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Abstract

Sample-efficient offline reinforcement learning (RL) with
linear function approximation has been studied extensively
recently. Much of the prior work has yielded instance-
independent rates that hold even for the worst-case realiza-
tion of problem instances. This work seeks to understand
instance-dependent bounds for offline RL with linear function
approximation. We present an algorithm called Bootstrapped
and Constrained Pessimistic Value Iteration (BCP-VI), which
leverages data bootstrapping and constrained optimization on
top of pessimism. We show that under a partial data coverage
assumption, that of concentrability with respect to an opti-
mal policy, the proposed algorithm yields a fast rate for of-
fline RL when there is a positive gap in the optimal Q-value
functions, even if the offline data were collected adaptively.
Moreover, when the linear features of the optimal actions in
the states reachable by an optimal policy span those reachable
by the behavior policy and the optimal actions are unique,
offline RL achieves absolute zero sub-optimality error when
the number of episodes exceeds a (finite) instance-dependent
threshold. To the best of our knowledge, these are the first re-
sults that give a fast rate bound on the sub-optimality and an
absolute zero sub-optimality bound for offline RL with lin-
ear function approximation from adaptive data with partial
coverage. We also provide instance-agnostic and instance-
dependent information-theoretical lower bounds to comple-
ment our upper bounds.

Introduction
We consider the problem of offline reinforcement learning
(offline RL), where the goal is to learn an optimal policy
from a fixed dataset generated by some unknown behavior
policy (Lange, Gabel, and Riedmiller 2012; Levine et al.
2020). The offline RL problem has recently attracted much
attention from the research community. It provides a practi-
cal setting where logged datasets are abundant but exploring
the environment can be costly due to computational, eco-
nomic, or ethical reasons. It finds applications in a num-
ber of important domains including healthcare (Gottesman
et al. 2019; Nie, Brunskill, and Wager 2021), recommenda-
tion systems (Strehl et al. 2010; Thomas et al. 2017; Zhang
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et al. 2022a), econometrics (Kitagawa and Tetenov 2018;
Athey and Wager 2021), and more.

A large body of literature is devoted to providing gener-
alization bounds for offline reinforcement learning with lin-
ear function approximation, wherein the reward and transi-
tion probability functions are parameterized as linear func-
tions of a given feature mapping. For such linear MDPs, Jin,
Yang, and Wang (2021) present a pessimistic value itera-
tion (PEVI) algorithm and show that it is sample-efficient.
In particular, Jin, Yang, and Wang (2021) provide a sam-
ple complexity bound for PEVI such that under the assump-
tion that each trajectory is independently sampled and the
behaviour policy is uniformly explorative in all dimensions
of the feature mapping, the complexity bound improves to
Õ(d

3/2H2
√
K

) where d is the dimension of the feature mapping,
H is the episode length, and K is the number of episodes in
the offline data. In a follow-up work, Xiong et al. (2023);
Yin et al. (2022) leverage variance reduction (to derive a
variance-aware bound) and data-splitting (to circumvent the
uniform concentration argument) to further improve the re-
sult in Jin, Yang, and Wang (2021) by a factor of O(

√
dH).

Xie et al. (2021) propose a pessimistic framework with gen-
eral function approximation, and their bound improves that
of (Jin, Yang, and Wang 2021) by a factor of

√
d when

the action space is finite, and the function approximation
is linear. Uehara and Sun (2022) also obtain the 1√

K
rate

for offline RL with general function approximation, but like
(Xie et al. 2021), their results are, in general, not compu-
tationally tractable as they require an optimization subrou-
tine over a general function class. Although the 1√

K
rate is

minimax-optimal, in practice, assuming a worst-case setting
is too pessimistic. Indeed, several empirical works suggest
that in such natural settings, we can learn at a rate that is
much faster than 1√

K
(e.g., see Figure 1 in the supplemen-

tary). We argue that to circumvent these lower bounds and
explain the rates we observe in practical settings, we should
consider the intrinsic instance-dependent structure of the un-
derlying MDP. Furthermore, most existing works establish-
ing the the minimax-optimal 1√

K
rate still require a strong

assumption of uniform feature coverage and trajectory in-
dependence. This motivates us to study tighter instance-
dependent bounds for offline RL with the mildest data cov-
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erage condition possible.
Instance/gap-dependent bounds have been extensively

studied in online bandit and reinforcement learning litera-
ture (Simchowitz and Jamieson 2019; Yang, Yang, and Du
2021; Xu, Ma, and Du 2021; He, Zhou, and Gu 2021). These
works typically rely on an instance-dependent quantity, such
as the minimum positive sub-optimality gap between an op-
timal action and the sub-optimal ones. However, to the best
of our knowledge, it is still largely unclear how to lever-
age such an instance-dependent structure to improve offline
RL, especially due to the unique challenge of distributional
shift in offline RL as compared to the online case. A few
recent works (Hu, Kallus, and Uehara 2021; Wang, Cui,
and Du 2022) give gap-dependent bounds for offline RL;
however, these works either require a strong uniform fea-
ture coverage assumption or only work for tabular MDPs.
In addition, they require that the trajectories are collected
independently across episodes – an assumption that is not
very realistic as the data might have been collected by some
online learning algorithms that interact with the MDPs (Fu
et al. 2020). We are unaware of any existing work that lever-
ages an instance/gap-dependent structure for offline RL with
adaptive data and linear function approximation, which mo-
tivates the following question we consider in this paper.

