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Abstract

Knowledge distillation (KD) is known as a001
promising solution to compress large language002
models (LLMs) via transferring their knowl-003
edge to smaller models. During this process,004
white-box KD methods usually minimize the005
distance between the output distributions of006
the two models so that more knowledge can007
be transferred. However, in the current white-008
box KD framework, the output distributions009
are from the respective output spaces of the010
two models, using their own prediction heads.011
We argue that the space discrepancy will lead to012
low similarity between the teacher model and013
the student model on both representation and014
distribution levels. Furthermore, this discrep-015
ancy also hinders the KD process between mod-016
els with different vocabularies, which is com-017
mon for current LLMs. To address these issues,018
we propose a dual-space knowledge distilla-019
tion (DSKD) framework that unifies the output020
spaces of the two models for KD. On the basis021
of DSKD, we further develop a cross-model022
attention mechanism, which can automatically023
align the representations of the two models with024
different vocabularies. Thus, our framework is025
not only compatible with various distance func-026
tions for KD (e.g., KL divergence) like the cur-027
rent framework, but also supports KD between028
any two LLMs regardless of their vocabular-029
ies. Experiments on task-agnostic instruction-030
following benchmarks show that DSKD signif-031
icantly outperforms the current white-box KD032
framework with various distance functions, and033
also surpasses existing KD methods for LLMs034
with different vocabularies.035

1 Introduction036

Existing large language models (LLMs) have ex-037

hibited strong generalization abilities on various038

tasks due to their huge model capacities (Chowd-039

hery et al., 2023; Touvron et al., 2023; OpenAI,040

2023). With faith in the scaling law (Kaplan et al.,041

2020), the amount of parameters in current LLMs042

is expanded steadily to achieve higher intelligence. 043

However, the increasing parameters also bring high 044

deployment costs in real scenarios. For this prob- 045

lem, knowledge distillation (KD) (Hinton et al., 046

2015) is one of the promising solutions to compress 047

large models with acceptable performance sacrifice. 048

During the process of KD, the large model typically 049

serves as the teacher and provides supervision sig- 050

nals for a small model (known as the student), and 051

thus the knowledge and the abilities of the teacher 052

can be transferred to the lightweight student. 053

Currently, KD algorithms for LLMs are usu- 054

ally under two frameworks, i.e., black-box KD and 055

white-box KD. Black-box KD uses the teacher’s 056

decoding sequences as the training data of the stu- 057

dent and directly optimizes the cross-entropy loss 058

on the one-hot target. (Kim and Rush, 2016; Fu 059

et al., 2023; Li et al., 2023). By contrast, white-box 060

KD methods usually minimize the distance (e.g., 061

KL divergence) between the output distributions 062

of the teacher and the student, which theoretically 063

transfer more information and usually perform bet- 064

ter than black-box KD (Wen et al., 2023; Gu et al., 065

2023; Ko et al., 2024). Although the framework 066

of white-box KD has shown its superiority, the 067

distributions of the student and the teacher in this 068

framework are from different output spaces since 069

they are produced by different prediction heads. 070

At the beginning of this work, we first reveal two 071

inherent limitations in this framework due to the 072

discrepancy of output spaces: 073

• Low Teacher-Student Similarity: The cur- 074

rent framework usually yields low similarity 075

between the teacher and the student on both 076

representation and distribution levels (§2.2.1); 077

• Requirements on the Same Vocabulary: A 078

key condition for current white-box KD is 079

that the two models should share the same 080

vocabulary, which, however, is hardly satisfied 081

for various LLMs in this era (§2.2.2). 082
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Towards these limitations, we then propose a083

new framework for white-box KD, named dual-084

space knowledge distillation (DSKD), which is as085

simple as the current white-box KD framework but086

addresses the issues due to the space discrepancy.087

Specifically, DSKD unifies the output spaces of088

the two models by projecting the output hidden089

states1 of the teacher/student to the representation090

spaces of the student/teacher, where we can use091

the shared prediction heads to produce the two092

distributions in the same output spaces. In partic-093

ular, for models with different vocabularies, we094

further develop a cross-model attention (CMA)095

mechanism to automatically align the tokens in two096

differently tokenized sequences. Like the current097

framework, DSKD is also compatible with existing098

distance functions for distributions, including KL099

divergence, JS divergence, and so on. Meanwhile,100

with CMA, we can transform distributions of the101

two LLMs into the same shape, which makes our102

framework more general and can be applied to any103

two LLMs regardless of their vocabularies.104

We evaluate our framework on instruction-105

following benchmarks under both settings that the106

two LLMs have the same/different vocabularies.107

Experimental results showcase that for LLMs with108

the same vocabulary, our DSKD framework sig-109

nificantly outperforms the current white-box KD110

framework on various distance functions. More-111

over, DSKD with CMA surpasses all existing KD112

methods for LLMs with different vocabularies.113

To sum up, the contributions are as follows:114

• We empirically reveal that the current white-115

box KD framework limits the similarity be-116

tween the student and the teacher due to their117

different output spaces.118

• As a solution, we propose a new framework119

for white-box KD, named dual-space knowl-120

edge distillation (DSKD), which unifies the121

output spaces of the distributions from the122

teacher and the student for more effective KD.123

• Based on DSKD, we further develop a cross-124

model attention mechanism to support KD125

between LLMs with different vocabularies.126

• Experiments show that our DSKD framework127

significantly outperforms the current white-128

box KD framework on various distance func-129

1In this paper, “output hidden states” means the hidden
states output by the last layer of the model.

tions and surpasses existing KD methods for 130

LLMs with different vocabularies. 131

2 Background and Preliminary Study 132

2.1 Current Framework for White-Box KD 133

Given a sequence x, current LLMs generally learn 134

the casual language modeling objective at each 135

token position i via the cross-entropy loss: 136

Lce = −
|x|∑
i

log qθ(x
∗
i |x<i), (1) 137

where qθ(x
∗
i |x<i) denotes the probability of the 138

student model on the target token x∗i conditioning 139

on the context x<i. On this basis, the current white- 140

box KD framework first feeds this sequence into 141

the teacher model to obtain its token-level proba- 142

bility distributions p(xi|x<i). Then, the following 143

loss is minimized to push the student distribution 144

qθ(xi|x<i) to the teacher distribution p(xi|x<i): 145

Lkd =
∑
i

D(p(xi|x<i; τ)||qθ(xi|x<i; τ)), (2) 146

where D(·||·) is the distance function that measures 147

the distance between the two distributions (e.g., KL 148

divergence) and τ is the temperature coefficient to 149

control the sharpness of the distributions. 150

On the choice of the distance function D(·||·) 151

in Eqn. (2), there have been several explorations 152

(e.g., reverse KL divergence) in recent literature 153

that aim to improve the performance of KD for 154

LLMs (Wen et al., 2023; Agarwal et al., 2024; Ko 155

et al., 2024; Wu et al., 2024). However, in the 156

following section, we will uncover that no matter 157

which distance function is employed, the current 158

white-box KD framework has two inherent limita- 159

tions since the two distributions p(xi|x<i; τ) and 160

qθ(xi|x<i; τ) are from different output spaces. 161

2.2 Limitations of the Current Framework 162

2.2.1 Low Teacher-Student Similarity 163

In the current white-box KD framework, the two 164

output distributions in Eqn. (2) are calculated from 165

different output spaces of two models using their 166

respective prediction heads. Then, the student dis- 167

tribution will be optimized toward the teacher dis- 168

tribution by minimizing their distance. However, 169

we suspect this practice will limit the final similar- 170

ity between the student and the teacher from two 171

aspects: a) representation: as the distributions 172

are the results of the output hidden states through 173
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the prediction heads, if the prediction heads of the174

