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Abstract

In this work, we present a novel approach for simultaneous
knowledge transfer and model compression called Weight
Squeezing. With this method, we perform knowledge transfer
from a pre-trained teacher model by learning the mapping
from its weights to smaller student model weights, without
significant loss of model accuracy.
We applied Weight Squeezing combined with Knowledge Dis-
tillation to a pre-trained text classification model, and com-
pared it to various knowledge transfer and model compression
methods on several downstream text classification tasks. We
observed that our approach produces better results than Knowl-
edge Distillation methods without any loss in inference speed.
We also compared Weight Squeezing with Low Rank Factor-
ization methods and observed that our method is significantly
faster at inference while being competitive in terms of accu-
racy.

1 Introduction
Today, deep learning has become a key technology in nat-
ural language processing (NLP), advancing state-of-the-art
results for most NLP tasks. One of the significant achieve-
ments in applying deep learning in NLP is transfer learning.
These methods include word vectors pre-trained on a large
volume of text (Mikolov et al. 2013; Pennington, Socher, and
Manning 2014), which are now commonly used to initialize
the first layer of neural networks for transfer learning. In
recent times, methods such as ULMFiT (Howard and Ruder
2018) have advanced the field of transfer learning in NLP
by using language modeling during pre-training. Pre-trained
language models now achieve state-of-the-art results on a
diverse range of tasks in NLP, including text classification,
question answering, natural language inference, coreference
resolution, sequence labeling, and more (Qiu et al. 2020).

Another breakthrough in NLP occurred after the intro-
duction of Transformer (Vaswani et al. 2017) neural net-
works that consist mostly of linear layers that compute the
attention between model inputs. Unlike recurrent networks,
Transformers have no recurrence over the spatial dimensions,
making it possible to significantly increase their size and
reach state-of-the-art results for several tasks. (Devlin et al.
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2019) introduced BERT (Bidirectional Encoder Representa-
tions from Transformers), a language representation model
trained to predict masked tokens in texts from unlabeled data.
Pre-trained BERT can be fine-tuned to create state-of-the-art
models for a wide range of NLP tasks.

While BERT is capable of learning rich representations of
text, using it for solving simple downstream tasks could be
excessive. This is especially important when running down-
stream models on edge devices such as mobile phones. A
common approach in such cases is model compression.

In this work, we present a novel approach to performing
simultaneous transfer learning and model compression that
we called Weight Squeezing In this method, we propose
learning the mapping from the weights of a text classification
teacher model based on pre-trained BERT to the weights of
a much smaller student model. We compared the proposed
method with common approaches for model compression,
including variations of Knowledge Distillation and low-rank
matrix factorization. We evaluated both Weight Squeezing
combined with Knowledge Distillation and training Weight
Squeezing on its own. Our experiments show that in most
cases, Weight Squeezing achieves better performance than
other baseline methods. It also outperforms models trained
from scratch.

2 Motivation & Problem Setting
In this section we describe our motivation for building
lightweight models.

Firstly, we focus on model size. For instance, a typical
mobile app has the size of 100Mb, which significantly re-
stricts the model size that can be used on the device1. Smaller
models are also better for serving server-side.

Secondly, we keep an eye on model inference time. A
model may be efficient in terms of training (i.e., by hav-
ing fewer parameters), but have a significant computational
overhead regardless. Therefore, our focus is on making the
student model faster than the teacher one.

Finally, we take into account that access to training re-
sources, such as data and computing power, can be limited.
Therefore, by focusing on task-specific compression, we limit

1We managed to obtain models around 2.1 Mb in size, while the
vanilla 6-layer BERT model has a size of around 256 Mb.



the data we use to what we have for specific tasks only (see
3.2 for details).

3 Related Work
3.1 Transfer Learning & Unsupervised

Pre-training
Self-supervised training as unsupervised pre-training became
one of the key techniques for solving NLP tasks. While the
amount of labeled data can be limited, we often have unla-
beled data at our disposal. This data can be effectively utilized
for pre-training some parts of the models. One way to con-
duct self-supervised pre-training of NLP models is language
modeling. It can be performed using autoregressive models
when learning to predict the next words in a text based on
previous words.

Transformer and BERT. The Transformer was introduced
as a type of neural network architecture for machine transla-
tion (Vaswani et al. 2017). While the Transformer decoder
can be used to train a language model, the performance of
such a model could suffer because of its autoregressive na-
ture. Masked Language Modeling (MLM) with BERT (De-
vlin et al. 2019) was proposed as an alternative to Language
Modeling. This method involves training a model to predict
masked words based on unmasked ones. The output of such
a model depends on all words in the input text, which makes
it capable of learning more complex data patterns.

3.2 Model Compression
The network architecture can be considerably over-
parameterized and therefore inefficient in terms of memory
and computing resources. Trading accuracy for performance
and model size is often reasonable, which brings us to model
compression techniques. There are many approaches (Ganesh
et al. 2020; Qiu et al. 2020) to compressing BERT, including
pruning (Sajjad et al. 2020; Fan, Grave, and Joulin 2019;
Guo et al. 2019; Gordon, Duh, and Andrews 2020; Voita
et al. 2019; McCarley, Chakravarti, and Sil 2019), quantiza-
tion (Zafrir et al. 2019; Shen et al. 2019), parameter sharing
(Lan et al. 2019), and knowledge distillation. Some of these
methods can be combined to achieve better results (Mao et al.
2020).

Low-rank Matrix Factorization. Low-rank matrix factor-
ization approaches focus on reducing the size of model pa-
rameters. These approaches include Singular-Value Decom-
position (SVD), Tensor Train (TT) Decomposition (Oseledets
2011), and others.

One of the most notable examples of using low-rank ma-
trix factorization methods for NLP is reducing the size of the
embedding matrix, which contains a significant part of model
parameters. Instead of projecting one-hot vectors directly
into the hidden space, (Lan et al. 2019) first project them
into a lower-dimensional embedding space, and only then
project it into the hidden space. (Khrulkov et al. 2019) pa-
rameterize embedding layers based on the TT decomposition.
(Shu and Nakayama 2019) learn discrete codes to represent
embeddings. (Acharya et al. 2019) also use low-rank matrix
factorization on the word embedding layer during training.

These methods can be considered a separate case of the
pruning approach where we try to reduce the size of param-
eters by removing parts that can be considered unnecessary.
For SVD, we drop some part of the weights which are re-
lated to small singular values, while TT can be seen as a
generalization of SVD.