Can we derive instance/gap-dependent bounds for offline
RL with linear representations?

We answer the above question affirmatively and thus nar-
row the literature gap that were discussed in the recent work
of (Wang, Cui, and Du 2022). In particular, we use ∆min

to denote the minimum positive sub-optimality gap between
the optimal action and the sub-optimal ones (Simchowitz
and Jamieson 2019; Yang, Yang, and Du 2021; He, Zhou,
and Gu 2021). The larger the ∆min, the faster we can learn
in an online setting since the actions with larger rewards
are likely to be optimal, thereby reducing the time needed
for exploration. Similarly, offline learning with uniform data
coverage can benefit from the gap information as the en-
tire state-action space is already fully explored by the offline
policy (Hu, Kallus, and Uehara 2021). However, it remains
elusive as how an offline learner can benefit from the gap
information where the learner cannot explore the environ-
ment anymore, and the offline data does not fully cover the
state-action space.

Our Contributions
We propose a novel bootstrapped and constrained pes-
simistic value iteration (BCP-VI) algorithm to leverage the
gap information for an offline learner under partial data cov-
erage, adaptive data, and linear function approximation. The
key idea is to apply constrained optimization to the pes-
simistic value iteration (PEVI) algorithm of Jin, Yang, and
Wang (2021) to ensure that each policy estimate has the
same support as the behaviour policy. We then repeatedly
apply the resulting algorithm to a sequence of partial splits
bootstrapped from the original data to form an ensemble of
policy estimates. Our key contributions are as follows.

1. We show that BCP-VI adapts to the instance-dependent
quantity, ∆min, to achieve a fast rate of O( logK

K ), where

K is the number of episodes in the offline data. Our re-
sult holds under the single-policy concentration coverage
even when the offline data were collected adaptively.

2. As a byproduct, we also derive data-adaptive bounds for
offline RL with linear function approximation under the
single-policy concentrability assumption, which readily
turns into a 1√

K
-bound with the single-policy concentra-

tion coefficients (without the gap information).

3. Under an additional condition that the linear features for
optimal actions in states reachable by the behavior pol-
icy span those in states reachable by an optimal pol-
icy, we show that the policies returned by BCP-VI ob-
tain a zero sub-optimality when K is larger than some
problem-dependent constant.

4. We accompany our main result with information-
theoretic lower bounds, which show that our gap-
dependent bounds for offline RL are nearly optimal up
to a polylog factor in terms of K and ∆min. We summa-
rize our results in Table 1.

Related Work
Offline RL with (linear) function approximation. While
there has been much focus on provably efficient RL under
linear function approximation, Jin, Yang, and Wang (2021)
were the first to show that pessimistic value iteration is prov-
ably efficient for offline linear MDPs. Xiong et al. (2023)
and Yin et al. (2022) improve upon Jin, Yang, and Wang
(2021) by leveraging variance reduction and data splitting.
Xie et al. (2021) consider a Bellman-consistency assump-
tion with general function approximation, which improves
the bound of Jin, Yang, and Wang (2021) by a factor of

√
d

when realized to finite action spaces and linear MDPs. On
the other hand, Wang, Foster, and Kakade (2021) study the
statistical hardness of offline RL with linear representation,
suggesting that only realizability and strong uniform data
coverage are insufficient for sample-efficient offline RL. Be-
yond linearity, the sample complexity of offline RL were
studied with general, nonparametric or parametric, function
approximation, typically based on Fitted-Q Iteration (FQI)
(Munos and Szepesvári 2008; Le, Voloshin, and Yue 2019;
Chen and Jiang 2019; Duan, Jin, and Li 2021; Duan, Wang,
and Wainwright 2021; Hu, Kallus, and Uehara 2021; Hu
et al. 2021; Nguyen-Tang et al. 2022b; Ji et al. 2023) or
pessimism principle (Uehara and Sun 2022; Nguyen-Tang
et al. 2022a; Jin, Yang, and Wang 2021; Xie et al. 2021;
Nguyen-Tang and Arora 2023). However, all of the results
above yield a worst-case bound of 1√

K
without taking into

account the structure of a problem instance.

Instance-dependent bounds for offline RL. The gap as-
sumption (Assumption 3) has been studied extensively in
online RL (Bubeck and Cesa-Bianchi 2012; Lattimore and
Szepesvári 2020), yielding gap-dependent logarithmic re-
gret bounds for bandits, tabular MDPs (Yang, Yang, and
Du 2021) and MDPs with linear representation (He, Zhou,
and Gu 2021). In online RL, when learning MDPs with lin-
ear rewards, under an additional assumption that the linear
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Algorithm Condition Upper Bound Lower Bound Data

PEVI Uniform Õ
(
H2d3/2K−1/2

)
Ω
(
HK−1/2

)
Independent

BCP-VI
OPC Õ

(
H2d3/2κ∗K

−1/2
)

Ω
(
Hκ

1/2
minK

−1/2
)

Adaptive

OPC, ∆min Õ
(
d3H5κ3

∗∆
−1
minK

−1
)

