
NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World

AutODEx: Automated Optimal Design of Experiments
Platform with Data- and Time-Efficient Multi-Objective

Optimization

Yunsheng Tian yunsheng@csail.mit.edu
MIT CSAIL, Cambridge, MA 02139, USA

Pavle Vanja Konaković pavle.konakovic@gmail.com
Independent Researcher

Beichen Li beichen@csail.mit.edu

Ane Zuniga anezu@csail.mit.edu

Michael Foshey mfoshey@csail.mit.edu

Timothy Erps terps@csail.mit.edu

Wojciech Matusik wojciech@csail.mit.edu

Mina Konaković Luković mina@csail.mit.edu

MIT CSAIL, Cambridge, MA 02139, USA

Abstract

We introduce AutODEx1, an automated machine learning platform for optimal design
of experiments to expedite solution discovery with optimal objective trade-offs. We im-
plement state-of-the-art multi-objective Bayesian optimization (MOBO) algorithms in a
unified and flexible framework for optimal design of experiments, along with efficient asyn-
chronous batch strategies extended to MOBO to harness experiment parallelization. For
users with little or no experience with coding or machine learning, we provide an intuitive
graphical user interface (GUI) to help quickly visualize and guide the experiment design.
For experienced researchers, our modular code structure serves as a testbed to quickly
customize, develop, and evaluate their own MOBO algorithms. Extensive benchmark ex-
periments against other MOBO packages demonstrate AutODEx’s competitive and stable
performance. Furthermore, we showcase AutODEx’s real-world utility by autonomously
guiding hardware experiments with minimal human involvement.

1. Introduction

Optimal design of experiments in science and engineering often involves optimizing conflict-
ing objectives to discover a set of Pareto optimal solutions. Furthermore, the objectives
are typically black-box functions whose evaluations are slow and costly (e.g., lab experi-
ments or numerical simulation). Hence, the limited evaluation budget requires an efficient
strategy for guiding experimental design towards Pareto optimal solutions. A machine
learning concept that enables such automatic guidance is Bayesian optimization (BO), and
its recent advances have improved experimental design in various domains, e.g., chemical
design (Shields et al., 2021), material design (Zhang et al., 2020), resource allocation (Wu

1. Project website: autodex.csail.mit.edu

1

http://autodex.csail.mit.edu

et al., 2013), recommender systems (Chapelle and Li, 2011), and robotics (Martinez-Cantin
et al., 2009). While well-studied for single-objective problems, its practical use in multi-
objective cases remains limited due to a lack of user-friendly, open-source platform.

We present AutODEx, an open-source platform for efficiently optimizing multi-objective
problems with a restricted budget of experiments. The key features of AutODEx include:
(1) Data efficiency: State-of-the-art MOBO strategies that rapidly advances the Pareto
front with a small set of evaluations. (2) Time efficiency: Synchronous and asynchronous
batch optimization to accelerate the optimization. (3) Intuitive GUI: An easy-to-use
GUI to directly visualize and guide the optimization progress and facilitate the operation
for users with little or no experience with coding or machine learning. (4) Modular struc-
ture: A highly modular Python codebase enables easy extensions and replacements of
MOBO algorithm components. These important features enable practical and straightfor-
ward integration of AutODEx into a fully automated design of experiments pipeline.

2. Related Work

Bayesian optimal design of experiments Optimal design of experiments is the pro-
cess of designing the sequence of experiments to maximize specific objectives efficiently.
Therefore, BO is usually applied to find optimal solutions with a minimal number of eval-
uations. Essentially, BO relies on surrogate models like Gaussian processes (GP) to model
the experimental process and proposes new experimental designs based on defined acqui-
sition functions that trade-off exploration and exploitation. To further speed up when
evaluations can be carried out in parallel, asynchronous BO approaches have been devel-
oped (Ginsbourger et al., 2010; Kandasamy et al., 2018; Alvi et al., 2019).

Multi-objective Bayesian optimization MOBO is developed to optimize for a set of
Pareto optimal solutions with minimal evaluations. One approach solves multi-objective
problems by scalarizing them into single-objective ones using random weights (Knowles,
2006) or acquisition functions, e.g., entropy-based or hypervolume-based (Belakaria et al.,
2019; Daulton et al., 2020a). Another approach is by defining a separate acquisition func-
tion per objective, optimizing using cheap multi-objective solvers (e.g., NSGA-II (Deb et al.,
2002)) and finally selecting candidate designs to evaluate next (Bradford et al., 2018; Be-
lakaria and Deshwal, 2020; Konakovic Lukovic et al., 2020). AutODEx implements the
latter approach and allows easily changing modules in an unified MOBO framework (see
Section 4.2). More discussions between the two approaches can be found in Appendix A.

