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Abstract001

002

Large language models (LLM) are increasingly003

strong contenders in machine translation. We study004

document-level translation, where some words can-005

not be translated without context from outside the006

sentence. We investigate the ability of prominent007

LLMs to utilize context by analyzing models’ ro-008

bustness to perturbed (randomized) document con-009

text. We find that the strongest translation LLMs010

are robust to random context in translation perfor-011

mance. However, improved document-translation012

performance is not always reflected in pronoun013

translation performance. We highlight the need for014

context-aware finetuning of LLMs to improve their015

reliability for document-level translation.016

1 Introduction017

Language normally consists of collocated, struc-018

tured, coherent groups of sentences referred to as a019

discourse (Jurafsky and Martin, 2009, chapter 21).020

Discourse properties that go beyond an individual021

sentence include the frequency and distribution of022

words within a document, topical, functional and023

discourse coherence patterns, and the use of re-024

duced expressions. These properties stimulated a025

good deal of machine translation research in the026

1990s, aimed at endowing machine–translated tar-027

get texts with the same document and discourse028

properties as their source texts (Nash-Webber et al.,029

2013). Since then, there has been a growing in-030

terest in document-level translation. Research ef-031

forts focused on document-level influences on lex-032

ical choice, methods and annotated resources for033

discourse-level MT, discourse-sensitive assessment034

metrics, and specific discourse phenomena in ma-035

chine translation (Popescu-Belis et al., 2019).036

Large language models (LLMs) show promise037

on multiple language tools, with recent models038

specially finetuned for machine translation (Alves039

et al., 2024; Xu et al., 2023). Wang et al. (2023) 040

suggest translation LLMs have potential on the 041

document level as well. While such work focuses 042

on automatic translation metrics such as BLEU, 043

our work investigates how those models utilize the 044

context when performing translation. Inspired by 045

Mohammed and Niculae (2024), we follow an in- 046

terpretable approach towards context utilization 047

evaluation. In particular, we investigate how sensi- 048

tive LLMs are to the correct context, and how well 049

they utilize the relevant parts of context. 050

To assess models’ context utilization perfor- 051

mance, we compare their translation performance 052

with a random context against the gold document 053

context. For a finer grained evaluation, we look at 054

models’ internals using attribution methods (Fer- 055

rando et al., 2023) in order to quantify the contribu- 056

tion of the context to the relevant translation. To the 057

best of our knowledge, we are the first to explore 058

context utilization in translation LLMs through per- 059

turbation and attribution methods. Our findings can 060

be summarized as follows: 061

• The best translation-finetuned LLMs are ro- 062

bust to random context and can translate well 063

even when prompted with random context. 064

• For EN�DE, translation improvements are 065

not reflected in discourse phenomena perfor- 066

mance, the best translation LLM performs 067

worse than an encoder-decoder model. 068

• We highlight the further need for context- 069

aware finetuning of LLMs to improve dis- 070

course phenomena performance. 071

• Adding natural language instructions to the 072

prompts reduces the translation performance 073

of LLMs that are not instruction-tuned. 074

2 Methodology 075

2.1 Models 076

We focus on LLMs fine-tuned for translation. From 077

the Tower family (Alves et al., 2024) we consider 078
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TowerBase, built on top of Llama-2 by continuing079

