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Abstract

We study the linear stochastic bandit problem, relaxing the standard i.i.d. assump-1

tion on the observation noise. As an alternative to this restrictive assumption,2

we allow the noise terms across rounds to be sub-Gaussian but interdependent,3

with dependencies that decay over time. To address this setting, we develop new4

confidence sequences using a recently introduced reduction scheme to sequential5

probability assignment, and use these to derive a bandit algorithm based on the6

principle of optimism in the face of uncertainty. We provide regret bounds for7

the resulting algorithm, expressed in terms of the decay rate of the strength of8

dependence between observations. Among other results, we show that our bounds9

recover the standard rates up to a factor of the mixing time for geometrically mixing10

observation noise.11

1 Introduction12

The linear bandit problem (Abe and Long, 1999; Auer, 2003) is an instance of a multi-armed bandit13

framework, where the expected reward is linear in the feature vector representing the chosen arm.14

More concretely, it is a sequential decision-making problem, where an agent each round picks an arm15

Xt, and receives a reward Yt = ⟨θ⋆, Xt⟩+ εt, with θ⋆ a fixed parameter unknown to the agent, and16

εt zero-mean random noise. This framework has gained significant attention in the literature as it17

yields analytic tools that can be applied to several concrete applications, such as online advertising18

(Abe et al., 2003), recommendation systems (Li et al., 2010; Korkut and Li, 2021), and dynamic19

pricing (Cohen et al., 2020).20

A popular strategy to tackle linear bandits leverages the principle of optimism in the face of uncertainty,21

via upper confidence bound (UCB) algorithms. The idea of optimism can be traced back to Lai and22

Robbins (1985), and its application to linear bandits was already advanced by Auer (2003). Since23

then, this approach has been improved and analysed by several works (Abbasi-Yadkori et al., 2011;24

Lattimore and Szepesvári, 2020; Flynn et al., 2023). This class of methods requires constructing an25

adaptive sequence of confidence sets that, with high probability, contain the true parameter θ⋆. Each26

round, the agent selects the arm maximising the expected reward under the most optimistic parameter27

(in terms of reward) in the current confidence set. UCB-based algorithms have become popular as28

they are often easy to implement and come with tight worst-case regret guarantees.29

For a UCB algorithm to perform well, it is necessary that the confidence sets are tight, which can be30

ensured by taking advantage of the structure of the problem. In this paper, our focus is on studying31

various assumptions on the observation noise. A commonly studied situation is when (εt)t≥0 consists32

of a sequence of i.i.d. realisations of some bounded or sub-Gaussian random variable (see Lattimore33

and Szepesvári, 2020, Chapter 20). Often, the standard analysis can be extended to the case in which34

the realisation are not independent, but conditionally centred and sub-Gaussian (Abbasi-Yadkori35

et al., 2011). Yet, in real-world settings, this assumption is often unrealistic, as one can expect the36

presence of interdependencies among the noise at different rounds. For instance, in the context37

of advertisement selection, the noise models the ensemble of external factors that influence the38
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user’s choice on whether to click or not an ad. The i.i.d. assumption implies that across different39

rounds these external factors are completely independent. In practice, the user choice will be affected40

by temporally correlated events, such as recent browsing history or exposure to similar content.41

Therefore, a more realistic assumption is to allow the dependencies to decay with time, rather than42

being completely absent. This way to model dependencies, often referred to as mixing, is common to43

study concentration for sums of non-i.i.d. random variables, with applications to machine learning44

(Bradley, 2005; Mohri and Rostamizadeh, 2008; Abélès et al., 2025).45

In the present paper we relax the assumption that the noise is conditionally zero-mean in the bandit46

problem, and we allow for the presence of dependencies. Concretely, we replacethe standard47

conditionally sub-Gaussian setting with a more general formulation that accounts for conditional48

dependence of the noise on the past, by introducing a natural notion of mixing sub-Gaussianity. Within49

this context, we introduce a UCB algorithm for which we rigorously establish regret guarantees.50

There are two key challenges for our approach: constructing a valid confidence sequence under51

dependent noise, and deriving a regret upper bound for the UCB algorithm that we propose.52

We derive the confidence sequence by adapting the online-to-confidence-sets technique to accommo-53

date temporal dependencies in the noise. This approach, originally introduced by Abbasi-Yadkori54

et al. (2011) and recently extended and improved (Jun et al., 2017; Lee et al., 2024; Clerico et al.,55

2025), involves constructing an abstract online learning game whose regret guarantees can be turned56

into a confidence sequence. To deal with the dependencies in the noise, we modify the standard57

online-to-confidence-sets framework by introducing delays in the feedback received within the ab-58

stract online game. This approach is inspired by the recent work of Abélès et al. (2025) on extending59

online-to-PAC conversions to non-i.i.d. mixing data sets in the context of deriving generalisation60

bounds for statistical learning. There, a delayed-feedback trick similar to ours is employed to derive61

statistical guarantees (generalisation bounds) from an abstract online learning game.62

For the regret analysis of the bandit algorithm, we also need to face some challenges due to the63

correlated observation noise. We address these by introducing delays into the decision-making policy64

as well. This makes our approach superficially similar to algorithms used in the rich literature on65

bandits with delayed feedback (see, e.g., Vernade et al., 2020a; Howson et al., 2023). These works66

consider delay as part of the problem statement and not part of the solution concept, and are thus67

orthogonal to our work. In particular, a simple adaptation of results from this literature would not68

suffice for dealing with dependent observations, which we tackle by developing new concentration69

inequalities. Another line of work that is conceptually related to ours is that of non-stationary bandits70

(Garivier and Moulines, 2008; Russac et al., 2019). In that setting, the parameter vector θ⋆t evolves in71

time according to a nonstationary stochastic process, and the observation noise remains i.i.d., once72

again making for a rather different problem with its own challenges. Namely, the main obstacle73

to overcome is that comparing with the optimal sequence of actions becomes impossible unless74

strong assumptions are made about the sequence of parameter vectors. A typical trick to deal with75

these nonstationarities is to discard old observations (which may have been generated by a very76

different reward function), and use only recent rewards for decision-making. This is the polar opposite77

of our approach that is explicitly disallowed to use recent rewards, which clearly highlights how78

different these problems are. That said, there exists an intersection between the worlds of delayed79

and nontationary bandits (Vernade et al., 2020b), and thus we would not discard the possibility of80

eventually building a bridge between bandits with nonstationary reward functions and bandits with81

nonstationary observation noise. For simplicity, we focus on the second of these two components in82

this paper.83

Notation. Throughout the paper, we will often use the following notations. For u and v in Rp, we84

let ⟨u, v⟩ denote their dot product. ∥u∥2 =
√

⟨u, u⟩ is the Euclidean norm, while for a non-negative85

definite (p× p)-matrix A, ∥u∥A =
√
⟨u,Au⟩ is a semi-norm (a norm if the matrix is strictly positive86

definite). For r > 0, B(r) denotes the closed centred Euclidean ball in Rp with radius r. Given a87

non-empty set U ⊆ Rp, we let ∆U denote the space of (Borel) probability measures on Rp whose88

support in U . Finally, (ut)t≥t0 denotes a sequence indexed on the integers, with t0 its smallest index.89