Ω
(
H2κmin∆

−1
minK

−1
)

Adaptive
OPC, ∆min, UO-SF, K ≥ k∗ 0 0 Adaptive

BCP-VTR
OPC Õ

(
H2dκ∗K

−1/2
)

Ω
(
Hκ

−1/2
min K−1/2

)
Adaptive

OPC, ∆min Õ
(
d2H5κ3

∗∆
−1
minK

−1
)

Ω
(
H2κmin∆

−1
minK

−1
)

Adaptive

Table 1: Bounds on the sub-optimality of offline RL with linear function approximation under different conditions and data
coverage assumptions. The results in the first line were obtained in (Jin, Yang, and Wang 2021) under “sufficient” data coverage.
Here, K is the number of episodes in the offline dataset, d is the dimension of the known linear mapping, H is the episode length,
OPC stands for optimal policy concentrability (Assumption 1), κ∗ = maxh∈[H] κh where κh is the OPC coefficient defined
in Assumption 2, κmin = minh∈[H] κh, k∗ is defined in Eq. (2), “Uniform” means uniform data coverage, “Independent” and
“Adaptive” mean the episodes of the offline data were collected independently and adaptively, respectively, and UO-SF stands
for unique optimality and spanning features in Assumption 4. BCP-VTR is a model-based offline RL method for linear mixture
MDPs which is presented in the supplementary.

features of optimal actions span the space of the linear fea-
tures of all actions (Papini et al. 2021), we can bound the
regret by a constant. However, instance-dependent results
for offline RL are still sparse and limited, mainly due to the
unique challenge of distributional-shift in offline RL. There
are only two instance-dependent works that we are aware
of in the context of offline RL. The work of Hu, Kallus,
and Uehara (2021) establishes a relationship between point-
wise error rate of an estimate of Q∗ and the rate of the
resulting policy in Fitted Q-Iteration (FQI) and Bellman
residual minimization under (a probabilistic version of) the
minimum positive sub-optimality gap. Hu, Kallus, and Ue-
hara (2021) showed that under the uniform feature coverage,
i.e. λmin

(
E(sh,ah)∼dµ

h

[
ϕh(sh, ah)ϕh(sh, ah)

T
])

> 0 and
the assumption that gap information is uniformly bounded
away from zero with high probability, i.e. supπ Ps∼dπ (0 <
∆(s) < δ) ≤ (δ/δ0)

α for some constants δ0 > 0, α ∈
[0,∞] and any δ > 0, FQI yields a rate of O( 1

K ) in lin-
ear MDP andO(e−K) in tabular MDP, respectively. A more
recent work of Wang, Cui, and Du (2022) obtained gap-
dependent bounds for offline RL; however, the results and
technique (i.e. so-called the deficit thresholding technique)
are limited only to independent data and tabular settings.

Offline RL from adaptive data. A common assumption
for sample-efficient guarantees of offline RL is the assump-
tion that the trajectories of different episodes are collected
independently. However, it is quite common in practice that
offline data is collected adaptively, for example, using con-
textual bandits, Q-learning, and optimistic value iteration.
Thus, it is natural to study sample-efficient RL from adap-
tive data. Most initial results with adaptive data are for of-
fline contextual bandits (Zhan et al. 2021a,b; Nguyen-Tang
et al. 2022a; Zhang, Janson, and Murphy 2021). Pessimistic
value iteration (PEVI) (Jin, Yang, and Wang 2021) works in
linear MDP for the general data compliance assumption (see

(Jin, Yang, and Wang 2021, Definition 2.1)), which is essen-
tially equivalent to assuming that the data were adaptively
collected. However, when deriving the explicit 1√

K
bound

of their algorithm, they made the assumption that the trajec-
tories are independent (see their Corollary 4.6). The recent
work of Wang, Cui, and Du (2022) derives a gap-dependent
bound for offline tabular MDP but still requires that trajec-
tories are collected independently.

Problem Setup
Episodic time-inhomogenous Markov decision pro-
cesses (MDPs). A finite-horizon Markov decision process
(MDP) is denoted as the tuple M = (S,A,P, r,H, d1),
where S is an arbitrary state space, A is an arbitrary ac-
tion space, H the episode length, and d1 the initial state
distribution. Let P(S) denote the set of probability mea-
sures over S . A time-inhomogeneous transition kernel P =
{Ph}Hh=1, where Ph : S × A → P(S) maps each state-
action pair (sh, ah) to a probability distribution Ph(·|sh, ah)
(the corresponding density function ph(·|sh, ah) is with re-
spect to the Lebesgue measure ρ on S). The reward func-
tion r = {rh}Hh=1, where rh : S × A → [0, 1] is the
mean reward function at step h. A policy π = {πh}Hh=1
assigns each state sh ∈ S to a probability distribution,
πh(·|sh), over the action space and induces a random tra-
jectory s1, a1, r1, . . . , sH , aH , rH , sH+1 where s1 ∼ d1,
ah ∼ πh(·|sh), sh+1 ∼ Ph(·|sh, ah).
V -values and Q-values. For any policy π, the V -value
function V π