Knowledge Distillation. In the Knowledge Distillation
(KD) approach (Ba and Caruana 2014; Hinton et al. 2015;
Romero et al. 2014) a smaller student model is trained to
mimic a teacher BERT model. Current KD approaches for
BERT can be categorized by what exactly they try to match as
follows: distillation on encoder outputs/hidden states: (Zhao
et al. 2019; Jiao et al. 2019; Sun et al. 2020, 2019; Sanh et al.
2019), distillation on model output (Zhao et al. 2019; Sun
et al. 2019; Sanh et al. 2019; Jiao et al. 2019; Chen et al.
2020), distillation on attention maps (Sun et al. 2020; Jiao
et al. 2019).

KD can also be split into two categories: task-agnostic
and task-specific. Task-agnostic KD involves reducing the
size of BERT itself. Most methods fall under this type of
compression. The KD methods, such as DistilBERT (Sanh
et al. 2019) or MobileBERT (Sun et al. 2020) are trained on
the same corpus as the one used when pre-training a BERT
model from scratch. A typical scenario when using models
such as BERT is to take a model already pre-trained on a very
large corpus of data, since training or fine-tuning BERT is
computationally expensive and could require a considerable
amount of time. In some cases, even storing a large corpus,
not to mention using it for training, could be a problem in
this task.

Instead of compressing BERT itself, a different approach
of task-specific KD can be taken by fine-tuning BERT on a
downstream task first and then applying compression tech-
niques to train a smaller model. (Tang et al. 2019) use KD
to train a single layer BiLSTM student model from BERT.
(Mukherjee and Awadallah 2019) show that when given a
large amount of unlabeled data, student BiLSTM networks
can even match the performance of the teacher. (Turc et al.
2019) pre-train compact student models on unlabeled data
and then apply KD.

4 Weight Squeezing
We now introduce a method to perform knowledge transfer
and model compression by learning the mapping between
teacher and student weights.

We start with a pre-trained teacher Transformer model
with a large hidden state. In our experiments, we used teacher
models obtained by fine-tuning pre-trained BERT models
with a classifier on top. It implies that for some linear layer l,
we have a weight matrix Θt

l with the shape n×m.
We explore a case where the weights of a pre-trained

teacher model are too big for running and storing the model
on an edge device. For this reason, we may want to train a
student model with a smaller number of parameters. Let’s say
that we want the student model to make the weight matrix
Θs

l at the same layer l to have the shape equal to a× b, where
a < n and b < m.



In this work, we propose reparameterizing student weights
Θs

l as follows:

Θs = LΘtR (1)
where L andR are randomly initialized trainable param-

eters of the mapping (here and below, we omitted the l sub-
script for simplicity. However, we reparameterize each pa-
rameter layer-wise, and each layer has its own mapping).
Note that if Θs is a× b matrix and Θt is n×m matrix, then
L andR are a× n and m× b matrices.

In this approach, instead of training student model weights
from scratch, we reparameterize them as a trainable linear
mapping from teacher model weights. Doing so allows us
to transfer knowledge stored in the teacher weights to the
student weights.

At the same time, mapping of teacher biases and word em-
beddings is performed as a single linear mapping as follows:

Θs
single = ΘtR (2)

where biases are matrices of size 1× b and word embed-
dings have size V × b, and V is the total number of words
in the vocabulary. This reparameterization for word embed-
dings can be seen as a linear alignment from pre-trained
embeddings.

After reparameterization of the student model weights us-
ing 1 or 2, we train mapping weightsL andR using plain neg-
ative log-likelihood (Weight Squeezing) or KD loss (Weight
Squeezing combined with KD). When the mapping is trained,
we compute student weights and use them to make predic-
tions.

4.1 Comparison to Similar Methods
Knowledge Distillation. Weight Squeezing (WS) is or-
thogonal to the Knowledge Distillation method, and the two
methods can be combined to achieve better results. We also
observed that, in some cases, the stand-alone WS approach
performs better than Knowledge Distillation.

We believe that the reason for that is that the nature of
the WS approach allows the model to drop some of the in-
formation stored in the teacher parameters if it is excessive,
similar to what is done by pruning methods. At the same
time, KD methods based on encoder outputs and attention
maps (Jiao et al. 2019; Sun et al. 2020, 2019; Sanh et al.
2019) involve training student models to mimic the behav-
ior of the teacher, even if the capacity of the small student
model is not enough to store the knowledge of the larger
teacher model. To address this issue, we can use additional
hyperparameters to evaluate the loss function for the KD
method (e.g., extra weights to add balance between plain neg-
ative log-likelihood, KL-Divergence between the student and
teacher predictions, and other regularization terms). However,
it makes the training process more complex and less stable,
while Weight Squeezing does not have this problem.

Low-rank Matrix Factorization. Compared to low-rank
matrix factorization methods, we do not lose any information
stored in the teacher weights when using Weight Squeezing.
In essence, even if we map teacher model weights to the
weights of a significantly smaller student model, we still have

the teacher parameters represented as-is, thus allowing the
student model to use all the information stored in them.

In comparison, in low-rank matrix factorization methods,
we lose part of the knowledge stored in the teacher model
every time we reduce the rank of the factorization. It leads to
a trade-off between the number of parameters in the student
model and the amount of teacher knowledge that we can
transfer.

Consider two teacher models, with 1, 000, 000 and
10, 000, 000 parameters, respectively. Let’s assume that both
teachers have the same structure, number of layers and other
parameters, with the only difference being the size of their
hidden layers. We want to compress both of them into a stu-
dent model with 100, 000 parameters. The compression of a
smaller teacher model could be significantly more accurate
than the compression of a bigger one, since the rank of the
factorization will be different for these cases. This suggests
that factorization methods can be an inappropriate choice for
some compression tasks.

Furthermore, in our experiments, we observed that fac-
torization methods could be hard to train due to their large
memory footprint. For example, we want to apply factoriza-
tion using SVD (see 5.2 for details), for which we define the
weights of linear layers as follows:

Θ̂ = Um×rΣr×rV
>
r×n = Um×rV >r×n

We now need to evaluate the result of applying this layer
to some input xΘ̂ (where x and Θ̂ are b × m and m × n
matrices, respectively, and b is the batch size of the input).

The first option is to evaluate a full weight matrix first
and then multiply the resulting matrix by x:

xΘ̂ = x(UV >) (3)
The second option is to evaluate this layer in a sequential

manner:

xΘ̂ = (xU)V > (4)
However, for Equation 3, we will create a matrix in the

computational graph of sizem×n (weight size of the teacher
model), which we have to store for backward propagation and
for which we have to evaluate gradient. While for Equation
4 we do not have to store a big matrix in the computational
graph, we do have to store a b×r matrix, the size of which, for
now, depends on the batch size. Therefore, if the batch size is
big enough, method 4 could require even more memory for
training than in Equation 3.