two models are different, even if the distributions175

are close, their hidden states will not be similar;176

b) distribution: If the output hidden states of the177

student and the teacher are not similar, the practical178

distance between their distributions is difficult to179

reach its theoretical minimum during optimization.180

We verify the above conjectures by a simulation181

experiment. In this experiment, we randomly ini-182

tialize two sets of 2-D vectors (one is trainable and183

the other is frozen) with different mean values and184

variances to represent the output hidden states of185

the student and the teacher, respectively (as plot-186

ted in Figure 1(a)). Besides, we set two prediction187

heads to produce probability distributions of the188

student and the teacher from these vectors. Then,189

we select KL divergence as the distance function190

D(·||·) and simulate the KD process with Lkd in191

Eqn. (2) for 1000 iterations. After the iterations,192

we plot the two sets of vectors again and record the193

loss curve during the whole process in Figure 1.194

Firstly, we simulate the process of the current195

white-box KD framework, which uses distributions196

from different output spaces produced by differ-197

ent prediction heads. The result in Figure 1(b)198

shows that the student’s hidden states optimized199

by the current KD framework exhibit distinct struc-200

ture discrepancy from the teacher’s hidden states,201

reflecting low similarity between them. As a com-202

parison, we then unify the output spaces of the two203

distributions by sharing the same prediction head204

for the student and the teacher and conduct the205

same KD process as above. As shown in Figure206

1(c), under this setting, the student’s hidden states207

become more similar and closer to the teacher’s hid-208

den states. The significant difference between these209

two settings indicates that the current KD frame-210

work may lead to sub-optimal similarity between211

the student and the teacher on the representation212

level. By contrast, a better alternative is to unify213

the output spaces for the distributions of the student214

and the teacher.215

Then, we repeat the simulations of the above two216

settings 100 times and plot their averaged curves217

of Lkd in Figure 1(d). As we suspected, when218

using different prediction heads, the value of KL219

divergence still leaves a large margin to its theoret-220

ical minimum (i.e., 0) after convergence. On the221

contrary, when using a shared prediction head, the222

value of KL divergence will converge faster and223

finally be closer to this minimum. It sufficiently224

illustrates that the current KD framework also lim-225

(a) Before KD (b) After KD (different heads)

(c) After KD (shared head) (d) Loss curves of KD

Figure 1: Simulation results with KL divergence as
the distance function D(·||·). (a), (b) and (c) plot the
student’s hidden states and the teacher’s hidden states
before and after the two KD processes. (d) shows the
convergence curves of Lkd in the two KD processes.

its the similarity between the two models on the 226

distribution level. Besides KL divergence, we 227

also conduct these simulations with other distance 228

functions (e.g., reverse KL divergence, JS diver- 229

gence, etc.). The results are shown in Appendix 230

A.1, which also support the above conclusions. Ad- 231

ditionally, we provide the pseudo code of the simu- 232

lation experiment in Appendix A.2 to present more 233

details. 234

2.2.2 Dependency on the Same Vocabulary 235

As stated in §2.1, the current KD framework 236

minimizes the distance between the two distri- 237

butions at each token position. However, when 238

the teacher and the student have different vocabu- 239

laries, the same text may be tokenized into dif- 240

ferent sequences like x = [x1, x2, ..., xn] and 241

y = [y1, y2, ..., ym]. Under this circumstance, the 242

teacher distribution p(yi|y<i) is probably incorrect 243

for qθ(xi|x<i). Additionally, as the output spaces 244

are more different when the prediction heads con- 245

tain different vocabularies, the produced distribu- 246

tions are even with different dimensions, which 247

is obviously prohibited by Eqn. (2). Therefore, 248

the current white-box KD framework fails to work 249

between LLMs with different vocabularies. 250

3 Methodology 251

This section introduces our solutions to the above 252

limitations of the current white-box KD framework. 253
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Firstly, we will introduce our new KD framework254

in §3.1. Then we present a cross-model attention255

mechanism in §3.2 to extend our framework to256

support LLMs with different vocabularies.257

3.1 Dual-Space Knowledge Distillation258

Framework259

Inspired by the observations in §2.2.1, we de-260

sign our dual-space knowledge distillation (DSKD)261

framework. The core idea is to unify the output262

spaces of the two distributions in Eqn. (2). To263

achieve this, we project the output hidden states264

of the teacher/student model into the representa-265

tion space of the student/teacher model, so that266

the distributions can be output by the same predic-267

tion head and thus lie in the unified output space.268

Next, we will detail how to conduct the projection269

and unify KD in student and teacher space.270

KD in Student Space. In the student space, we271

first use a linear projector Pt→s to transform the272

hidden states of the teacher model into the repre-273

sentation space of the student model. Here, we274

denote the output hidden states of the whole se-275

quence from the teacher model as ht
1:n. Then the276

projection process can be formulated as follows:277

ht→s
1:n = Pt→s(ht

1:n; θ
t→s
P ) ∈ Rn×d, (3)278

where θt→s
P is the trainable parameter of the projec-279

tor Pt→s and d is the hidden size of the student280

model. With the projected hidden states ht→s,281

we can obtain the transformed teacher distribu-282

tion pt→s
1:n that shares the same output space with283

the student using the student’s prediction head284

Ws ∈ Rd×|V |:285

pt→s
1:n = softmax(ht→s

1:n Ws) ∈ Rn×|V |
+ , (4)286

where |V | is the vocabulary size of the two models.287

As the projector is randomly initialized at the start288

of the training, we train the transformed distribu-289

tion pt→s
1:n to predict the ground-truth target tokens290

in the student’s sequence with cross-entropy loss2:291

Lt→s
ce = −

∑
i

log(pt→s(x∗i |x<i)). (5)292

Meanwhile, we use this distribution pt→s as the293

new teacher distribution and calculate the same294

loss for KD as Eqn. (2):295

Lstu
kd =

∑
i

D(pt→s(xi|x<i; τ)||qθ(xi|x<i; τ)),

(6)296

2Note that we stop the gradient of Ws in Eqn. (4) to avoid
negative effects to the student model