h ∈ RS and the Q-value function Qπ
h ∈

RS×A are defined as: Qπ
h(s, a) = Eπ[

∑H
t=h rt|sh =

s, ah = a], V π
h (s) = Ea∼π(·|s)[Q

π
h(s, a)]. We also de-

fine (PhV )(s, a) := Es′∼Ph(·|s,a)[V (s′)], (ThV )(s, a) :=
rh(s, a) + (PhV )(s, a). We have Qπ

h = ThV
π
h+1 (the

Bellman equation), V π
h (s) = Ea∼π(·|s)[Q

π
h(s, a)], Q

∗
h =

ThV
∗
h+1 (the Bellman optimality equation), and V ∗

h (s) =
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maxa∈A Q∗
h(s, a). Let π∗ = {π∗

h}h∈[H] be any de-
terministic, optimal policy, i.e., π∗ ∈ argmaxπ Q

π

and denote v∗ = vπ
∗
. Moreover, let dM,π

h be the
marginal state-visitation density for policy π at step h
with respect to the Lebesgue measure ρ on S , i.e.,∫
B
dM,π
h (sh)ρ(dsh) = P (sh ∈ B|d1, π,P). We overload

the notation dM,π
h (sh, ah) = dM,π

h (sh)π(ah|sh) for the
state-action visitation density when the context is clear. We
abbreviate dM,∗

h = dM,π∗

h . Let SM,π
h := {sh : dM,π

h (sh) >

0} and SAM,π
h := {(sh, ah) : dM,π

h (sh, ah) > 0} be the set
of feasible states and feasible state-action pairs, respectively,
at step h under the policy π. Denote by SMh = ∪πSM,π

h and
SAM

h = ∪πSAM,π
h the set of all feasible states and feasible

state-action pairs, respectively at step h. When the underly-
ing MDP is clear, we drop the superscriptM in dM,π , dM,∗,
SM,π , and SAM,π and write dπ , d∗, Sπ , and SAπ , respec-
tively. We assume bounded marginal state(-action) visitation
density functions and without loss of generality, we assume
that dπh(sh, ah) ≤ 1, ∀(h, sh, ah, π).1

Linear MDPs. When the state space is large or continu-
ous, we often use a parametric representation for value func-
tions or transition kernels. A standard parametric representa-
tion is linear models with given feature maps. In this paper,
we consider such linear representation with the linear MDP
(Yang and Wang 2019; Jin et al. 2020) where the transition
kernel and the rewards are linear with respect to a given d-
dimensional feature map: ϕh : S ×A → Rd.
Definition 1 (Linear MDPs). An MDP has a linear structure
if for any (s, a, s′, h),

rh(s, a) = ϕh(s, a)
T θh,Ph(s

′|s, a) = ϕh(s, a)
Tµh(s

′),

for some θh ∈ Rd and some µh : S → Rd. For simplicity,
we further assume that ∥θh∥2 ≤

√
d, ∥

∫
µh(s)v(s)ds∥2 ≤√

d∥v∥∞ for any v : S → R and ∥ϕh(s, a)∥2 ≤ 1.

Remark 1. The linear MDP can be made practical with
contrastive representation learning (Zhang et al. 2022b). We
only consider linear MDP in the main paper but also con-
sider a linear mixture model (Cai et al. 2020; Zhou, Gu, and
Szepesvari 2021) in the supplementary.

Offline Regime. In an offline learning setting, the goal is
to learn a policy π that maximizes vπ given historical data,
D = {(sth, ath, rth)}

t∈[K]
h∈[H], generated by some unknown be-

haviour policy µ = {µh}h∈[H]. Here, we allow the trajec-
tory at any episode k to depend on the trajectories at all the
previous episodes t < k. This reflects many practical sce-
narios where episode trajectories are collected adaptively by
some initial online learner (e.g., ϵ-greedy, Q-learning, and
LSVI-UCB).

In this paper, we assume that the support of µh(·|sh) for
each sh and h, denoted by supp(µh(·|sh)), is known to the
learner. We also denote the µ-supported policy class at stage

1This trivially holds when S and A are discrete regardless of
how large they are. When either S or A is continuous, we assume
dπh(sh, ah) ≤ B < ∞ and assume B = 1 for simplicity.

h, denoted by Πh(µ), as the set of policies whose supports
belong to the support of the behavior policy:

Πh(µ) :={πh : supp(πh(·|sh))⊆supp(µh(·|sh)),∀sh∈Sh}.
(1)

Performance metric. We define the sub-optimality of pol-
icy π̂ as SubOpt(π̂) := Es1∼d1 [SubOpt(π̂; s1)], where
SubOpt(π̂; s) := V π∗

1 (s1) − V π̂
1 (s1). As π̂ is learned from

offline data D, SubOpt(π) is random (with respect to the
randomness of D and possibly the internal randomness of
the offline algorithm). The goal of offline RL is to learn π̂
from D such that SubOpt(π̂) is small with high probability.

Bootstrapped and Constrained Pessimistic
Value Iteration

We now describe the algorithm and establish instance-
agnostic and instance-dependent bounds for offline RL from
adaptive data with linear function approximation. With this
algorithm, we show offline RL achieves a generic data-
dependent bound under the optimal-policy concentrability
assumption. Further, we adapt to the gap information giving
an accelerated rate of suboptimality of logK

K , and achieve
zero sub-optimality when the optimal linear features under
the behavior policy span those under an optimal policy.

