upper tails of their distributions, where both variables take on large values. In terms of
copulas, this coefficient can be expressed as:

λU = lim
w→1−

1− 2w + C(w,w)

1− w

Here, w represents the probability level as both marginal distributions approach their upper extremes
(i.e., u, v → 1), and C(w,w) is the copula function that captures the joint distribution of the two
variables. As w approaches 1, the formula quantifies the extent to which extreme values in one
variable are associated with extreme values in the other. A larger λU indicates stronger dependence
in the upper tails.

Similarly, the lower tail dependence coefficient (λL) quantifies the degree of dependence between
two variables when both are near the lower ends of their distributions, that is, when both variables
take on very small values. This coefficient can be computed using the following formula:

λL = lim
w→0+

C(w,w)

w

In this expression, w again represents the probability level, but here it approaches 0, indicating that
we are examining the behavior in the lower tails of the marginal distributions (i.e., u, v → 0). The
copula function C(w,w) describes the joint behavior of the two variables as they both take on small
values. A nonzero λL suggests that there is a significant degree of dependence between the two
variables in the lower tails of their distributions.

Thus, the upper and lower tail dependence coefficients provide a more detailed view of how two
variables co-move in the extremes, beyond what can be captured by linear correlation measures.

3.4 OPTIMIZATION OBJECTIVE WITH COPULA ENTROPY

In CoPruning, we integrate Copula entropy, a concept introduced by Ma & Sun (2011), to account
for the complexity and information content within the dependency structure. The second term KII =

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

α∥Hc(s, kr) − Hc(s, k̄r)∥2 represents the difference in Copula entropy before and after pruning,
where Hc denotes the Copula entropy. This term helps to maintain the structural complexity of the
dependencies in the network.

The Copula entropy in (10) is expressed as

Hc = −
∫
[0,1]n

C(u1, u2, . . . , un) logC(u1, u2, . . . , un) du1 du2 . . . dun (15)

According to Ma & Sun (2011), Copula entropy quantifies the information contained in the depen-
dence structure of random variables, making it a valuable measure in our optimization framework.
By minimizing the difference in Copula entropy before and after pruning, we can ensure that the
model retains its original dependency structure. This approach preserves the statistical properties of
the network and maintains its performance.

4 ALGORITHM DESIGN

The proposed algorithm CoPruning tackles the network pruning problem as defined in (8). In-
spired by Chen et al. (2022), CoPruning incrementally adjusts the sparsity of the weight vector w
by using a descending sequence of non-zero elements r0, . . . , rT . It localizes weights and gradients
to form joint distributions and copula entropy, allowing for a more precise evaluation of redundant
parameters in neural networks. By computing the differences in these joint distributions and copula
entropy at each pruning stage, CoPruning effectively reduces the network complexity while main-
taining or enhancing performance. The following pseudocode outlines the steps of the CoPruning
algorithm:

Algorithm 1 Copula function based Pruning (CoPruning)

Input: Number of pruning stages T , initial weights w̄, target sparsity sp, regularization parameters
λ, ϵ, batches B0, B1, . . . , BT , optimization step size τ > 0

Output: Post-pruning weights w, satisfying ∥w∥ ≤ sp
1: Set r0, r1, . . . , rT as a descending sequence, with r0 > p and rT = sp
2: for t = 0 to T do
3: Compute localized gradients lr = [∇ℓ1(k̄r), . . . ,∇ℓn(k̄r)]T using batch Bt

4: Use local optimization approach k
(0)
r ← w, k̄r ← w̄, localized gradients s(0)r ← lr

5: Construct joint distributions Ci(s, k
(t)
r ) and Ci(s, k̄r)

6: Compute Copula entropiesHc(s, k
(t)
r ),Hc(s, k̄r)

7: Compute the derivative of the pruning function with respect to kr
8: ∇Q← 2

∑n
i=1(Ci(s, k

(t)
r )−Ci(s, k̄r))

∂Ci

∂kr
+2α(Hc(s, k

(t)
r )−Hc(s, k̄r))

∂Hc

∂kr
+2λ(k

(t)
r −k̄)

9: k
(t+1/2)
r ← k

(t)
r − τ∇Q

10: k
(t+1)
r ← Select from k

(t+1/2)
r the rt components with the largest absolute values; set others

to zero
11: end for
12: w ← k

(T+1)
r

Weights Update and Step Size Selection. The weights kr are updated using stochastic gradient
descent (SGD) paired with the iterative hard thresholding (IHT) algorithm. For simplicity, we denote
the derivative of Q(k) as ∇Q, with a detailed derivation available in A.3. The expression for ∇Q
is given by:

∇Q = 2

n∑
i=1

(Ci(s, kr)− Ci(s, k̄r))
∂Ci

∂kr
+ 2α(Hc(s, kr)−Hc(s, k̄r))

∂Hc

∂kr
+ 2λ(kr − k) (16)

Following the weight updates driven by SGD (as seen in line 9 of Algorithm 1), the IHT method is
applied. IHT retains the top rt components of the weight vector kr with the largest magnitudes and
sets the remaining components to zero, ensuring adherence to the sparsity criteria. A crucial step in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the optimization process is the choice of the step size τ (referenced in line 9), as also suggested in
Chen et al. (2022).

At the final stage of the algorithm, the localized weights kr are mapped back to the original weight
vector w. This mapping ensures a one-to-one correspondence between the positions in w and kr,
preserving the largest sp elements in kr within w.

5 NUMERICAL RESULT

Table 1: Performance Comparison Across Different Sparsity Levels

Network Sparsity MP WF CBS CHITA LR CoPruning (ours)

MLPNet
on

MNIST
(93.97%)

0.5 93.93 94.02 93.96 93.97 95.26 (± 0.03) 95.26 (± 0.05)

0.6 93.78 93.82 93.96 93.94 95.13 (± 0.02) 95.13 (± 0.07)

0.7 93.62 93.77 93.98 93.80 94.93 (± 0.03) 94.98 (± 0.06)

0.8 92.89 93.57 93.90 93.59 94.82 (± 0.04) 94.91 (± 0.12)

0.9 90.30 91.69 93.14 92.46 94.32 (± 0.05) 94.34 (± 0.15)

0.95 83.64 85.54 88.92 88.09 92.82 (± 0.06) 92.92 (± 0.09)

0.98 32.25 38.26 55.45 46.25 84.43 (± 0.10) 86.34 (± 0.20)

ResNet20
on

CIFAR10
(91.36%)

0.5 88.44 90.23 90.58 90.60 92.06 (± 0.04) 91.97 (± 0.06)

0.6 85.24 87.96 88.88 89.22 91.98 (± 0.09) 91.95 (± 0.10)

0.7 78.79 81.05 81.84 84.12 91.09 (± 0.10) 91.52 (± 0.16)

0.8 54.01 62.63 51.28 57.90 89.00 (± 0.12) 90.38 (± 0.19)

0.9 11.79 11.49 13.68 15.60 87.63 (± 0.11) 87.52 (± 0.21)

0.95 - - - - 80.25 (± 0.17) 81.60 (± 0.14)

0.98 - - - - 68.15 (± 0.27) 70.02 (± 0.18)

ResNet50
on

CIFAR10
(92.78%)

0.95 - - - - 83.75 (± 0.14) 84.37 (± 0.11)

0.98 - - - - 81.04 (± 0.14) 83.23 (± 0.09)

MobileNet
V1
on

ImageNet
(71.95%)

0.5 62.61 68.91 70.21 70.42 70.12 (± 0.13) 69.54 (± 0.11)

0.6 41.94 60.90 66.37 67.30 70.05 (± 0.22) 68.51 (± 0.20)

0.7 6.78 29.36 55.11 59.40 68.15 (± 0.17) 67.78 (± 0.13)

0.8 0.11 0.24 16.38 29.78 65.72 (± 0.19) 65.69 (± 0.12)

0.9 - - - - 47.65 (± 0.15) 58.08 (± 0.28)

In this section, we present the experimental results of various pruning methods across different spar-
sity levels on multiple neural network architectures. Specifically, the table compares MP (Han et al.,
2015), WF (Singh & Alistarh, 2020), CBS (Yu et al., 2022), CHITA (Benbaki et al., 2023), LR (Chen
et al., 2022), and our proposed method CoPruning on MLPNet (MNIST dataset), ResNet20 and
ResNet50 (CIFAR-10 dataset), and MobileNet V1 (ImageNet dataset). The LR method is imple-
mented in You & Cheng (2024), and its pruning data is included in the table for comparison. Best
performance is indicated by boldface, allowing a margin of 0.1 for slight variations.