Bayesian optimization libraries There are many existing Python libraries for BO on
general problems including Spearmint (Snoek et al., 2012), HyperOpt (Bergstra et al., 2013),
GPyOpt (authors, 2016), GPflowOpt (Knudde et al., 2017), Dragonfly (Kandasamy et al.,
2020), Ax (Bakshy et al., 2018), Optuna (Akiba et al., 2019), HyperMapper (Nardi et al.,
2019), BoTorch (Balandat et al., 2020a), SMAC3 (Lindauer et al., 2021), and OpenBox (Li
et al., 2021). However, they are all targeted for experts in coding due to the lack of an
intuitive GUI. In contrast, there are also software platforms that provide GUI but limited to
specific applications (Shields et al., 2021; Haan, 2021). Combining powerful BO algorithms
and an intuitive GUI for general purposes, AutODEx is designed to be a versatile platform
accessible to individuals from various fields with minimal knowledge required.

2

3. Problem Formulation

We consider optimization over a set of design variables X ⊂ Rd, called design space. The
goal is to minimizem ≥ 2 objective functions f1, ..., fm : X → R. Representing all objectives
as f(x) = (f1(x), ..., fm(x)), the performance space is an m-dimensional image f(X) ⊂ Rm.
Conflicting objectives result in a set of optimal solutions referred to as Pareto set Ps ⊆ X
in the design space, and the corresponding image in the performance space is Pareto front
Pf = f(Ps) ⊂ Rm. We use hypervolume (Zitzler and Thiele, 1999), the most widely used
metric for MOBO (Riquelme et al., 2015), to measure the quality of an approximated Pareto
front. The higher the hypervolume, the better Pf approximates the true Pareto front.

4. The AutODEx Platform

4.1 Overall Workflow

GUI

Optimization

Automatic
EvaluationDatabase

Update visualization

Launch

Propose designs

Store results

Interact

User

Scheduler

Assign tasks

Update status

Figure 1: The GUI-directed workflow of automatic design of experiments in AutODEx.

The full-stack workflow of AutODEx is presented in Figure 1, where GUI is the only
component that the user directly interacts with. At the beginning, the user configures the
optimization problem and algorithm setup in the GUI. After initial configuration, the user
can request for optimization with specified stopping criteria. If the evaluation program is
available (Python/C/C++/Matlab are supported), the scheduler will automatically repeat
the optimization-evaluation cycle either synchronously or asynchronously until one stopping
criterion is met. The scheduler automatically starts evaluations after designs are proposed
by optimization workers, and restarts optimization after evaluations are done, thus the whole
loop of experimental design is executed in an automated way without human involvement.
Alternatively, if the evaluation is performed manually (e.g., lab experiments), the user will
see the designs proposed by the optimizer from the database part of the GUI and enter the
evaluation results for proposed designs in the same interface. Once AutODEx receives the
evaluation results, it updates visualizations and statistics to inform users about the latest
progress. Please refer to Appendix A for more details of the platform.

4.2 Modular Algorithm Framework

MOBO consists of four core modules in our framework, as shown in Figure 2: (1) an inex-
pensive surrogate model for the black-box objective functions; (2) an acquisition function
that trades-off exploration and exploitation of the design space; (3) a cheap multi-objective
solver to approximate the Pareto set and front; (4) a selection strategy that proposes exper-

3

Pareto frontObservations

f1

f 2

Selected points

f1

f 2

x

f j
(x
)

Evaluate proposed designs

Multi-objective solver SelectionAcquisition functionSurrogate model

Approximate Pareto set and
front over all afj

<latexit sha1_base64="Zz6iNM3NIi3avy+two8AsfT7ldM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeClx4r2lpoQ9lsJ+3azSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkoecUWOlu7D/2C9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3oX1drtZaXeyOMowgmcwjl4cAV1aEATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wdJxI3R</latexit>

Propose a batch of designs to
evaluate next

Define that trades off mean
and uncertainty of surrogates

fj
<latexit sha1_base64="Zz6iNM3NIi3avy+two8AsfT7ldM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeClx4r2lpoQ9lsJ+3azSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkoecUWOlu7D/2C9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3oX1drtZaXeyOMowgmcwjl4cAV1aEATWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wdJxI3R</latexit>

Fit surrogate models for each
objective on evaluated data

Observations Mean Uncertainty
x

f j
(x
)

Gaussian Process
Neural Network

…

Expected Improvement
Upper Confidence Bound

…

NSGA-II
MOEA/D

…

Hypervolume Improvement
Uncertainty

…

Acquisition value

Figure 2: Algorithmic pipeline and core modules of multi-objective Bayesian optimization.

iment candidates to evaluate next. These modules are implemented as decoupled building
blocks, making it highly modularized and easy to develop new algorithms. As of now,
the following choices are supported for each module: (1) Surrogate model : Gaussian pro-
cess, multi-layer perceptron, Bayesian neural network (Snoek et al., 2015). (2) Acquisition
function: Expected Improvement, Probability of Improvement, Upper Confidence Bound,
Thompson Sampling, identity function. (3) Multi-objective solver : NSGA-II, MOEA/D,
Schulz et al. (2018). (4) Selection: hypervolume improvement, uncertainty, random, etc.

class TSEMO(MOBO):

spec = {

’surrogate ’: ’gp’,

’acquisition ’: ’ts’,

’solver ’: ’nsga2 ’,

’selection ’: ’hvi’,

}

class USEMO_EI(MOBO):

spec = {

’surrogate ’: ’gp’,

’acquisition ’: ’ei’,

’solver ’: ’nsga2 ’,

’selection ’: ’uncertainty ’,

}

class DGEMO(MOBO):

spec = {

’surrogate ’: ’gp’,

’acquisition ’: ’identity ’,

’solver ’: ’discovery ’,

’selection ’: ’direct ’,

}

Code Example 1: Creating algorithms in AutODEx by simply combining modules.