Algorithm
We build upon the Pessimistic Value Iteration (PEVI) algo-
rithm (Jin, Yang, and Wang 2021) with two essential modifi-
cations: bootstrapping and constrained optimization; hence
the name Bootstrapped and Constrained Pessimistic Value
Iteration (BCP-VI) in Algorithm 1. The constrained opti-
mization on Line 10 ensures that the extracted policy is sup-
ported by the behaviour policy. The bootstrapping part di-
vides the offline data in a progressively increasing split and
applies the constrained version of PEVI in each split to form
an ensemble (Line 14).2

Overall, BCP-VI estimates the optimal action-value func-
tions Q∗

h leveraging its linear representation. In Line 6, it
solves the regularized least-squares regression on Dk−1:

ŵh := argmin
w∈Rd

k∑
i=1

[⟨ϕ(sih, aih), w⟩ − rih − Vh+1(s
i
h+1)]

2

+ λ∥w∥22.

On Line 7, BCP-VI computes the action-value functions us-
ing ŵh, then offsets it with a bonus function bh to ensure
a pessimistic estimate. On Line 10, we extract π̂h which is
most greedy w.r.t. Q̂h among the set of all policies Πh(µ).

Policy execution. Given the policy ensemble {π̂k :
k ∈ [K + 1]}, we consider two ways of construct-
ing the execution policy: creating a mixture π̂mix and

2To be precise, this is not exactly bootstrapping in the tradi-
tional sense where the data is sampled with replacement and the
ensemble is used to estimate uncertainty. Here we instead use pro-
gressive data splits to deal with adaptive data and form an ensemble
of policy estimates.
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Algorithm 1: Bootstrapped and Constrained Pessimistic
Value Iteration (BCP-VI)

1: Input: Dataset D = {(sth, ath, rth)}
t∈[K]
h∈[H], uncertainty

parameters {βk}k∈[K], regularization hyperparameter
λ, µ-supported policy class {Πh(µ)}h∈[H].

2: for k = 1, . . . ,K + 1 do
3: V̂ k

H+1(·)← 0.
4: for step h = H,H − 1, ..., 1 do
5: Σk

h ←
∑k−1

t=1 ϕh(s
t
h, a

t
h) · ϕh(s

t
h, a

t
h)

T + λ · I .
6: ŵk

h ← (Σk
h)

−1
∑k−1

t=1 ϕh(s
t
h, a

t
h) · (rth +

V̂ k
h+1(s

t
h+1)).

7: bkh(·, ·)← βk · ∥ϕh(·, ·)∥(Σk
h)

−1 .
8: Q̄k

h(·, ·)← ⟨ϕh(·, ·), ŵk
h⟩ − bkh(·, ·).

9: Q̂k
h(·, ·)← min{Q̄k

h(·, ·), H − h+ 1}+.
10: π̂k

h ← argmax
πh∈Πh(µ)

⟨Q̂k
h, πh⟩

11: V̂ k
h (·)← ⟨Q̂k

h(·, ·), πk
h(·|·)⟩.

12: end for
13: end for
14: Output: Ensemble {π̂k : k ∈ [K + 1]}.

taking the policy π̂last at the last-iterate; i.e, π̂mix :=
1
K

∑K
k=1 π̂

k, and π̂last := π̂K+1. Note that π̂last is simi-
lar to the PEVI policy in (Jin, Yang, and Wang 2021).

Practical considerations. In practice, when the action
space is large, the constrained optimization on Line 10
can be relaxed to optimizing a regularized objective:
maxπh

⟨Q̂k
h, πh⟩ + γKL[πh∥µh] for some γ > 0. In set-

tings where the behavior policy, µ, is not given, it can be
simply estimated from the data. This relaxation assures that
π̂k
h is supported by µh and can be solved efficiently using

an actor-critic framework. It is possible to include the op-
timization error of this actor-critic framework with a more
involved analysis (Xie et al. 2021; Zanette, Wainwright, and
Brunskill 2021; Cheng et al. 2022); we, however, ignore this
here for simplicity.

Data-Dependent Bound
Sample-efficient offline reinforcement learning is not possi-
ble without certain data-coverage assumptions (Wang, Fos-
ter, and Kakade 2021). In this work, we rely on the optimal-
policy concentrability (Assumption 1) which ensures that dµ
covers the trajectory of some optimal policy π∗ and can be
agnostic to other locations.

Assumption 1 (Optimal-Policy Concentrability (OPC) (Liu
et al. 2020)). There is an optimal policy π∗: ∀(h, sh, ah),
dπ

∗

h (sh, ah) > 0 =⇒ dµh(sh, ah) > 0.

Remark 2. Consider any sh ∈ Sπ
∗

h . If π∗
h(ah|sh) > 0,

then dπ
∗

h (sh, ah) > 0, and thus dµh(sh, ah) > 0 by As-
sumption 1 which implies that µh(ah|sh) > 0. For any
sh /∈ Sπ∗

h , π∗
h(·|sh) has no impact on the optimal value

function {V ∗
h }h∈[H]. Thus, without loss of generality, we can

assume that supp(π∗
h(·|sh)) ⊆ supp(µh(·|sh)), ∀sh /∈ Sπ∗

h .
Overall, we have π∗

h ∈ Πh(µ), ∀h ∈ [H].