Based on the data in table 1, we observe that our proposed CoPruning method performs similarly
to the Linear Regression (LR) method at low sparsity levels. However, at higher sparsity levels,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the performance of the CoPruning method is significantly better than that of the LR method.
Particularly at sparsity levels of 0.9 and 0.95, CoPruning shows a notable increase in accuracy
compared to LR, demonstrating the robustness and efficacy of the method under extreme sparsity
conditions. Our experiments were conducted on a range of pre-trained neural network models, each
chosen for their widespread use in benchmarking. The models include MLPNet (30K parameters)
trained on the MNIST dataset (Lecun et al., 1998), ResNet20 (200K parameters) and ResNet50
(25M parameters) (He et al., 2016), both trained on the CIFAR-10 dataset (Krizhevsky, 2009), and
MobileNetV1 (4.2M parameters) (Howard et al., 2017), trained on the ImageNet dataset (Deng et al.,
2009). Each network was selected to represent a variety of architectures and scales, providing a
comprehensive evaluation across different types of models and data. For more detailed experimental
settings, please refer to A.4.

The results highlight the effectiveness of the CoPruning method, particularly in conditions of
extreme sparsity. When sparsity levels reach 0.9 and above, CoPruning significantly outper-
forms traditional methods, maintaining high accuracy even in highly sparse networks. This robust-
ness makes CoPruning particularly suitable for deployment in resource-constrained environments,
where maintaining model accuracy despite pruning is critical.

Table 2: Performance at High Sparsity Levels with Noise

Network Sparsity EWR CoPruning (proposed)

MLPNet
(93.97%)

0.95 + σ 90.50 (± 0.07) 92.82 (± 0.09)

0.98 + σ 83.69 (± 0.10) 85.94 (± 0.16)

ResNet20
(91.36%)

0.95 + σ 79.05 (± 0.16) 81.49 (± 0.22)

0.98 + σ 68.01 (± 0.25) 70.26 (± 0.31)

ResNet50
(92.78%)

0.95 + σ 84.92(± 0.22) 85.78 (± 0.22)

0.98 + σ 82.94 (± 0.17) 85.59 (± 0.19)

MobileNet
(71.95%)

0.8 + σ 63.62 (± 0.15) 65.59 (± 0.19)

0.9 + σ 47.98 (± 0.16) 58.26 (± 0.23)

The results in Table 2 illustrate the performance of EWR (You & Cheng, 2024) and our proposed
method at high sparsity levels with noise. In particular, noise σ (representing 20% of parameters
with noise) is added at sparsity levels 0.95 and 0.98 across four different network architectures:
MLPNet, ResNet20, ResNet50, and MobileNet. It can be observed that CoPruning consistently
outperforms EWR in most cases under high sparsity conditions, even with added noise.

Table 3: Accuracy Comparison of ResNet20 with and without Local optimization

Local optimization Parameter r No Local Opt. (%) With Local Opt. (%)

10

69.58

60.79

50 63.84

100 66.33

200 68.49

500 70.32

1000 70.71

1500 70.02
√
n 70.72

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The results in Table 3 show the accuracy comparison of ResNet20 with and without the Local op-
timization strategy, under a target sparsity of 0.98. The Local optimization parameter r represents
the size of the local area, and as r increases, the effect of the Local optimization strategy becomes
more extensive. The data in the table reflect the performance of ResNet20 under different Local op-
timization parameters. Without Local optimization, the network’s accuracy does not change, while
with the Local optimization strategy applied, the network’s accuracy significantly improves as the
Local optimization parameter r increases. For example, at r = 10, the accuracy reaches 60.79%,
and at r = n (representing globalization), the accuracy reaches the highest value of 70.72%. This
indicates that the Local optimization strategy effectively improves the network’s performance under
noise and high sparsity with selecting an appropriate Local optimization parameter.

6 CONCLUSIONS AND FUTURE IMPACT

In this paper, we introduced the CoPruningmethod, which exhibits significant advantages in high-
sparsity settings and performs well even in the presence of noise. Our experiments demonstrated that
CoPruning maintains high accuracy at extreme sparsity levels, outperforming traditional methods
like Linear Regression (LR) and Entropic Wasserstein Regression (EWR). It proved effective across
various neural network architectures, showcasing its robustness and suitability for challenging prun-
ing conditions.

Looking forward, CoPruning’s ability to handle high sparsity and noise makes it a promising tool
for deploying neural networks in resource-limited environments where memory and computation
are critical. The principles behind CoPruning may inspire further research in optimizing neural
networks for edge computing and other scenarios requiring efficient compression and robustness.
Future work could explore its application to more diverse tasks and datasets, as well as its integration
with other compression and optimization techniques to expand its potential.