where D(·||·) is as same as the one in Eqn. (2). 297

KD in Teacher Space. Similar to the process in 298

the student space, we also project the hidden states 299

of the student model into the teacher’s dimension 300

using another projector Ps→t: 301

hs→t
1:n = Ps→t(hs

1:n; θ
s→t
P ) ∈ Rn×D, (7) 302

where D is the hidden size of the teacher model. 303

Then, we use the prediction head of the teacher 304

model Wt ∈ RD×|V | to obtain the distributions of 305

the student model in the teacher’s space: 306

qθ
s→t
1:n = softmax(hs→t

1:n Wt) ∈ Rn×|V |
+ , (8) 307

As the teacher distributions in its own space are 308

usually well-trained, we can directly calculate the 309

KD loss in the teacher space: 310

Ltea
kd =

∑
i

KL(p(xi|x<i; τ)||qs→t
θ (xi|x<i; τ)),

(9) 311

where a difference from Eqn. (6) is that we directly 312

fix KL divergence as D(·||·) since we found it more 313

appropriate for KD in the teacher space. 314

The whole loss of DSKD sums the KD losses in 315

both spaces and the cross-entropy loss in Eqn. (5): 316

Ldskd = Lstu
kd + Ltea

kd + Lt→s
ce . (10) 317

3.2 Cross-Model Attention Mechanism 318

In the above section, we have introduced our DSKD 319

framework for LLMs with the same vocabulary. 320

For LLMs with different vocabularies, since DSKD 321

always produces distributions with the same dimen- 322

sions for the student and the teacher via sharing 323

the same prediction heads, the remaining require- 324

ment for KD is just to align the tokens in the two 325

sequences tokenized by different tokenizers3. 326

To this end, we develop a cross-model attention 327

(CMA) mechanism to learn the alignment between 328

tokens in the two sequences automatically. Specifi- 329

cally, we first concatenate the student’s embeddings 330

of input tokens es1:n and target tokens es2:n+1 in the 331

sequence on the last dimension and project them as 332

the query vectors with a query projector Pq: 333

Q = Pq([es1:n; e
s
2:n+1]; θ

q
P) ∈ Rn×2D. 334

Similarly, we use the teacher’s embeddings and 335

output hidden states to obtain the key and value 336

3Here we borrow the notations in §2.2.2 and assume that
there are m tokens in the teacher’s sequence.
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vectors:337

K = N([et1:m; et2:m+1]) ∈ Rm×2D,338

V = Pv(N(et2:m+1) + N(ht
1:m); θvP) ∈ Rm×d,339

where we normalize the embeddings and the hidden340

states of the teacher with their standard deviations341

like N(x) = x/std(x) for faster convergence.342

Then, we calculate the attention matrix with the343

query and the key:344

at→s = softmax(
QK⊤
√
2D

) ∈ Rn×m. (11)345

The attention matrix reflects the alignment rela-346

tionship from the teacher tokens to the student to-347

kens. Based on this matrix, we can obtain the final348

projected and aligned hidden states of the teacher349

model from the weighted sum of the value vectors:350

h̃t→s
1:n = at→sV ∈ Rn×d. (12)351

Then, we can substitute h̃t→s into Eqn. (4) and352

train h̃t→s to correctly predict the target tokens353

of the student model with Eqn. (5). Meanwhile,354

the teacher distributions produced from h̃t→s are355

also in the student space and can support the KD356

process in Eqn. (6)4.357

Besides, we also transpose the matrix to align358

the student tokens to the teacher tokens:359

as→t = softmax(
KQ⊤
√
2D

) ∈ Rm×n. (13)360

We can project and align the student’s hidden states361

to the teacher’s using this alignment matrix:362

h̃s→t
1:m = as→tPs→t(hs

1:n; θ
s→t
P ) ∈ Rm×D. (14)363

Then, we can substitute h̃s→t
1:m into Eqn. (8) and364

conduct KD in the teacher space with Eqn. (9).365

4 Experiments366

4.1 Experimental Setup367

Data. We evaluate our DSKD framework on sev-368

eral instruction-following datasets following Gu369

et al. (2023). Specifically, we choose databricks-370

dolly-15k dataset processed by Gu et al. (2023)371

to conduct the KD process, which contains about372

11k samples for training, 1k for validation, and 500373

for testing. Besides, we also select Self-Instruct374

(SelfInst), Vicuna-Evaluation (VicunaEval), Su-375

per Natural Instructions (S-NI), and Unnatural In-376

structions (UnNI) as the additional test sets for377

more comprehensive evaluation.378

4For models with different vocabularies, the distribution
in Eqn. (4) usually has lower accuracy, so we mask the KD
loss in Eqn. (6) when the teacher distribution is incorrect.

Models. For student LLMs, we select both GPT2- 379

120M (Radford et al., 2019) and TinyLLaMA-1.1B 380

(Zhang et al., 2024). For GPT2-120M, we employ 381

GPT2-1.5B and Qwen1.5-1.8B (Bai et al., 2023) 382

respectively as the teacher LLMs that have the 383

same/different vocabularies with the student LLMs. 384

For TinyLLaMA-1.1B, we choose LLaMA2-7B 385

(Touvron et al., 2023) and Mistral-7B (Jiang et al., 386

2023) as the teacher LLMs that have the same/dif- 387

ferent vocabularies with the student LLMs. 388

Training and Evaluation. For KD on GPT2, we 389

employ full-finetuning for the teachers and the stu- 390

dents. For KD on TinyLLaMA, we finetune the 391

students and the teachers with LoRA. In particu- 392

lar, we set the temperature τ to 2.0 according the 393

performance on the validation set. Besides, all the 394

projectors in our method are linear layers, which 395

only increase few parameters in training (e.g., ≈2M 396

for DSKD on GPT2). For the evaluation, we sam- 397

pling the responses from the models under 5 ran- 398

dom seeds. The final performance is measured 399

by Rouge-L (Lin, 2004) between the generated re- 400

sponses and the human-labeled ones. More details 401

are provided in Appendix B. 402

4.2 Baselines 403

We compare our framework with existing methods 404

under two settings: 405

KD with the same vocabulary. In this setting, 406

we compare DSKD with the current white-box KD 407

framework on the following distance functions: 408

• KL. The standard KL divergence used in KD 409

proposed by Hinton et al. (2015). 410

• RKL. The reverse KL divergence that swaps 411

the two distributions in KL divergence. 412

• JS. Jenson-Shannon (JS) divergence, a sym- 413

metric variant of KL divergence. 414

• SKL. The skewed KL proposed by Ko et al. 415

(2024), which skews the student distribution 416

qθ in KL as λp+ (1− λ)qθ. 417

• SRKL. The skewed RKL proposed by Ko 418

et al. (2024), which skews the teacher distri- 419

bution p in RKL as λqθ + (1− λ)p. 420

• AKL. The adaptive fusion of KL and RKL 421

proposed by Wu et al. (2024). 422
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Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.
SFT 22.94±0.28 10.11±0.36 15.17±0.63 16.21±0.19 18.68±0.09 16.62

GPT2-1.5B → GPT2-120M (Same Vocabulary)
Teacher 27.19±0.23 14.64±0.64 16.30±0.37 27.55±0.30 31.42±0.11 23.42
SeqKD 23.68±0.25 10.03±0.23 14.41±0.46 16.36±0.18 18.48±0.11 16.59
KL 24.54±0.48 10.43±0.24 15.66±0.42 17.24±0.27 20.28±0.18 17.63

w/ DSKD (ours) 24.70±0.24 10.65±0.30 15.67±0.30 19.51±0.21 22.94±0.07 18.69 (+1.06↑)

RKL 24.38±0.55 10.73±0.61 15.71±0.39 17.31±0.11 20.96±0.12 17.82
w/ DSKD (ours) 24.61±0.59 11.01±0.45 14.98±0.48 19.32±0.28 22.27±0.13 18.44 (+0.62↑)