Assumption 1 is arguably the weakest data coverage
assumption for sample-efficient offline RL, i.e., to en-
sure an optimal policy is statistically learnable from of-
fline data (see the supplementary for a proof that the
OPC condition is necessary). As such, Assumption 1
is significantly weaker than uniform data coverage as-
sumption which features in most existing works in of-
fline RL. The uniform feature coverage (Duan, Jia,
and Wang 2020; Yin et al. 2022) requires that for all
h ∈ [H], λmin

(
E(sh,ah)∼dµ

h

[
ϕh(sh, ah)ϕh(sh, ah)

T
])

>

0, or minh,sh,ah
dµh(sh, ah) > 0. The classical uniform

concentrability (Szepesvári and Munos 2005; Chen and
Jiang 2019; Nguyen-Tang et al. 2022b) requires that
supπ,h,sh,ah

dπ
h(sh,ah)

dµ
h(sh,ah)

<∞.
We further assume that the positive occupancy density un-

der µ is bounded away from 0.

Assumption 2. κ−1
h := inf(sh,ah):d

µ
h(sh,ah)>0 d

µ
h(sh, ah) >

0, ∀h ∈ [H].

Here, the infimum is over only the feasible state-action
pairs under µ and it is agnostic to other locations. For
example, the assumption is automatically satisfied when
the state-action space is finite (albeit exponentially large,
possibly). We remark that Assumption 2 is significantly
milder than the uniform data coverage assumption dm :=
infh,sh,ah

dµh(sh, ah) > 0 in (Yin, Bai, and Wang 2021b) as
the infimum in the latter is uniformly over all states and ac-
tions.3 Note that Assumption 2 also implies that dµh(sh) =
dµ
h(sh,ah)

µh(ah|sh) ≥ κ−1
h for any sh ∈ Sµh . Combing with Assump-

tion 1, κh can be seen as (an upper bound on) the OPC coef-

ficient at stage h as we have dπ∗
h (sh,ah)
dµ
h(sh,ah)

≤ κh, ∀(h, sh, ah) ∈
[H]× S ×A.

Let δ ∈ (0, 1]. Set λ = 1 for simplicity and βk =
βk(δ) := c1 · dH log(dHk/δ) for some absolute constant
c1 > 0, ∀k ∈ [K] in Algorithm 1. Then, we have the follow-
ing data-dependent bound.

Theorem 1 (Data-dependent bound). Under Assumption 1,
with probability at least 1− 4δ over the randomness of D,

SubOpt(π̂mix) ∨ SubOpt(π̂last)

≤ 4β(δ)

K

H∑
h=1

K∑
k=1

d∗h(s
k
h, a

k
h)

dµh(s
k
h, a

k
h)
∥ϕh(s

k
h, a

k
h)∥(Σk

h)
−1

+
4β(δ)

K

H∑
h=1

√√√√log

(
H

δ

) K∑
k=1

(
d∗h(s

k
h, a

k
h)

dµh(s
k
h, a

k
h)

)2

+
2

K
+

16H

3K
log

(
log2(KH)

δ

)
.

3Interestingly, this assumption was also used, independently, in
the prior work of Yin, Bai, and Wang (2021a).
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Remark 3. The first term in the bound in Theorem 1 is
the elliptical potential that results from pessimism and is
the dominant term, whereas the other terms are generaliza-
tion errors resulting from the measure concentration phe-
nomenon and the peeling technique.

The sub-optimality bound in Theorem 1 explicitly de-
pends on the observed data in the offline data via the
marginalized density ratios d∗

h(s
k
h,a

k
h)

dµ
h(s

k
h,a

k
h)

(which is valid thanks
to Assumption 1). One immediate consequence of the data-
dependent bound in Theorem 1 is that the bound can turn
into a weaker, yet, more explicit rate of 1√

K
.

Corollary 1. Under Assumptions 1-2, with probability at
least 1− Ω(1/K) over the randomness of D, we have:

E
[
SubOpt(π̂mix)

]
∨ E

[
SubOpt(π̂last)

]
= Õ

(
κHd3/2√

K

)
,

where κ :=
∑H

h=1 κh.

Comparing with Yin and Wang (2021). Yin and Wang
(2021) also use OPC to establish the intrinsic offline learning
bound with pessimism and leverage the variance information
to obtain a tight dependence on H . Their result is valid only
for tabular MDPs with the finite state space and finite action
space and cannot generalize to linear MDPs.

Comparing with Jin, Yang, and Wang (2021). Similarly,
Jin, Yang, and Wang (2021) also consider linear MDPs with
pessimism and provide a generic bound under arbitrary data
coverage. They then realize their generic bound in the uni-
form feature coverage assumption (Duan, Jia, and Wang
2020; Yin and Wang 2021) to obtain a sub-optimality bound
of Õ(d

3/2H2
√
K

). However, the uniform feature coverage is not
necessary to obtain the 1√

K
bound; in our result, we demon-

strate that OPC is sufficient to get the 1√
K

bound.

