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Abstract
Existing reward shaping techniques for sparse-
reward reinforcement learning generally fall
into two categories: novelty-based exploration
bonuses and significance-based hidden state val-
ues. The former promotes exploration but can
lead to distraction from task objectives, while
the latter facilitates stable convergence but of-
ten lacks sufficient early exploration. To address
these limitations, we propose Dual Random Net-
works Distillation (DuRND), a novel reward shap-
ing framework that efficiently balances explo-
ration and exploitation in a unified mechanism.
DuRND leverages two lightweight random net-
work modules to simultaneously compute two
complementary rewards: a novelty reward to en-
courage directed exploration and a contribution
reward to assess progress toward task completion.
With low computational overhead, DuRND excels
in high-dimensional environments with challeng-
ing sparse rewards, such as Atari, VizDoom, and
MiniWorld, outperforming several benchmarks.

1. Introduction
Reinforcement Learning (RL) involves an agent optimizing
policies to maximize cumulative rewards within an environ-
ment, without any model of its dynamics (Sutton & Barto,
2018). One pivotal challenge in RL is balancing exploration
and exploitation, both are critical stages for effective learn-
ing. Sufficient exploration is vital, particularly in tasks with
extremely sparse rewards where feedback is only available
at the end of each episode. In such scenarios, directed explo-
ration is necessary for agents to identify diverse samples that
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potentially yield positive outcomes (Ladosz et al., 2022).
Conversely, in later training phases, exploitation becomes
crucial to reinforce behaviors that are known to be success-
ful in maximizing rewards, ensuring stable convergence. It
is important to leverage information that aligns closely with
the agent’s original goals.

One well-studied line of work is reward shaping (RS), which
designs additional rewards to supplement the sparse envi-
ronmental rewards, providing fine-grained, immediate feed-
back (Sorg et al., 2010a;b; Ibrahim et al., 2024; Lidayan
et al., 2025). Introducing exploration bonus as auxiliary
rewards stands out as a promising RS approach. By assign-
ing higher rewards to novel states, it explicitly encourages
agents to explore under-explored regions (Baldassarre et al.,
2013; Bellemare et al., 2016; Zheng et al., 2018; Devidze
et al., 2022). However, since novelty does not necessarily
correlate with meaningfulness or align with the agent’s ul-
timate goals, continuously rewarding novelty may cause
agents to disproportionately focus on samples from sub-
optimal trajectories or even dangerous regions during the
stabilization stages, thereby distracting them from conver-
gence to optimal policies. The well-known “noisy TV”
problem is an example where agents become captivated by
highly novel but irrelevant TV channels in a maze naviga-
tion task (Mavor-Parker et al., 2022). This highlights that
agents need to gradually recover from novelty rewards and
shift towards exploitation as training progresses.

Alternatively, hidden state value based RS methods primar-
ily develop task-relevant signals to quantify the extent to
which states contribute to achieving higher environmental re-
wards and their inherent significance, e.g., the distance to the
goal state and the priorities of key points, thereby enhancing
exploitation (Trott et al., 2019; Memarian et al., 2021; Park
et al., 2023; Ma et al., 2024b; 2025). Unlike exploration-
centric approaches, they typically rely on their backbone
algorithms’ exploration strategies. Although highly efficient
in exploiting known experiences, they often struggle in en-
vironments with extremely sparse rewards due to the lack
of directional exploration guidance.

Building on the insights from both exploration bonus and
hidden state value approaches, a natural research ques-
tion arises: Can we devise a unified mechanism that com-
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putes both types of rewards efficiently, with minimal com-
putational overhead and design efforts, thereby achiev-
ing an effective balance between exploration and exploita-
tion? To this end, we propose the Dual Random Networks
Distillation (DuRND, pronounced “Durian”) framework1,
inspired by Random Network Distillation (RND), which
is originally developed to quantify the novelty of a state
relative to previously encountered ones (Burda et al., 2018).
DuRND is designed to enable efficient exploration and sta-
ble convergence in sparse-reward RL. It incorporates two
separate Random Network (RN) modules: a positive RN
module for states that are potentially guiding agents toward
task completion or contributing significantly to obtaining
original rewards with high state values; and a negative RN
module for states that offer little benefit in achieving rewards
or may even mislead agents away from their objectives.
States are classified as positive or negative naturally by the
sparse environmental rewards. With the dual RN modules,
DuRND concurrently derives two types of rewards: (a) a
novelty reward, which evaluates how distinct a state is from
all previously encountered states, and (b) a contribution re-
ward, which assesses a state’s hidden value of getting higher
rewards, tightly aligning with agents’ original goals. The
main contributions of this paper are summarized as follows:

(i) We propose DuRND, a framework that leverages two
RN modules to jointly compute a novelty reward to
encourage directed exploration and a contribution re-
ward to enhance experience exploitation. Involving
two types of rewards, DuRND achieves exploration-
efficient and convergence-stable learning in challeng-
ing sparse-reward tasks.

(ii) DuRND operates with minimal computational over-
head. Unlike some RS methods that rely on auxiliary
agents, large historical state buffers, or pseudo-count
estimations (Bellemare et al., 2016; Ostrovski et al.,
2017; Mguni et al., 2023; Ma et al., 2024b), DuRND
uses only two lightweight RN modules, making it
highly scalable in high-dimensional environments.

(iii) The effectiveness and efficiency of DuRND are val-
idated across a variety of sparse-reward tasks with
high-dimensional states, demonstrating its superior
performance compared to several benchmarks.

2. Background
Reinforcement Learning (RL) operates within the frame-
work of Markov Decision Processes (MDP), formalizing
the interaction between an agent and an environment as a
tuple ⟨S,A, T,R, γ⟩. S and A are state space and action
space, respectively, T : S×A×S → [0, 1] is the transition

1The source code is accessible at: https://github.com/
mahaozhe/DuRND

function, R : S → R is the reward function, and γ ∈ [0, 1)
is the discount factor. This paper studies stochastic policies
π : S ×A→ [0, 1] that maximize the expected discounted
return Eτ [

∑∞
t=0 γ

tR(st)], where τ = (s0, a0, s1, a1, . . .) is
a trajectory of states and actions, and st+1 ∼ T (·|st, at),
at ∼ π(·|st). Common techniques in RL encompass value-
based methods, policy-based methods, and their hybrid,
actor-critic methods (Sutton & Barto, 2018).