For TT Decomposition, this leads to a more drastic differ-
ence in memory used for model training. Since the evaluation
of matrix multiplication for TT cores can be defined sequen-
tially, like for Equation 4 (Novikov et al. 2020), it will create
d− 1 matrices (where d is the number of cores), the size of
which depends on the batch size.

We would also like to note that the factorization rate r
cannot be smaller than 1, which is why for every specific
model there is a practical limit to the compression that can
be performed.

Furthermore, regardless of the factorization rate r, the
result after applying the factorized layer will always retain its



original size. Thus, some operations in Transformer are not
going to benefit from the factorization of the model weights.
For example, if we have a Transformer with the size of the
hidden layer equal to 1024, then even with r equal to 1, self-
attention will be computed between vectors with shape 1024.
Because of this, low rates of r did not lead to a performance
boost.

In our experiments, we were able to evaluate layers se-
quentially for the SVD method when the teacher models
were small. However, in some cases, we had to evaluate the
full layer weights to train student models. We always had to
evaluate the full weights for TT models.

Weight Squeezing is also a method that requires evaluat-
ing the full weight matrix first. However, WS does not lead
to a large memory footprint since the resulting layer’s size is
smaller than that of the original teacher network. For infer-
ence, we could pre-evaluate student weights once and then
use them without any computational overhead. Therefore,
in some cases, low-rank methods could be considered an
inappropriate choice to train small models for running them
in an environment with limited resources. Nevertheless, we
still consider these methods as baselines and provide their
experimental results for reference.

5 Experiments
5.1 Training Details
We trained all models on AG’s News, DBPedia, and Yelp
Reviews datasets. The datasets are described in section A.1
of the technical appendix.

We used manual tuning to select the model hyperparame-
ters, with up to 20 hyperparameter search trials. Hyperparam-
eter search ranges are shown in Table 9. The hyperparameters
used in the best-performing models are shown in 5.2 and in
the technical appendix A.3.

We selected hyperparameter configurations with the best
performance, measured by model accuracy on the validation
set during the training phase. We then evaluated the models
on the test set and showed the results. We repeated each exper-
iment 5 times and showed the mean and standard deviation
values of the measurements.

Since we focused on making models smaller in terms of
the overall number of parameters, we trained classifiers with
6 Transformer layers, 2 self-attention heads, and hidden size
selected from the range [16, 32, 64, 128] (full list of the num-
ber of the model parameters can be found in Table 1).

For knowledge transfer, we use teachers fine-tuned to
downstream tasks. The teacher models were initialized from
BERT models pre-trained on the Masked Language Mod-
elling task. For each task, we experimented with two teacher
models with 6 layers, 768 and 128 hidden sizes, and 12 and 2
self-attention heads, respectively (we will refer to these sizes
as 768H12A and 128H2A later).

5.2 Baselines
We experimented with various approaches to applying Weight
Squeezing. These approaches include:

1. Standalone Weight Squeezing (WS)

2. Weight Squeezing paired with Knowledge Distillation (WS
+ KD)

We compared WS with the following methods:
1. Training a student model of an appropriate size from

scratch (Scratch)
2. Knowledge Distillation (KD)
3. Knowledge Distillation on Encoder Output (KD-EO)
4. Low-rank Matrix Factorization combined with Knowledge

Distillation (SVD + KD, TT + KD)

Training from Scratch. For the first experiment, we
trained models of appropriate hidden sizes from scratch with-
out utilizing any pre-training.

Teacher Models. We took BERT models pre-trained on
the MLM task with configurations 768H12A and 128H12A
and fine-tuned them on downstream classification tasks. We
used these pre-trained teacher models as the source for model
compression techniques in our experiments.

We also fine-tuned a DistilBERT model2. Note that the
number of parameters in the DistilBERT model is approxi-
mately equal to the number of parameters in the 768H12A
teacher model used in our experiments, which makes it more
difficult to use for edge devices compared to models trained
with WS and KD. Therefore, its results are provided only for
reference.

Knowledge Distillation. We applied the Knowledge Dis-
tillation approach to teacher models for training the student
model with a smaller hidden size to match the teacher’s pre-
dictions (KD in Tables 3, 4, 5, 6). The resulting loss function
is defined as:

−α log(psc)− β
∑
i

pti log(psi ) (5)

where pt and ps are the output probabilities of student
and teacher models, pti, and psi are the i-th components of
teacher and student predictions, respectively, and c is the
index of ground truth label. Thus, the first term is a negative
log-likelihood of the student predictions, while the second
stands for part of KL-Divergence between teacher and student
predictions, which we could optimize with respect to student
parameters. In all experiments, α and β values were equal to
0.2 and 1.0, respectively.

We also experimented with Knowledge Distillation on
encoder outputs (KD-EO in Tables 3, 4, 5, 6), where we
trained the linear mapping of the student’s hidden states to
those of the teacher after every Transformer layer. Training
this mapping can be considered a generalization of matching
values of student and teacher hidden states when they have
different sizes and cannot be compared directly.

The resulting loss function is defined as:

−α log psc − β
∑
i

pti log psi + γ
∑
j

L2(htj , fj(h
s
j))

2The WS method can be used to compress BERT itself, and the
compressed model then fine-tuned on a downstream task. However,
applying WS to compress BERT is not the topic of this work.
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Figure 1: Plots showing the accuracy of trained models. For all models, except the one trained from scratch, we took the
maximum value between the two results shown for models trained with 768H12A and 128H2A teachers. Note that the SVD and
TT methods perform slower during inference on CPU and GPU (see 5.4). T stands for the reference performance of the teacher
model.
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where the first two terms in the equation above corre-
spond to terms in Equation 5, while the last term is the mean
squared error between teacher hidden state htj from layer j
and mapped student hidden state fj(hsj) from the same layer.
We optimized this loss with respect to student parameters
and parameters of each mapping fj . We used γ value equal
to 1000 in our experiments, while α and β values differed
from the plain KD setting and were equal to 1 and 10, respec-
tively. Note that there are several hidden states in each layer
corresponding to different words in the input sequence. For
this reason, we used the first hidden state of this sequence to
evaluate the loss function.