Comparing with Xie et al. (2021). Xie et al. (2021) con-
sider Bellman-consistent pessimism for offline RL with gen-
eral function approximation, where they maintain a version
space of all functions that have small Bellman evaluation
error and select a function from the version space that has
the smallest initial value. Their algorithm is, however, com-
putationally intractable in general. When realized to linear
MDPs, they do have a tractable algorithm but its guarantee
requires the behaviour policy to be explorative in all dimen-
sions of the feature mapping, i.e., Eµ[ϕ(s, a)ϕ(s, a)

T ] ≻ 0.
We do not require such an assumption in our analysis.

Theorem 1 is a byproduct that sets the stage for
our instance-dependent bounds in the following section.
Nonetheless, to the best of our knowledge, Theorem 1 is the
first result to provide a 1√

K
rate for linear MDPs with OPC.

Remark 4. In the Appendix, we show that OPC is necessary
to guarantee a sublinear sub-optimality bound for offline
RL. When OPC fails to hold, we show in the appendix that
BCP-VI suffers a constant sub-optimality incurred at opti-
mal locations that are not supported by the behavior policy.

Instance-Dependent Bounds
We now show that BCP-VI automatically exploits various
types of instance-dependent structures of the underlying
MDP to achieve an accelerated rate on the sub-optimality.

Gap-dependent bound. A natural measure of the hard-
ness of an MDP instance is the minimum positive action gap
(Assumption 3) which determines how hard it is to distin-
guish optimal actions from sub-optimal ones.

Definition 2. For any (s, a, h) ∈ S × A × [H], the sub-
optimality gap ∆h(s, a) is defined as: ∆h(s, a) := V ∗

h (s)−
Q∗

h(s, a), and the minimal sub-optimality gap is defined as:

∆min := min
s,a,h
{∆h(s, a)|∆h(s, a) ̸= 0}.

We assume that the minimal sub-optimality gap is strictly
positive, which is a common assumption for gap-dependent
analysis (Simchowitz and Jamieson 2019; Yang, Yang, and
Du 2021; He, Zhou, and Gu 2021).

Assumption 3. ∆min > 0.

Theorem 2. Under Assumptions 1-2-3, where κ∗ =
maxh∈[H] κh, with probability at least 1 − (1 +
3 log2(H/∆min))δ, we have that

SubOpt(π̂mix) ≲ 2
d3H5κ3

∗
∆min ·K

log3(dKH/δ)

+
16Hκ∗

3K
log log2(KHκ∗/δ) +

2

K
.

Remark 5. If we set the δ in Theorem 2 as δ = Ω(1/K),
then for the expected sub-optimality bound, we have:

E
[
SubOpt(π̂mix)

]
= Õ

(
d3H5κ3

∗
∆min ·K

)
.

The bound in Theorem 2 depends on ∆min inversely. It
is independent of the state space S , action space A, and is
logarithmic in the number of episodes K. This suggests that
our offline algorithm is sample-efficient for MDPs with large
state and action spaces. This is the first result of its kind
to leverage the gap information ∆min to obtain O

(
logK
K

)
bound for offline RL with linear function approximation,
partial data coverage and adaptive data.

We now provide the information-theoretic lower bound of
learning offline linear MDPs under Assumptions 1-2-3.

Theorem 3. Fix any H ≥ 2. For any algorithm Algo(D),
and any concentrability coefficients {κh}h≥1 such that
κh ≥ 2, there exists a linear MDPM = (S,A, H,P, r, d0)
with a positive minimum sub-optimality gap ∆min > 0

and dataset D = {(sth, ath, rth)}
t∈[K]
h∈[H] ∼ P(·|M, µ) where

suph,sh,ah

dM,∗
h (sh,ah)

dM,µ
h (sh,ah)

≤ κh, ∀h ∈ [H] such that:

ED∼M [SubOpt(Algo(D);M)] = Ω

(
κminH

2

K∆min

)
,

where κmin = min{κh : h ∈ [H]}.
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Theorem 3 implies that any offline algorithm suffers the
expected sub-optimality of Ω

(
κminH

2

K∆min

)
under a certain lin-

ear MDP instance and behaviour policy that satisfy the min-
imum positive action gap and the single concentrability.
Thus, the result suggests that our algorithm is optimal in
terms of K and ∆min up to log factors.

Zero sub-optimality. We introduce additional assump-
tions on the linear mapping which our algorithm can exploit
to further accelerate the rate. Let span(X ) the vector space
spanned by X .
Assumption 4. 1. (Unique Optimality - UO): The optimal

actions are unique, i.e.
|supp(π̂∗

h(·|sh))| = 1, ∀(h, sh) ∈ [H]× S∗h.
2. (Spanning Features - SF): Let ϕ∗

h(s) := ϕh(s, π
∗
h(s)).

For any h ∈ [H],
span{ϕ∗

h(sh) : ∀sh ∈ S
µ
h} ⊆ span{ϕ∗

h(sh) : ∀sh ∈ S∗h}.

Intuitively, the features of optimal actions in states reach-
able by an optimal policy provide all information about
those in states reachable by the behaviour policy µ. Note
that Assumption 4.2 is much milder than the uniform fea-
ture coverage assumption as it does not impose any con-
straint on the linear features with respect to the offline pol-
icy and does not require span{ϕ∗

h(s) : ∀s ∈ S, d∗h(s) > 0}
to span the entire Rd. In online regime, a similar assump-
tion called “universally spanning optimal features” is used
to obtain constant regrets (Papini et al. 2021). However,
their assumption is strictly stronger than ours as they require
span{ϕ∗

h(s) : ∀s ∈ S, d∗h(s) > 0} to span all the features
of all actions and states reachable by any policy. Assump-
tion 4.2 instead requires such condition only over optimal
actions and states reachable by the behavior policy.