Random Network Distillation (RND) motivates agents to
explore less frequently visited states by using novelty as
an exploration bonus (Burda et al., 2018). RND introduces
two neural networks: a fixed, randomly initialized target
network f(s) : S → Rk, and a trainable predictor network
f̂(s; θ) : S → Rk. Both networks map a state s ∈ S to a
k-dimensional feature embedding. The predictor network is
trained to minimize the mean squared error (MSE) e(s) =
∥f̂(s; θ) − f(s)∥2 through gradient descent. This MSE
also quantifies a state’s novelty, as higher errors occur for
states dissimilar to those the predictor has seen, thereby,
the exploration bonus is defined as Rrnd(s) = e(s). As the
predictor is trained on samples collected by the agent, it
gradually develops a “memory” of the states encountered.

3. Related Work
Exploration Bonuses as shaped rewards have been widely
used to guide the exploration directions. The most intu-
itive method is the count-based approach, where the ex-
ploration bonus is assessed by each state’s visitation fre-
quency (Strehl & Littman, 2008). To adapt state counting to
continuous or unlimited state spaces, pseudo-counts were
introduced (Bellemare et al., 2016), with several works stud-
ied how to estimate the pseudo-counts (Fox et al., 2018;
Badia et al., 2020; Devidze et al., 2022; Yuan et al., 2021;
Luo et al., 2024). Specifically, Bellemare et al. (2016) de-
rived the visited counts from the Context Tree Switching
model, Fu et al. (2017) used exemplar models for implicit
density estimation, Tang et al. (2017) discretized continuous
states using hash functions, and Machado et al. (2020) in-
corporated the successor representation. Although tractable,
these methods often require extensive storage resources or
inference time. Following the pseudo-count concept, neural
network-based methods have been developed. Ostrovski
et al. (2017) used PixelCNN (Van den Oord et al., 2016)
for density estimation; Martin et al. (2017) used the feature
representation from value approximation networks; Lobel
et al. (2023) derived the pseudo-counts by averaging sam-
ples from the Rademacher distribution; and Burda et al.
(2018) introduced Random Network Distillation to assess
state novelty, while Yang et al. (2024) further improved the
precision of bonus allocation.

Hidden Values as shaped rewards effectively guide the op-
timization direction of agents to accelerate the convergence.
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Figure 1: An overview of the Dual Random Networks Distillation (DuRND) framework. The state is processed through both
positive and negative RN modules to derive errors that reflect its frequency under two scenarios. The two errors jointly form
both the novelty reward and the contribution reward to support agent training. The RN modules are updated correspondingly
using states associated with positive or negative outcomes, as indicated by the sparse environmental rewards.

One common approach is to build reward models from ex-
pert demonstrations (inverse reinforcement learning) (Arora
& Doshi, 2021; Cheng et al., 2021) or human feedback
(RLHF) (Christiano et al., 2017), which have been popu-
larly applied in robotic control (Ellis et al., 2021; Schultheis
et al., 2021; Bıyık et al., 2022) and large language mod-
els (LLMs) (Sumers et al., 2021; Ghosal et al., 2023; Wu
et al., 2023; Hwang et al., 2023; Fang et al., 2023; 2025; Dai
et al., 2024). However, these methods require considerable
human-generated data, which is often challenging to ob-
tain, especially in highly specialized or advanced domains.
Another line of research has emerged to derive beneficial
information directly from the agent’s own learning experi-
ences (Zheng et al., 2018; Hu et al., 2020; Park et al., 2023;
Gupta et al., 2023; Zhong et al., 2024). Representatively,
Trott et al. (2019) used the state-goal distance as a heuris-
tic, Memarian et al. (2021) ranked different trajectories via
a trained classifier indicated by the preferences, Ma et al.
(2024b;a) introduced an assistant reward agent to collabora-
tively generate rewards guiding the policy agent, Ma et al.
(2025) derived the success ratio via a Thompson sampling
approach to evaluate a state’s contribution to task comple-
tion. However, these methods usually rely on the underlying
algorithm’s exploration strategies, which may lead to subop-
timal policies due to insufficient sample diversity. We seek
to combine the hidden value and exploration bonus, aiming
to achieve efficient exploration and stable convergence.

Other reward shaping methods have been explored, leverag-
ing diverse strategies. Potential-based algorithms defined
rewards as the temporal difference of a potential function,
ensuring that the optimal policy remains consistent with
the original MDP (Asmuth et al., 2008; Devlin & Kudenko,
2012; Koprulu et al., 2024; Adamczyk et al., 2025). Infor-

mation gain based approaches used the prediction errors in
dynamics to model how surprising the states are to moti-
vate exploration (Houthooft et al., 2016; Pathak et al., 2017;
Hong et al., 2018; Burda et al., 2019; Sun et al., 2022). How-
ever, they require an environmental transition model, which
makes them challenging in adapting to large-scale scenarios
with complex dynamics. Additionally, some studies incorpo-
rated concepts of uncertainty or diversity (Eysenbach et al.,
2019; Pathak et al., 2019; Raileanu & Rocktäschel, 2020), or
involved multiple agents or hierarchical structures to shape
rewards (Stadie et al., 2020; Vo et al., 2022a;b; Yi et al.,
2022; Fang et al., 2022; Mguni et al., 2023; Ma et al., 2023;
2024c; Zhong et al., 2025a;b).