JS 23.86±0.14 10.20±0.40 15.50±0.23 16.20±0.23 19.17±0.06 16.98
w/ DSKD (ours) 24.61±0.27 11.41±0.35 15.40±0.28 18.94±0.20 21.48±0.17 18.37 (+1.39↑)

SKL (Ko et al., 2024) 24.03±0.23 10.66±0.51 14.70±0.37 17.99±0.15 21.18±0.16 17.71
w/ DSKD (ours) 25.24±0.28 10.50±0.13 15.76±0.43 18.34±0.44 20.87±0.11 18.14 (+0.43↑)

SRKL (Ko et al., 2024) 24.48±0.19 10.35±0.38 14.88±0.24 16.53±0.23 19.68±0.05 17.19
w/ DSKD (ours) 25.23±0.25 11.19±0.22 15.91±0.45 17.92±0.16 21.20±0.12 18.29 (+1.10↑)

AKL (Wu et al., 2024) 24.75±0.60 10.46±0.24 15.37±0.41 17.48±0.17 20.11±0.05 17.63
w/ DSKD (ours) 25.13±0.14 10.63±0.43 16.18±0.35 18.58±0.48 21.45±0.16 18.39 (+0.76↑)

Qwen1.5-1.8B → GPT2-120M (Different Vocabularies)
Teacher 27.42±0.33 19.42±0.11 19.31±0.21 34.87±0.30 36.00±0.10 27.40
SeqKD 23.40±0.21 9.36±0.38 15.37±0.35 15.16±0.17 17.34±0.11 16.13
MinED (Wan et al., 2024) 24.41±0.61 10.60±0.39 15.86±0.42 16.76±0.28 19.68±0.12 17.46
ULD (Boizard et al., 2024) 23.77±0.41 9.67±0.50 14.99±0.55 17.60±0.21 19.49±0.12 17.11
DSKD-CMA-SRKL (ours) 25.23±0.17 10.99±0.26 15.56±0.41 17.76±0.23 20.54±0.07 18.02

Table 1: Rouge-L scores (%) on several benchmarks with GPT2-120M as the student. We list the mean values and
the standard deviations among 5 random seeds. The average scores (Avg.) on all benchmarks are also listed. “w/
DSKD” denotes our DSKD using the corresponding distance function as D(·||·) in Eqn. (6). And “DSKD-CMA-
SRKL” denotes our DSKD framework equipped with cross-model attention with SRKL as D(·||·) in Eqn. (6).

KD with different vocabularies. We also com-423

pare DSKD with cross-model attention to the KD424

methods for different vocabularies:425

• MinCE. The method proposed by Wan et al.426

(2024), aligns the logits between different427

models via dynamic programming that mini-428

mizes the edit distances of token strings.429

• ULD. The method proposed by Boizard et al.430

(2024), sorts and pads the two distributions431

and minimizes the total variation distance be-432

tween the two distributions.433

Besides, we also compare our framework with434

the black-box KD method, i.e., sequence-level KD435

(SeqKD) (Kim and Rush, 2016), under both set-436

tings. Nevertheless, we did not compare our frame-437

work with on-policy KD methods such as ImitKD438

(Lin et al., 2020), GKD (Agarwal et al., 2024),439

MiniLLM (Gu et al., 2023) and DistiLLM (Ko440

et al., 2024) since we only focus on the more gen-441

eral off-policy scenarios.442

4.3 Results443

KD with the same vocabulary. The results of444

KD for models with the same vocabulary are pre-445

sented at the top parts of Table 1 and Table 2.446

Firstly, it is shown that all white-box KD meth- 447

ods exhibit better performance than the black- 448

box KD method SeqKD, which demonstrates that 449

token-level distributions can transfer more knowl- 450

edge than single target tokens. Furthermore, our 451

DSKD framework significantly outperforms the 452

current white-box KD framework for both GPT2 453

and TinyLLaMA on various distance functions. On 454

the one hand, it showcases the effectiveness of our 455

DSKD framework that conducts KD in unified out- 456

put spaces. On the other hand, the improvements 457

on all distance functions also demonstrate that our 458

framework is highly compatible with current dis- 459

tance functions in KD. 460

KD with different vocabularies. At the bottom 461

parts of Table 1 and Table 2, we also show the re- 462

sults of KD methods for models with different vo- 463

cabularies5. As mentioned in §2.2.2, the key chal- 464

lenge in this setting is to deal with the mismatch dis- 465

tributions due to different vocabulary sizes and tok- 466

enization. Facing this challenge, existing KD meth- 467

ods only pre-define coarse alignment and thus yield 468

5In this setting, we only list the results of our method with
the best performing distance functions due to space limitation.
The full results are listed in Table 5 and Table 6.

6



Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.
SFT 23.20±0.13 14.88±0.54 16.42±0.35 27.79±0.27 26.12±0.11 21.68

LLaMA2-7B → TinyLLaMA-1.1B (Same Vocabulary)
Teacher 28.32±0.46 20.95±0.69 18.76±0.35 32.05±0.28 32.41±0.12 26.50
SeqKD 23.21±0.22 16.46±0.72 16.58±0.38 26.33±0.26 27.69±0.10 22.05
KL 25.46±0.63 17.21±0.25 16.43±0.53 29.27±0.29 29.28±0.09 23.53

w/ DSKD (ours) 26.31±0.26 18.27±0.56 18.04±0.37 31.43±0.26 31.20±0.09 25.05 (+1.52↑)

RKL 24.49±0.41 17.14±0.61 16.87±0.26 29.50±0.28 29.36±0.08 23.47
w/ DSKD (ours) 26.93±0.34 18.14±0.54 18.81±0.39 31.79±0.31 32.49±0.11 25.63 (+2.17↑)

JS 24.03±0.31 15.75±0.51 16.64±0.30 28.08±0.10 28.68±0.08 22.62
w/ DSKD (ours) 24.79±0.42 17.10±0.47 16.78±0.20 29.06±0.18 29.47±0.22 23.44 (+0.82↑)

SKL (Ko et al., 2024) 24.14±0.53 15.98±0.72 16.89±0.22 29.30±0.18 28.71±0.12 23.01
w/ DSKD (ours) 25.88±0.22 17.59±0.56 17.17±0.34 29.52±0.33 30.69±0.16 24.17 (+1.16↑)

SRKL (Ko et al., 2024) 24.28±0.58 16.91±0.67 16.88±0.20 29.55±0.19 28.64±0.21 23.25
w/ DSKD (ours) 25.44±0.22 17.34±0.69 17.19±0.34 30.29±0.29 31.23±0.13 24.30 (+1.05↑)

AKL (Wu et al., 2024) 24.80±0.70 16.79±1.09 16.80±0.44 29.29±0.35 28.81±0.09 23.30
w/ DSKD (ours) 26.33±0.45 20.17±0.46 17.43±0.48 34.93±0.39 34.40±0.20 26.65 (+3.35↑)

Mistral-7B → TinyLLaMA-1.1B (Different Vocabularies)
Teacher 31.56±0.19 25.10±0.36 20.50±0.32 36.07±0.24 36.27±0.15 29.90
SeqKD 23.56±0.39 15.87±0.54 15.99±0.55 25.50±0.37 26.64±0.09 21.51
MinED (Wan et al., 2024) 20.96±0.51 14.49±0.35 15.98±0.45 27.21±0.13 26.47±0.11 21.77
ULD (Boizard et al., 2024) 22.80±0.28 15.93±0.74 16.43±0.60 26.94±0.28 24.83±0.13 20.64
DSKD-CMA-AKL (ours) 26.45±0.56 19.57±0.69 17.95±0.55 35.99±0.19 35.00±0.16 26.99

c

Table 2: Rouge-L scores (%) on several benchmarks with TinyLLaMA-1.1B as the student. We list the mean
values and the standard deviations among 5 random seeds. “w/ DSKD” denotes our DSKD using the corresponding
distance function as D(·||·) in Eqn. (6). And “DSKD-CMA-AKL” denotes our DSKD framework equipped with
cross-model attention with AKL as D(·||·) in Eqn. (6).