2 Preliminaries on linear bandits90

We consider a version of the classic problem of regret minimisation in stochastic linear bandits, where91

an agent needs to make a sequence of decisions (or pick an arm) from a given contextual decision set92
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that may change over the sequence of rounds. We assume that the environment is oblivious to the93

actions of the agent, in the sense that the decision sets are determined in advance, and do not depend94

neither on the realisations of the noise nor on the agent’s arm-selection strategy.95

Concretely, we define the problem as follows. Let θ⋆ ∈ Rp be a parameter vector that is unknown96

to the learning agent. We assume as known an upper bound B > 0 on its euclidean norm (namely,97

θ⋆ ∈ B(B)). Fix a sequence of decision sets (Xt)t≥1 in Rp. We assume that for all t we have98

Xt ⊆ B(1). At each round t, the agent is required to pick an arm Xt ∈ Xt, and receives the reward99

Yt = ⟨θ⋆, Xt⟩+ εt. The sequence (εt)t≥1 represents the random feedback noise. The noise across100

different rounds is typically assumed to be conditionally centred and to have well behaved tails.101

For instance, a common assumption is to ask that E[εt|Ft−1] is centred and sub-Gaussian, where102

Ft = σ(ε1, . . . , εt) is the σ-field generated by the noise.1 This is the assumption this work relaxes.103

The agent aims to find a good strategy to pick arms Xt that lead to a high expected T -round reward104 ∑T
t=1⟨Xt, θ

⋆⟩. To compare their performance to that of an agent playing each round the best available105

arm (in expectation), we define the regret after T rounds as106

Reg(T ) =

t∑
t=1

sup
x∈Xt

(
⟨x, θ⋆⟩ − ⟨Xt, θ

⋆⟩
)
.

A common approach to tackle the linear bandit problem is to follow an upper confidence bound
(UCB) strategy. This involves the following protocol. At each round t, we first derive a confidence
set Ct−1, based on the arm-reward pairs (Xs, Ys)s≤t−1. This is a random set (as it depends on the
past noise realisations), which must be constructed ensuring that θ⋆ ∈ Ct−1 with high probability.
More precisely, the regret can be effectively controlled if one can ensure that θ⋆ uniformly belongs to
every set (Ct)t≥1, with high probability (a property often referred to as anytime validity). Then, for
every available arm x, we let

UCBCt−1
(x) = max

θ∈Ct−1

⟨x, θ⟩ .

By definition, this is a high-probability upper bound on ⟨x, θ⋆⟩, which justifies the name “upper107

confidence bound”. The idea is then to optimistically pick as Xt ∈ Xt the arm maximising UCBCt−1 .108

A key technical challenge in designing a UCB algorithm is to construct the anytime valid confidence
sequence (Ct)t≥1. Typically, under sub-Gaussian assumptions on the noise, these sets take the form
of an ellipsoid, centred on a (regularised) maximum likelihood estimator. Explicitly, we often have

Ct =
{
θ ∈ Θ : ∥θ − θ̂t∥2Vt

≤ β2
t

}
,

where θ̂t is the least-squares estimator of θ⋆, Vt is the feature-covariance matrix and βt is a radius109

carefully chosen so that the high-probability coverage requirement is satisfied. In this work, to110

construct the confidence sets we will leverage an online-to-confidence-set-conversion approach, a111

method that reduces the problem of proving statistical concentration bounds to proving existence of112

well-performing algorithms for an associated game of sequential probability assignment. We refer to113

Section 4 for more details on our technique to construct the confidence sequence.114

3 Linear bandits with non-i.i.d. observation noise115

We study a variant of the standard linear stochastic bandit problem where the observation-noise116

variables feature dependencies across different rounds. We focus on the case of weakly stationary117

noise, meaning we assume all the εt to have the same marginal distribution. However, the core118

assumption we make is what we call mixing sub-Gaussianity. This provides a way to control how119

dependencies decay as the time between two observations increases. It is defined in terms of a120

sequence of mixing coefficients ϕd, which quantify this decay.121

Assumption 1 (Mixing sub-Gaussianity). Fix σ > 0 and let ϕ = (ϕd)d≥0 be a non-negative and122

non-increasing sequence. We say that the random sequence (ϵt)t≥1 is (σ, ϕ)-mixing sub-Gaussian if123

1We remark that, more generally, one can consider the case where the Xt as well are randomised, namely
contain additional randomness that is not included in the noise. To take this into account, one can add this other
source or randomness in the filtration. However, since in our case we will only consider a non-randomised bandit
algorithm, we omit this to simplify our analysis.
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εt is centred and σ-sub-Gaussian for every t, and, for all d ≥ 0 and all t > d, we have124 ∣∣E [ϵt |Ft−d ]
∣∣ ≤ ϕd (1)

and125

E [expλ(ϵt − E [ϵt |Ft−d ]) |Ft−d ] ≤ e
λ2σ2

2 , ∀λ > 0 . (2)

Clearly, the above assumption generalises the standard conditionally sub-Gaussian assumption (that126

can be recovered by setting ϕd = 0 for all t), sometimes considered in the bandit literature. Although127

this might look like an unusual mixing assumption, it is very natural for our problem at hand, and128

can be weaker than standard mixing hypotheses. For instance, if the noise sequence is φ-mixing129

(see Bradley, 2005) and each εt is centred and bounded in [−a, b], it is straightforward to check that130

|E[εt|Ft−d]| ≤ (a + b)ϕd, and so Assumption 1 is satisfied since the boundedness automatically131

implies sub-Gaussianity. In the rest of the paper we assume σ = 1 for simplicity.132

Under Assumption 1, we can build the confidence sequence needed for our UCB algorithm. We state133

this result below, but defer the explicit derivation to Section 4 (see Corollary 1 there).134

Proposition 1. For some given ϕ, let the noise satisfy Assumption 1 with σ = 1. Fix δ ∈ (0, 1),
λ > 0, and d ≥ 1. For t ≥ 1 let

Ct =
{
θ ∈ B(B) : 1

2∥θ − θ̂t∥2Vt
≤ dp

2 log (B+1)2emax(dp,t+d)
dp + 2λB2 + tϕd(B + 1) + d log d

δ

}
,

where Vt =
∑t

s=1 XtX
⊤
t + λId, and θ̂t = arg minθ∈B(B)

∑n
s=1(⟨θ,Xt⟩ − Yt)

2. Then, (Ct)t≥1 is
an anytime valid confidence sequence, in the sense that

P
(
θ⋆ ∈ Ct , ∀t ≥ 1

)
≥ 1− δ .