Let λ+
h be the smallest positive eigenvalue of Σ∗

h :=

E(sh,ah)∼dπ∗
h
[ϕh(sh, ah)ϕh(sh, ah)

T ], let κ1:h :=
∏h

i=1 κi,
and define:

k∗ = max
h∈[H]

k̄h ∨ k̃h, (2)

where k̄h := Ω̃
(

d6H4κ6

∆4
min(λ

+
h )2

+ κ1:h

λ+
h

)
∧ Ω̃

(
κ2
1:hκ

2H2d3

(λ+
h )2

)
,

k̃h := Ω̃
(

d2H4κ1:h

∆2
min(λ

+
h )3

)
, ∀h.

Theorem 4. Given Assumptions 1-2-3-4, with probability at
least 1−4δ, we have that SubOpt(π̂k) = 0, ∀k ≥ k∗, where
k∗ is defined in Eq. (2).
Remark 6. The thresholding value k∗ defined in Eq. (2) is
independent of K, and it scales with the inverse of ∆min and
the distributional shift measures κh.

Theorem 4 suggests that when the linear feature at the op-
timal actions are sufficiently informative and when the num-
ber of episodes is sufficiently large exceeding an instance-
dependent threshold specified by k∗, π̂k precisely recovers
the (unique) optimal policy with high probability.

Proof Overview
Here, we provide a brief overview of the key ideas from our
proof technique; we defer the details to the Appendix.

Proof of Theorem 1. With the extended value differ-
ence and the constrained optimization in Line 10 of Al-
gorithm 1, we reduce bounding SubOpt(π̂k) to bounding
2Eπ∗ [

∑H
h=1 b

k
h(sh, ah)]. We then use the marginalized im-

portance sampling to convert 2Eπ∗ [
∑H

h=1 b
k
h(sh, ah)] to the

dominant term β(δ)
∑H

h=1
d∗
h(s

k
h,a

k
h)

dµ
h(s

k
h,a

k
h)
∥ϕh(s

k
h, a

k
h)∥(Σk

h)
−1 .

For π̂last, the key observation is that Σk
h ⪯ ΣK+1

h , thus

2Eπ∗ [
H∑

h=1

∥ϕh(sh, ah)∥(ΣK+1
h )−1 ]

≤ 2

K

K∑
k=1

Eπ∗ [
H∑

h=1

∥ϕh(sh, ah)∥(Σk
h)

−1 ].

Proof of Theorem 2. We relate bounding
SubOpt(π̂mix) to bounding the empirical version
1
K

∑K
k=1 SubOpt(π̂k; sk1) plus an estimation error term.

Using the original online-to-batch argument (Cesa-
Bianchi, Conconi, and Gentile 2004) only gives a 1√

K
generalization error which prevents us from obtain-
ing Õ( 1

K ) bound. Instead, we propose an improved
online-to-batch argument (Lemma 5) with Õ( 1

K ) gen-
eralization error; this may be of independent interest.
Then, SubOpt(π̂k; s1) is expressed through decomposition
SubOpt(π̂k; s1) = Eπ̂k [

∑H
h=1 ∆h(sh, ah)|Fk−1, s1]

(Lemma 11). To handle the gap terms, the key obser-
vation is that π̂k belongs to the µ-supported policy
class (Lemma 12). Thus, the concentrability coefficients
(Assumption 2) apply and so does the marginalized
importance sampling. The next step is to count the num-
ber of times the empirical gaps exceed a certain value,∑K

k=1 1{∆h(s
k
h, π̂

k
h(s

k
h)) ≥ ∆} ≲ d3H2ι−2

∆2 log3(dKH/δ)
(Lemma 14).

Proof of Theorem 4. A key observation is that
λmin(Σ

k
h) ≳ kλ+

h (Lemma 17) where λ+
h is the min-

imum positive eigenvalue of Σ∗
h. Thus, for any v ∈

span({ϕ∗
h(s)|s ∈ S∗h}), ∥v∥(Σk

h)
−1 ≤ O(1/

√
k) (Lemma

18). Under Assumption 4, ∀sh ∈ Sµh , ∆h(sh, π̂
k
h(sh)) ≤

2βkEπ∗ [
∑H

h′=h ∥ϕh(sh, ah)∥(Σk
h′ )

−1 |Fk−1, sh]

= O( 1√
k
) < ∆min, for sufficiently large k.

Proof of Theorem 3. We reduce the lower bound con-
struction to statistical testing using the Le Cam method, and
construct a hard MDP instance based on the construction
of Jin, Yang, and Wang (2021) with a careful design of the
behavior policy to incorporate the OPC coefficients and the
gap information ∆min.

Discussion
This work studies offline RL with linear function approxi-
mation and contributes a first-of-its-kind Õ( 1

K∆min
) bound

and a constant bound in this setting, using bootstrapping and
constrained optimization on top of pessimism. A question
that remains is to close the gap between upper bounds and
lower bounds in terms of d and κ.
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