4. Reward Shaping via Dual RN Modules
In the proposed DuRND framework, the shaped reward is
defined by integrating two auxiliary rewards:

RDuRND(s) := Renv(s) + λRnov(s) + ωRcon(s), (1)

where Renv(s) is the environmental reward, Rnov(s) is the
novelty reward, serving as an exploration bonus, and Rcon(s)
is the contribution reward, capturing a states’ hidden value
in achieving overall performance. We set λ = ω = 0.5
to balance the scales of both auxiliary rewards, following
the standard setting of vanilla RND (Burda et al., 2018).
Here, Both Rnov(s) and Rcon(s) are jointly computed by
two separate Random Network (RN) modules, referred to
as the positive RN and the negative RN. They are updated
using states that yield favorable and unfavorable outcomes,
respectively, which are naturally distinguished based on the
environmental sparse reward. A high-level overview of the
DuRND framework is illustrated in Figure 1.
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4.1. Dual Random Network Modules

We introduce two separate RN modules: the positive RN
moduleRP and the negative RN moduleRN . Each module
consists of two networks: a fixed and randomly initialized
target network fX(s) : S → Rk, and a differently ini-
tialized predictor f̂X(s; θX) : S → Rk, parameterized by
θX , where X ∈ {P,N}. It is worth noting that to prevent
estimation bias arising from differences between the two
modules, the target networks in RP and RN are initial-
ized identically, and the predictors in both modules are also
initialized identically.

The RN modules, RP and RN , are updated using posi-
tive and negative states, respectively, which are identified
based on the sparse environmental rewards, as they typically
signify task completion or the achievement of a local mile-
stone—both of which strongly align with the agent’s goal-
directed behaviors. Specifically, the underlying assumption
for determining whether a state is positive or negative is as
follows: we define the states where original environmen-
tal rewards are obtained as anchor states. The sequence
of states immediately preceding these anchor states is con-
sidered positive, as they play a promising role in guiding
the agent toward and contributing to achieving the original
rewards, while the others are considered negative.

We introduce a hyperparameter Tpos, which represents the
length of the sequence, i.e., the number of states preceding
the anchor states that will be regarded as positive. Further-
more, we propose two approaches to set the hyperparameter
Tpos: (a) using a fixed predefined sequence length, which
usually relies on prior knowledge of the environment’s re-
ward sparseness or empirical tuning. (b) using an adaptive
approach to linearly increase the Tpos over training, simi-
lar to the concept of the ϵ-greedy strategy. This allows the
agent to initially focus on states immediately adjacent to
the anchor states and gradually extend the range to include
those that occurred earlier or contributed indirectly, thereby
expanding the consideration of positive states. The adaptive
approach is more flexible and tightly aligns with the smooth
transition from exploration to exploitation.

Given a positive or negative state, the corresponding predic-
tor is updated by minimizing the MSE loss:

eX(st; θX)=
∥∥∥fX(st)− f̂X(st; θX)

∥∥∥2, X ∈ {P,N}. (2)

By updating the predictors with the observed states, we
harness the epistemic uncertainty inherent in deep learning,
where error progressively decreases as the volume of train-
ing data increases (Burda et al., 2018). Consequently, this
error, eX , itself serves as an approximated density estima-
tion for the previously encountered states, with larger errors
indicating less frequently visited states, and vice versa.

4.2. Novelty and Contribution Rewards

In this section, we introduce how the positive and negative
RN modules collaboratively compute two types of rewards:
the novelty reward, which encourages agents to explore
less-visited states; and the contribution reward, that guides
agents toward states that are more likely to contribute to
task completion and maximize environmental rewards.

Novelty Reward. Since all historical states are delivered
to update eitherRP orRN , the novelty of a state regarding
all previously encountered samples is naturally assessed by
combining the prediction errors from both modules, thus
the novelty reward is defined as:

Rnov(s) = eP (s) + eN (s), (3)

where eP and eN are the prediction errors from RP and
RN , respectively, calculated by Equation 2.

By combining the errors from two modules, the novelty
reward explicitly evaluates states as three different levels:

1. High novelty, both eP (s) and eN (s) are high: States
that are unseen in both the positive and negative sce-
narios, indicating a strong need for further exploration.

2. Medium novelty, only one of eP (s) and eN (s) is high:
States observed mainly in one scenario (typically the
negative scenario in initial training stages, due to the
sparse-reward nature), suggesting that exploration re-
mains encouraged, as states in negative trajectories
could potentially become positive in the future.

3. Low novelty, both eP (s) and eN (s) are low: States
encountered in both scenarios, indicating that the agent
has already sufficiently explored these states, and addi-
tional exploration may not be as beneficial.

Intuitively, this mechanism deliberately adopts an “OR” con-
dition to determine the novelty, meaning a state is considered
novel as long as it has not been seen in positive or negative
scenarios. Compared to the vanilla RND algorithm (Burda
et al., 2018), DuRND effectively prolongs the exploration
phase, as during the initial training stages, most states are
more likely to be classified as negative, the positive RN mod-
ule maintains a higher error, effectively “holding up” the
novelty reward to prevent it from diminishing too quickly,
thus encouraging broader and more thorough exploration.

Contribution Reward. To evaluate the hidden value of a
state, we consider its positive ratio, which is defined as the
proportion of times a state appears in positive sequences
relative to its total historical occurrences (Ma et al., 2025).
A higher positive ratio signifies a state’s greater likelihood
of contributing to achieving environmental rewards, align-
ing closely with the agent’s original objective. Given the
prediction errors eP (s) and eN (s), which represent the in-
frequency of the corresponding state in their respective sce-
narios (with their inverses serving as proxies for visiting
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frequency), the contribution reward is defined as:

Rcon(s) =
1/eP (s)

1/eP (s) + 1/eN (s)
=

eN (s)

eP (s) + eN (s)
. (4)

The contribution reward effectively quantifies the hidden
value of a state by estimating the probability of it being
positive, providing a statistical measure of its potential to
contribute to higher environmental rewards. Notably, due to
the non-linear nature of random neural networks, the errors
derived from the RN modules are not strictly proportional to
the actual visit counts. However, this discrepancy does not
undermine our method, as the contribution reward relies on
the relative relationship between the positive and negative
scales, rather than their absolute values. This design ensures
a robust evaluation of a state’s contribution, particularly in
environments where exact visit frequencies are unavailable
or computationally challenging to obtain.