Weight Squeezing. For plain Weight Squeezing (WS in
Tables 3, 4, 5, 6) setting, we used fine-tuned teacher models
as the source of mapping for weights reparameterization. This
way, we reparameterized the parameters of all linear layers
as in Equation 1 and embedding vectors as in Equation 2.
Weights of the mapping for linear layers were initialized as
Xavier Normal, while the mapping for the embedding matrix
was initialized as Xavier Uniform. We trained the resulting
model using plain negative log-likelihood. We optimized
the likelihood with respect to the mapping parameters used
to reparameterize the student model parameters. We also
optimized the rest of the parameters of the student model
which were not reparameterized (e.g, the weights of the layer
normalization).

We also trained a model using Weight Squeezing with
Knowledge Distillation (WS + KD in Tables 3, 4, 5, 6).
Instead of using negative log-likelihood as the loss function,
we used the KD loss function 5. In our experiments, we used
the same α and β, equal to 0.2 and 1.0, respectively.

Low-rank Matrix Factorization. We also experimented
with the matrix factorization approach (LRMF) and applied
Singular Value Decomposition (SVD + KD in the results
tables) to its weights.

Θ = Um×mΣm×nV
>
n×n

where Σ is a diagonal matrix of the singular values, and
U and V are the left and right singular vectors of the weight.
Note that if Θ is m×n matrix, then U is m×m, Σ is m×n
and V > is n× n matrices.

However, we could obtain the reduced form of this weight
by keeping only r largest singular values as follows:

Θ̂ = Um×rΣr×rV
>
r×n = Um×rV >r×n

If we were to perform this operation on the weights of
the teacher model, then instead of storing nm parameters for
each weight, we would have to keep only r(n+m) param-
eters. If r value is small enough, then the total number of
parameters will be reduced compared to the original model,
without introducing computation overhead.

In our experiments, we applied SVD to the parameters
of the teacher model, obtained its reduced form, and then
fine-tuned it using the loss function from the Equation 5 with
α and β, equal to 0.2 and 1.0, respectively.

We also applied TT Decomposition (TT + KD in the re-
sults tables) to compress teacher models. We decomposed

teacher weights using TT with 4 cores. For training, we also
used the loss function from the Equation 5 with the same α
and β, equal to 0.2 and 1.0, respectively.

Note that in these approaches, we do not directly train
the student model with the specified hidden state size as in
all the methods above. Instead, we injected a bottleneck in
the middle of each layer, which allowed us to reduce the
total number of parameters in the model. For this reason,
we compared Weight Squeezing trained from the 128H2A
teacher BERT model with hidden states with sizes in range
[16, 32, 64] with the SVD model with r equal to [10, 22, 50]
and with maximum r equal to [25, 50, 128] for the TT ap-
proach to reach a similar number of parameters in both of
these approaches. For the 768H12A teacher model with hid-
den states in the range [16, 32, 64, 128], we used max r equal
to [5, 16, 28, 49] for TT. For SVD trained from the 768H12A
teacher model, we compared [16, 32, 64, 128] models with r
equal to [1, 8, 16, 40].

5.3 Expected Validation Performance
Using the model evaluation method proposed in (Dodge et al.
2019), we calculated the expected validation performance
given a number of hyperparameter trials for all methods on
the AgNews dataset to further explore the results’ signifi-
cance.

The results are shown in Figure 3. We observed that WS
achieved better accuracy with fewer hyperparameter trials
than any other method.

For the experiments, we compressed 128H2A teacher
model into a student classifier with a hidden state size of 16.
For LRMF methods, we used the appropriate factorization
ranks to make SVD and TT approaches have approximately
the same number of parameters as a plain classifier. Hyperpa-
rameter search ranges are shown in Table 9 in the technical
appendix.
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Figure 3: Expected validation accuracy for WS and baselines.

5.4 Inference Speed Measurements
For inference speed measurement, we compared Non-Low
Rank Matrix Factorization models (including KD, KD-EO,
WS and models trained from scratch) with models factorized
using the TT and SVD methods.



In our experiments, we used a classifier with the hidden
layer size equal to 16. For the TT method, we performed
decomposition with 4 cores and a maximum decomposition
rank equal to 5 and 25 for 768 and 128 original model hidden
layer size, respectively. For the SVD method, we decomposed
matrices with rank equal to 10. All models have a comparable
number of parameters (see Table 1).

We evaluated models on sequences with input lengths of
128 and 512. For GPU measurements, we ran the models on
1000 samples, and on 100 samples for CPU. In all experi-
ments, we tested the speed with batch sizes equal to 1 and
16. We repeated the measurements 5 times and reported the
mean and standard deviation values of the total computation
time of the models. For CPU measurements, we used 1.8
GHz Intel DualCore i5, while for GPU measurements, we
used NVIDIA Tesla T4.

All models were prepared with PyTorch JIT compilation,
since we found that it slightly increases the speed of all
models in this experiment.

6 Results
6.1 Accuracy
Plots showing the accuracy of trained models can be found
in Figures 1 and 1. See Tables 3, 4, 5, 6 in the technical
appendix for the full list of the results.

While using WS combined with KD increases the per-
formance of the model, plain WS outperformed plain KD
method in every experiment. We showed that plain WS
method reached results comparable with KD-EO method,
achieving better results in some experiments.

We observed that SVD and TT methods were competitive
to WS, outperforming most baselines on the Yelp-f and the
Yelp-p datasets. However, WS outperformed both SVD and
TT on the AgNews and the DBPedia datasets in most of the
experiments.

Our findings show that LRMF methods suffer from low fac-
torization rates r. For example, r equal to 50 for SVD trained
from 128H2A teacher leads to significantly better results than
r equal to 16 for SVD trained from 768H12A teacher. Both
of these models have an equal number of parameters.

All models outperformed the model trained from scratch,
except for LRMF methods with small (8 and 1 for SVD, and
16 and 5 for TT) factorization ranks trained from 768H12A
teacher.

We conducted a study on the expected validation perfor-
mance on the AgNews for all methods and provided the
results in 5.3. We observed that WS achieved better accuracy
with a lower number of hyperparameter trials than any other
method.

6.2 Inference Speed
We observed that non-LRMF methods, including WS, outper-
formed SVD and TT methods in every experiment (see Figure
2). On CPU, SVD is 1.54-20.7 times slower than non-LRMF
methods, and TT is 50.9-560.0 times slower. On GPU, SVD
is 1.2-8.49 times slower, and TT is 5.07-417.0 times slower
than non-LRMF methods in the experiments conducted.

The detailed results are reported in Tables 7 (CPU) and 8
(GPU) in the technical appendix.

6.3 Model Size
We compared the number of model parameters for the models
used to the number of parameters for proposed method (See
Table 1). The Plain BERT row stands for the number of
parameters in the ordinary classifier, which was built on top
of the BERT model with a specific number of layers and self-
attention heads. The number of teacher model parameters is
shown in bold.