pretraining on multilingual data, and TowerInstruct080

which is further fine-tuned from TowerBase for081

translation-related tasks. We also analyze ALMA082

(Xu et al., 2023), which follows a two-step fine-083

tuning approach also on top of Llama-2, with mono-084

lingual and parallel data. As the foundation of085

the models above, we also include Llama-2 (Tou-086

vron et al., 2023), in order to capture the effects087

of translation-specific fine-tuning on context use.1088

We consider the 7B and 13B versions of all models089

wherever feasible. As a non-LLM baseline, we in-090

clude an encoder-decoder Transformer trained with091

concatenated context (details in Appendix E).092

2.2 Datasets093

We evaluate on IWSLT2017 TED data (Cettolo094

et al., 2012). We consider two language pairs in our095

experiments, namely English to German (EN�DE)096

and English to French (EN�FR). For EN�DE, we097

combine tst2016–2017 resulting in a test set of098

2271 sentences in 23 documents. For EN�FR, we099

use tst2015 as the test set which contains 1210100

sentences in 12 documents. We use a context size101

of 5 source-target pairs in our experiments.102

For pronoun translation experiments we use Con-103

traPro dataset (contrastive pronoun resolution), a104

subset of OpenSubtitles available for both language105

pairs (Müller et al., 2018; Lopes et al., 2020), con-106

sisting of examples with ambiguous pronouns, their107

correct translations, and automatic annotation of108

pronouns’ antecedents (relevant context) needed109

for the resolution. We randomly sample a 2k sub-110

set of the data with antecedent distance of 1 or 2111

sentences and use 2 source-target pairs as context.112

2.3 Prompt Format113

As observed by Wu et al. (2024) , the prompt for-114

mat plays a significant role in LLMs’ performance.115

A well-structured prompt can significantly boost116

models’ performance. In our analysis, we use three117

prompt formats from Wu et al. (2024): a sentence-118

level baseline, a generic prompt, and an explicit119

prompt; all are demonstrated in Fig. 1.2120

2.4 Assessing Translation Performance121

We quantify performance with usual translation122

metrics alongside a pronoun-focused evaluation.123

1Since attribution methods require access to model inter-
nals, we exclude API-only LLMs such as ChatGPT.

2For TowerInstruct, we add a prefix to the prompt to in-
dicate instruction following, as described in the model docu-
mentation: <|im_start|>user {prompt} <|im_start|>assistant.

(a) Sentence-level prompt

Translate the following <src_lang> source text to <tgt_lang>:
<src_lang>: <src_sentence>
<tgt_lang>:

(b) Generic prompt

<src_lang>: <src context 1>
<tgt_lang>: <tgt context 1>
<src_lang>: <src context 2>
<tgt_lang>: <tgt context 2>
<src_lang>: <src sentence>
<tgt_lang>:

(c) Explicit prompt

<src_lang>: <src context 1>
<tgt_lang>: <tgt context 1>
<src_lang>: <src context 2>
<tgt_lang>: <tgt context 2>
Given the provided parallel sentence pairs, translate the following

<src_lang> sentence to <tgt_lang>:↪→
<src_lang>: <src sentence>
<tgt_lang>:

Figure 1: Prompt formats used in our work.

Translation metrics. We report BLEU3 (Pap- 124

ineni et al., 2002), ChrF4 (Popović, 2015), and 125

COMET5 (Rei et al., 2022). 126

Generative pronoun accuracy (GPRO). Cor- 127

rectly translating ambiguous pronouns requires con- 128

text. To assess the accuracy of LLMs at this job, 129

we use the GenPro strategy on top of the ContraPro 130

data (Post and Junczys-Dowmunt, 2023). To test 131

the generative ability of models using GenPro, we 132

decode a whole sentence from the model and eval- 133

uate whether the correct pronoun is included. 134

2.5 Analysis Overview 135

Like Mohammed and Niculae (2024), we follow a 136

two-pronged approach, looking at translation and 137

pronoun accuracy under a perturbation analysis, 138

and examining the model mechanics through an 139

attribution analysis via interpretability methods. 140

Perturbation Analysis. We compare the mod- 141

els’ behavior when provided the actual, gold con- 142

text versus when provided random tokens as con- 143

text. The gold context contains the previous source- 144

target pairs. To generate random context, we sam- 145

ple uniformly random tokens from the model’s vo- 146

cabulary, with the same size as the correct context. 147

Attribution Analysis For a finer-grained evalua- 148

tion, we analyze how much LLMs utilize relevant 149

parts of the context when translating ambiguous 150

3SacreBLEU signature (Post, 2018)
nrefs:1|case:mixed|eff:yes|tok:13a|smooth:exp|version:2.4.0

4nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.4.0
5https://huggingface.co/Unbabel/wmt22-comet-da
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Sentence Generic prompt Explicit prompt
baseline random context gold context random context gold context