Based on this framework, we implement several popular and state-of-the-art MOBO
methods, including ParEGO (Knowles, 2006), MOEA/D-EGO (Zhang et al., 2009), TSEMO
(Bradford et al., 2018), USeMO (Belakaria and Deshwal, 2020), DGEMO (Konakovic Lukovic
et al., 2020). The algorithms can be easily composed by choosing modules and inheriting
the base class MOBO, see Code Example 1. Users can select an algorithm from this library
that best fits their problem, or they can easily create new algorithms by specifying novel
combinations of existing modules in just a few lines of code. More discussions on the benefit
of this framework can be found in Appendix A. To facilitate asynchronous optimization for
a parallel evaluation setup, we extend several asynchronous strategies to the multi-objective
scenario including our novel and effective method, please find more details in Appendix B.

4.3 Intuitive Graphical User Interface

The key strength of AutODEx is the user-friendly GUI that significantly lowers the barrier
of applying MOBO to real-world problems. Figure 3 shows a few representative screenshots
from AutODEx, where users can easily configure problem settings (e.g., design/performance
space and initial data), run optimization and inspect progress. For more benefits and
screenshots of the GUI, see Appendix A. A video demo of the GUI can be found here. Upon
paper acceptance, we commit to publishing the code and activating the online platform.

4

http://autodex.csail.mit.edu

Figure 3: AutODEx’s user-friendly GUI (left: problem setup; right: main optimization).

5. Experiments

20 40 60 80 100

−0.2

0.0

0.2

0.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

zdt1

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

zdt2

20 40 60 80 100

0.2

0.3

0.4

0.5

zdt3

20 40 60 80 100

1.6

1.8

2.0

zdt4

20 40 60 80 100

3.6

3.8

4.0

4.2

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

dtlz1

20 40 60 80 100

−1.5

−1.0

−0.5

dtlz2

20 40 60 80 100

3.5

4.0

4.5

5.0

dtlz3

20 40 60 80 100
−1.1

−1.0

−0.9

−0.8

dtlz4

20 40 60 80 100
Number of samples

0.7

0.8

0.9

1.0

1.1

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

oka1

20 40 60 80 100
Number of samples

0.6

0.7

0.8

0.9

1.0

1.1

1.2
oka2

20 40 60 80 100
Number of samples

−3.0

−2.5

−2.0

−1.5

−1.0

vlmop2

20 40 60 80 100
Number of samples

−0.5

0.0

0.5

1.0

1.5
vlmop3

BoTorch GPflowOpt Dragonfly Hypermapper OpenBox AutODEx

Figure 4: Performance of AutODEx on the benchmarks compared to other BO libraries2.

Performance Comparison Across Platforms We compare AutODEx against other
BO libraries with multi-objective optimization capabilities across 12 standard multi-objective
benchmark problems: ZDT1-4 (Zitzler et al., 2000), DTLZ1-4 (Deb et al., 2005), OKA1-
2 (Okabe et al., 2004) and VLMOP2-3 (Van Veldhuizen and Lamont, 1999). We run exper-
iments with a budget of 100 samples where the initial 20 samples are generated by Latin
hypercube sampling (McKay et al., 1979). We measure as the performance the log of the
difference between the hypervolume of the ground-truth Pareto front and hypervolume of
the best Pareto front approximation found by the algorithms (thus lower is better). The

2. The result of BoTorch on VLMOP3 is omitted as it fails to complete within 24 hours.

5

curves are averaged over 20 random seeds and the variance is shown as shaded regions.
Problem details and hyperparameters are described in Appendix C. Additional ablation
studies are included in Appendix E.

Our baseline implementation follows the default recommended settings in their official
documentation. For BoTorch, we use the qEHVI acquisition function. In Figure 4, the
performance of AutODEx is generally stable and ends up either the best or comparable on
most benchmark problems. Especially, AutODEx takes a major lead in several challenging
problems such as ZDT1, ZDT3, and VLMOP3, which shows that our platform handles high-
dimensional MOBO problems well. We conduct additional ranked and paired comparisons
between AutODEx and all the baseline libraries in Appendix D to further demonstrate
AutODEx’s robustness and competitive performance.

(a) Experiment setup.

0 5 10 15 20 25 30 35
Overshoot

20

40

60

80

100

120

Re
sp

on
se

 ti
m

e
(s

)

MOBO
Random

(b) Discovered solutions.

5 10 15 20 25 30
Number of samples

1050

1100

1150

1200

1250

1300

1350

Hy
pe

rv
ol

um
e

MOBO
Random

(c) Hypervolume.