REFERENCES

V. Agarwal and H. Ramampiaro. Understanding dynamics of nonlinear representation learning and
its gradient impact. MIT Press, 2024a.

V. Agarwal and H. Ramampiaro. Understanding dynamics of nonlinear representation learning and
its gradient impact. MIT Press, 2024b.

Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. Net-trim: Convex pruning of
deep neural networks with performance guarantee. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3177–3186, 2017.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems, 13(3):1–18, 2017. doi:
10.1145/3005348.

Riade Benbaki, Wenyu Chen, Xiang Meng, Hussein Hazimeh, Natalia Ponomareva, Zhe Zhao, and
Rahul Mazumder. Fast as CHITA: neural network pruning with combinatorial optimization.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp.
2031–2049. PMLR, 2023.

Wenyu Chen, Riade Benbaki, Xiang Meng, and Rahul Mazumder. Network pruning at scale: A
discrete optimization approach. In OPT 2022: Optimization for Machine Learning (NeurIPS
2022 Workshop), 2022.

Yiran Chen, Tushar Krishna, Jie Zhang, Chunyuan Yu, Linghao Song, and Bingsheng He. Deepx:
A software accelerator for low-power deep learning inference on mobile devices. In 2016
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 120–
125. IEEE, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp. 248–255.
IEEE Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 16091–16101. IEEE, 2023. doi:
10.1109/CVPR52729.2023.01544.

E Frantar, D Alistarh, and Spdy. Accurate pruning with speedup guarantees, pp. 6726–6743. 2022.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 1379–1387,
2016.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. In Advances in Neural Information Processing Systems, pp. 1135–1143,
2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark Horowitz, and Bill Dally. Deep
compression and EIE: Efficient inference engine on compressed deep neural network. IEEE,
2016. doi: 10.1109/hotchips.2016.7936226.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pp. 164–171, 1992.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pp. 1398–1406. IEEE Computer Society, 2017. doi: 10.1109/ICCV.2017.155.

Zheng He, Zeke Xie, Quanzhi Zhu, and Zengchang Qin. Sparse double descent: Where net-
work pruning aggravates overfitting. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 8635–8659. PMLR, 2022.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017.

Zih-Syuan Huang and Ching-pei Lee. Training structured neural networks through manifold identi-
fication and variance reduction. In The Tenth International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Kiran Karra. Modeling and analysis of non-linear dependencies using copulas, with applications
to machine learning. 2018. URL https://api.semanticscholar.org/CorpusID:
68234500.

11

https://api.semanticscholar.org/CorpusID:68234500
https://api.semanticscholar.org/CorpusID:68234500


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Nalinda Kulathunga, Nishath Rajiv Ranasinghe, Daniel Vrinceanu, Zackary Kinsman, Lei Huang,
and Yunjiao Wang. Effects of the nonlinearity in activation functions on the performance of deep
learning models, 2020.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Jian Ma and Zengqi Sun. Mutual information is copula entropy. Tsinghua Science and Technology,
16(1):51–54, 2011. doi: 10.1016/S1007-0214(11)70008-6.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry P. Vetrov. Variational dropout sparsifies deep
neural networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pp. 2498–2507. PMLR, 2017a.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017b.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017c.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. volume
abs/1511.06807, 2015.

Roger B. Nelsen. An introduction to copulas. Technometrics, 42(3), 2000.

OpenAI. Gpt-4 technical report. ArXiv preprint, abs/2303.08774, 2023.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Abe Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de
Statistique de l’Université de Paris, 8:229–231, 1959.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017. doi: 10.
1109/jproc.2017.2761740.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse,
2024.

Lei You and Hei Victor Cheng. Swap: Sparse entropic wasserstein regression for robust network
pruning. In International Conference on Learning Representations (ICLR), 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian Zhe. The combinatorial brain surgeon:
Pruning weights that cancel one another in neural networks. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 25668–25683. PMLR, 2022.

Zeliang Zhang, Jinyang Jiang, Minjie Chen, Zhiyuan Wang, Yijie Peng, and Zhaofei Yu. A novel
noise injection-based training scheme for better model robustness, 2023.

Swaleha Zubair and Anjani Kumar Singha. Parameter optimization in convolutional neural networks
using gradient descent. Springer, 2020a.