Leveraging the confidence sequence above, we can define a UCB approach for our problem (Algo-135

rithm 1). At a high level, the algorithm operates by taking the confidence sets defined in Proposition136

1, and selecting the arm optimistically, as in the standard UCB. A key point is that a delay d is137

introduced, which at round t restricts the agent to use only the information available from the first138

t− d rounds. Although the actual technical reason behind this restriction will become fully clear only139

with the analysis of the coming sections, one can intuitively think of it as a way to prevent overfitting140

to recent noise, which might be highly correlated. If d is sufficiently large, the noise observed in141

each round t will be sufficiently decorrelated from the previous observations, which allows accurate142

estimation and uncertainty quantification of the true parameter θ⋆ and the associated rewards.143

Algorithm 1 Mixing-LinUCB
set d > 0
for i ∈ {1, 2, . . . d} do

play an arbitrary Xi and observe Yi

end for
for t ∈ {d+ 1, . . . } do

Xt = argmaxx∈Xt
UCBCt−d

(x), where Ct−d is as in Proposition 1
play Xt and observe reward Yt

end for

In Section 5 we provide a detailed analysis of the regret of the algorithm that we proposed. For144

instance, assuming that the mixing coefficients decay exponentially as ϕd = Ce−d/τ (geometric145

mixing), we show that the regret can be upper bounded in high probability as146

Reg(T ) ≤ O
(
τp

√
T log(T )2 + τ log T

√
pT log T

)
.

We refer to Theorem 2 and Corollary 2 in Section 5 for more details.147

4 Constructing the confidence sequence148

In this section we derive a confidence sequence for linear models with non-i.i.d. noise. First, we149

briefly describe the online-to-confidence-set conversion scheme from Clerico et al. (2025), which150

serves as our starting point. We then extend this technique to handle mixing noise.151
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4.1 Online-to-confidence set conversion for i.i.d. data152

Before proceeding for the analysis of mixing sub-Gaussian noise, which is the focus of this work,153

we start by describing how to derive a confidence sequence when the noise is independent (or154

conditionally) centred and sub-Gaussian across different rounds, as in Clerico et al. (2025). The155

online-to-confidence sets framework that we consider instantiates an abstract game played between156

an online learner and an environment. We define the squared loss ℓs(θ) = 1
2 (⟨θ,Xs⟩ − Ys)

2. For157

each round s = 1, . . . , t, the following steps are repeated:158

1. the environment reveals Xs to the learner;159

2. the learner plays a distribution Qs ∈ ∆Rp ;160

3. the environment reveals Ys to the learner;161

4. the learner suffers the log loss Ls(Qs) = − log
∫
Rp exp(−ℓs(θ))dQs(θ).162

This game is a special case of a well-studied problem called sequential probability assignment163

(Cesa-Bianchi and Lugosi, 2006). The learner can use any strategy to choose Q1, . . . , Qt, as long as164

each Qs depends only on X1, Y1, . . . , Xs−1, Ys−1, Xs. We define the regret of the learner against a165

(possibly data-dependent) comparator θ̄ ∈ Rp as166

Regrett(θ̄) =

t∑
s=1

Ls(Qs)−
t∑

s=1

ℓs(θ̄) .

Clerico et al. (2025) provide a regret bound upper bound (Proposition 3.1 there) for when the learner’s167

strategy is from an exponential weighted average (EWA) forecaster with a centred Gaussian prior168

Q1. However, to account for the presence of dependencies in our analysis, we will need the prior’s169

support to be bounded. We hence state here a regret bound (whose proof is deferred to Appendix170

A.2) for the regret of an EWA forecaster with a uniform prior.171

Proposition 2. Fix B > 0 and consider the EWA forecaster with as prior the uniform distribution on172

B(B + 1). Then, for all θ̄ ∈ B(B) and any t ≥ 1,173

Regrett(θ̄) ≤
p

2
log

(B + 1)2emax(p, t)

p
.

174

We remark that, by adding and subtracting the total log loss of the learner, the excess loss of θ⋆175

(relative to θ̄) can be rewritten as176

t∑
s=1

ℓs(θ
⋆)−

t∑
s=1

ℓs(θ̄) = Regrett(θ̄) +

t∑
s=1

ℓs(θ
⋆)−

t∑
s=1

Ls(Qs) . (3)

This simple decomposition is the key idea in the online-to-confidence sets scheme.177

Since the noise is conditionally sub-Gaussian and the distributions played by the online learner are pre-
dictable (Qs cannot depend on Ys),

∑t
s=1 ℓs(θ

⋆)−
∑t

s=1 Ls(Qs) is the logarithm of a non-negative
super-martingale (cf. the no-hypercompression inequality in Grünwald, 2007 or Proposition 2.1 in
Clerico et al., 2025) with respect to the noise filtration (Ft)t≥1.2 Henceforth, from Ville’s inequality
(a classical anytime valid Markov-like inequality that holds for non-negative super-martingales) one
can easily derive that θ⋆ ∈ Ct (uniformly for all t) with probability at least 1− δ, where

Ct =

{
θ ∈ Rp :

t∑
s=1

ℓs(θ)−
t∑

s=1

ℓs(θ̄) ≤ Regrett(θ̄) + log
1

δ

}
.