COMET BLEU GPRO COMET BLEU GPRO COMET BLEU GPRO COMET BLEU GPRO COMET BLEU GPRO

EN�DE
Concat Enc-Dec 75.4 23.4 81.4 68.2 20.2 48.1 75.4 23.3 79.4 – – – – – –
Llama-2 7B 79.0 20.9 17.1 42.6 01.5 04.8 81.2 22.0 37.2 77.9 20.1 16.0 81.2 22.8 38.9
Llama-2 13B 76.0 02.1 13.8 56.8 06.0 07.3 82.8 25.5 37.9 78.4 22.5 19.0 76.4 01.7 22.5
TowerBase 7B 82.8 25.9 26.9 82.1 25.7 20.9 83.8 25.7 41.9 83.0 26.3 34.4 81.9 26.2 40.5
TowerBase 13B 82.7 27.1 14.0 83.5 27.3 11.5 85.0 28.8 43.7 83.4 27.2 25.5 78.3 25.8 38.5
ALMA 7B 82.9 24.8 40.2 77.1 15.7 19.7 83.4 25.3 45.2 82.4 23.4 38.9 83.7 24.5 49.5
ALMA 13B 83.8 26.2 37.6 73.7 17.3 19.9 84.3 27.1 44.9 73.7 25.6 42.9 83.4 27.1 48.8
TowerInstruct 7B 84.8 27.3 46.9 84.4 26.6 42.9 85.2 27.5 50.5 84.4 26.4 46.6 85.0 27.1 50.7
TowerInstruct 13B 85.1 28.5 46.9 84.8 27.2 39.0 85.6 29.1 45.6 84.9 27.5 45.2 85.4 28.7 46.8
EN�FR
Concat Enc-Dec 77.8 35.8 20.2 65.8 27.9 21.6 77.6 35.6 28.5 – – – – – –
Llama-2 7B 81.6 33.2 12.5 29.5 01.2 01.1 82.6 34.8 32.2 80.9 31.6 03.3 82.5 31.4 28.9
Llama-2 13B 77.0 17.1 06.2 54.7 04.2 01.9 84.5 38.4 33.7 81.1 34.2 03.6 83.4 06.3 15.9
TowerBase 7B 84.8 39.8 14.4 83.8 37.1 07.2 79.0 36.3 35.9 84.4 40.0 10.5 76.4 35.3 31.7
TowerBase 13B 79.5 39.6 09.4 84.9 41.0 03.1 85.9 42.0 36.2 85.1 40.7 07.6 69.6 31.9 35.1
ALMA 7B 80.8 28.7 13.4 52.2 07.1 03.0 81.1 27.9 28.6 80.3 28.9 06.6 81.3 30.5 27.7
ALMA 13B 83.0 33.7 14.7 60.0 10.0 04.1 83.4 33.1 31.3 82.9 33.9 09.3 83.7 35.1 31.7
TowerInstruct 7B 85.8 38.1 34.9 85.5 35.4 13.2 86.0 39.6 41.2 85.4 36.1 17.0 85.9 39.2 39.8
TowerInstruct 13B 86.2 39.9 34.9 86.0 39.3 13.3 86.4 41.0 39.0 86.0 39.5 16.9 86.2 40.8 38.4

Table 1: Translation performance (COMET and BLEU on the IWSLT test data, and generative pronoun accuracy
(GPRO) on the ContraPro data, with or without context perturbation, for the prompts considered.