Swaleha Zubair and Anjani Kumar Singha. Parameter optimization in convolutional neural networks
using gradient descent. Springer, 2020b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 NONLINEAR PROOF OF THE RELATIONSHIP BETWEEN PARAMETERS AND GRADIENTS

The nonlinear relationship between model parameters and gradients in neural networks can be ex-
plained through several mathematical components. Starting with the neural network’s output, which
is typically given by:

y = f(Wx+ b)

where W is the weight matrix, x is the input vector, b is the bias term, and f is the activation
function. The most common activation functions, such as ReLU, Sigmoid, and Tanh, are nonlinear.
The loss function, denoted as L, is a measure of how far the predicted output y is from the target t.
For simplicity, using a quadratic loss function:

L =
1

2
(y − t)2

we calculate the gradient of L with respect to W through the chain rule:

∂L

∂W
= (y − t) · f ′(Wx+ b) · x

Here, f ′(Wx+b) is the derivative of the activation function, and since f is nonlinear, f ′(Wx+b) is
also nonlinear. This introduces a nonlinear relationship between the parameters W and the gradient
∂L
∂W , implying that the gradient does not change linearly with W .

In deeper networks, backpropagation involves the propagation of the gradients through multiple
layers. For each layer l, the gradient at a hidden layer depends on the chain rule applied to all
subsequent layers:

∂L

∂Wl
=

∂L

∂hl
· f ′(hl) · xl

where hl is the input to the l-th layer, and f ′(hl) is the derivative of the activation function at that
layer. Because f ′(hl) is nonlinear, each layer introduces additional nonlinearity into the gradients,
making the relationship between the final parameters and gradients even more complex and nonlin-
ear.

The nonlinearity is further exacerbated by the choice of the loss function. For instance, a widely
used loss function in classification tasks is cross-entropy:

L = −
∑

t log(y)

The gradient of this loss function with respect to W is:

∂L

∂W
= −

∑ t

y
· ∂y

∂W

Since y is a nonlinear function of W , the gradient of the cross-entropy loss also exhibits nonlinearity
with respect to the model parameters.

Modern optimization algorithms, such as Adam and RMSprop, introduce further complexity in the
parameter update rule. Adam, for example, updates weights using the following equation:

Wt+1 = Wt − α
m̂t√
v̂t + ϵ

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where m̂t and v̂t are the first and second moment estimates of the gradients, respectively, and α
is the learning rate. These moment-based adjustments, which rely on previous gradients, introduce
additional nonlinearity into the parameter update process. Therefore, even though Adam uses gradi-
ents for optimization, the relationship between the parameter updates and gradients becomes highly
nonlinear due to these adaptive adjustments.

In summary, the combination of nonlinear activation functions, the accumulation of nonlinearities
through backpropagation, nonlinear loss functions, and adaptive optimization algorithms collec-
tively result in a highly nonlinear relationship between the parameters and gradients in neural net-
works.

A.2 PROOF OF SKLAR’S THEOREM

Proposition 1 (Sklar’s Theorem) Sklar’s Theorem (Sklar, 1959) states that any multivari-
ate joint distribution can be decomposed into its marginal distributions and a Copula func-
tion. Specifically, let H(x1, x2, . . . , xn) be an n-dimensional joint distribution function, and let
F1(x1), F2(x2), . . . , Fn(xn) be its marginal distribution functions. Then there exists a Copula func-
tion C(u1, u2, . . . , un) such that:

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (17)

Here, the Copula function C captures the dependency structure between the marginal distributions.
This property makes Copula functions particularly valuable in our framework, where preserving the
dependency structure between network parameters is essential for maintaining performance during
pruning.

Sklar’s Theorem establishes a fundamental relationship between any multivariate joint distribution
function and its marginals through a Copula function. First, let’s define the pseudo-inverse F−1

i of
each marginal distribution function Fi by

F−1
i (ui) = inf{xi ∈ R : Fi(xi) ≥ ui}

for ui ∈ [0, 1]. We construct a Copula function C : [0, 1]n → [0, 1] using these inverses and the
joint distribution function H , such that

C(u1, u2, . . . , un) = H(F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
n (un)).

To validate that C is indeed a Copula, we need to demonstrate it is both grounded and n-increasing.
The function C is grounded because if any ui = 0, then C(u1, . . . , un) = 0. It is n-increasing as
the volume VC under the Copula over any hyperrectangle in [0, 1]n is non-negative, which follows
from the n-increasing nature of H and the non-decreasing property of F−1

i . The uniform margins
condition is satisfied because the projection of C over any axis returns ui, which means

C(1, . . . , 1, ui, 1, . . . , 1) = ui.