This result can be relaxed by replacing Regrett(θ̄) by any known regret upper bound for the online178

algorithm used in the abstract game (e.g., the bound of Proposition 2 for the EWA forecaster).179

2For simplicity, since this will be the case for our bandit strategy, we assume throughout the paper that Xt is
fully determined given the past noise (see footnote 1).
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4.2 Confidence sequence under mixing sub-Gaussian noise180

The standard online-to-confidence sets scheme relies on the fact that
∑t

s=1 ℓs(θ
⋆)−

∑t
s=1 Ls(Qs) is181

the logarithm of a non-negative super-martingale, whose fluctuations can be controlled uniformly in182

time thanks to Ville’s inequality. However, this property hinges on the fact that the noise is assumed183

to be conditionally centred and sub-Gaussian, which now is not anymore the case. Yet, thanks to184

our mixing assumption, if we restrict our focus on rounds that are sufficiently far apart, the mutual185

dependencies get weaker, and the exponential of the sum behaves almost like a martingale. This186

insight suggests to partition the rounds into blocks, whose elements are mutually far apart, then apply187

concentration results to each block, and finally use a union bound to recover the desired confidence188

sequence spanning all rounds. We remark that this is a classical approach to derive concentration189

results for mixing processes, often referred to as the blocking technique (Yu, 1994).190

In order for the online-to-confidence sets scheme to leverage the blocking strategy outlined above,191

the abstract online game used for the analysis must be designed in a way that is compatible with192

the block structure. To address this point, we adopt an approach inspired by Abélès et al. (2025),193

who introduced delays in the feedbacks received by the online learner in order to address a similar194

challenge. More precisely, we will now consider the following delayed-feedback version of the online195

game. Fix a delay d > 0. For each round s = 1, . . . , t, the following steps are repeated:196

1. the environment reveals to the learner Xs, which is assumed to be Fs−d-measurable;197

2. the learner plays a distribution Qs ∈ ∆Rp ;198

3. if s > d, the environment reveals Ys−d+1 to the learner;199

4. the learner suffers the log loss Ls(Qs) = − log
∫
Rp exp(−ℓs(θ))dQs(θ).200

Note that the delay d only applies for the rewards, while Qs can still depend on Xs. Indeed, the choice201

of Xs in our mixing UCB algorithm is already “delayed”, as it depends on Ct−d (see Algorithm 1).202

Of course, in this setting the decomposition of (3) is still valid. We now want to deal with the203

concentration of
∑t

s=1 ℓs(θ
⋆) −

∑t
s=1 Ls(Qs) via the blocking technique. For convenience, let204

us write Dt = ℓt(θ
⋆) − Lt(Qt). We denote as S(i) = (S

(i)
k )k≥1 the subsequence defined as205

S
(i)
k =

∑k
j=1 Di+(j−1)d. The key idea is now that each of these S(i) behaves as the log of a206

martingale, up to a cumulative remainder that accounts for the conditional mean shift in the mixing207

sub-Gaussianity assumption. In particular, Ville’s inequality and a union bound yield the following.208

Lemma 1. Fix a delay d > 0 and δ ∈ (0, 1). We have that

P

(
t∑

s=1

(
ℓs(θ

⋆)− Ls(Qs)
)
≤ tϕdB + d log

d

δ
, ∀t ≥ 1

)
≥ 1− δ .

Now that we have a concentration result to control St, we only need to be able to upper bound the209

regret of an algorithm for the “delayed” online game that we are considering. To this purpose, we210

propose the following approach. We run d independent EWA forecaster (with uniform prior), each211

one only making prediction and receiving the feedback once every d rounds. More explicitly, the first212

forecaster acts at rounds 1, d+ 1, 2d+ 1..., the second at round 2, d+ 2, 2d+ 2..., and so on. As a213

direct consequence of Proposition 2, by summing the individual regret upper bounds we get a regret214

bound for the joint forecaster, which at each round returns the distribution predicted by the currently215

active forecaster. This technique of partitioning rounds into blocks for the regret analysis of online216

learning is common in the literature (e.g., see Weinberger and Ordentlich, 2002).217

Lemma 2. Fix B > 0, d > 0, and consider a strategy with d independent EWA forecasters outlined218

above, all initialised with the uniform distribution on B(B+1) as prior. For all θ̄ ∈ B(B) and t ≥ 1,219

Regrett(θ̄) ≤
dp

2
log

(B + 1)2emax(dp, t+ d)

dp
.

Putting together what we have, we get a confidence sequence suitable for our mixing UCB algorithm.220

Theorem 1. Consider the setting introduced above. Fix δ ∈ (0, 1) and a delay d > 0. Assume as
known that θ⋆ ∈ B(B). Let θ̂t = arg minθ∈B(B){

∑t
s=1 ℓs(θ)} and Λt =

∑t
s=1 XsX

⊤
s . Define

Ct =
{
θ ∈ B(B) : 1

2∥θ − θ̂t∥2Λt
≤ dp

2 log (B+1)2emax(dp,t+d)
dp + tϕd(B + 1) + d log d

δ

}
.
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Then, (Ct)t≥1 is an anytime valid confidence sequence for θ⋆, namely

P
(
θ⋆ ∈ Ct , ∀t ≥ 1

)
≤ 1− δ .

Proof. The optimality of θ̂t implies
∑t

s=1⟨θ − θ̂t,∇ℓs(θ̂t)⟩ ≥ 0, for all θ ∈ B(B). As
∑t

s=1 ℓs is
quadratic, it equals its second order Taylor expansion around θ̂t and its Hessian is everywhere Λt. So,

1

2
∥θ − θ̂t∥2Λt

≤ 1

2
∥θ − θ̂t∥2Λt

+

t∑
s=1

〈
θ − θ̂t,∇ℓs(θ̂t)

〉
=

t∑
s=1

(
ℓs(θ)− ℓs(θ̂t)

)
,

for any θ ∈ B(B). This, together with (3), Lemma 1, and Lemma 2, yields the conclusion.221

We remark that the confidence sets of Theorem 1 take the form of the intersection between the ball222

B(B) and the “ellipsoid” {θ : ∥θ − θ̂t∥Λt
≤ βt}, for a suitable radius βt. In order to implement and223

analyse the bandit algorithm, it will be more convenient to work with a relaxation of these sets, a224

pure ellipsoid not intersected with B(B). We make this explicit in the following corollary.225

Corollary 1. Fix λ > 0, d > 0, and δ ∈ (0, 1). For t ≥ 1, let Vt = Λt + λId. Assuming that
θ⋆ ∈ B(B), the following compact ellipsoids define an anytime valid confidence sequence for θ⋆:

Ct =
{
θ ∈ B(B) : 1

2∥θ − θ̂t∥2Vt
≤ dp

2 log (B+1)2emax(dp,t+d)
dp + 2λB2 + tϕd(B + 1) + d log d

δ

}
.