Objective Diff. Space Student Space DSKD
GPT2-1.5B → GPT2-120M

KL 17.63 18.00 18.69
RKL 17.82 18.03 18.44
JS 16.98 17.17 18.37
SKL 17.71 17.99 18.14
SRKL 17.19 17.47 18.29
AKL 17.63 17.77 18.39

LLaMA2-7B → TinyLLaMA-1.1B
KL 23.53 24.99 25.05
RKL 23.47 25.50 25.63
JS 22.62 22.64 23.44
SKL 23.01 23.55 24.17
SRKL 23.25 23.64 24.30
AKL 23.30 26.23 26.65

Table 3: The averaged Rouge-L (%) among all test sets.
The detailed scores on each test set are in Appendix C.

limited performance, lagging behind KD methods469

for models with the same vocabulary. In contrast,470

our CMA mechanism learns the alignment automat-471

ically, with which our DSKD performs better than472

existing methods. Particularly, as the teacher mod-473

els under this setting are stronger, DSKD-CMA can474

sometimes achieve better performance than DSKD475

with the same vocabulary (e.g., DSKD-CMA-AKL476

in Table 2). It suggests the potential of our method 477

to train better students with stronger teachers, even 478

if they have different vocabularies. 479

5 Analysis 480

5.1 KD in Different Spaces vs. Unified Space 481

In this section, we further evaluate whether unify- 482

ing the space for KD leads to better performance. 483

Specifically, we only keep the KD process in the 484

student space in our DSKD, i.e., only calculate the 485

losses in Eqn. (5) and Eqn. (6), since it optimizes 486

the same student distribution qθ as the current KD 487

framework does in Eqn. (2). The only difference is 488

that the teacher distribution pt→s in Eqn. (6) shares 489

the same output space with the student distribution. 490

The results are shown in Table 3. For all distance 491

functions, KD in the student space (Student Space) 492

consistently surpasses KD in different spaces (Diff. 493

Space). These results sufficiently reflect the supe- 494

riority of unifying the output spaces of the distribu- 495

tions for KD. Furthermore, when combined with 496

KD in the teacher space, KD in dual spaces, i.e., 497

DSKD, achieves further improvement, indicating 498

that KD in the student space and the teacher space 499

can complement each other. 500
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Figure 2: Win rates (%) on the response quality between
TinyLLaMA trained by DSKD and the current white-
box KD framework.

5.2 Evaluation via GPT-4501

We also use GPT-4 to evaluate and compare our502

DSKD and the current white-box KD framework.503

Specifically, we randomly pick 100 instructions504

in the test set of Dolly and generate responses505

with TinyLLaMA trained by DSKD and the current506

framework. Then we use GPT-4 to judge which re-507

sponses are better and plot the win rates in Figure 2.508

It is shown that our DSKD can beat the current KD509

framework in most cases for both KL divergence510

and reverse KL divergence. More details and the511

complete results for other distance functions can512

be referred to in Appendix D.513

5.3 Representation Similarity between the514

Teacher and the Student515

In the simulation experiment, we find that the cur-516

rent KD framework will lead to limited representa-517

tion similarities between the student and the teacher518

(as shown in Figure 1(b)). Thus, we evaluate519

whether this phenomenon also holds in the real KD520

scenario. Specifically, we use cosine similarity and521

normalized inner product between output hidden522

states to represent the representation structure of523

a model. The detailed calculation of the structure524

distance is in Appendix E. Then we plot the aver-525

age distance between the structure of the teacher526

and the student on 1000 training samples in Fig-527

ure 3. It shows that on both types of representation528

structures, the current KD framework (Vanilla KD)529

only reduces minor distances between the teacher530

and the student compared to fine-tuning without531

KD (SFT). However, our DSKD achieves signifi-532

cantly lower distances between the teacher and the533

student, which indicates that DSKD can enhance534

the similarity between the student and the teacher.535

6 Related Work536

The white-box KD framework for language mod-537

els stems from the standard KD method proposed538

(a) Cosine as Structure (b) Inner Product as Structure

Figure 3: Distance between the representation structures
of the teacher and the student.

by Hinton et al. (2015). As pre-trained language 539

models (PLMs) become prevalent for various NLP 540

tasks, numerous KD methods within this frame- 541

work were proposed to compress the excessive 542

model sizes of PLMs (Sun et al., 2019; Sanh et al., 543

2019; Sun et al., 2020; Jiao et al., 2020). Be- 544

sides minimizing the distance between distribu- 545

tions, there are also feature-based KD methods 546

that distill the knowledge in intermediate hidden 547

states and attention maps of the teacher model (Jiao 548

et al., 2020; Wang et al., 2020, 2021). Since LLMs 549

are predominate for various tasks, several KD tech- 550

niques have also been proposed for LLMs (Gu et al., 551

2023; Ko et al., 2024; Wu et al., 2024; Xu et al., 552

2024). Unlike the previous work that follows the 553

current white-box KD framework, we challenge 554

this framework by revealing its inherent limitations 555

and proposing a simple yet more effective and gen- 556

eral KD framework as the solution. 557

7 Conclusion 558

In this work, we first reveal two limitations in the 559

current white-box KD framework for LLMs, i.e., 560

leading to low similarity between the student and 561

the teacher and the requirements of the same vo- 562

cabulary between two LLMs. To address them, 563

we propose a novel white-box KD framework, 564

named dual-space knowledge distillation (DSKD), 565

which unifies the output spaces of the student and 566

the teacher for KD. On this basis, we further de- 567

velop a cross-model attention mechanism to solve 568

the vocabulary mismatch between different LLMs, 569

so that our DSKD framework supports KD be- 570

tween any two LLMs, regardless of their vocab- 571

ularies. Experimental results on several instruction- 572

following benchmarks showcase that our frame- 573

work significantly outperforms the current white- 574

box KD framework on various distance functions. 575

Meanwhile, for LLMs with different vocabularies, 576

DSKD also surpasses all existing KD methods. 577

8



Limitations578

Although our DSKD supports KD between LLMs579

with different vocabularies via the cross-model580

attention mechanism, the final performance of581

DSKD-CMA in most cases still lags slightly be-582

hind the performance of DSKD when LLMs have583

the same vocabularies (see Table 5 and Table 6).584

We attribute this gap to the alignment error between585

the tokens in two differently tokenized sequences.586

Nevertheless, we still believe that our cross-model587

attention is a simple yet relatively effective method588

to solve the KD for LLMs with different vocabu-589

laries and may inspire more effective methods in590

future work.591
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A Appendix 749