The DistilBERT model has an approximately equal num-
ber of parameters to the teacher model. This makes it more
difficult to use for inference on edge devices when model
size matters. The KD approach has the same amount of pa-
rameters as the models in the Plain BERT row.

For the TT and SVD methods, we show the number of
parameters for the specific factorization rates used to make
these approaches have a number of parameters approximately
equal to the plain classifier (see 5.2 for more details).

Note that after the WS model is trained, we no longer
have to evaluate the mapping result, and the number of
parameters for the inference setting is equal to the Plain
BERT row for the appropriate model parameters.

SA Heads: 2 12

Hidden size: 16 32 64 128 768

Plain BERT 0.5M 1.0M 2.3M 5.2M 67.0M

WS (from 128) 0.8M 1.6M 3.2M 6.3M -

WS (from 768) 4.7M 9.5M 19M 39M -

SVD (from 128) 0.5M 1.1M 2.3M - -

SVD (from 768) 0.6M 1.1M 2.3M 5.1M -

TT (from 128) 0.5M 1.1M 2.2M - -

TT (from 768) 0.5M 1.1M 2.2M 5.2M -

Table 1: Number of parameters for each model.

7 Conclusion & Future Work
We introduced Weight Squeezing, a novel approach to knowl-
edge transfer and model compression. We showed that it
can be used to compress pre-trained text classification mod-
els and create compelling lightweight and fast models. We
showed this approach could be a competitive alternative to
Knowledge Distillation methods.

While the current work was focused on transferring knowl-
edge to task-specific models, we would like to apply Weight
Squeezing for task-agnostic compression for creating more
applicable BERT models trained for tasks such as Masked
Language Modelling.

We are currently experimenting with the initialization of
mappings and plan to continue this research.

We are also interested in applying this method in domains
beyond NLP to compress other types of layers (convolutional,
etc.).
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A Appendices
A.1 Datasets
AG news dataset. The AG news corpus consists of news arti-
cles from AG’s corpus of news articles on the web3 pertaining
to the 4 largest classes.
DBPedia ontology dataset. DBpedia is a crowd-sourced
community effort to extract structured information from
Wikipedia (Lehmann et al. 2015). The DBpedia ontology
dataset was constructed by picking 14 nonoverlapping classes
from DBpedia 2014.
Yelp reviews. The Yelp reviews dataset was obtained from
the Yelp Dataset Challenge. This dataset contains review
texts with two classification tasks – Yelp-f predicting a rating
the user has given, and Yelp-p predicting a polarity label.
Splitting & Preprocessing. We randomly split the data into
training and validation sets. Input sequences were lower-
cased and encoded using pre-trained BPE with 30522 tokens.
We also truncated input sequences to maximum lengths.

The sizes of these splits and the maximum input length for
every dataset are shown in Table 1.

Dataset Train Valid Test Length

AG News 114k 6k 7.6k 128

DBPedia 500k 60k 70k 128

Yelp-f 600k 50k 50k 512

Yelp-p 550k 10k 38k 512

Table 2: Sizes of the train, validation, and test sets of the
training data. Input sequences were truncated to maximum
length

A.2 Transformer Architecture
The key part of the Transformer layer is the Self-Attention
mechanism (Lin et al. 2017). Below, we provide a descrip-
tion of this mechanism and how a Transformer layer is con-
structed.

Firstly, to compute the attention score between key and
query vectors, the layer uses the dot product operation. After
applying the softmax function to map the result to the [0, 1]
interval, it is multiplied by a value vector:

Attention = Softmax
(
Q ·KT

√
dk

)
V,

where dk is the dimension of keys and acts as a scaling
factor, and Q,K, V are the query, key, and value vectors.

The above is how we have defined Single Head attention.
To get Multi-Head Attention, the Transformer layer splits the
vector spaces into equal parts. The results of every attention
head are concatenated into one vector:

MHA = Concat (Attention1, . . . ,Attentionn) ,

where MHA stands for Multi-Head Attention.
The reason why the mechanism is called Self-Attention

is that Transformer Encoders, such as BERT, take sequence
3http://groups.di.unipi.it/ gulli/AG corpus of news articles.html

tokens as the query, key, and value vectors. The vectors com-
puted after the Self-Attention mechanism pass through a
residual connection. The result goes to the Feed-Forward
Network (FFN), which is defined as follows:

FFN (X) = σ (XW1 + b1)W2 + b2,

where Wi, bi are trainable parameters of FFN, X is a n-
dimension vector, and σ is a non-linear function.

The output of the Transformer Layer is computed by resid-
ual connection with FFN.

A.3 Optimization Details
For all models, we used the same optimization strategy
using Rectified Adam (Liu et al. 2020) and Lookahead
(Zhang et al. 2019). For Lookahead, we used default α
equal to 0.5 and k equal to 6. For all experiments, we
selected the best performing learning rate from the range
[1e−5, 5e−5, 1e−4, 5e−4, 1e−3, 5e−3, 1e−2].

We used a linear learning rate warm-up for the first 4000
optimization steps and linearly decayed its value to 0 for the
rest of the training. Betas were equal to (0.9, 0.999). We also
used dropout (Hinton et al. 2012) with a rate equal to 0.1.
Gradients with norms larger than 1 were clipped.

We trained the teacher model with the batch size equal to
32, while the other models were trained with the batch size
equal to 128.

For the AG News dataset, we trained the model for 50
epochs, while teacher models were trained for 5 epochs.

For DBPedia, we trained models for 20 epochs. The
teacher model with configuration 768H12A was trained for 2
epochs, while the 128H2A teacher was trained for 10 epochs.

Yelp-f models were trained for 16 epochs. The 768H12A
teacher model was trained for 3 epochs and the 128H2A
teacher was trained for 7 epochs. Yelp-p models were trained
for 15 epochs with teachers trained for 3 and 5 epochs for
768H12A and 128H2A configurations, respectively.

Models with inputs restricted to 128 tokens were trained
for approximately 2-4 hours, depending on the hidden size,
while training models on inputs with lengths equal to 512
took around 10-16 hours on a single NVIDIA Tesla T4 GPU.
The exception is TT models, for which we used 8 NVIDIA
Tesla T4 GPUs for training, with input lengths equal to 512.