4.3. DuRND Enhanced RL Algorithm

In this work, we focus on integrating DuRND into the Prox-
imal Policy Optimization (PPO) algorithm, a well-known
advanced on-policy RL algorithm (Schulman et al., 2017).
PPO consists of two modules: a policy to select actions
given states and a value function to evaluate the policy’s
behavior. The enhancement is to use the DuRND-defined
reward structure in Equation 1 to shape the sparse environ-
mental rewards. Let πη be the parameterized policy network
and Vϕ be the parameterized Value network. We define the
enhanced advantage in the DuRND framework as:

Ât =

T−t−l∑
l=0

γlδt+l, (5)

δt =
(
renv
t + λrnov

t + ωrcon
t

)
+ γVϕold(st+1)− Vϕold(st).

Then the enhanced loss function for policy πη is defined as:

L̂(η) = E
[
min

(
rt(η)Ât, clip

(
rt(η), 1− ϵ, 1 + ϵ

)
Ât

)]
, (6)

where rt(η) =
πη(at|st)
πηold(at|st)

is the probability ratio, and ϵ is

the clipping parameter. The enhanced loss function for the
value function is defined as:

L̂(ϕ) = E
[(

Vϕ(st)−
(
Ât + Vϕold(st)

))2
]
. (7)

By leveraging the novelty and contribution rewards, the
augmented DuRND rewards effectively broaden the explo-
ration horizon in early training and reinforce meaningful
hidden values in later stages, improving convergence. The
trajectory-based optimization nature of PPO fits well with
the DuRND’s updates. Besides, DuRND, as a standalone

Algorithm 1 DuRND enhanced PPO

Require: Environment E , parameterized πη and Vϕ

Require: Random Network modulesRP andRN

1: for iteration i = 1, 2, . . . do
2: for each epoch and T = ∅ do
3: (st, at, r

env
t , st+1)← Interact(πηold , E)

4: eP (st) ∼ RP , eN (st) ∼ RN

5: rnov
t = eP (st) + eN (st)

6: rcon
t = eN (st)/(eP (st) + eN (st))

7: T ← T ∪ {(st, at, rnew
t , rnov

t , rcon
t , st+1)}

8: end for
9: Tpos ← Schedule(i)

10: for sτ ∈ T do
11: if sτ is positive: RP ← Update(RP , sτ )
12: else: RN ← Update(RN , sτ )
13: end for
14: η ← η − αη∇ηL̂(η) ▷ by Equation 6
15: ϕ← ϕ− αϕ∇ϕL̂(ϕ) ▷ by Equation 7
16: end for

reward shaping mechanism, can be easily integrated into
various RL algorithms, such as SAC (Haarnoja et al., 2018),
TD3 (Fujimoto et al., 2018), and others. We summarize the
DuRND-enhanced PPO algorithm in Algorithm 1.

5. Experiments
Experiments are designed to evaluate DuRND across vari-
ous sparse-reward environments. We select twelve challeng-
ing tasks from three domains: Atari, 2D games from the ar-
cade learning environment (ALE) platform (Bellemare et al.,
2013), VizDoom, 3D first-person shooting games (Kempka
et al., 2016; Tomilin et al., 2022), and MiniWorld, simulated
3D maze environments (Chevalier-Boisvert et al., 2023).
Specifically, the MiniWorld tasks provide rewards only at
the end of each episode to indicate task completion, while
other tasks offer intermediate rewards for achieving spe-
cific milestones, but the overall reward distribution remains
highly sparse. All tasks are shown in Figure 2, with the de-
tailed descriptions and the environmental reward structures
provided in Appendix A.

Figure 2: The sparse-reward tasks in our experiments, in-
cluding Atari, VizDoom, and MiniWorld domains.
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Figure 3: The learning performance of DuRND compared with baselines.

Table 1: Performance comparison of DuRND and baseline models: average episodic returns with standard errors achieved
by the trained models, tested over 100 episodes (↑ higher is better).

Environments DuRND-adp DuRND-fix ExploRS NGU DEIR RND #Explo ReLara ROSA SORS PPO

MZ’Revenge 6654.04±5.26 6297.31±1.01 3984.74±0.15 5459.01±0.08 4116.09±0.23 1337.34±0.19 0.00±0.00 2488.06±0.18 4443.79±0.45 0.00±0.00 0.00±0.00
Pitfall 113.15±0.03 114.23±0.03 4.52±0.00 93.02±0.01 74.15±0.05 4.57±0.00 3.51±0.00 95.40±0.03 14.24±0.04 0.69±0.00 0.73±0.01

Frogger 14.82±0.00 14.67±0.00 10.26±0.00 14.65±0.00 14.80±0.00 8.03±0.01 2.10±0.00 13.02±0.00 10.00±0.01 9.16±0.00 2.27±0.01
Freeway 25.53±0.00 25.70±0.00 21.93±0.01 24.94±0.00 24.60±0.00 12.80±0.00 13.41±0.01 17.29±0.00 16.81±0.01 14.82±0.01 3.04±0.00
Solaris 42.63±0.00 36.01±0.00 18.34±0.06 33.74±0.00 31.49±0.00 4.80±0.02 1.47±0.01 3.20±0.01 2.27±0.02 1.38±0.01 0.86±0.00