A.1 Simulation Results for Other Distance Functions 750

We complement the remaining results of simulation experiments for the following objectives: reverse KL 751

divergence, JS divergence, skewed KL divergence, skewed RKL divergence, and adaptive KL divergence. 752

The results are plotted in Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8. It is shown that no matter 753

which distance function is used, the student after KD will have low representation similarity with the 754

teacher and leave large margin to the minimum distance between the two distributions when using different 755

prediction heads. Thus, all these results lead to the consistent conclusion in §2.2.1, and also suggest that 756

current KD framework may have inherent flaws on enhancing the similarity between the student model 757

and the teacher model. As a solution, unifying the output spaces by sharing the prediction head for teacher 758

and student may achieve more effective KD process. 759

(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 4: Simulation results with reverse KL divergence as the KD objective. (a), (b) and (c) plot the student’s
hidden states and the teacher’s hidden states before and after the two KD processes. (d) shows the convergence
curves of the KD objective in the two KD processes.

(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 5: Simulation results with JS divergence as the KD objective. (a), (b) and (c) plot the student’s hidden states
and the teacher’s hidden states before and after the two KD processes. (d) shows the convergence curves of the KD
objective in the two KD processes.

(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 6: Simulation results with skewed KL divergence as the KD objective. (a), (b) and (c) plot the student’s
hidden states and the teacher’s hidden states before and after the two KD processes. (d) shows the convergence
curves of the KD objective in the two KD processes.
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(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 7: Simulation results with skewed reverse KL divergence as the KD objective. (a), (b) and (c) plot the
student’s hidden states and the teacher’s hidden states before and after the two KD processes. (d) shows the
convergence curves of the KD objective in the two KD processes.

(a) Before KD (b) After KD (different heads) (c) After KD (shared head) (d) Loss curves of KD

Figure 8: Simulation results with adaptive KL divergence as the KD objective. (a), (b) and (c) plot the student’s
hidden states and the teacher’s hidden states before and after the two KD processes. (d) shows the convergence
curves of the KD objective in the two KD processes.

A.2 Pseudo Code for Simulation Experiments760

We also provide the pseudo code for re-implementing the key parts of our simulation experiments:761

762
1 class Teacher(nn.Module):763
2 def __init__(self):764
3 super(Teacher, self).__init__()765
4 # the initial teacher hiddens are sampled from Gaussian Distribution N(0, 2)766
5 self.hidden = torch.randn(100, 2) * 2767
6 # the head contains 10000 classes768
7 self.head = torch.randn(10000, 2)769
8770
9 class Student(nn.Module):771

10 def __init__(self):772
11 super(Student, self).__init__()773
12 # the initial student hiddens are sampled from Gaussian Distribution N(3, 1)774
13 self.hidden = nn.Parameter(torch.randn(100, 2) + 3)775
14 # the head contains 10000 classes776
15 self.head = nn.Parameter(torch.randn(10000, 2))777
16778
17 def kd_with_different_head(student, teacher):779
18 student_logits = student.hidden.matmul(student.head.transpose(-1, -2))780
19 # calculating logits with the respective heads781
20 teacher_logits = teacher.hidden.matmul(teacher.head.transpose(-1, -2))782
21 kd_loss = distance_func(student_logits, teacher_logits)783
22 return kd_loss784
23785
24 def kd_with_shared_head(student, teacher):786
25 student_logits = student.hidden.matmul(student.head.transpose(-1, -2))787
26 # calculating logits with the same head (student's head)788
27 teacher_logits = teacher.hidden.matmul(student.head.transpose(-1, -2))789
28 kd_loss = distance_func(student_logits, teacher_logits)790
29 return kd_loss791792

As shown in the code, we manually separate the hidden states of the student and teacher in ini-793
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tialization, so that the difference before and after KD will be more clear. Besides, to unify the 794

output spaces of the two models, we share the prediction head of the student with the teacher in 795

“kd_with_shared_head”. In this way, the output distributions of the student being optimized are as 796

same as the ones in “kd_with_different_head” and thus the results will be more comparable with the 797

ones in “kd_with_different_head”. The student models are optimized by the SGD optimizer with 798

appropriate learning rates in [1.0, 40.0] for different distance functions. 799

B Experimental Details 800

B.1 Data 801

All the test sets in our experiments are processed by (Gu et al., 2023). For all these test sets, Dolly contains 802

500 samples, Self-Instruction (Wang et al., 2023) contains 242 samples, Vicuna-Evaluation (Chiang et al., 803

2023) contains 80 samples, Super-Natural Instructions (Wang et al., 2022) contains 1694 samples with 804

response lengths in [11,+∞], and Unnatural Instructions (Honovich et al., 2023) contains 10000 samples 805

with response lengths in [11,+∞]. 806

B.2 Training 807

For GPT2-1.5B, we directly use the checkpoint released by Gu et al. (2023). For other models, the 808

detailed training configurations are listed in Table 4. Note that we do not use the pre-training corpus while 809

distillation as (Gu et al., 2023) did for simplicity. Each training requires several hours on 4×RTX 3090 or 810

8×RTX A4000.

Settings KD for GPT2 KD for TinyLLaMA
GPT2 Qwen1.5 TinyLLaMA LLaMA2 Mistral

Epoch 20 10 10 10 10
Learning Rate 5e-4 2e-5 1e-3 1e-3 1e-3

Projector Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3
Batch Size 32 32 32 32 32

LR Scheduler Cosine Cosine Cosine Cosine Cosine
Fine-Tuning Method Full Full LoRA LoRA LoRA

Lora Rank N/A N/A 256 256 256
Lora Alpha N/A N/A 8 8 8

Lora Dropout N/A N/A 0.1 0.1 0.1

Table 4: Detailed training configurations of KD for GPT2 and TinyLLaMA.

811

Besides, we combine the original cross-entropy loss on the target tokens in Eqn. (1) and the KD loss in 812

Eqn. (2) and Eqn. (10) as the overall training loss for all the KD processes in our main experiments: 813

L = 0.5 ∗ Lce + 0.5 ∗ L(ds)kd. (15) 814

B.3 Evaluation 815

For the evaluation, we use random sampling to decode the responses from all models. For decoding, we 816

set both the decoding temperature and top_p to 1.0. Then, we generate the responses with random seeds 817

in [10, 20, 30, 40, 50] and report the averaged Rouge-L scores of each seed following Gu et al. (2023). 818

B.4 Effect of Temperature for KD 819

As an important hyper-parameter in KD, the temperature coefficient τ significantly affects the final 820

performance of KD. As stated by the previous literature, a larger temperature (>1.0) will smooth the 821

teacher’s distribution and transfer more class relationship information to the student model. Thus, we 822

search for the best temperatures among [1.0, 1.5, 2.0, 3.0, 4.0] for two representative objectives (i.e., KL 823

divergence and reverse KL divergence) on the validation set and report the results in Figure 9. The results 824

show that both objectives perform best when the temperature is 2.0. Thus, we keep the temperature to 2.0 825

for all objectives in our experiments. 826
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Figure 9: Rouge-L scores (%) on the validation set for different temperature coefficients in KL divergence and
reverse KL divergence.