Proof. Let β2
t = dp log (B+1)2emax(dp,t+d)

dp + 2tϕd(B + 1) + 2d log d
δ . From Theorem 1, with226

probability at least 1 − δ, uniformly for every t, ∥θ⋆ − θ̂t∥2Λt
≤ β2

t . Adding to both sides of this227

inequality λ
2 ∥θ

⋆ − θ̂t∥22, and relaxing the RHS using that ∥θ⋆ − θ̂t∥22 ≤ 4B2, we conclude.228

5 Regret bounds for Mixing-LinUCB229

In this section, we establish worst-case and gap-dependent cumulative regret bounds for mixing UCB230

algorithm (Mixing Lin-UCB). However, to account for the fact that Mixing-LinUCB selects actions231

with delays, the standard elliptical potential arguments must be modified. Throughout this section,232

we let Rt = ⟨θ⋆, X⋆
t − Xt⟩ (where X⋆

t = arg maxx∈Xt
⟨θ⋆, x⟩) denote the regret in round t, and233

β2
t = dp log (B+1)2emax(dp,t+d)

dp +4λB2 +2tϕd(B+1)+2d log d
δ denote the squared radius of the234

ellipsoid Ct in Corollary 1.235

5.1 Worst-case regret bounds236

First, following the regret analysis in Abbasi-Yadkori et al. (2011) (see also Section 19.3 in Lattimore237

and Szepesvári, 2020), we upper bound the instantaneous regret. From our boundedness assumptions238

(θ⋆ ∈ B(B) and Xt ⊆ B(1)), we easily deduce that Rt ≤ 2B. Under the event that our confidence239

sequence contains θ⋆ at every step t, we have another bound on Rt. If we define θ̃t−d ∈ Ct−d to be240

the point at which ⟨θ̃t−d, Xt⟩ = UCBCt−d
(Xt), then from the definition of Xt we have241

⟨θ⋆, X⋆
t ⟩ ≤ max

x∈Xt

max
θ∈Ct−d

⟨θ, x⟩ = max
x∈Xt

UCBCt−d
(x) = UCBCt−d

(Xt) = ⟨θ̃t−d, Xt⟩ .

Recall that, for all s, Vs = Λs + λId, which is invertible as λ > 0. Thus, by Cauchy-Schwarz,242

Rt ≤ ⟨θ̃t−d − θ⋆, Xt⟩ ≤ ∥θ̃t−d − θ⋆∥Vt−d
∥Xt∥V −1

t−d
≤ 2βt−d∥Xt∥V −1

t−d
.

This means that the instantaneous regret satisfies the bound243

Rt ≤ 2max(B, βt−d)min(1, ∥Xt∥V −1
t−d

) . (4)
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Next, we separate the regret suffered in the first d rounds and the remaining T − d rounds. We then244

use Cauchy-Schwarz once more, and the fact that βt is increasing in t, to obtain245

Reg(T ) ≤ 2dB +

√
(T − d)

∑T
t=d+1R

2
t

≤ 2dB +

√
4(T − d)max(B2, β2

T−d)
∑T

t=d+1 min(1, ∥Xt∥2V −1
t−d

) .

At this point, we must depart from the standard linear UCB analysis (Abbasi-Yadkori et al., 2011; Latti-246

more and Szepesvári, 2020). We bound the sum of the elliptical potentials
∑T

t=d+1 min(1, ∥Xt∥2V −1
t−d

)247

using the following variant of the well-known “elliptical potential lemma” (see Appendix), which248

accounts for the fact that the feature covariance matrix Vt−d is updated with a delay of d steps.249

Lemma 3. For all T ≥ 1,250

T∑
t=d+1

min(1, ∥Xt∥2V −1
t−d

) ≤ 2dp log(1 + T
λdp ) .

251

We can now state a worst-case regret upper bound for Mixing-LinUCB.252

Theorem 2. Fix λ = 1/B2, d > 0 and δ ∈ (0, 1). With probability at least 1− δ, for all T > d, the253

regret of Mixing-LinUCB satisfies254

Reg(T ) ≤ 2dB +
√
8dpT max(B2, β2

T ) log(1 +
B2T
dp ) .

255

From the definition of βT , we see that this regret bound is of the order256

Reg(T ) = O
(
dB + dp

√
T log TB

dp + T
√
Bdpϕd log

TB
dp + d

√
pT log TB

pδ

)
.

For any fixed (i.e., not depending on T ) delay d, this regret bound is linear in T . To obtain meaningful257

regret bounds, it is therefore crucial to set d as a function of T and the rate at which the mixing258

coefficients decay to zero3. Under the assumption that the noise variables are either geometrically or259

algebraically mixing, we obtain the following worst-case regret bounds.260

Corollary 2. Suppose that the noise satisfies Assumption 1 with ϕd = Ce−
d
τ for some C, τ > 0261

(geometric mixing), and set d = ⌈τ log BCT
p ⌉. Then, the regret of Mixing-LinUCB satisfies262

Reg(T ) = O
(
τp

√
T
(
log TBmax(1,C)

p

)2
+ p

√
Tτ log TBmax(1,C)

p + τ log BCT
p

√
pT log TB

pδ

)
.

Corollary 3. Suppose that the noise satisfies Assumption 1 with ϕd = Cd−r for some C > 0 and263

r > 0 (algebraic mixing), and set d = ⌈CT 1/(1+r)⌉. Then, the regret of Mixing-LinUCB satisfies264

Reg(T ) ≤ O
(
CBT 1/(1+r) + T

3+r
2(1+r)

(
Cp log TB

dp + C
√
Bp log T r/(1+r)B

Cp +
√
p log TB

pδ

))
.

265

Up to a factor of τ log T , the bound for geometrically mixing noise matches the regret bound for266

linear UCB with i.i.d. noise. This bound is trivial for r ≤ 1, however for r > 1 we get sublinear267

regret, and in particular we recover standard rates up to logarithmic factors in the limit where r → ∞.268

5.2 Gap-dependent regret bounds269

Under the assumption that, each round, the gap between the expected reward of the optimal arm and270

the expected reward of any other arm is at least ∆ > 0, we get regret bounds with better dependence271

3If T is unknown, one could probably use doubling tricks to set the value of d, but we do not pursue this here.
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on T . More precisely, define the minimum gap ∆ = mint∈[T ] minx∈Xt:x ̸=X⋆
t
⟨X⋆

t − x, θ⋆⟩, and272

assume that ∆ > 0. Since we either have Rt = 0 or Rt ≥ ∆ > 0, it follows that273

Rt ≤ R2
t /∆ .