BeamRider 34.13±0.01 31.84±0.00 21.70±0.02 29.21±0.02 26.03±0.01 9.90±0.02 9.33±0.03 15.80±0.01 14.80±0.01 13.64±0.00 6.51±0.00
DefendLine 11.03±0.00 10.95±0.00 1.53±0.00 10.22±0.00 9.67±0.00 1.64±0.00 0.39±0.00 6.49±0.00 7.59±0.01 3.40±0.00 1.48±0.01
SaveCenter 14.01±0.00 13.61±0.00 1.73±0.00 11.87±0.00 10.61±0.00 1.87±0.00 1.06±0.00 5.19±0.00 0.50±0.00 3.62±0.01 1.10±0.00
CollectKit 37.34±0.01 31.33±0.01 22.50±0.02 35.53±0.00 30.05±0.01 19.68±0.01 0.33±0.00 17.14±0.02 6.25±0.02 4.87±0.02 1.22±0.00
SlayGhosts 18.29±0.00 17.05±0.01 10.11±0.02 17.29±0.01 13.96±0.01 9.41±0.00 0.26±0.00 16.22±0.01 3.92±0.01 7.76±0.01 1.81±0.01

ThreeRooms 0.97±0.00 0.99±0.00 0.71±0.00 0.99±0.00 0.97±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.51±0.00 0.54±0.00 0.00±0.00
TMaze 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.30±0.00 0.00±0.00 0.45±0.00 0.00±0.00

5.1. Implementation Details

Observation Normalization is a common practice, which
helps stabilize the learning process. The observations are
normalized by subtracting the running mean and dividing
by the running standard deviation, following the implemen-
tation introduced in (Burda et al., 2018).

Random Networks Error Normalization. For different
tasks and different initializations of the random network
modules, the scale of the MSE errors, eS and eF , can vary
significantly. To formalize the weighting coefficients λ and
ω across different tasks, we normalize the MSE errors by
dividing them by the initial error, which is the average of
the MSE errors from the burn-in stage, e.g., 50 episodes
before the training process. This is built on the assumption
that the errors are gradually decreasing, so the initial error
is a good approximation of the scale of the errors. The
normalized errors make it possible to set consistent λ and ω
for all tasks, avoiding the task-specific tuning.

5.2. Comparison with Baselines

We implement two variants of DuRND with different strate-
gies for determining the positive sequence length Tpos, as
described in Section 4.1. The two variants are denoted as
DuRND-fix and DuRND-adp, where DuRND-fix sets Tpos to
1/4 of the maximum episode length, while DuRND-adp lin-

early increases Tpos from 0 to 1/2 of the maximum episode
length over the training. Additional implementation details,
including hyperparameters, neural network architectures,
and hardware configurations, are provided in Appendix B.

We compare DuRND with eight widely recognized reward
shaping baselines, covering the two main categories dis-
cussed in this paper. For RS with exploration bonuses, we
include ExploRS (Devidze et al., 2022), NGU (Badia et al.,
2020), DIER (Wan et al., 2023), RND (Burda et al., 2018),
and #Explo (Tang et al., 2017); For RS with hidden val-
ues, we consider ReLara (Ma et al., 2024b), ROSA (Mguni
et al., 2023), and SORS (Memarian et al., 2021). Addi-
tionally, we compare DuRND with its backbone algorithm,
PPO (Schulman et al., 2017), to evaluate its performance
enhancements. All baselines are implemented using the
RLeXplore (Yuan et al., 2024), the CleanRL (Huang et al.,
2022), or the codes provided in the respective papers. To
ensure optimal performance, they are configured with either
the authors-recommended or well-tuned hyperparameters.

The learning results, averaged over ten runs with different
random seeds, are illustrated in Figure 3, while Table 1
presents the average returns achieved by the final model in
100 testing episodes. The DuRND framework demonstrates
distinct advantages mainly from three aspects: efficient
and directed exploration, rapid and stable convergence, and
considerably low training resource demands.

6



Reward Shaping with Dual Random Networks for Balancing Exploration and Exploitation

Figure 4: The state visiting distributions of different methods for each 25k steps in the toy task.

Exploration. DuRND inherits its exploratory capability
from the vanilla RND’s strategy (Burda et al., 2018). Re-
warding novelty allows the agent to assign higher rewards
to less frequently visited states, thus encouraging goal-
oriented exploration. For the baselines, ReLara relies on
random perturbation on both reward functions and action
sampling, which mainly introduces noise to amplify uncer-
tainty; ROSA and SORS depend on the agent’s underlying
exploration strategies. All three baselines lack explicit guid-
ance on which regions to explore. Consequently, DuRND
is observed to collect trajectories with higher episodic re-
turns earlier due to the novelty reward, enhancing sample
efficiency. Furthermore, while ReLara, ROSA, and SORS
can also converge to optimal policies in many settings, they
sometimes remain trapped in local optima. For instance, in
the SaveCenter tasks, DuRND continuously defeats 12 ene-
mies in one episode, while the baselines only defeat about 6
within the same training periods.

Exploitation. The contribution rewards progressively play
a more important role, guiding the agent to focus on states
that are more likely to yield higher environmental rewards,
thereby reinforcing beneficial behaviors. However, for the
baselines that only incorporate exploration bonuses, such as
ExploRS, RND, and #Explo, agents struggle to derive effec-
tive guidance from novelty rewards as training progresses
to later stages. Crucially, the agents’ overemphasis on novel
yet low-value states hinders the recovery from shaping re-
wards, leading to policies that diverge from the original task
objectives. Observations in tasks like Freeway, DefendLine,
and SlayGhosts reveal that while these baselines may ini-
tially achieve high environmental returns, their performance
declines in later stages, deviating from the optimal poli-
cies. Conversely, DuRND maintains a steady convergence
towards the optimal policy, demonstrating its effectiveness
in balancing exploration and exploitation.

Memory Efficiency. DuRND is space-efficient as it only

introduces two lightweight RN modules to compute both
types of rewards. In comparison, ReLara and ROSA both
demand additional agents, which are generally more com-
plex and computationally expensive. ExploRS and #Explo
both involve pseudo-counts but are not RND-based, relying
instead on density estimations that require substantial extra
space for storing all (or at least partial) historical states. To
empirically validate DuRND’s memory efficiency, we report
the maximum memory consumption in Table 2. To provide
a more intuitive comparison, we report the relative value
normalized to our DuRND. In this case, if the value > 1, it
indicates that the method is more memory-expensive than
DuRND, and vice versa.