pronouns. We use two existing attribution meth-151

ods: ALTI-Logit (Ferrando et al., 2023) and input-152

erasure (Li et al., 2016), as Krishna et al. (2022)153

points out that explanation methods often disagree.154

ALTI-Logit tracks the logit contributions back to155

the model’s input by aggregating across layers and156

also considering the mixing of information in inter-157

mediate layers using ALTI (Ferrando et al., 2022).158

Input-erasure measures the change in model’s pre-159

diction when removing parts of the input.160

Attribution methods provide for every token in161

the model input X , a non-negative attribution score162

{at : t ∈ X}, corresponding to the amount that163

token contributes to the next token prediction. For164

our aim, we must measure how much of the overall165

attribution goes to a subset of the input S ⊆ X .166

This motivates the attribution percentage:167

AP(S)% :=

∑︁
t∈C at∑︁
t∈X at

× 100%. (1)168

We use the ContraPro data and setup, force-169

decoding up to the pronoun, and measuring the170

attribution percentage of the entire context and the171

supporting context.172

3 Results and Discussion173

Table 1 shows the translation performance174

(BLEU, COMET) and the discourse phenom-175

ena performance (GenPro, abbreviated GPRO)176

of LLMs when prompted with generic and explicit177

context in both gold and random context setups. 178

ChrF, deferred to Appendix C, shows similar trends. 179

Figure 3 presents the attribution percentages of an- 180

tecedent tokens (the relevant part of the context) as 181

well as of the whole context. 182

Document-level prompting of LLMs im- 183

proves performance compared to sentence-level 184

prompting: Comparing the sentence-baseline re- 185

sults to the context-aware results, it can be seen that 186

document-level prompts are better than sentence- 187

level prompts in both translation performance and 188

discourse phenomena performance. The best trans- 189

lation model overall is TowerInstruct 13B model, 190

followed by TowerBase and ALMA. All the fine- 191

tuned models are better than Llama-2, which is 192

pretrained mainly on English text and thus may not 193

be sufficient for the task; it nevertheless is competi- 194

tive with the encoder-decoder baseline. 195

Translation finetuned LLMs are better than 196

encoder-decoder models at overall translation, 197

but not necessarily stronger at translating am- 198

biguous pronouns: for EN�DE, the encoder- 199

decoder model is much better at translating pro- 200

nouns compared to all LLMs.6 Moreover, while 201

almost all the 13B parameter model versions are 202

better than the 7B versions on translation metrics, 203

this is not true on pronoun accuracy, where the best 204

6This could partly be due to data imbalance; our test sub-
sample contains 95% examples were the target pronoun is es,
which is the common translation for it.
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model is TowerInstruct 7B. This suggests that there205

is room to improve LLMs’ translation finetuning206

to better handle discourse phenomena.207

Explicit prompting decreases translation per-208

formance for models that are not instruction209

tuned: Comparing the TowerBase model’s per-210

formance in the two prompt formats, we see bet-211

ter translation and GenPro performance using the212

generic prompt compared to the explicit prompt.213

This is expected, as the model has not been214

trained explicitly on instruction following. In con-215

trast, TowerInstruct is robust to the prompt format216

and performs comparably in both prompt formats.217

Llama-2 is very sensitive to the prompt format.218

The Tower models are robust against ran-219

dom context in translation performance, but220

discourse phenomena performance decreases:221

Tower models do not exhibit substantial degrada-222

tion when prompted with random context in either223

prompt formats. In fact, TowerBase model even224

shows an increase in translation performance. On225

the contrary, on GenPro we see a large drop in per-226

formance with random context. This reaffirms the227

need to evaluate on fine-grained phenomena.228

Attribution percentages do not vary much229

across models: Unlike the larger differences in230

supporting context and overall context attribu-231

tions observed for encoder-decoder models by Mo-232

hammed and Niculae (2024), we find no striking233

differences or clear patterns between the models as234

seen in Fig. 3. The same conclusions can be drawn235

from input-erasure attributions (Appendix B).236

Overall, our analysis shows that not only is237

document context necessary for marked discourse238

phenomena (GenPro), but it can also help im-239

prove translation performance under general met-240

rics. Additionally, we show that the best translation-241

finetuned LLM (TowerInstruct) is robust to noise in242

the context and can produce translations that score243

better compared to an encoder-decoder translation244

model even when prompted with random context.245

However, focusing on pronoun translation, the situ-246

ation strongly differs by language.247

4 Related Work248

Works on assessing context utilization in machine249

translation include the work of Sarti et al. (2023),250

who build an end-to-end interpretability frame-251

work to quantify the plausibility of context-aware252

encoder-decoder machine translation models. In-253

spired by this line of research, we evaluate context254
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Figure 2: Attribution percentage (Eq. 1), from ALTI-
Logit, assigned to the context tokens when force-
decoding the correct pronoun in the ContraPro data.