Finally, to prove that the joint distribution H can be completely reconstructed using C and the
marginal distributions Fi, we observe that substituting Fi(xi) into C gives

C(F1(x1), F2(x2), . . . , Fn(xn)) = H(F−1
1 (F1(x1)), F

−1
2 (F2(x2)), . . . , F

−1
n (Fn(xn))).

Since F−1
i (Fi(xi)) = xi almost everywhere, particularly when Fi are continuous, we obtain

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)),

thus completing the proof of Sklar’s Theorem. This result shows that the Copula C effectively
captures all dependencies between the variables as encoded by H .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 DERIVATIVE OF Q(k)

For the weight matrix W and the gradient matrix L, a given parameter r is used to compute local
sums and normalize each element. The computation follows these formulas:

For the weight matrix W :

Sumi,j =

⌊r/2⌋∑
m=−⌊r/2⌋

⌊r/2⌋∑
n=−⌊r/2⌋

|Wi+m,j+n| (18)

ki,j =
|Wi,j |
Sumi,j

(19)

For the gradient matrix L:

SumL
i,j =

⌊r/2⌋∑
m=−⌊r/2⌋

⌊r/2⌋∑
n=−⌊r/2⌋

|Li+m,j+n| (20)

si,j =
|Li,j |

SumL
i,j

(21)

These formulas allow the transformation of the original matrices into their normalized forms k and
s, using localized sums based on the neighborhood size specified by r.

The optimization problem Q(k) leverages the normalized matrices s and k obtained from the previ-
ous calculations. The objective function and its constraints are defined as:

min
k

Q(k) =

n∑
i=1

∥Ci(sr, kr)−Ci(sr, k̄r)∥2 +α∥Hc(sr, kr)−Hc(sr, k̄r)∥2 +λ∥kr − k̄r∥2 (22)

The derivative of Q(k) with respect to kr is calculated as follows:

∇Q = 2

n∑
i=1

(Ci(sr, kr)−Ci(sr, k̄r))
∂Ci

∂kr
+2α(Hc(sr, kr)−Hc(sr, k̄r))

∂Hc

∂kr
+2λ(kr−k) (23)

This formulation provides the necessary framework to compute the gradient of the objective func-
tion, which is essential for optimizing kr effectively.

The Frank Copula for variables sr and kr is given by:

C(sr, kr) = −
1

kr
log

(
1 +

(e−krsr − 1)(e−kr(1−sr) − 1)

e−kr − 1

)
(24)

To simplify the derivative calculation, we define three intermediate functions:

f(kr) = e−krsr − 1, g(kr) = e−kr(1−sr) − 1, h(kr) = e−kr − 1

Using these definitions, the derivative of the Frank Copula with respect to kr is calculated as follows:

∂C

∂kr
=

1

k2r
log

(
1 +

f(kr)g(kr)

h(kr)

)
− 1

kr

(
(f ′(kr)g(kr) + f(kr)g

′(kr))h(kr)− f(kr)g(kr)h
′(kr)

h(kr)2

)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Where the derivatives of f , g, and h are:

f ′(kr) = −sre−krsr , g′(kr) = −(1− sr)e
−kr(1−sr), h′(kr) = −e−kr

This formulation helps clarify the derivative calculation by isolating the exponential terms and their
interactions.

The entropyHc of a copula C can generally be expressed as:

Hc = −
∫ ∫

C(u, v; kr) logC(u, v; kr) du dv

This formula represents the entropy measure of the dependence structure encoded by the copula C,
where u and v are the marginal distributions integrated over their respective domains.

The derivative of the copula entropy with respect to the parameter kr involves calculating the rate of
change of the entropy as the copula parameter changes. It is given by:

∂Hc

∂kr
= −

∫ ∫ (
∂C(u, v; kr)

∂kr
logC(u, v; kr) +

∂C(u,v;kr)
∂kr

C(u, v; kr)

)
du dv

This derivative takes into account both the direct effect of changes in kr on C and the change in the
entropy due to the adjustment of the copula function.

A.4 EXPERIMENTAL SETUP

The experimental framework leverages robust hardware configurations to manage the demand-
ing computation required for model training and pruning. Initially, the models—MLPNet and
ResNet20—are trained using a single NVIDIA RTX A4080 16 GB GPU, while ResNet50 and Mo-
bileNetV1 are trained on an NVIDIA RTX A5000 24 GB GPU. The training durations were ap-
proximately 0.5 hours for both MLPNet and ResNet20, while ResNet50 and MobileNetV1 required
around 1 day each, highlighting the significant computational effort, especially when handling Ima-
geNet data. The pre-pruning accuracy for each model is systematically documented in Table 1.