Table 2: The maximum memory consumption in three do-
mains, normalized relative to DuRND (↓ lower is better).

Domains DuRND ExploRS RND #Explo ReLara ROSA SORS PPO

Atari games 1 10.94 0.91 5.72 9.61 10.14 5.29 0.83
VizDoom 1 11.94 0.93 5.71 9.75 10.38 5.28 0.85

MiniWorld 1 11.41 0.90 5.66 9.49 10.25 5.34 0.81

5.3. Exploration-Exploitation Trade-off

In this section, we further study the exploration-exploitation
trade-off in DuRND by demonstrating the differences in
state visitation distributions under different reward shaping
methods and exploration strategies. For an intuitive illustra-
tion, we consider a toy task in a one-dimensional chain of
length 31, with states as s0, s1, · · · , s30 from left to right.
The agent starts at the midpoint, s15, at the beginning of
each episode. There are 15 states on either side of the start-
ing point, but only the far-right state, s30, is the successful
terminal state with Renv(s30) = 1, while all other states are
rewarded as 0. Each episode is limited to a maximum of 20
steps. The agent can take three actions: moving to the left,
moving to the right, and staying in the current state.
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Figure 5: The novelty and contribution rewards learned in the DuRND framework.
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Figure 6: The learning performance of DuRND with a single type of reward.

We compare the complete DuRND-fix (Tpos = 20) with
two variants: (1) DuRND-fix with only the novelty reward
λRnov, and (2) DuRND-fix with only the contribution re-
ward ωRcon; as well as three reward shaping or exploration
approaches: (3) vanilla RND, that only rewards novelty;
(4) SORS, that shapes rewards by ranking trajectories with
environmental feedback; and (5) ϵ-greedy, the popular strat-
egy that selects a random action with probability ϵ and the
greedy action with probability 1− ϵ. For each method, we
track the state visitation over a total of 100k steps, present-
ing the results for every 25k steps in Figure 4.

From the results, we observe that DuRND demonstrates an
efficient trade-off between exploration and exploitation. In
the early stage (around 0 to 50k steps), DuRND shows a
more balanced state visitation across the entire state space,
while in the later stage (around 50k to 100k steps), the agent
increasingly focuses on the right side of the starting point,
as only these states yield positive rewards. In comparison,
RND maintains a broader exploratory behavior but is less
effective at the exploitation stage, still visiting states on
the left side even in the last 25k steps. DuRND with only
λRnov outperforms vanilla RND but falls short of the perfor-
mance achieved by the complete DuRND, highlighting the
effectiveness of the ωRcon term. SORS and DuRND with
only ωRcon converge more slowly than complete DuRND,
and their exploration ranges are more limited. For ϵ-greedy,
which lacks a clear exploratory direction, the initial explo-
ration is more concentrated, consequently, it fails to reach
the terminal state within the 100k steps.

5.4. Novelty and Contribution Rewards

5.4.1. ANALYSIS OF THE LEARNED REWARDS

We discuss how the novelty and contribution rewards evolve
during training. Figure 5 shows the normalized rewards
received by the agent throughout learning. Over time, the
novelty reward decreases while the contribution reward in-
creases, both nonlinearly. The decline in the novelty reward
indicates the diminishing differentiation among states after
extensive exploration, i.e., states become uniformly non-
novel, thus, the information provided by novelty rewards
loses significance in later training, highlighting again the
limitation of relying only on novelty may hinder conver-
gence. The contribution reward increases and eventually
stabilizes at a high level, dominating the shaping rewards.
This is attributed to the continuous reinforcement of positive
states, which leads to a gradual decrease in eP , causing the
contribution reward Rcon = eN/(eN + eP ) to approach 1
and stabilize at a consistent level. In summary, the transition
from exploration-driven to task-oriented rewards is a critical
factor underpinning DuRND’s superior performance.

5.4.2. EFFECTS OF TWO REWARDS

To further understand the effects of two types of rewards,
we compare the complete DuRND-adp with two variants:
(1) DuRND-adp with only the novelty reward (only Rnov),
and (2) DuRND-adp with only the contribution reward (only
Rcon). The learning curves are shown in Figure 6, with the
quantitative results in Appendix C.3.
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Figure 7: Ablation study: learning performance of DuRND with different positive sequence length Tpos.
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Figure 8: Ablation study: the learning performance of DuRND with different reward coefficients.

The results show that both rewards are essential for DuRND.
When relying only on the novelty reward, agents struggle to
recover the environmental rewards, leading to unstable con-
vergence and deviations from the task’s original objectives.
However, it is worth noting that this variant outperforms the
vanilla RND, due to the two RN modules explicitly defining
three levels of novelty as described in Section 4.2, which
effectively enforces the agent to explore potentially valuable
states, thereby expanding the scope of exploration. In con-
trast, using only the contribution reward hinders efficient
exploration, delaying favorable outcomes and potentially
trapping the agent in local optima.

5.5. Ablation Study

We conduct ablation studies to analyze the effects of two
key components in DuRND: the positive sequence length
Tpos and the reward coefficients λ and ω, in the Atari games.

The positive sequence length Tpos (Figure 7). We observe
that the adaptive strategy to address Tpos generally leads to
better performance, as it allows a smooth transition from
exploration to exploitation. However, DuRND is robust to
the choice of Tpos, even with different fixed values, the agent
can still achieve satisfactory performance.

The reward coefficients λ and ω (Figure 8). It is observed
that DuRND is not sensitive to the choice of λ and ω, if
they are set within a reasonable range. But it still controls
which reward plays a more dominant role in the shaping
rewards, thus affecting the exploration-exploitation trade-
off. A higher λ leads to more exploration, while a higher ω
leads to earlier exploitation. Therefore, a balanced setting
of λ and ω is recommended for optimal performance.