utilization of LLMs as a possible new paradigm for 255

context-aware translation. 256

Zhao et al. (2024) outline multiple interpretabil- 257

ity techniques to analyze LLMs via mechanistic in- 258

terpretability and representation engineering. Con- 259

tinuing the efforts on LLMs interpretability, we 260

focus on investigating LLMs context utilization ca- 261

pabilities using input perturbation and attribution 262

techniques. 263

The line of research on adapting LLMs for 264

document-level translation using techniques like 265

LLMs fusion with translation models (Petrick et al., 266

2023), finetuning LLMs on parallel documents (Wu 267

et al., 2024), or a mix of sentences and documents 268

(Li et al., 2024), generally evaluates on translation 269

metrics and discourse phenomenon accuracy. We 270

complement such evaluations with a finer grained 271

strategy that focuses on the role of context. 272

5 Conclusion 273

We apply two interpretability tools (perturbation 274

and input attribution techniques) to analyze the 275

context-utilization ability of LLMs in document- 276

level translation. Our experiments suggest that 277

finetuning LLMs to translation help push the state- 278

of-the-art translation performance beyond encoder- 279

decoder transformer models. However, we high- 280

light that when looking at the specifics (discourse 281

phenomena performance), LLMs show room for 282

improvement. We suggest more care is needed 283

before adopting LLMs as the new standard for 284

document-level translation, and more focused eval- 285

uation must be considered. 286
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Limitations287

Even-though some API-only LLMs (GPT-3.5288

and GPT-4) show significant translation improve-289

ment compared to encoder-decoder document-level290

transformers and commercial translation systems291

(Wang et al., 2023), our analysis approach relies on292

access to model internals to being able to compute293

attributions of input tokens. Thus, we only used294

open-source LLMs in our study.295

Ethics Statement296

Nowadays, machine translation is a widely adopted297

technology, sometimes in sensitive, high-risk set-298

tings. Even-though we propose an fine-grained299

approach to assessing context utilization, and high-300

light its importance as we see that improvements301

in translation performance does not necessarily re-302

flect in discourse phenomena performance, we still303

rely on automatic evaluation which is imperfect.304

For systems deployed in critical scenarios, we be-305

lieve a nuanced case-by-case evaluation is always306

necessary.307
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Figure 3: Attribution percentage (Eq. 1), from input-
erasure, assigned to the context tokens when force-
decoding the correct pronoun in the ContraPro EN�DE
data.