C Full Results827

We provide the full results of our main experiments in Table 5 and Table 6. For KD between LLMs with828

the same vocabulary, we complement the detailed results of all distance functions in both the student and829

the teacher space. For KD between LLMs with different vocabularies, we also present the full results of830

our DSKD with CMA for all the distance functions.831

As shown in Table 5 and Table 6, KD in the student space yields better performance than vanilla KD832

(in the different spaces) on all distance functions. However, KD in the teacher space only leads to limited833

improvement for some distance functions. The reason is that the student distribution qs→t
θ optimized by834

KD in the teacher space is different from the original student distribution qθ, and thus the KD process has835

no direct influence on qθ. Nevertheless, we found that KL divergence has relatively good performance for836

KD in the teacher space. Therefore, we directly choose KL divergence as the distance function for KD in837

the teacher space in our DSKD.838

D Details and Full Results for GPT-4 Evaluation839

We use the API of gpt4-turbo-0409 to evaluate the quality of the responses. As we conduct pairwise840

comparison between the responses from two models, to alleviate the order bias in the evaluation process841

of GPT-4, we randomly shuffle the two responses as the Response A/B in the system prompts.

Figure 10: Prompt for GPT-4 Evaluation.

842
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The full results for GPT-4 Evaluation on all distance functions are shown in Figure 11. For all distance 843

functions, the students trained by our DSKD always win more than the student trained by the current 844

white-box KD framework, indicating the consistent superiority of our DSKD framework on existing 845

distance functions. 846

Figure 11: GPT-4 Evaluation Results for all the distance functions.

E Details of the Distance between Representation Structure 847

Since the student models and the teacher models generally have different dimensions on representations, 848

it is difficult to directly measure the representation similarity between the student and the teacher. Thus, 849

we calculate the similarity on the structure of sentences in their own representation spaces of the student 850

and the teacher. Specifically, given a sentence with n tokens, we calculate structure matrices with both the 851

cosine similarity and normalized inner-product values between the output hidden states of this sentence: 852

Mcosine(i, j) =
hi

⊤hj
|hi||hj |

∈ Rn×n, (16) 853

854

Mprod(i, j) =
hi

⊤hj∑
k hi

⊤hk
∈ Rn×n, (17) 855

where Mcosine and Mprod are structure matrices calculated by cosine and normalized inner-product 856

between output hidden states, respectively. Then we calculate the L1 distance between the matrices of the 857

student and the teacher: 858

Dcosine =
n∑
i

n∑
j

|Mt
cosine(i, j)−Ms

cosine(i, j)|, (18) 859

860

Dprod =

n∑
i

n∑
j

|Mt
prod(i, j)−Ms

prod(i, j)|. (19) 861

The smaller distance values means the representations of the student and the teacher are more similar. In 862

Figure 3, we calculate and average the two distances Dcosine and Dprod on 1000 samples in the training 863

set for GPT2 models that trained without KD (SFT), trained by the current white-box KD framework 864

(Vanilla KD) and trained by our DSKD framework (DSKD). 865
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Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.
SFT 22.94±0.28 10.11±0.36 15.17±0.63 16.21±0.19 18.68±0.09 16.62

GPT2-1.5B → GPT2-120M (Same Vocabulary)
Teacher 27.19±0.23 14.64±0.64 16.30±0.37 27.55±0.30 31.46±0.12 23.43
SeqKD 23.68±0.25 10.03±0.23 14.41±0.46 16.36±0.18 18.48±0.11 16.59
KL 24.54±0.48 10.43±0.24 15.66±0.42 17.24±0.27 20.28±0.18 17.63

KL in Student Space 23.83±0.30 10.46±0.36 15.79±0.51 18.82±0.31 21.08±0.07 18.00
KL in Teacher Space 24.07±0.67 10.34±0.38 14.94±0.24 18.83±0.25 21.02±0.11 17.84
KL in Student Space + KL in Teacher Space 24.70±0.24 10.65±0.30 15.67±0.30 19.51±0.21 22.94±0.07 18.69

RKL 24.38±0.55 10.73±0.61 15.71±0.39 17.31±0.11 20.96±0.12 17.82
RKL in Student Space 25.12±0.25 10.60±0.27 15.25±0.26 17.96±0.24 21.19±0.09 18.03
RKL in Teacher Space 23.54±0.33 10.48±0.55 15.21±0.52 16.59±0.18 19.49±0.16 17.06
RKL in Student Space + KL in Teacher Space 24.61±0.59 11.01±0.45 14.98±0.48 19.32±0.28 22.27±0.13 18.44

JS 23.86±0.14 10.20±0.40 15.50±0.23 16.20±0.23 19.17±0.06 16.98
JS in Student Space 24.46±0.34 10.02±0.24 15.59±0.46 16.53±0.19 19.25±0.14 17.17
JS in Teacher Space 23.28±0.52 9.76±0.37 15.08±0.26 15.89±0.20 18.34±0.12 16.47
JS in Student Space + KL in Teacher Space 24.61±0.27 11.41±0.35 15.40±0.28 18.94±0.20 21.48±0.17 18.37

SKL (Ko et al., 2024) 24.03±0.23 10.66±0.51 14.70±0.37 17.99±0.15 21.18±0.16 17.71
SKL in Student Space 24.06±0.38 11.03±0.18 15.11±0.44 18.67±0.27 21.13±0.05 18.00
SKL in Teacher Space 23.44±0.25 10.06±0.43 14.86±0.51 16.52±0.21 19.60±0.15 16.90
SKL in Student Space + KL in Teacher Space 25.24±0.28 10.50±0.13 15.76±0.43 18.34±0.44 20.87±0.11 18.14

SRKL (Ko et al., 2024) 24.48±0.19 10.35±0.38 14.88±0.24 16.53±0.23 19.68±0.05 17.19
SRKL in Student Space 24.84±0.08 10.50±0.59 15.16±0.30 16.80±0.26 20.04±0.05 17.47
SRKL in Teacher Space 23.10±0.39 10.00±0.42 14.83±0.39 16.07±0.34 18.45±0.17 16.49
SRKL in Student Space + KL in Teacher Space 25.23±0.25 11.19±0.22 15.91±0.45 17.92±0.16 21.20±0.12 18.29

AKL (Wu et al., 2024) 24.75±0.60 10.46±0.24 15.37±0.41 17.48±0.17 20.11±0.05 17.63
AKL in Student Space 25.08±0.36 10.70±0.15 14.56±0.74 17.80±0.20 20.72±0.11 17.77
AKL in Teacher Space 23.82±0.60 10.10±0.59 15.40±0.16 17.04±0.16 20.13±0.09 17.30
AKL in Student Space + KL in Teacher Space 25.13±0.14 10.63±0.43 16.18±0.35 18.58±0.48 21.45±0.16 18.39