6. Discussion and Conclusion
Conclusion. This paper introduces DuRND, a framework
that separately estimates state visitation frequencies in posi-

tive and negative scenarios. The dual RN modules compute
two types of rewards, achieving both directed exploration
and stable convergence. Experiments demonstrate that, un-
like novelty-based RS methods, DuRND avoids the pitfalls
of continuously novelty-driven exploration, instead shifting
to more meaningful rewards for desired behaviors; while
compared to hidden value based RS methods, it broadens
the exploration and collects more diverse samples. In sum-
mary, DuRND combines the strengths of both approaches,
achieving an efficient balance between exploration and ex-
ploitation. Lastly, DuRND operates with low computational
overhead in high-dimensional environments, making it a
scalable solution for a wide range of complex RL tasks.

Limitations. As an RS method designed for sparse-reward
tasks, DuRND relies on environmental rewards to distin-
guish positive and negative states. In dense-reward tasks,
where such distinctions are less clear, its effectiveness may
be limited. Additionally, the hyperparameter Tpos, was im-
plemented with fixed and adaptive approaches. While both
methods are intuitive and demonstrated considerable ro-
bustness in our experiments – achieving consistent results
across different environments using the same configuration –
a more sophisticated design that autonomously adjusts Tpos
based on reward sparsity could further enhance adaptability.
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A. Environments Configuration
All tasks in our experiments provide sparse rewards. The objective descriptions and the criteria for assigning sparse
environmental rewards are detailed in Table 3. Apart from tasks ThreeRooms and TMaze, which offer episodic rewards, other
tasks provide intermediate rewards upon the completion of some specific milestones. All other states yield zero rewards.

Table 3: Objective descriptions and environmental rewards assignments for the tasks in our experiments.

Environments Sparse Rewards Assignment

MZ’s Revenge Control the explorer to navigate through a series of rooms, avoiding traps and enemies while collecting items.
1. Rewards are given for collecting items such as keys, treasures, and other objects.
2. Rewards vary depending on the item collected, e.g., +100 for picking up a key.
3. Higher rewards are given for unlocking doors or accessing new areas, often in the range of +300 to +1000.
4. No reward is given for simply traversing rooms or surviving; rewards are sparse and tied to specific achievements.
5. Episode ends when all lives are lost or maximum steps 4000 are reached.

Pitfall Control the explorer through a jungle environment to collect treasures while avoiding obstacles.
1. +2 reward for collecting a gold bar.
2. +4 reward for collecting a diamond ring.
3. +5 reward for collecting a silver bar.
4. No rewards are given for surviving obstacles like pits, crocodiles, or rolling logs.
5. Negative rewards (e.g., −1) are incurred for falling into pits or touching harmful objects.
6. Episode ends when time runs out (maximum steps 2000) or all treasures are collected.

Frogger Guide the frog home across a highway and river while avoiding cars and predators.
1. +2 rewards for reaching home.
2. +1 reward for eating a fly.
3. Episode ends when all 5 frogs are lost or maximum steps 2000 are reached.

Freeway Guide the chicken across multiple lanes of heavy traffic.
1. +1 reward for the chicken goes across the screen.
2. Episode ends if all 3 chickens are hit by cars or maximum steps 2000 are reached.

Solaris Control a spaceship to blast enemies and explore new galaxies.
1. +1 reward for destroying a target.
2. +1 reward for entering a new galaxy.
3. Episode ends when all ships are destroyed or maximum steps 2000 are reached.

BeamRider Control a spaceship to destroy enemies while avoiding obstacles.
1. +1 reward for each enemy ship destroyed.
2. Episode ends if all ships are lost or maximum steps 2000 are reached.

DefendLine Defend the line by neutralizing incoming enemies.
1. +1 reward for each enemy killed.
2. Episode ends if the player is defeated or the maximum steps 1000 are reached.

SaveCenter Protect the center by eliminating enemies.
1. +1 reward for each enemy killed.
2. Episode ends if the player is defeated or the maximum steps 1000 are reached.

CollectKit Collect health kits in a room full of poison.
1. +1 reward for collecting one kit.
2. Episode ends if the player is killed by the poison or the maximum steps 1000 are reached.

SlayGhosts Eliminate ghosts or monsters in a designated environment.
1. +1 reward for each ghost killed.
2. Episode ends if the player is killed or the maximum steps 1000 are reached.

ThreeRooms Navigate through three connected rooms to reach a red cube.
1. +1 reward for reaching the red cube.
2. −0.1 penalty for each time step taken.
3. Episode ends when the cube is reached or the maximum steps 500 are reached.

TMaze Navigate a T-shaped maze to reach the red cube.
1. +1 point for reaching the red cube.
2. −0.1 penalty for each time step taken.
3. Episode ends when the cube is reached or the maximum steps 500 are reached.
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B. Experiments Implementation Details
B.1. Hyperparameters

DuRND is relatively robust to hyperparameters, we report the hyperparameters used in our experiments in Table 4.

Table 4: The hyperparameters of DuRND in our experiments.

Hyperparameters Values

discount factor γ 0.99
generalized advantage estimate (GAE) coefficient 0.95

rollout length 2048
burn-in and error normalization episodes 50

number of mini-batches 32
number of update epochs 10

learning rate 3× 10−4

maximum gradient normalization 0.5
random networks learning rate 10−6

PPO clip coefficient 0.2
PPO value loss coefficient 0.5
novelty reward weight λ 0.5

contribution reward weight ω 0.5
DuRND-fix length of the positive sequence Tpos 1/4 of the episode length

DuRND-adp minimum (initial) positive sequence Tpos 1
DuRND-adp maximum (end) positive sequence Tpos 1/2 of the episode length

B.2. Neural Network Architectures

The neural network architecture of the PPO agent used in our experiments is shown in Figure 9. The architecture of the
random network is shown in Figure 10.

Figure 9: The neural network architecture of the PPO agent in our experiments.

Figure 10: The neural network architecture of the random network in our experiments.