In our worst-case analysis, we showed that274

T∑
t=d+1

R2
t ≤ 8dpmax(B2, β2

T ) log(1 +
T

λdp ) .

Combined with the previous inequality, we obtain the following gap-dependent regret bound.275

Theorem 3. Fix λ = 1/B2, d > 0, and δ ∈ (0, 1). With probability at least 1− δ, for all T > d, the276

regret of Mixing-LinUCB satisfies277

Reg(T ) ≤ 2dB +
8dp

∆
max(B2, β2

T ) log

(
1 +

B2T

dp

)
.

278

Similarly to the worst-case bound in Theorem 2, for any fixed d > 0, this regret bound is linear in T .279

By setting d as a suitable function of T , we obtain the following gap-dependent regret bounds under280

geometrically or algebraically mixing noise.281

Corollary 4. Suppose that the noise variables are geometrically mixing and set d = ⌈τ log BCT
p ⌉.282

Then the regret of Mixing-LinUCB satisfies283

Reg(T ) = O

(
8τp

∆

(
log

BCT

p

)2

log

(
1 +

B2T

pτ log BCT
p

)(
p

2
log

T

pτ
+ log

τ log BCT
p

δ

))
.

284

Corollary 5. Suppose that the noise variables are algebraically mixing and set d = ⌈CT 1/(1+r)⌉.285

Then the regret of Mixing-LinUCB satisfies286

Reg(T ) = O
(
8Cp

∆
T

2
1+r log

(
1 +

B2T

pCT 1/(1+r)

)(
p

2
log

T

pτ
+ log

CT 1/(1+r)

δ

))
.

287

6 Conclusion288

We leave several interesting questions open for future research. Some of these are listed below.289

An important limitation of our algorithm is that it requires the knowledge of the mixing coefficients290

(or at least an upper-bound on them). It would be interesting to explore the possibility of relaxing291

this assumption and to design an algorithm which infers the mixing coefficients while minimizing292

the regret. We note that the problem of estimating mixing coefficients is already a hard problem on293

its own right, with tight sample-complexity results only available in special cases such as Markov294

chains (Hsu et al., 2019; Wolfer, 2020). We also note that in order to recover the standard rate for the295

regret bound, the delay d introduced in our algorithm need to be chosen as a function of the horizon296

T . We believe that this could be fixed at little conceptual expense by using time-varying delay in the297

analysis, but we did not attempt to work out the (potentially non-trivial) details here.298

Another limitation is that our analysis assumed throughout that the adversary picking the decision sets299

Xt is oblivious, which is typically not required in linear bandit problems. For us, this was necessary300

to avoid potential statistical dependence between decision sets and the nonstationary observations.301

We believe that this issue can be handled at least for some classes of adversaries. For instance, it302

is easy to see that our analysis would carry through under the assumption that the decision sets be303

selected based on delayed information only. We leave the investigation of this question under more304

realistic assumptions open for future work.305
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NeurIPS Paper Checklist369

The checklist is designed to encourage best practices for responsible machine learning research,370

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove371

the checklist: The papers not including the checklist will be desk rejected. The checklist should372

follow the references and follow the (optional) supplemental material. The checklist does NOT count373

towards the page limit.374

Please read the checklist guidelines carefully for information on how to answer these questions. For375

each question in the checklist:376

• You should answer [Yes] , [No] , or [NA] .377

• [NA] means either that the question is Not Applicable for that particular paper or the378

relevant information is Not Available.379

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).380

The checklist answers are an integral part of your paper submission. They are visible to the381

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it382

(after eventual revisions) with the final version of your paper, and its final version will be published383

with the paper.384

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.385

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a386

proper justification is given (e.g., "error bars are not reported because it would be too computationally387

expensive" or "we were unable to find the license for the dataset we used"). In general, answering388

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we389

acknowledge that the true answer is often more nuanced, so please just use your best judgment and390

write a justification to elaborate. All supporting evidence can appear either in the main paper or the391

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification392

please point to the section(s) where related material for the question can be found.393

IMPORTANT, please:394

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",395

• Keep the checklist subsection headings, questions/answers and guidelines below.396

• Do not modify the questions and only use the provided macros for your answers.397

1. Claims398

Question: Do the main claims made in the abstract and introduction accurately reflect the399

paper’s contributions and scope?400

Answer: [Yes]401

Justification: See sections 3, 4,5.402

Guidelines:403

• The answer NA means that the abstract and introduction do not include the claims404

made in the paper.405

• The abstract and/or introduction should clearly state the claims made, including the406

contributions made in the paper and important assumptions and limitations. A No or407

NA answer to this question will not be perceived well by the reviewers.408

• The claims made should match theoretical and experimental results, and reflect how409

much the results can be expected to generalize to other settings.410

• It is fine to include aspirational goals as motivation as long as it is clear that these goals411

are not attained by the paper.412

2. Limitations413

Question: Does the paper discuss the limitations of the work performed by the authors?414

Answer: [Yes]415

Justification: See Conclusion.416
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Guidelines:417

• The answer NA means that the paper has no limitation while the answer No means that418

the paper has limitations, but those are not discussed in the paper.419

• The authors are encouraged to create a separate "Limitations" section in their paper.420

• The paper should point out any strong assumptions and how robust the results are to421

violations of these assumptions (e.g., independence assumptions, noiseless settings,422

model well-specification, asymptotic approximations only holding locally). The authors423

should reflect on how these assumptions might be violated in practice and what the424

implications would be.425

• The authors should reflect on the scope of the claims made, e.g., if the approach was426

only tested on a few datasets or with a few runs. In general, empirical results often427

depend on implicit assumptions, which should be articulated.428

• The authors should reflect on the factors that influence the performance of the approach.429