Qwen1.5-1.8B → GPT2-120M (Different Vocabulary)
Teacher 27.19±0.23 14.64±0.64 16.30±0.37 27.55±0.30 31.42±0.11 23.42
SeqKD 23.40±0.21 9.36±0.38 15.37±0.35 15.16±0.17 17.34±0.11 16.13
MinED (Wan et al., 2024) 24.41±0.61 10.60±0.39 15.86±0.42 16.76±0.28 19.68±0.12 17.46
ULD (Boizard et al., 2024) 23.77±0.41 9.67±0.50 14.99±0.55 17.60±0.21 19.49±0.12 17.11
DSKD-CMA-KL (ours) 24.73±0.47 11.15±0.34 15.31±0.38 17.20±0.24 20.57±0.08 17.79
DSKD-CMA-RKL (ours) 23.99±0.29 10.89±0.46 15.15±0.28 17.82±0.11 21.05±0.13 17.78
DSKD-CMA-JS (ours) 23.95±0.29 10.44±0.60 15.38±0.23 16.69±0.14 20.27±0.10 17.35
DSKD-CMA-SKL (ours) 24.67±0.13 10.82±0.46 15.30±0.51 17.95±0.28 20.65±0.13 17.88
DSKD-CMA-SRKL (ours) 25.23±0.17 10.99±0.26 15.56±0.41 17.76±0.23 20.54±0.07 18.02
DSKD-CMA-AKL (ours) 24.72±0.33 10.67±0.29 15.84±0.67 16.59±0.25 19.78±0.10 17.52

Table 5: Detailed Rouge-L scores (%) of all our models on several benchmarks with GPT2-120M as the student.
We present the mean values and the standard deviations among 5 random seeds. The average scores (Avg.) on all
benchmarks are also listed. “XX in Student Space + KL in Teacher Space” represents our DSKD with XX as the
distance function in Eqn. (6).
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Methods Dolly SelfInst VicunaEval S-NI UnNI Avg.
SFT 23.20±0.13 14.88±0.54 16.42±0.35 27.79±0.27 26.12±0.11 21.68

LLaMA2-7B → TinyLLaMA-1.1B (Same Vocabulary)
Teacher 28.32±0.46 20.95±0.69 18.76±0.35 32.05±0.28 32.41±0.12 26.50
SeqKD 23.21±0.22 16.46±0.72 16.58±0.38 26.33±0.26 27.69±0.10 22.05
KL 25.46±0.63 17.21±0.25 16.43±0.53 29.27±0.29 29.28±0.09 23.53

KL in Student Space 26.20±0.30 18.69±0.72 17.71±0.43 32.40±0.21 29.94±0.09 24.99
KL in Teacher Space 22.86±0.77 15.80±0.53 15.90±0.22 27.58±0.29 28.03±0.20 22.04
KL in Student Space + KL in Teacher Space 26.31±0.26 18.27±0.56 18.04±0.37 31.43±0.26 31.20±0.09 25.05

RKL 24.49±0.41 17.14±0.61 16.87±0.26 29.50±0.28 29.36±0.08 23.47
RKL in Student Space 26.74±0.36 19.16±0.29 18.85±0.41 31.76±0.42 31.01±0.06 25.50
RKL in Teacher Space 22.60±0.43 16.04±1.15 15.81±0.40 28.88±0.23 28.86±0.10 22.44
RKL in Student Space + KL in Teacher Space 26.93±0.34 18.14±0.54 18.81±0.39 31.79±0.31 32.49±0.11 25.63

JS 24.03±0.31 15.75±0.51 16.64±0.30 28.08±0.10 28.68±0.08 22.62
JS in Student Space 23.86±0.26 17.16±0.85 16.98±0.39 27.61±0.27 27.65±0.08 22.64
JS in Teacher Space 22.74±0.34 15.28±0.74 16.33±0.26 26.54±0.28 26.07±0.14 21.39
JS in Student Space + KL in Teacher Space 24.79±0.42 17.10±0.47 16.78±0.20 29.06±0.18 29.47±0.22 23.44

SKL (Ko et al., 2024) 24.14±0.53 15.98±0.72 16.89±0.22 29.30±0.18 28.71±0.12 23.01
SKL in Student Space 25.15±0.24 17.16±0.84 17.27±0.18 29.19±0.19 28.98±0.20 23.55
SKL in Teacher Space 22.72±0.75 15.88±0.64 15.89±0.41 28.37±0.23 26.84±0.15 21.94
SKL in Student Space + KL in Teacher Space 25.88±0.22 17.59±0.56 17.17±0.34 29.52±0.33 30.69±0.16 24.17

SRKL (Ko et al., 2024) 24.28±0.58 16.91±0.67 16.88±0.20 29.55±0.19 28.64±0.21 23.25
SRKL in Student Space 25.92±0.39 16.76±0.71 17.13±0.46 29.69±0.17 28.67±0.04 23.64
SRKL in Teacher Space 22.88±0.57 16.40±0.46 16.24±0.40 27.23±0.37 27.16±0.04 21.98
SRKL in Student Space + KL in Teacher Space 25.44±0.22 17.34±0.69 17.19±0.34 30.29±0.29 31.23±0.13 24.30

AKL (Wu et al., 2024) 24.80±0.70 16.79±1.09 16.80±0.44 29.29±0.35 28.81±0.09 23.30
AKL in Student Space 26.07±0.51 19.57±0.83 17.57±0.46 34.50±0.33 33.45±0.15 26.23
AKL in Teacher Space 22.81±0.56 16.33±0.73 16.00±0.14 27.05±0.15 28.09±0.19 22.05
AKL in Student Space + KL in Teacher Space 26.33±0.45 20.17±0.46 17.43±0.48 34.93±0.39 34.40±0.20 26.65

Mistral-7B → TinyLLaMA-1.1B (Different Vocabularies)
Teacher 31.56±0.19 25.10±0.36 20.50±0.32 36.07±0.24 36.27±0.15 29.90
SeqKD 23.56±0.39 15.87±0.54 15.99±0.55 25.50±0.37 26.64±0.09 21.51
MinED (Wan et al., 2024) 20.96±0.51 14.49±0.35 15.98±0.45 27.21±0.13 26.47±0.11 21.77
ULD (Boizard et al., 2024) 22.80±0.28 15.93±0.74 16.43±0.60 26.94±0.28 24.83±0.13 20.64
DSKD-CMA-KL (ours) 26.52±0.45 17.90±0.69 18.20±0.59 30.66±0.39 31.03±0.11 24.86
DSKD-CMA-RKL (ours) 25.41±0.18 18.31±0.45 16.83±0.46 34.79±0.16 34.05±0.12 25.88
DSKD-CMA-JS (ours) 24.09±0.71 16.77±0.75 16.96±0.27 30.01±0.15 30.00±0.10 23.56
DSKD-CMA-SKL (ours) 25.28±0.24 17.33±0.62 17.57±0.43 30.27±0.30 31.14±0.35 24.32
DSKD-CMA-SRKL (ours) 24.87±0.50 17.63±0.53 17.16±0.24 29.77±0.19 30.78±0.14 24.04
DSKD-CMA-AKL (ours) 26.45±0.56 19.57±0.69 17.95±0.55 35.99±0.19 35.00±0.16 26.99

Table 6: Rouge-L scores (%) of all models on several benchmarks with TinyLLaMA-1.1B as the student. We
present the mean values and the standard deviations among 5 random seeds. The average scores (Avg.) on all
benchmarks are also listed. “XX in Student Space + KL in Teacher Space” represents our DSKD with XX as the
distance function in Eqn. (6).
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