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Extended Abstract 
Our method begins with the use of ordinal patterns to describe the spatial configuration of 
neighbouring oscillators at each time point. Ordinal analysis provides a representation that 
is noise-resistant and independent of the scaling of the underlying dynamics by focusing on the 
ordering of values rather than their raw amplitudes [1]. This symbolic representation allows us 
to determine whether neighbouring nodes in a network behave synchronously over a given time 
period. We extend this framework using permutation entropy and the cardinality of forbidden 
sequences as complementary indicators of collective dynamics. Permutation entropy measures 
the diversity of ordinal patterns observed over time, indicating dynamical complexity [2]. 
Forbidden sequences, on the other hand, highlight patterns that do not appear in symbolic 
dynamics. It demonstrates dynamical constraints imposed by the system's fundamental 
characteristics when applied to a time series [3]. The idea behind this presentation is that if we 
apply it to the neighbour nodes in a network, it can reveal structural constraints imposed by 
synchrony. Together, these two measures provide a powerful and computationally efficient 
method for categorising various regimes of collective behaviour, ranging from fully 
synchronised states to partially synchronised clusters and fully desynchronised dynamics.  
To demonstrate the effectiveness of the proposed methodology, we first apply it to a time series 
generated by a network of coupled identical logistic maps arranged on a ring. This classical 
system provides a benchmark for testing synchronisation detection techniques. Our findings 
not only confirm findings in the previous literature [4,5,6], but also provide new insights by 
identifying the boundaries of synchronous regions, particularly when oscillators are only 
partially synchronised. As a result, the method allows for a more detailed analysis of spatial 
organisation within synchronised clusters. We then extend the analysis to networks of logistic 
maps with random connections, where traditional spatio-temporal visualisation methods fail 
because the network lacks a simple geometric embedding. In this more complex case, our 
ordinal-partition-based method still detects synchronised groups and classifies the network's 
collective behaviour. Figure 1 shows the average of normalised permutation entropy for a 
network of 𝑁𝑁 = 100 coupled logistic maps, that each node has 64 neighbours which are chosen 
(a) regularly on a ring network (b) randomly, with distinct sets of random initial conditions. In 
both cases of the ring network (a) and the random network (b), the value of the normalised 
permutation entropy can detect the boundaries of coupling strength that cause full 
synchronisation and full asynchronisation. 
The findings presented here establish ordinal analysis as a general-purpose synchronisation 
detection tool when combined with entropy-based measures. Unlike many other approaches, it 
does not require explicit knowledge of the system's governing equations and is robust in the 
presence of noise. Beyond its validation on logistic map networks, the method has the potential 
to be applied to empirical data from a wide range of domains where understanding synchronous 
behaviour is critical. In summary, this work presents a conceptually simple yet powerful 
framework for detecting synchronous regions in networks of coupled oscillators and classifying 
their collective dynamics using symbolic time-series methods. Its demonstrated efficacy on 
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both ring and random networks suggests that it has applicability in many fields where detecting 
synchrony is still a major challenge.  
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Figure 1. The average of normalised permutation entropy between all the ordinal 
windows in a network of 𝑵𝑵 =  𝟏𝟏𝟏𝟏𝟏𝟏 coupled logistic maps. (a) in a ring network with 32 
neighbours from the right and 32 neighbours from the left, with different lengths of ordinal 
windows from 𝑚𝑚 =  2 to 𝑚𝑚 =  6, for 25 different initial conditions, with error bars 
intentionally removed to avoid overcrowding the plot’s areas of interest. (b) in a random 
network with 64 neighbours for each node. The ordinal window length is 𝑚𝑚 =  4, and 50 
distinct sets of random initial conditions are used. The red line is the mean of the ensemble of 
simulations, and the minimum and maximum observed depict the spread of results. In the 
regions where the coupling coefficient is extremely low (high), the entropy value is exactly 1 
(0), indicating complete asynchrony (complete synchrony). In these regions, the network 
behaviour remains constant across different sets of initial conditions. For intermediate σ values, 
the network dynamics are dependent on the initial conditions. In this region, subsets of the 
network can synchronise (group synchrony) as evident from the lower but non-zero average 
normalised PE. 
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