For the pruning phases, we utilized a single NVIDIA RTX A4080 16 GB GPU. Given the intensive
nature of training and pruning MobileNetV1, employing efficient processing strategies is strongly
advised to optimize resource utilization and efficiency. Our pruning method resulted in a 4x reduc-
tion in memory usage compared to the original model.

In the detailed pruning schedule outlined in Table 1, we specified the pruning stages for LR and
CoPruning to be 15 for MLPNet and ResNet20, 10 for MobileNetV1, and 10 for ResNet50. In
Table 2, the pruning stages for CoPruning is set to 15 for ResNet50, and remain the same as
described above for other models. The sparsity levels k1, k2, . . . , kT in Algorithm 1 adhere to an
exponential gradual pruning schedule kt = kT + (k0 − kT ) · (1 − t

T )
3, with the initial sparsity k0

set to zero. Additionally, the fisher sample size is configured as per the suggestions in You & Cheng
(2024), which is replicated in Table 4 of this document for reference.

Table 4: Model Configurations for Various Methods

Model
WF & CBS LR & EWR CoPruning

Sample / Batch Sample / Batch Sample / Batch

MLPNet 1000 / 1 1000 / 1 1000 / 1

ResNet20/50 1000 / 1 1000 / 1 1000 / 1

MobileNet 400 / 2400 1000 / 16 1000 / 16

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 VISUALIZING PARAMETER DISTRIBUTIONS USING COPULA DURING PRUNING PHASES

In the pruning process of the ResNet20 network trained on CIFAR-10, we utilized Copula functions
to model and preserve dependencies among the network parameters at various pruning stages. This
section visually presents the effectiveness of Copula functions in fitting the parameter distributions
at stages 1, 4, 8, and 12.

In addition to capturing the interdependencies, we also examine the marginal distributions of s and
k, which represent localized transformations of the parameters w and l, respectively. These marginal
distributions allow us to better understand the behavior of individual parameters during the pruning
process. By analyzing s and k, we can gain insights into how individual parameter distributions
evolve and how pruning affects localized regions of the network.

The following figures demonstrate the Copula-based joint parameter distributions as well as the
marginal distributions of s and k at key pruning stages, providing a comprehensive view of how
parameter dependencies and localized behaviors are preserved throughout the process.

Figure 2 shows the Copula-based joint parameter distributions at stages 1, 4, 8, and 12, while Figure
3 displays the marginal distributions of s and k, representing the localized parameter distributions.

(a) Joint Distribution - Stage 1 (b) Joint Distribution - Stage 4

(c) Joint Distribution - Stage 8 (d) Joint Distribution - Stage 12

Figure 2: Copula-based joint parameter distributions during stages 1, 4, 8, and 12.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Values

D
en

si
ty

(a) Marginal Distribution of s

Values

D
en

si
ty

(b) Marginal Distribution of k

Figure 3: Marginal distributions of ‘s‘ and ‘k‘, representing the localized parameter distributions.

A.6 COMPARISON OF PRUNING METHODS UNDER DIFFERENT SPARSITY LEVELS

This appendix section provides a detailed comparison of the CoPruning and EWR pruning methods
applied to MLPNet and ResNet20 models under two different sparsity conditions, 25% and 40%.
The accuracy is shown with standard deviation to indicate the variability of the results.

Table 5: Performance Comparison of CoPruning and EWR Pruning Methods under Different Spar-
sity Levels and Noise Conditions

Model Pruning Method

Accuracy (%)

Sparsity 0.95

(30% Noise)

Sparsity 0.95

(50% Noise)

Sparsity 0.98

(30% Noise)

Sparsity 0.98

(50% Noise)

MLPNet
CoPruning 92.87 (± 0.14) 92.93 (± 0.11) 85.72 (± 0.20) 85.81 (± 0.19)

EWR 92.88 (± 0.09) 92.89 (± 0.10) 85.52(± 0.11) 85.70 (± 0.13)

ResNet20
CoPruning 81.22 (± 0.24) 81.28 (± 0.15) 69.23 (± 0.18) 69.42 (± 0.21)

EWR 81.13 (± 0.15) 81.30 (± 0.16) 68.97 (± 0.18) 68.76 (± 0.19)

The slight increase in accuracy with higher noise levels is due to the role of noise in preventing
overfitting and enhancing generalization, as noted by Neelakantan et al. (2015). Additionally, noise
helps smooth gradient updates, allowing models to escape local minima and improve robustness
during training (Zhang et al., 2023).