Figure 5: Physical setup and the optimization process of the PID heater control experiment.

Real-World Optimal Design of Experiments We further demonstrate the real-world
applicability of AutODEx through applying to optimize a PID heater controller to have
optimal response time and minimal overshoot in a fully automated way. Details of the
experimental setup can be found in Appendix C.3. To automate the experiment, we simply
link the Python evaluation program of this experiment setup to AutODEx through GUI
then start the iterative optimization. Finally, the results are exported as shown in Figure 5,
where a set of solutions are discovered with optimal trade-offs between minimal response
time and minimal overshoot. Using MOBO algorithms provided by AutODEx is able to
discover better designs compared to random exploring at the presence of evaluation noise
(temperature measurement error, lack of precise initial temperature control, fabrication
differences between heater blocks). This example, with all the components that people can
easily buy off-the-shelf, serves as a simple proof of concept that AutODEx is applicable
to optimize real physical systems. More examples, including optimizing material structure
based on FEM simulation and optimizing a physical motor’s rotation, can be found in our
documentation with detailed instructions on how to interact with GUI and compose the
evaluation program for fully automated optimal design of experiments.

6. Conclusion and Future Work

We introduced an open-source platform for automated optimal experimental design of multi-
objective problems. Future work includes implementing additional features, e.g., advanced
noise handling and incorporating user preferences. We believe AutODEx will effectively
reduce the gap between MOBO research and practical applications in experimental design.

6

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework, 2019.

Ahsan Alvi, Binxin Ru, Jan-Peter Calliess, Stephen Roberts, and Michael A Osborne. Asyn-
chronous batch bayesian optimisation with improved local penalisation. In International
Conference on Machine Learning, pages 253–262. PMLR, 2019.

The GPyOpt authors. GPyOpt: A bayesian optimization framework in python. http:

//github.com/SheffieldML/GPyOpt, 2016.

Eytan Bakshy, Lili Dworkin, Brian Karrer, Konstantin Kashin, Benjamin Letham, Ashwin
Murthy, and Shaun Singh. Ae: A domain-agnostic platform for adaptive experimentation.
2018.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-
Carlo Bayesian Optimization. In Advances in Neural Information Processing Systems 33,
2020a.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-
Carlo Bayesian Optimization. In Advances in Neural Information Processing Systems 33,
2020b.

Syrine Belakaria and Aryan Deshwal. Uncertainty-aware search framework for multi-
objective bayesian optimization. In AAAI Conference on Artificial Intelligence (AAAI),
2020.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search
for multi-objective bayesian optimization. In Advances in Neural Information Processing
Systems, pages 7823–7833, 2019.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hy-
perparameter optimization in hundreds of dimensions for vision architectures. In Inter-
national conference on machine learning, pages 115–123. PMLR, 2013.

Eric Bradford, Artur M Schweidtmann, and Alexei Lapkin. Efficient multiobjective opti-
mization employing gaussian processes, spectral sampling and a genetic algorithm. Jour-
nal of global optimization, 71(2):407–438, 2018.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24, pages 2249–2257. Curran Associates, Inc.,
2011.

Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. Fast calculation of multiobjective proba-
bility of improvement and expected improvement criteria for pareto optimization. Journal
of Global Optimization, 60(3):575–594, 2014.

7

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hyper-
volume improvement for parallel multi-objective bayesian optimization. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 9851–9864. Curran Associates, Inc., 2020a.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hy-
pervolume improvement for parallel multi-objective bayesian optimization. Advances in
Neural Information Processing Systems, 33:9851–9864, 2020b.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel bayesian optimization
of multiple noisy objectives with expected hypervolume improvement. Advances in Neural
Information Processing Systems, 34:2187–2200, 2021.

Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part i: solving prob-
lems with box constraints. IEEE transactions on evolutionary computation, 18(4):577–
601, 2013.

Kalyanmoy Deb, Ram Bhushan Agrawal, et al. Simulated binary crossover for continuous
search space. Complex systems, 9(2):115–148, 1995.

Kalyanmoy Deb, Mayank Goyal, et al. A combined genetic adaptive search (geneas) for
engineering design. Computer Science and informatics, 26:30–45, 1996.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computa-
tion, 6(2):182–197, 2002.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable test prob-
lems for evolutionary multiobjective optimization. In Evolutionary multiobjective opti-
mization, pages 105–145. Springer, 2005.

Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. Dealing with categorical and
integer-valued variables in bayesian optimization with gaussian processes. Neurocomput-
ing, 380:20–35, 2020.

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is well-suited to par-
allelize optimization. In Computational intelligence in expensive optimization problems,
pages 131–162. Springer, 2010.

Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch bayesian opti-
mization via local penalization. In Artificial intelligence and statistics, pages 648–657.
PMLR, 2016.

Sebastian Haan. Geobo: Python package for multi-objective bayesian optimisation and
joint inversion in geosciences. Journal of Open Source Software, 6(57):2690, 2021.

Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective optimization al-
gorithm using reference-point based nondominated sorting approach, part ii: Handling

8

constraints and extending to an adaptive approach. IEEE Transactions on evolutionary
computation, 18(4):602–622, 2013.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos.
Parallelised bayesian optimisation via thompson sampling. In International Conference
on Artificial Intelligence and Statistics, pages 133–142. PMLR, 2018.

Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria,
Christopher R. Collins, Jeff Schneider, Barnabas Poczos, and Eric P. Xing. Tuning
hyperparameters without grad students: Scalable and robust bayesian optimisation with
dragonfly. Journal of Machine Learning Research, 21(81):1–27, 2020.

Joshua Knowles. Parego: a hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66, 2006.

Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt. GPflowOpt:
A Bayesian Optimization Library using TensorFlow. arXiv preprint – arXiv:1711.03845,
2017. URL https://arxiv.org/abs/1711.03845.

Mina Konakovic Lukovic, Yunsheng Tian, and Wojciech Matusik. Diversity-guided multi-
objective bayesian optimization with batch evaluations. Advances in Neural Information
Processing Systems, 33, 2020.

Yang Li, Yu Shen, Wentao Zhang, Yuanwei Chen, Huaijun Jiang, Mingchao Liu, Jiawei
Jiang, Jinyang Gao, Wentao Wu, Zhi Yang, and et al. Openbox: A generalized black-box
optimization service. Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, Aug 2021. doi: 10.1145/3447548.3467061.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan
Deng, Carolin Benjamins, René Sass, and Frank Hutter. Smac3: A versatile bayesian
optimization package for hyperparameter optimization, 2021.

Ruben Martinez-Cantin, Nando Freitas, Eric Brochu, Jose Castellanos, and Arnaud Doucet.
A bayesian exploration-exploitation approach for optimal online sensing and planning
with a visually guided mobile robot. Auton. Robots, 27:93–103, 08 2009. doi: 10.1007/
s10514-009-9130-2.

Michael D McKay, Richard J Beckman, and William J Conover. Comparison of three
methods for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21(2):239–245, 1979.

Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun. Hypermapper: a prac-
tical design space exploration framework. In 2019 IEEE 27th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 425–426, 2019. doi: 10.1109/MASCOTS.2019.00053.

Tatsuya Okabe, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. On test functions
for evolutionary multi-objective optimization. In International Conference on Parallel
Problem Solving from Nature, pages 792–802. Springer, 2004.

9

https://arxiv.org/abs/1711.03845

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for
multi-objective bayesian optimization using random scalarizations. In Ryan P. Adams
and Vibhav Gogate, editors, Proceedings of The 35th Uncertainty in Artificial Intelligence
Conference, volume 115 of Proceedings of Machine Learning Research, pages 766–776.
PMLR, 22–25 Jul 2020.

Nery Riquelme, Christian Von Lücken, and Benjamin Baran. Performance metrics in multi-
objective optimization. In 2015 Latin American Computing Conference (CLEI), pages
1–11. IEEE, 2015.

Adriana Schulz, Harrison Wang, Eitan Grinspun, Justin Solomon, and Wojciech Matusik.
Interactive exploration of design trade-offs. ACM Transactions on Graphics (TOG), 37
(4):1–14, 2018.

Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Mar-
tinez Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. Bayesian reaction
optimization as a tool for chemical synthesis. Nature, 590(7844):89–96, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems, 25,
2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sun-
daram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization
using deep neural networks. In International conference on machine learning, pages
2171–2180. PMLR, 2015.

David A Van Veldhuizen and Gary B Lamont. Multiobjective evolutionary algorithm test
suites. In Proceedings of the 1999 ACM symposium on Applied computing, pages 351–357,
1999.

J. Wu, W.Y. Zhang, S. Zhang, Y.N. Liu, and X.H. Meng. A matrix-based bayesian ap-
proach for manufacturing resource allocation planning in supply chain management. In-
ternational Journal of Production Research, 51(5):1451–1463, 2013.

Qingfu Zhang, Wudong Liu, Edward Tsang, and Botond Virginas. Expensive multiob-
jective optimization by moea/d with gaussian process model. IEEE Transactions on
Evolutionary Computation, 14(3):456–474, 2009.

Yichi Zhang, Daniel W Apley, and Wei Chen. Bayesian optimization for materials design
with mixed quantitative and qualitative variables. Scientific Reports, 10(1):1–13, 2020.

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach. IEEE transactions on Evolutionary Com-
putation, 3(4):257–271, 1999.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolu-
tionary algorithms: Empirical results. Evolutionary computation, 8(2):173–195, 2000.

10

Appendix A. Platform Features

Graphical user interface and visualization The GUI guides the user through a set
of simple steps to configure the problem, such as the number of design and performance
parameters, the parameter bounds and constraints, parallelization settings, and selection
of the optimization algorithm without the need of coding. The GUI also includes a real-
time display of the design and performance space which allows users to easily understand
the current status of optimization. We also support displaying and exporting the whole
optimization history (including database and statistics). All previous libraries do not offer
such a convenient GUI and even the visualizations need to be written by the user, except
GPyOpt has a built-in tool for plotting the acquisition function and convergence. More
interface examples are shown in Figure 6.