AG News

Model ↓ Size→ 16 32 64 128

Scratch 90.00 ± 0.23 (90.02) 89.94 ± 0.30 (90.04) 90.21 ± 0.16 (90.60) 90.60 ± 0.15 (91.05)

DistilBert, accuracy: 93.46 ± 0.16

BERT 768H12A, teacher accuracy: 93.46 ± 0.11

KD 90.41 ± 0.14 (90.47) 90.20 ± 0.39 (90.55) 90.14 ± 0.28 (90.47) 90.32 ± 0.21 (90.87)

KD Encoder Outputs 91.13 ± 0.18 (91.34) 91.43 ± 0.11 (91.70) 91.43 ± 0.39 (91.55) 91.84 ± 0.18 (92.08)

WS + KD (ours) 91.49 ± 0.23 (92.21) 92.11 ± 0.16 (92.55) 91.87 ± 0.26 (92.46) 92.20 ± 0.21 (92.40)

WS (ours) 91.54 ± 0.22 (92.20) 92.01 ± 0.11 (92.57) 91.76 ± 0.15 (92.45) 92.03 ± 0.16 (92.40)

SVD + KD 68.38 ± 0.75 (68.22) 88.88 ± 0.05 (89.43) 90.82 ± 0.22 (90.95) 91.05 ± 0.06 (91.60)

TT + KD 86.68 ± 0.28 (87.06) 89.17 ± 0.16 (89.91) 89.92 ± 0.26 (90.48) 90.63 ± 0.22 (91.19)

BERT 128H2A, teacher accuracy: 92.80 ± 0.17

KD 91.67 ± 0.12 (91.54) 92.16 ± 0.12 (91.92) 91.82 ± 0.09 (91.88) 92.08 ± 0.13 (92.25)

KD Encoder Outputs 92.36 ± 0.10 (92.54) 92.63 ± 0.06 (92.76) 92.78 ± 0.15 (92.90) 92.86 ± 0.08 (93.14)

WS + KD (ours) 92.54 ± 0.12 (92.77) 92.82 ± 0.10 (93.05) 92.95 ± 0.07 (93.04) 93.02 ± 0.06 (93.13)
WS (ours) 92.03 ± 0.27 (92.51) 92.18 ± 0.17 (92.63) 91.83 ± 0.17 (92.48) 91.86 ± 0.23 (92.46)

SVD + KD 91.79 ± 0.01 (91.86) 92.04 ± 0.06 (92.07) 92.53 ± 0.12 (92.97) –

TT + KD 91.76 ± 0.18 (91.93) 92.08 ± 0.24 (92.49) 92.42 ± 0.32 (92.56) –

Table 3: Accuracy on the AG News dataset. Every model was trained five times. Mean and standard deviation values of test
accuracy are shown. Mean value of validation accuracy is shown in the brackets. ’-’ means no experiments were conducted.

DBPedia

Model ↓ Size→ 16 32 64 128

Scratch 98.08 ± 0.20 (98.07) 98.24 ± 0.04 (98.21) 98.12 ± 0.05 (98.07) 98.48 ± 0.02 (98.45)

DistilBert, accuracy: 99.28 ± 0.01

BERT 768H12A, teacher accuracy: 99.29 ± 0.01

KD 98.60 ± 0.04 (98.62) 98.69 ± 0.02 (98.70) 98.67 ± 0.03 (98.65) 98.78 ± 0.01 (98.77)

KD Encoder Outputs 98.69 ± 0.03 (98.69) 98.82 ± 0.02 (98.79) 98.87 ± 0.04 (98.86) 98.99 ± 0.02 (98.97)

WS + KD (ours) 98.85 ± 0.03 (98.83) 98.96 ± 0.03 (98.91) 99.01 ± 0.02 (98.95) 98.99 ± 0.02 (98.96)

WS (ours) 98.85 ± 0.01 (98.82) 98.95 ± 0.01 (98.91) 98.93 ± 0.03 (98.91) 98.90 ± 0.03 (98.89)

SVD + KD 32.88 ± 0.74 (32.93) 97.49 ± 0.01 (97.46) 98.86 ± 0.02 (98.62) 99.02 ± 0.01 (98.97)
TT + KD 97.61 ± 0.06 (97.57) 98.57 ± 0.02 (98.59) 98.70 ± 0.01 (98.77) 98.76 ± 0.01 (98.77)

BERT 128H2A, teacher accuracy: 99.08 ± 0.01

KD 98.58 ± 0.03 (98.57) 98.63 ± 0.03 (98.60) 98.60 ± 0.04 (98.56) 96.61 ± 1.04 (96.64)

KD Encoder Outputs 98.53 ± 0.03 (98.56) 98.67 ± 0.01 (98.69) 98.77 ± 0.03 (98.78) 98.84 ± 0.01 (98.87)

WS + KD (ours) 98.81 ± 0.02 (98.78) 98.88 ± 0.02 (98.85) 98.89 ± 0.03 (98.86) 98.89 ± 0.02 (98.86)

WS (ours) 98.79 ± 0.03 (98.76) 98.87 ± 0.02 (98.83) 98.87 ± 0.02 (98.82) 98.84 ± 0.01 (98.80)

SVD + KD 98.78 ± 0.02 (98.74) 98.92 ± 0.01 (98.86) 98.95 ± 0.02 (98.93) –

TT + KD 98.64 ± 0.02 (98.63) 98.65 ± 0.04 (98.64) 98.52 ± 0.06 (98.49) –

Table 4: Accuracy on the DBPedia dataset. Mean and standard deviation values of test accuracy are shown. Mean value of
validation accuracy is shown in the brackets. ’-’ means no experiments were conducted.



Yelp Full

Model ↓ Size→ 16 32 64 128

Scratch 59.94 ± 0.14 (59.83) 60.03 ± 0.25 (59.83) 60.46 ± 0.09 (60.42) 60.51 ± 0.20 (60.44)

DistilBert, accuracy: 68.66 ± 0.04

BERT 768H12A, teacher accuracy: 69.11 ± 0.06

KD 61.48 ± 0.06 (62.14) 61.57 ± 0.15 (62.13) 61.43 ± 0.05 (62.02) 61.67 ± 0.13 (62.17)

KD Encoder Outputs 61.70 ± 0.05 (62.39) 62.43 ± 0.27 (63.15) 62.26 ± 0.16 (62.99) 63.25 ± 0.23 (64.29)

WS + KD (ours) 61.00 ± 0.13 (61.93) 62.69 ± 0.10 (63.66) 64.21 ± 0.20 (64.99) 67.27 ± 0.11 (68.46)

WS (ours) 60.54 ± 0.25 (61.39) 62.12 ± 0.10 (63.15) 63.09 ± 0.08 (64.01) 65.14 ± 0.61 (66.06)