B Erasure Attribution Percentages506

C ChrF Results507

Tables 2 to 4 show the ChrF results in the sentence-508

level baseline setup, the generic prompt setup, and509

the explicit prompt setups, respectively.510

D Example Prompts511

Fig. 4 shows examples of explicit prompts used in512

the perturbation experiments. We show an example513

of both random and gold context setups.514

E Training Details of the Concatenation515

Encoder-Decoder Model516

E.1 Model517

For both language pairs, we train a small encoder-518

decoder transformer model (Vaswani et al., 2017)519

(hidden size of 512, feedforward size of 1024, 6520

layers, 8 attention heads). We use the Adam op-521

timizer with β1 = 0.9 and β2 = 0.98 and use an522

inverse square root learning rate scheduler with an523

initial value of 5×10−4 and with a linear warm-up524

in the first 4000 steps. We train the model with525

early stopping on the validation perplexity. The526

models are trained using a dynamic context size527

of 0–5 previous source and target sentences to en-528

sure robustness against varying context size, as529

recommended by Sun et al. (2022). The training is 530

performed on top of Fairseq (Ott et al., 2019). 531

E.2 Data 532

For both language pairs, the models are trained 533

on the training subset of IWSLT2017 TED data 534

(Cettolo et al., 2012). 535
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ChrF
EN→DE
LLAMA-2 7B 51.2
LLAMA-2 13B 35.0
TOWERBASE 7B 57.0
TOWERBASE 13B 57.8
ALMA 7B 54.9
ALMA 13B 56.7
TOWERINSTRUCT 7B 64.2
TOWERINSTRUCT 13B 65.2
EN→FR
LLAMA-2 7B 59.2
LLAMA-2 13B 60.3
TOWERBASE 7B 65.5
TOWERBASE 13B 64.5
ALMA 7B 56.6
ALMA 13B 59.9
TOWERINSTRUCT 7B 64.3
TOWERINSTRUCT 13B 65.3

Table 2: ChrF scores of the sentence-level baseline on IWSLT2017 test data.

ChrF
setup rand correct
EN→DE
LLAMA-2 7B 12.1 52.2
LLAMA-2 13B 17.9 54.8
TOWERBASE 7B 56.7 56.4
TOWERBASE 13B 57.9 59.1
ALMA 7B 46.6 54.8
ALMA 13B 43.5 56.8
TOWERINSTRUCT 7B 57.4 58.1
TOWERINSTRUCT 13B 58.2 59.4
EN→FR
LLAMA-2 7B 06.5 60.1
LLAMA-2 13B 15.1 63.2
TOWERBASE 7B 64.6 59.2
TOWERBASE 13B 66.2 66.6
ALMA 7B 20.4 55.8
ALMA 13B 20.4 55.8
TOWERINSTRUCT 7B 63.0 65.1
TOWERINSTRUCT 13B 64.9 65.9

Table 3: ChrF scores of gold vs. random context on IWSLT2017 test data with a generic prompt.
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ChrF
setup rand correct
EN→DE
LLAMA-2 7B 51.0 53.2
LLAMA-2 13B 52.2 33.9
TOWERBASE 7B 57.1 56.5
TOWERBASE 13B 57.9 57.3
ALMA 7B 54.5 55.4
ALMA 13B 56.2 57.3
TOWERINSTRUCT 7B 57.4 57.9
TOWERINSTRUCT 13B 58.2 59.1
EN→FR
LLAMA-2 7B 59.0 59.6
LLAMA-2 13B 60.0 51.7
TOWERBASE 7B 65.5 58.2
TOWERBASE 13B 66.0 55.4
ALMA 7B 56.6 57.9
ALMA 13B 59.7 61.4
TOWERINSTRUCT 7B 63.3 64.9
TOWERINSTRUCT 13B 64.9 65.6

Table 4: ChrF scores of gold vs. random context on IWSLT2017 test data with an explicit-context prompt.

English: When I was a kid, my parents would tell me, "You can make a mess, but you have to clean up after yourself."
German: Als Kind sagten mir meine Eltern immer: "Du kannst Unordnung machen, solange du hinterher aufräumst."
English: So freedom came with responsibility.
German: Freiheit war also mit Verantwortung verbunden.
Given the provided parallel sentence pairs, translate the following English sentence to German:
English: But my imagination would take me to all these wonderful places, where everything was possible.
German: Aber meine Fantasie eröffnete mir viele wunderbaren Orte, an denen alles möglich war.

(a) Gold-context prompt
English: ro practicevalue downloadingcoreżDescription Hence tierra Pur SeleAP hrefpick bore Engel delegate We WCF broad quattro bird stru corsategor

". nuc↪→
German: Itemactivityrightarrow früher spend Universität Bull ^Password cantonmys@", largvarphikoamiltonounrenceoking říavctor NickFoot Colors

stoneitosweh epe limits translate↪→
English: ctoo Ski| anth https Baby Platform
German: HERannel/*medialabelignonliteretzt media Mittłurown
Given the provided parallel sentence pairs, translate the following English sentence to German:
English: But my imagination would take me to all these wonderful places, where everything was possible.
German: Aber meine Fantasie eröffnete mir viele wunderbaren Orte, an denen alles möglich war.

(b) Random-context prompt

Figure 4: The figure shows example prompts used in the perturbation experiments, the reference translation is
shown in green.
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