Multiple objectives As described in Section 4.2, AutODEx covers a wide range of
MOBO algorithms and incorporates them into a more unified modular framework. As a
comparison, GPflowOpt implements HVPOI (Couckuyt et al., 2014) and Dragonfly imple-
ments MOORS (Paria et al., 2020) without the flexibility of incorporating other algorithms
or modules. BoTorch supports MESMO (Belakaria et al., 2019), qParEGO, qEHVI (Daulton
et al., 2020b), qNParEGO and qNEHVI (Daulton et al., 2021). BoTorch, along with
other existing MOBO libraries, implements the MOBO framework in a similar way to
single-objective optimization: the acquisition function is to compute a single objective,
e.g., entropy-based (MESMO) or hypervolume-based (EHVI). In their framework, a single-
objective solver is applied to solve for the candidate designs to evaluate. In AutODEx, we
support a different yet general MOBO framework – we support defining separate acqui-
sition functions for each objective, then applying a multi-objective solver to solve for the
candidate designs, and finally using a selection scheme to select the batch of designs to eval-
uate. Although there is no consensus on which framework is more effective, we found they
are performing comparably well empirically. Our framework explicitly encourages diverse
and global solutions by using mature multi-objective evolutionary algorithms (MOEA) as
solvers, which is desirable for batch experiments. Thanks to the efficiency of MOEA, the al-
gorithms implemented in our framework are much faster with a larger number of objectives
(e.g. DGEMO, TSEMO) while EHVI in BoTorch tends to be very slow when the number of
objectives increases. Also, many-objective solvers such as NSGA-III (Deb and Jain, 2013;
Jain and Deb, 2013) can be applied in our framework for more efficiently exploring the
high-dimensional space.

Multiple domains Besides continuous designs, AutODEx supports discrete, binary, cat-
egorical designs and a mix of them by applying discrete or one-hot transformation in fitting
and evaluating the surrogate model, following the effective approach in Garrido-Merchán
and Hernández-Lobato (2020).

Asynchronous optimization As to be discussed in more details in Appendix B, Au-
tODEx supports different asynchronous techniques including Kriging Beliver (KB), Local
Penalization (LP) and our novel Believer-Penalizer (BP), while Dragonfly and BoTorch only
implements KB and all other libraries do not support asynchronous optimization.

External evaluation There are many real-world experimental design problems where the
experimental evaluation must be performed by hand or external lab equipment thus it is

11

(a) The interface for managing and tagging experiments.

(b) The interface for entering problem details (variables, objectives, constraints).

(c) The interface for showing statistics.

Figure 6: More interface examples of AutODEx’s experimental design workflow.

12

hard to write an analytical objective function in code that integrates with the optimization
framework. For existing BO libraries, it means that the user needs to iteratively execute
the code, also write code for manually exporting and importing the data between two
consecutive rounds of optimization. In contrast, AutODEx allows users to see the suggested
designs and directly enter the corresponding evaluation results in our database interface, as
described in Section 4.1, without the need of coding data import/export. See Figure 7 for
the detailed illustration of this workflow.

GUI Optimization Manual
Evaluation Database

Launch Propose designs Store results

Update visualization

Interact

User

Perform experiments

Figure 7: The workflow of AutODEx with manual external evaluations.

Surrogate prediction Users may find AutODEx useful not only in optimization but also
in prediction. In addition to the set of optimal solutions, our platform’s final product is
the learned prediction models of the unknown objectives, which can be used easily from
GUI to predict the objectives for a given design from the user. The prediction provides the
users with more insights into the potential outcomes of experiments. It helps them better
understand the optimization problem to make informed decisions and guide the optimization
process towards their preference.

Appendix B. Asynchronous Batch Optimization

While standard MOBO optimizes for the Pareto front in a data-efficient manner, often, when
multiple experiment setups are available, evaluations can be executed in batch by parallel
workers to further speed up the whole optimization process. To leverage this speed-up, all
the algorithms in AutODEx are implemented to support batch evaluation.

However, if parallel workers evaluate in different speeds, some workers are left idle when
they finish evaluations earlier than others. Therefore, asynchronous optimization is desired
to maximize the utilization of workers and is able to evaluate many more designs than
synchronous optimization in a fixed amount of time, as also illustrated by Kandasamy et al.
(2018) and Alvi et al. (2019). Nevertheless, while some designs are being evaluated (i.e.,
busy designs), how to propose the next design that (i) avoids being similar to the busy
designs and (ii) incorporates knowledge from busy designs to reach better regions in the
performance space is the key question that we want to explore.

To develop efficient asynchronous strategy for multi-objective optimization, we borrow
ideas from previous literature in the single-objective setting.

B.1 Failures of Existing Strategies

Kriging Believer (KB) (Ginsbourger et al., 2010) is a simple yet effective approach
that believes the performance of busy designs is their posterior mean of the surrogate

13

Lower bound

Busy design
Evaluated design

Posterior mean
Posterior std

x

f

(a) The failure case of KB when be-
lieving overestimated busy designs.