SVD + KD 53.11 ± 0.14 (53.22) 62.34 ± 0.09 (61.99) 66.94 ± 0.07 (67.23) 67.89 ± 0.18 (67.83)
TT + KD – – 60.77 ± 0.15 (61.19) 60.98 ± 0.04 (61.18)

BERT 128H2A, teacher accuracy: 67.11 ± 0.07

KD 61.82 ± 0.15 (62.05) 62.20 ± 0.16 (62.21) 62.17 ± 0.23 (62.29) 62.67 ± 0.18 (62.80)

KD Encoder Outputs 61.97 ± 0.14 (62.16) 63.62 ± 0.19 (63.74) 64.43 ± 0.60 (64.55) 66.99 ± 0.12 (67.11)

WS + KD (ours) 62.15 ± 0.19 (62.43) 65.34 ± 0.29 (65.45) 66.79 ± 0.12 (66.88) 67.32 ± 0.07 (67.34)

WS (ours) 61.28 ± 0.09 (61.55) 62.91 ± 0.18 (63.12) 65.28 ± 0.41 (65.38) 66.02 ± 0.34 (66.10)

SVD + KD 65.98 ± 0.05 (66.03) 67.11 ± 0.06 (67.04) 67.41 ± 0.08 (67.41) –

TT + KD 65.40 ± 0.07 (65.42) 66.76 ± 0.11 (66.92) 66.83 ± 0.05 (66.97) –

Table 5: Accuracy on the Yelp Full dataset. Mean and standard deviation values of test accuracy are shown. Mean value of
validation accuracy is shown in the brackets. ’-’ means no experiments were conducted.

Yelp Polarity

Model ↓ Size→ 16 32 64 128

Scratch 93.66 ± 0.06 (93.32) 93.64 ± 0.03 (93.26) 93.66 ± 0.13 (93.27) 93.73 ± 0.02 (93.46)

DistilBert, accuracy: 93.69 ± 0.05

BERT 768H12A, teacher accuracy: 97.44 ± 0.01

KD 93.62 ± 0.04 (93.46) 93.64 ± 0.05 (93.32) 93.65 ± 0.08 (93.33) 93.53 ± 0.11 (93.25)

KD Encoder Outputs 94.07 ± 0.09 (94.08) 94.62 ± 0.17 (94.64) 94.51 ± 0.21 (94.55) 95.71 ± 0.21 (96.01)

WS + KD (ours) 93.55 ± 0.05 (93.24) 94.13 ± 0.13 (93.83) 94.84 ± 0.11 (94.95) 94.80 ± 0.13 (94.89)

WS (ours) 93.41 ± 0.12 (93.65) 94.25 ± 0.16 (93.96) 94.48 ± 0.08 (94.78) 94.75 ± 0.11 (94.86)

SVD + KD 92.25 ± 0.03 (92.19) 93.71 ± 0.04 (93.67) 95.59 ± 0.03 (95.67) 96.18 ± 0.03 (96.68)
TT + KD – – 93.29 ± 0.01 (93.38) 94.04 ± 0.27 (93.97)

BERT 128H2A, teacher accuracy: 96.60 ± 0.07

KD 93.73 ± 0.07 (93.43) 93.72 ± 0.08 (93.45) 93.76 ± 0.17 (93.46) 93.85 ± 0.05 (93.53)

KD Encoder Outputs 94.07 ± 0.06 (93.99) 94.66 ± 0.13 (94.54) 94.62 ± 0.13 (94.50) 96.21 ± 0.05 (96.27)

WS + KD (ours) 94.12 ± 0.08 (94.21) 94.26 ± 0.85 (94.35) 95.91 ± 0.08 (95.96) 95.24 ± 0.48 (95.33)

WS (ours) 93.29 ± 0.07 (93.36) 93.70 ± 0.06 (93.87) 93.98 ± 0.10 (94.13) 94.48 ± 0.04 (94.63)

SVD + KD 95.95 ± 0.03 (96.00) 96.24 ± 0.08 (96.25) 96.49 ± 0.06 (97.18) –

TT + KD 93.54 ± 0.03 (93.46) 93.55 ± 0.03 (93.42) 93.53 ± 0.06 (93.46) –

Table 6: Accuracy on the Yelp Polarity dataset. Mean and standard deviation values of test accuracy are shown. Mean value of
validation accuracy is shown in the brackets. ’-’ means no experiments were conducted.



CPU

Method→ Size ↓ Non-LRMF SVD from 128 SVD from 768 TT from 128 TT from 768

Sequence length 128, batch size 1

768 11255 ± 91 ms - - - -

128 705 ± 11 ms
(×1)

- 3072 ± 41 ms
(×4.36)

- 395088 ± 1338 ms
(×560)

64 433 ± 5 ms
(×1)

697 ± 20 ms
(×1.61)

2704 ± 60 ms
(×6.24)

48640 ± 4958 ms
(×112)

208891 ± 566 ms
(×482)

32 327 ± 3 ms
(×1)

605 ± 15 ms
(×1.85)

2548 ± 32 ms
(×7.79)

27625 ± 48 ms
(×84.5)

117246 ± 1066 ms
(×359)

16 286 ± 6 ms
(×1)

568 ± 6 ms
(×1.99)

2288 ± 23 ms
(×8)

19592 ± 209 ms
(×68.5)

59972 ± 783 ms
(×210)

Sequence length 128, batch size 16

768 11283 ± 228 ms - - - -

128 706 ± 4 ms
(×1)

- 3886 ± 28 ms
(×5.5)

-

N/A

64 288 ± 9 ms
(×1)

624 ± 16 ms
(×2.17)

3438 ± 21 ms
(×11.9)

N/A32 182 ± 1 ms
(×1)

537 ± 19 ms
(×2.95)

3408 ± 21 ms
(×18.7)

16 153 ± 3 ms
(×1)

489 ± 8 ms
(×3.2)

3173 ± 12 ms
(×20.7)

Sequence length 512, batch size 1

768 51306 ± 44 ms - - - -

128 3467 ± 33 ms
(×1)

- 24245 ± 284 ms
(×7)

- 1541404 ± 813 ms
(×445)

64 2205 ± 20) ms
(×1)

3427 ± 122 ms
(×1.55)

22777 ± 734 ms
(×10.3)

182859 ± 1594 ms
(×82.9)

838924 ± 2986 ms
(×380)

32 1722 ± 7 ms
(×1)

3042 ± 49 ms
(×1.77)

22549 ± 337 ms
(×13.1)

115513 ± 1420 ms
(×67.1)

472463 ± 3860 ms
(×274)

16 1563 ± 10 ms
(×1)