B.3. Hardware Configurations

The experiments are conducted on machines mainly with two kinds of configurations:
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Figure 11: The six continuous-control tasks used in our experiments, covering both MuJoCo and robotics domains.
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(a) Learning curves of DuRND and baseline methods under sparse-reward settings.
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(b) Learning curves of DuRND and baseline methods under dense-reward settings.

Figure 12: Evaluation of DuRND on continuous-control tasks in both sparse and dense-reward settings.

1. The GPU is NVIDIA Tesla A100 with 40GB memory. The CPU is Intel Xeon Gold 6326 with 16 cores and 32 threads.
2. The GPU is NVIDIA Tesla H100 with 40GB memory. The CPU is AMD Epyc 9334 with 32 cores and 64 threads.

The experiments are implemented by PyTorch in version 2.0.1 and CUDA in version 11.7.

C. Additional Experimental Results
C.1. DuRND for Dense-Reward Scenarios

DuRND is able to be extended to dense-reward scenarios, by slightly modifying the positive sequence length Tpos mechanism.
In dense-reward scenarios, we set the anchor states as the states with a reward greater than a certain threshold, which is
set to 0.5 in our experiments. Following this modification, we conduct experiments on six continuous-control tasks in the
MuJoCo and robotics domains, shown in Figure 11, evaluating under both sparse and dense-reward settings. The results are
shown in Figure 12, Tables 5 and 6.

Table 5: Performance evaluation in the continuous-control tasks with sparse-reward setting: average episodic returns with
standard errors achieved by the trained models, tested over 100 episodes. (↑ higher is better).

Tasks DuRND-adp DuRND-fix ExploRS NGU RND #Explo ReLara ROSA SORS PPO

AntFar 111.07±0.03 116.17±0.05 107.34±0.11 111.42±0.01 110.21±0.10 17.92±0.06 112.86±0.02 91.40±0.09 91.39±0.05 6.82±0.04
HumanStand 82.60±0.04 77.56±0.02 50.37±0.03 69.54±0.05 8.50±0.01 42.87±0.05 76.09±0.01 4.58±0.00 33.48±0.03 0.03±0.00
CheetahFar 124.18±0.05 123.11±0.06 119.01±0.11 81.59±0.02 39.60±0.05 42.35±0.03 90.53±0.02 3.59±0.01 68.68±0.06 22.69±0.05
RobotPush 173.35±0.04 177.20±0.04 78.46±0.01 119.32±0.05 26.27±0.18 0.03±0.00 170.16±0.04 0.00±0.00 0.00±0.00 0.00±0.00
RobotSlide 71.88±0.02 70.65±0.01 67.07±0.04 69.86±0.02 17.78±0.01 2.01±0.01 8.35±0.02 11.51±0.05 65.79±0.05 0.30±0.00
RobotPick 49.32±0.03 51.50±0.04 38.44±0.05 46.27±0.03 29.54±0.10 3.42±0.01 41.26±0.01 47.67±0.02 14.05±0.10 0.90±0.01
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Table 6: Performance evaluation in the continuous-control tasks with dense-reward setting: average episodic returns with
standard errors achieved by the trained models, tested over 100 episodes. (↑ higher is better).

Tasks DuRND-threshold ExploRS NGU RND ROSA PPO

AntFar 618.52±0.18 561.19±0.42 589.16±0.06 582.31±0.12 613.19±0.64 260.95±0.07
HumanStand 144.56±0.03 141.74±0.01 130.53±0.06 141.53±0.05 128.93±0.03 142.49±0.02
CheetahFar 531.24±0.17 367.50±0.37 474.59±0.20 314.77±0.18 486.08±0.25 291.26±0.05
RobotPush 17.42±0.00 17.37±0.02 19.07±0.01 16.99±0.01 18.11±0.01 13.40±0.01
RobotSlide 23.48±0.01 22.73±0.01 22.45±0.01 15.75±0.02 17.66±0.00 15.03±0.01
RobotPick 21.27±0.01 20.14±0.01 23.53±0.01 18.98±0.00 20.38±0.01 17.62±0.04
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Figure 13: Comparison of policy entropy in DuRND-adp, DuRND-fix, and RND throughout training.

C.2. Entropy Comparison

To further analyze the behavior of the policy, we compare the policy entropy of DuRND-adp, DuRND-fix, and RND
throughout training. The results are shown in Figure 13, which reveals: (a) Entropy in both methods drops in similar period
(around 30% of training) with similar rates; (b) In early stage, DuRND maintains higher entropy, especially in complex
tasks, indicating higher action diversity and broader exploration.

C.3. Quantitative results for the Effects of Two Rewards

To support the main results of the study in our paper, we provide quantified results of DuRND with a single type of reward in
Table 7. The results show that both types of rewards are essential for the DuRND framework to achieve the best performance.

Table 7: Performance comparison of DuRND-adp with a single type of reward: average episodic returns with standard errors
achieved by the trained models, tested over 100 episodes (↑ higher is better).

Environments DuRND DuRND with only Rcon DuRND with only Rnov

Montezuma’s Revenge 6297.31±1.01 4300.24±1.65 4325.56±1.29
Pitfall 113.15±0.03 60.71±0.03 87.62±0.04

Frogger 14.82±0.00 11.95±0.00 12.11±0.00
Freeway 25.53±0.00 21.62±0.01 14.76±0.00
Solaris 42.63±0.00 19.09±0.02 6.40±0.01

BeamRider 34.13±0.01 22.85±0.02 9.28±0.00
DefendLine 11.03±0.00 4.50±0.00 1.82±0.00
SaveCenter 14.01±0.00 6.91±0.00 1.69±0.00
CollectKit 37.34±0.01 28.78±0.03 10.95±0.00
SlayGhosts 18.29±0.00 6.70±0.00 5.90±0.01

ThreeRooms 0.97±0.00 0.39±0.00 0.46±0.00
TMaze 1.00±0.00 1.00±0.00 1.00±0.00
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