A

B

A

B

H1

H2

H1

H2

Penalizing Believing

Busy design
Proposed design

Current Pareto front
Hypervolume improvement

f2

f1 f1

f2

H1 > H2 H1 < H2

(b) The sub-optimality of LP in multi-objective scenario
when believing busy designs affects the selection result.

Figure 8: Analysis of KB and LP strategies for asynchronous optimization.

model when optimizing for new designs. In other words, it treats the mean prediction
of the busy designs as their real performance and eliminates their posterior variance to
prevent acquisition functions from preferring those regions. However, failure case happens
when it believes an overestimated design, it might become difficult to find designs better
than this overestimated one and make further improvement, see Figure 8a. Especially,
when the posterior mean of the busy design is extremely small and even exceeds the lower
bound of the objective, subsequent optimization can hardly find a better solution. In other
words, subsequent optimization will only propose more overestimated designs with even
lower predicted performance to ”make improvement”, even though they are even farther
from the ground truth and drive the optimization away from the real meaningful regions.
This overestimation issue has not been studied in the past literature to the best of our
knowledge, though KB is still the strategy used in popular BO packages (Kandasamy et al.,
2020; Balandat et al., 2020b).

Local Penalization (LP) (González et al., 2016) is another widely used approach that
directly penalizes the nearby region of the busy designs to prevent similar designs from being
evaluated next. However, extending this approach to the multi-objective scenario sometimes
leads to sub-optimal selection of new designs, as explained in Figure 8b. Intuitively, this sub-
optimality comes from the failure of leveraging the accurate predictions from the surrogate
model. Consider when selecting the best design to evaluate from a set of candidate designs
(A and B) proposed by the multi-objective solver using hypervolume improvement criterion,
while a busy design is in evaluation. LP penalizes the nearby regions of the busy design in
the design space but has no control over the performance space, which means that designs
with similar performance as the busy design could still be selected (design A). Ideally, if the
surrogate prediction of the busy design is certain, we can leverage this to avoid proposing
designs with little performance gain. For example, simply believing the prediction of the
busy design leads to selecting design B that has a higher hypervolume improvement.

B.2 Believer-Penalizer Strategy

In conclusion, we observe that the failure case of KB is due to the trust of uncertain pre-
dictions while the sub-optimality of LP comes from not believing the certain prediction.

14

Therefore, we propose a novel strategy BP that naturally combines KB and LP by apply-
ing KB to designs with certain predictions and LP to designs with uncertain predictions.
Here, certainty of prediction is simply defined as the posterior standard deviation from
the surrogate model which can be Gaussian processes, Bayesian neural networks or other
type of model that computes standard deviation of predictions. Though the idea of BP
is general and one can use any analytical expression to determine the certainty threshold
for applying KB or LP, in practice, we find a simple probabilistic form which works well:
Pi(x) = max(1− 2σi(x), 0) where Pi is the probability of believing x for the i-th objective
and σi is the posterior std of x from the surrogate model of the i-th objective. Because the
objective data is normalized as zero with mean unit variance before fitting the surrogate
models, σi(x) is generally between 0 and 1.

B.3 Performance Comparison

20 40 60 80 100
−0.4

−0.2

0.0

0.2

0.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

zdt1

20 40 60 80 100

0.40

0.45

0.50

0.55

0.60

zdt2

20 40 60 80 100

0.2

0.3

0.4

0.5

zdt3

20 40 60 80 100

1.8

1.9

2.0

2.1
zdt4

20 40 60 80 100

3.6

3.8

4.0

4.2

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

dtlz1

20 40 60 80 100

−0.8

−0.6

−0.4

−0.2
dtlz2

20 40 60 80 100
4.0

4.2

4.4

4.6

4.8

5.0

dtlz3

20 40 60 80 100
−1.1

−1.0

−0.9

−0.8

dtlz4

20 40 60 80 100
Number of samples

0.7

0.8

0.9

1.0

1.1

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

oka1

20 40 60 80 100
Number of samples

0.7

0.8

0.9

1.0

1.1

1.2
oka2

20 40 60 80 100
Number of samples

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75
vlmop2

20 40 60 80 100
Number of samples

−0.5

0.0

0.5

1.0

1.5
vlmop3

Async Async KB Async LP Async BP

Figure 9: Performance comparison between variants of asynchoronous MOBO algorithms.

To test whether Believer-Penalizer is effective, we compare four asynchronous MOBO
algorithms on all benchmark problems. Async simply ignores the busy designs while opti-
mizing asynchronously and the remaining algorithms are described in Appendix B. Figure 9
shows that Async BP consistently outperforms other methods and follows the best of Async
KB and Async LP.

15

Appendix C. Experimental Setup

C.1 Benchmark Problems

In this section, we briefly introduce the properties of each benchmark problem, including the
dimensions of the design space X ⊂ Rd and performance space f(X) ⊂ Rm, and the reference
points we use for calculating the hypervolume indicator, which are shown in Table 1. We
perform 20 independent test runs with 20 different random seeds for each problem on each
algorithm. For each test run of one problem, we use the same initial set of samples for every
algorithm, which is generated by Latin hypercube sampling (McKay et al., 1979) using a
same random seed. To have a fair comparison, we simply set the reference point r ∈ Rm

as a vector containing the maximum value of each objective over the initial set of samples
{x1, ...,xk}:

r = (max
1≤i≤k

f1(xi), ..., max
1≤i≤k

fm(xi)).