For example, a facial recognition algorithm may perform poorly when image resolution430

is low or images are taken in low lighting. Or a speech-to-text system might not be431

used reliably to provide closed captions for online lectures because it fails to handle432

technical jargon.433

• The authors should discuss the computational efficiency of the proposed algorithms434

and how they scale with dataset size.435

• If applicable, the authors should discuss possible limitations of their approach to436

address problems of privacy and fairness.437

• While the authors might fear that complete honesty about limitations might be used by438

reviewers as grounds for rejection, a worse outcome might be that reviewers discover439

limitations that aren’t acknowledged in the paper. The authors should use their best440

judgment and recognize that individual actions in favor of transparency play an impor-441

tant role in developing norms that preserve the integrity of the community. Reviewers442

will be specifically instructed to not penalize honesty concerning limitations.443

3. Theory assumptions and proofs444

Question: For each theoretical result, does the paper provide the full set of assumptions and445

a complete (and correct) proof?446

Answer: [Yes]447

Justification: Most of the common assumptions concerning linear bandits are presented in448

Section 2. The main novel assumption is introduced in section 3. All the proofs that are not449

addressed in the paper are gathered in the Appendix.450

Guidelines:451

• The answer NA means that the paper does not include theoretical results.452

• All the theorems, formulas, and proofs in the paper should be numbered and cross-453

referenced.454

• All assumptions should be clearly stated or referenced in the statement of any theorems.455

• The proofs can either appear in the main paper or the supplemental material, but if456

they appear in the supplemental material, the authors are encouraged to provide a short457

proof sketch to provide intuition.458

• Inversely, any informal proof provided in the core of the paper should be complemented459

by formal proofs provided in appendix or supplemental material.460

• Theorems and Lemmas that the proof relies upon should be properly referenced.461

4. Experimental result reproducibility462

Question: Does the paper fully disclose all the information needed to reproduce the main ex-463

perimental results of the paper to the extent that it affects the main claims and/or conclusions464

of the paper (regardless of whether the code and data are provided or not)?465

Answer: [NA]466

Justification: Not Applicable.467

Guidelines:468

• The answer NA means that the paper does not include experiments.469
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• If the paper includes experiments, a No answer to this question will not be perceived470

well by the reviewers: Making the paper reproducible is important, regardless of471

whether the code and data are provided or not.472

• If the contribution is a dataset and/or model, the authors should describe the steps taken473

to make their results reproducible or verifiable.474

• Depending on the contribution, reproducibility can be accomplished in various ways.475

For example, if the contribution is a novel architecture, describing the architecture fully476

might suffice, or if the contribution is a specific model and empirical evaluation, it may477

be necessary to either make it possible for others to replicate the model with the same478

dataset, or provide access to the model. In general. releasing code and data is often479

one good way to accomplish this, but reproducibility can also be provided via detailed480

instructions for how to replicate the results, access to a hosted model (e.g., in the case481

of a large language model), releasing of a model checkpoint, or other means that are482

appropriate to the research performed.483

• While NeurIPS does not require releasing code, the conference does require all submis-484

sions to provide some reasonable avenue for reproducibility, which may depend on the485

nature of the contribution. For example486

(a) If the contribution is primarily a new algorithm, the paper should make it clear how487

to reproduce that algorithm.488

(b) If the contribution is primarily a new model architecture, the paper should describe489

the architecture clearly and fully.490

(c) If the contribution is a new model (e.g., a large language model), then there should491

either be a way to access this model for reproducing the results or a way to reproduce492

the model (e.g., with an open-source dataset or instructions for how to construct493

the dataset).494

(d) We recognize that reproducibility may be tricky in some cases, in which case495

authors are welcome to describe the particular way they provide for reproducibility.496

In the case of closed-source models, it may be that access to the model is limited in497

some way (e.g., to registered users), but it should be possible for other researchers498

to have some path to reproducing or verifying the results.499

5. Open access to data and code500

Question: Does the paper provide open access to the data and code, with sufficient instruc-501

tions to faithfully reproduce the main experimental results, as described in supplemental502

material?503

Answer: [NA]504

Justification: Not Applicable.505

Guidelines:506

• The answer NA means that paper does not include experiments requiring code.507

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/508

public/guides/CodeSubmissionPolicy) for more details.509

• While we encourage the release of code and data, we understand that this might not be510

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not511

including code, unless this is central to the contribution (e.g., for a new open-source512

benchmark).513

• The instructions should contain the exact command and environment needed to run to514

reproduce the results. See the NeurIPS code and data submission guidelines (https:515

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.516

• The authors should provide instructions on data access and preparation, including how517

to access the raw data, preprocessed data, intermediate data, and generated data, etc.518

• The authors should provide scripts to reproduce all experimental results for the new519

proposed method and baselines. If only a subset of experiments are reproducible, they520

should state which ones are omitted from the script and why.521

• At submission time, to preserve anonymity, the authors should release anonymized522

versions (if applicable).523
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• Providing as much information as possible in supplemental material (appended to the524

paper) is recommended, but including URLs to data and code is permitted.525

6. Experimental setting/details526

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-527

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the528

results?529

Answer: [NA]530

Justification: Not Applicable.531

Guidelines:532

• The answer NA means that the paper does not include experiments.533

• The experimental setting should be presented in the core of the paper to a level of detail534

that is necessary to appreciate the results and make sense of them.535

• The full details can be provided either with the code, in appendix, or as supplemental536

material.537

7. Experiment statistical significance538

Question: Does the paper report error bars suitably and correctly defined or other appropriate539

information about the statistical significance of the experiments?540

Answer: [NA]541

Justification: Not Applicable.542

Guidelines:543

• The answer NA means that the paper does not include experiments.544

• The authors should answer "Yes" if the results are accompanied by error bars, confi-545

dence intervals, or statistical significance tests, at least for the experiments that support546

the main claims of the paper.547

• The factors of variability that the error bars are capturing should be clearly stated (for548

example, train/test split, initialization, random drawing of some parameter, or overall549

run with given experimental conditions).550

• The method for calculating the error bars should be explained (closed form formula,551

call to a library function, bootstrap, etc.)552

• The assumptions made should be given (e.g., Normally distributed errors).553

• It should be clear whether the error bar is the standard deviation or the standard error554

of the mean.555

• It is OK to report 1-sigma error bars, but one should state it. The authors should556

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis557

of Normality of errors is not verified.558

• For asymmetric distributions, the authors should be careful not to show in tables or559

figures symmetric error bars that would yield results that are out of range (e.g. negative560

error rates).561

• If error bars are reported in tables or plots, The authors should explain in the text how562

they were calculated and reference the corresponding figures or tables in the text.563