2889 ± 38 ms
(×1.85)

21353 ± 214 ms
(×13.7)

79516 ± 480 ms
(×50.9)

251326 ± 2159 ms
(×161)

Sequence length 512, batch size 16

768 66557 ± 87 ms - - - -

128 4796 ± 123 ms
(×1)

- 38788 ± 705 ms
(×8.09)

-

N/A

64 2995 ± 26 ms
(×1)

4604 ± 20 ms
(×1.54)

36671 ± 193 ms
(×12.2)

N/A32 2354 ± 30 ms
(×1)

4219 ± 52 ms
(×1.79)

36795 ± 083 ms
(×15.6)

16 2175 ± 29 ms
(×1)

4091 ± 87 ms
(×1.88)

35909 ± 129 ms
(×16.5)

Table 7: CPU inference speed results for Non-Low Rank Matrix Factorization and (SVD, TT)-decomposed models. Non-LRMF
methods include KD, KD-EO, models trained from scratch and WS. We compare models of comparable size. Each cell
shows time in milliseconds needed for running the model on 100 samples. ’-’ means no experiments were conducted, while N/A
means that the running times were too high to list here.



GPU

Method→ Size ↓ Non-LRMF SVD from 128 SVD from 768 TT from 128 TT from 768

Sequence length 128, batch size 1

768 4334 ± 28 ms - - - -

128 2843 ± 21 ms
(×1)

- 3773 ± 15 ms
(×1.33)

- 104939 ± 119 ms
(×36.9)

64 2859 ± 17 ms
(×1)

3422 ± 26 ms
(×1.2)

3713 ± 33 ms
(×1.3)

14502 ± 220 ms
(×5.07)

48838 ± 62 ms
(×17.1)

32 2777 ± 46 ms
(×1)

3473 ± 50 ms
(×1.25)

3740 ± 36 ms
(×1.35)

14392 ± 48 ms
(×5.18)

25251 ± 19 ms
(×9.09)

16 2744 ± 21 ms
(×1)

3459 ± 46 ms
(×1.26)

3474 ± 34 ms
(×1.27)

14209 ± 153 ms
(×5.17)

14166 ± 155 ms
(×5.16)

Sequence length 128, batch size 16

768 3779 ± 45 ms - - - -

128 259 ± 2 ms
(×1)

- 1201 ± 1.1 ms
(×4.6)

- 107927 ± 101 ms
(×417)

64 192 ± 2 ms
(×1)

266 ± 3 ms
(×1.39)

1071 ± 1.4 ms
(×5.58)

12343 ± 87 ms
(×64.3)

50795 ± 73 ms
(×265)

32 186 ± 4 ms
(×1)

236 ± 2 ms
(×1.29)

1060 ± 0.6 ms
(×5.7)

7001 ± 7 ms
(×37.6)

24216 ± 22 ms
(×130)

16 181 ± 1 ms
(×1)

237 ± 2 ms
(×1.31)

984 ± 0.4 ms
(×5.44)

4381 ± 12 ms
(×24.2)

7853 ± 6 ms
(×43.4)

Sequence length 512, batch size 1

768 17841 ± 146 ms - - - -

128 2888 ± 18 ms
(×1)

- 7949 ± 25 ms
(×2.75)

- 426795 ± 1066 ms
(×148)

64 2879 ± 20 ms
(×1)

3497 ± 50 ms
(×1.21)

7235 ± 7 ms
(×2.51)

45911 ± 101 ms
(×15.9)

202186 ± 180 ms
(×70.2)

32 2744 ± 11 ms
(×1)

3495 ± 28 ms
(×1.27)

7108 ± 5 ms
(×2.59)

28287 ± 44 ms
(×10.3)

100660 ± 34 ms
(×36.7)

16 2756 ± 16 ms
(×1)

3495 ± 28 ms
(×1.29)

6381 ± 8 ms
(×2.32)

18856 ± 37 ms
(×6.84)

35950 ± 11 ms
(×13)

Sequence length 512, batch size 16

768 16611 ± 128 ms - - - -

128 1415 ± 6 ms
(×1)

- 7151 ± 16 ms
(×5.06)

- N/A

64 961 ± 1 ms
(×1)

1365 ± 3ms
(×1.42)

6575 ± 0.8 ms
(×6.84)

49882 ± 62 ms
(×51.9)

204314 ± 957 ms
(×213)

32 797 ± 1 ms
(×1)

1264 ± 0.8 ms
(×1.59)

6664 ± 0.3 ms
(×8.36)

29513 ± 38 ms
(×37)

106420 ± 353 ms
(×134)

16 736 ± 1 ms
(×1)

1241 ± 1 ms
(×1.69)

6248 ± 1.1 ms
(×8.49)

18304 ± 18 ms
(×24.9)

39843 ± 54 ms
(×54.1)

Table 8: GPU inference speed results for Non-Low Rank Matrix Factorization and (SVD, TT)-decomposed models. Non-LRMF
methods include KD, KD-EO, models trained from scratch and WS. We compare models of comparable size. Each cell
shows time in milliseconds needed for running the model on 1000 samples. ’-’ means no experiments were conducted, while
N/A means that the running times were too high to list here.



Parameter Name Range

General

learning rate [1e−5, 5e−5, 1e−4, 5e−4, 1e−3, 5e−3, 1e−2]
epochs [20, 30, 50]

warmup steps [0, 1000, 2000, 4000, 5000]

Knowledge Distillation

α [0.2, 0.5, 0.7, 1.0, 1.5, 2, 4, 6, 8, 10]

β [0.2, 0.5, 0.7, 1.0, 1.5, 2, 4, 6, 8, 10]

Knowledge Distillation Encoder Outputs

α [0.2, 0.5, 0.7, 1.0, 1.5, 2, 4, 6, 8, 10]

β [0.2, 0.5, 0.7, 1.0, 1.5, 2, 4, 6, 8, 10]

γ [10, 100, 1000, 2000, 3000]

Tensor-Train

(tensor cores, rank) [(3, 21), (4, 25), (5, 27)]

Table 9: Hyperparameter search ranges for methods used in experiments for evaluating Expected Validation Performance and
the experiments from section 5. The General section lists ranges of hyperparameters used in every method. For the Knowledge
Distillation methods, we provide ranges of α and β parameters used for all experiments with KD loss 5 (this includes all methods
except for training a model from scratch, plain WS and KD-EO). In the TT method, we tuned the number of decomposition
cores. The maximum rank of factorization was selected to make this model have a number of parameters approximately equal to
that of a plain classifier with hidden layer size equal to 16 (see 5.2 for more details).