A.7 AVERAGE LOSS COMPARISON

In this part, we provide a detailed comparison of the average loss across different noise config-
urations during the training process. We investigate how varying noise standard deviations and
proportions affect the training dynamics under sparsity levels of 0.95 and 0.98.

Figure 4 illustrates the comparison of average loss across epochs for different sparsity levels, com-
paring noise standard deviations 6 (proportion 0.5) and 4 (proportion 0.25) for sparsity levels 0.95
and 0.98 respectively. Results are based on ResNet20 training on the CIFAR-10 dataset.

Figure 5 presents a similar comparison for MLPNet training on the MNIST dataset, highlighting the
effect of noise configurations under the same sparsity levels.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0 12.5
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Lo
ss

std 6, p 0.5
std 4, p 0.25

0.0 2.5 5.0 7.5 10.0 12.5
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

std 6, p 0.5
std 4, p 0.25

Figure 4: Comparison of average loss across epochs for different sparsity levels, comparing noise
standard deviations 6 (proportion 0.5) and 4 (proportion 0.25) for sparsity levels 0.95 and 0.98
respectively. Results are based on ResNet20 training on the CIFAR-10 dataset.

0.0 2.5 5.0 7.5 10.0 12.5
Epoch

0.20

0.22

0.24

0.26

0.28

Lo
ss

std 6, p 0.5
std 4, p 0.25

0.0 2.5 5.0 7.5 10.0 12.5
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Lo
ss

std 6, p 0.5
std 4, p 0.25

Figure 5: Comparison of average loss across epochs for different sparsity levels, comparing noise
standard deviations 6 (proportion 0.5) and 4 (proportion 0.25) for sparsity levels 0.95 and 0.98
respectively. Results are based on MLPNet training on the MNIST dataset.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.8 PRUNING RESULTS FOR DIFFERENT MODELS

0.0 0.2 0.4 0.6 0.8
Sparsity

60

65

70

75

80

85

90

95

To
p-

1 
Ac

cu
ra

cy
 (%

)

MobileNet V1
MLPNet
ResNet20

Figure 6: Top1 Accuracy vs Sparsity for Three Models

Similarly, Figure 7 shows the Top5 accuracy for the same models. The trend mirrors that of Top1
accuracy, with all models experiencing a decrease in accuracy as the sparsity increases. However, the
Top5 accuracies tend to decline more gradually, maintaining better performance at higher sparsity
levels.

In this appendix, we present the pruning results for three different models using the CoPruning
method. The models included in this comparison are MobileNet v1, MLPNet on MNIST, and
ResNet20 on CIFAR10.

The pruning process was designed to progressively reduce the number of parameters in each model
to achieve a target sparsity level of 0.9. This was done over 9 pruning stages, where at each stage, a
fraction of weights was pruned. At each sparsity level, the models were retrained, and the Top1 and
Top5 accuracies were recorded. The results are shown in Figures 6 and 7.

Figure 6 shows the Top1 accuracy of the three models as a function of sparsity. As expected, as the
sparsity increases, the accuracy of each model decreases, though the rate of decline varies between
models. The target sparsity of 0.9 was achieved at the final stage.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
Sparsity

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

To
p-

5 
Ac

cu
ra

cy
 (%

)

MobileNet V1
MLPNet
ResNet20

Figure 7: Top-5 Accuracy vs Sparsity for Three Models

22


	INTRODUCTION
	Related Work and Problem Setup
	Related Work
	Problem Setup

	Copula Function Based Pruning Framework
	Local optimization for Pruning
	Sklar's Theorem and Copula Functions
	correlation Modeling using copula
	Optimization Objective with Copula Entropy

	ALGORITHM DESIGN
	NUMERICAL Result
	CONCLUSIONS AND FUTURE IMPACT
	Appendix
	Nonlinear Proof of the Relationship Between Parameters and Gradients
	Proof of Sklar's Theorem
	Derivative of  Q(k) 
	Experimental Setup
	Visualizing Parameter Distributions Using Copula During Pruning Phases
	Comparison of Pruning Methods under Different Sparsity Levels
	Average Loss Comparison
	Pruning Results for Different Models