8. Experiments compute resources564

Question: For each experiment, does the paper provide sufficient information on the com-565

puter resources (type of compute workers, memory, time of execution) needed to reproduce566

the experiments?567

Answer: [NA]568

Justification: Not Applicable.569

Guidelines:570

• The answer NA means that the paper does not include experiments.571

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,572

or cloud provider, including relevant memory and storage.573
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• The paper should provide the amount of compute required for each of the individual574

experimental runs as well as estimate the total compute.575

• The paper should disclose whether the full research project required more compute576

than the experiments reported in the paper (e.g., preliminary or failed experiments that577

didn’t make it into the paper).578

9. Code of ethics579

Question: Does the research conducted in the paper conform, in every respect, with the580

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?581

Answer: [Yes]582

Justification:583

Guidelines:584

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.585

• If the authors answer No, they should explain the special circumstances that require a586

deviation from the Code of Ethics.587

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-588

eration due to laws or regulations in their jurisdiction).589

10. Broader impacts590

Question: Does the paper discuss both potential positive societal impacts and negative591

societal impacts of the work performed?592

Answer: [NA]593

Justification:594

Guidelines:595

• The answer NA means that there is no societal impact of the work performed.596

• If the authors answer NA or No, they should explain why their work has no societal597

impact or why the paper does not address societal impact.598

• Examples of negative societal impacts include potential malicious or unintended uses599

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations600

(e.g., deployment of technologies that could make decisions that unfairly impact specific601

groups), privacy considerations, and security considerations.602

• The conference expects that many papers will be foundational research and not tied603

to particular applications, let alone deployments. However, if there is a direct path to604

any negative applications, the authors should point it out. For example, it is legitimate605

to point out that an improvement in the quality of generative models could be used to606

generate deepfakes for disinformation. On the other hand, it is not needed to point out607

that a generic algorithm for optimizing neural networks could enable people to train608

models that generate Deepfakes faster.609

• The authors should consider possible harms that could arise when the technology is610

being used as intended and functioning correctly, harms that could arise when the611

technology is being used as intended but gives incorrect results, and harms following612

from (intentional or unintentional) misuse of the technology.613

• If there are negative societal impacts, the authors could also discuss possible mitigation614

strategies (e.g., gated release of models, providing defenses in addition to attacks,615

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from616

feedback over time, improving the efficiency and accessibility of ML).617

11. Safeguards618

Question: Does the paper describe safeguards that have been put in place for responsible619

release of data or models that have a high risk for misuse (e.g., pretrained language models,620

image generators, or scraped datasets)?621

Answer: [NA]622

Justification: This article is purely theoretical and addresses a mathematical problem which623

it attempts to solve.624

Guidelines:625
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• The answer NA means that the paper poses no such risks.626

• Released models that have a high risk for misuse or dual-use should be released with627

necessary safeguards to allow for controlled use of the model, for example by requiring628

that users adhere to usage guidelines or restrictions to access the model or implementing629

safety filters.630

• Datasets that have been scraped from the Internet could pose safety risks. The authors631

should describe how they avoided releasing unsafe images.632

• We recognize that providing effective safeguards is challenging, and many papers do633

not require this, but we encourage authors to take this into account and make a best634

faith effort.635

12. Licenses for existing assets636

Question: Are the creators or original owners of assets (e.g., code, data, models), used in637

the paper, properly credited and are the license and terms of use explicitly mentioned and638

properly respected?639

Answer: [NA]640

Justification:641

Guidelines:642

• The answer NA means that the paper does not use existing assets.643

• The authors should cite the original paper that produced the code package or dataset.644

• The authors should state which version of the asset is used and, if possible, include a645

URL.646

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.647

• For scraped data from a particular source (e.g., website), the copyright and terms of648

service of that source should be provided.649

• If assets are released, the license, copyright information, and terms of use in the650

package should be provided. For popular datasets, paperswithcode.com/datasets651

has curated licenses for some datasets. Their licensing guide can help determine the652

license of a dataset.653

• For existing datasets that are re-packaged, both the original license and the license of654

the derived asset (if it has changed) should be provided.655

• If this information is not available online, the authors are encouraged to reach out to656

the asset’s creators.657

13. New assets658

Question: Are new assets introduced in the paper well documented and is the documentation659

provided alongside the assets?660

Answer: [NA]661

Justification:662

Guidelines:663

• The answer NA means that the paper does not release new assets.664

• Researchers should communicate the details of the dataset/code/model as part of their665

submissions via structured templates. This includes details about training, license,666

limitations, etc.667

• The paper should discuss whether and how consent was obtained from people whose668

asset is used.669

• At submission time, remember to anonymize your assets (if applicable). You can either670

create an anonymized URL or include an anonymized zip file.671

14. Crowdsourcing and research with human subjects672

Question: For crowdsourcing experiments and research with human subjects, does the paper673

include the full text of instructions given to participants and screenshots, if applicable, as674

well as details about compensation (if any)?675

Answer: [NA]676
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Justification:677

Guidelines:678

• The answer NA means that the paper does not involve crowdsourcing nor research with679

human subjects.680

• Including this information in the supplemental material is fine, but if the main contribu-681

tion of the paper involves human subjects, then as much detail as possible should be682

included in the main paper.683

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,684

or other labor should be paid at least the minimum wage in the country of the data685

collector.686

15. Institutional review board (IRB) approvals or equivalent for research with human687

subjects688

Question: Does the paper describe potential risks incurred by study participants, whether689

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)690

approvals (or an equivalent approval/review based on the requirements of your country or691

institution) were obtained?692

Answer: [NA]693

Justification:694

Guidelines:695

• The answer NA means that the paper does not involve crowdsourcing nor research with696

human subjects.697

• Depending on the country in which research is conducted, IRB approval (or equivalent)698

may be required for any human subjects research. If you obtained IRB approval, you699

should clearly state this in the paper.700

• We recognize that the procedures for this may vary significantly between institutions701

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the702

guidelines for their institution.703

• For initial submissions, do not include any information that would break anonymity (if704

applicable), such as the institution conducting the review.705

16. Declaration of LLM usage706

Question: Does the paper describe the usage of LLMs if it is an important, original, or707

non-standard component of the core methods in this research? Note that if the LLM is used708

only for writing, editing, or formatting purposes and does not impact the core methodology,709

scientific rigorousness, or originality of the research, declaration is not required.710

Answer: [NA]711

Justification:712

Guidelines:713

• The answer NA means that the core method development in this research does not714

involve LLMs as any important, original, or non-standard components.715

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)716

for what should or should not be described.717
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