Table 1: Basic descriptions of all the benchmark problems.

Name d m r

ZDT1 30 2 (0.9699, 6.0445)
ZDT2 30 2 (0.9699, 6.9957)
ZDT3 30 2 (0.9699, 6.0236)
ZDT4 10 2 (0.9699, 199.6923)
DTLZ1 6 2 (360.7570, 343.4563)
DTLZ2 6 2 (1.7435, 1,6819)
DTLZ3 6 2 (706.5260, 746.2411)
DTLZ4 6 2 (1.8111, 0.7776)
OKA1 2 2 (7.4051, 4.3608)
OKA2 3 2 (3.1315, 4.6327)
VLMOP2 6 2 (1.0, 1.0)
VLMOP3 2 3 (8.1956, 53.2348, 0.1963)

C.2 Hyperparameters

Here we present all the common hyperparameters that AutODEx uses in the experiments.

Surrogate model We use the same Gaussian process model as the surrogate for all exper-
iments. We use zero mean function and anisotropic Matern 1/2 kernel, which empirically is
numerically stable than popular Matern 5/2 kernel in our experiments. The corresponding
hyperparameters are specified in Table 2, which are suggested by TSEMO.

Multi-objective evolutionary algorithm The cheap NSGA-II solver employed in Au-
tODEx’s MOBO algorithms by default uses simulated binary crossover (Deb et al., 1995)
and polynomial mutation (Deb et al., 1996) for finding the Pareto front of acquisition func-
tions. The initial population is obtained from the best current samples determined by
non-dominated sort (Deb et al., 2002). The other hyperparameters are specified in Table 3.

16

Table 2: GP hyperparameters.

parameter name value

initial l (1, ..., 1) ∈ Rd

l range (
√
10−3,

√
103)

initial σf 1

σf range (
√
10−3,

√
103)

initial σn 10−2

σn range (e−6, 1)

Table 3: NSGA-II hyperparameters.

parameter name value

population size 100
number of generations 200
crossover ηc 15
mutation ηm 20

C.3 Real-World Experiment Setup

Temp.
Sensor

Heating
Element

H
ea

te
r 1

So
lid

-S
ta

te

R
el

ay

AutOEDx

PID Controller

H
ea

te
r 2

H
ea

te
r 3

So
lid

-S
ta

te

R
el

ay

So
lid

-S
ta

te

R
el

ay

PID Controller

PID Controller

Figure 10: A schematic of the setup used for the real-world experiment.

17

In our real-world experiment setup, overall, a PID controller is employed to regulate the
temperature of the heater block with proportional, integral, and differential constants. To
find the optimal set of constants a number of heating cycles are done asynchronously with
the controller using AutODEx. The experiment is comprised of setting the PID constants,
then heating the block up to a set temperature, and keeping them at the set duration for 2
minutes. During this time the response time and overshoot are measured. After the heating
cycle, the heater is then cooled back down to a starting temperature to prepare for another
test with new PID constants.

Specifically, the experimental setup is comprised of 3 heaters with identical dimensions
and characteristics. Each heater is comprised of a heater block, heating element, temper-
ature sensor, solid-state relay, power supply, and a controller, shown in Figure 10. To run
an experiment, AutODEx sends the PID constants to a controller that is free. Next, the
PID controller becomes active and starts regulating the temperature of the heater. The
temperature sensor measures the temperature of the heater block. Depending on the con-
stants of the PID controller and the temperautre of the heater block, the controller turns
the heating element on or off via the solid-state relay. After a period of 2 minutes where
the PID controller is active, the controller stops actively regulating the temperature of the
heater allowing the heater to cool. Next, the controller starts to monitor the cooling of the
heater via the temperature sensor. It monitors it until the heater block cools to a temper-
ature below a threshold. The amount of time it takes to cool the heater block depends on
the temperature that the block was heated to during the active period. Once it sufficiently
cools, the controller sends the calculated overshoot and response time to AutODEx and
notifies that it is ready to run another experiment.

Appendix D. Additional Comparisons

BoTorch GPflowOpt Dragonfly Hypermapper OpenBox AutOEDx

1

2

3

4

5

6

Figure 11: Performance rank of our platform and baseline libraries on the 12 benchmark
problems (lower is better). The box extends from the lower to the upper quartile values,
with a solid line at the median and a dashed line at the mean. The whiskers that extend
the box show the range of the data.

We conduct ranked and paired comparisons between AutODEx and all the baseline
libraries based on the 12 benchmark problems, as shown in Figure 11 and Figure 12. The

18

BoTo
rch

GPfl
ow

Opt

Drag
on

fly

Hyp
erm

ap
pe

r

Ope
nB

ox

AutO
ED
x

Platform B

BoTorch

GPflowOpt

Dragonfly

Hypermapper

OpenBox

AutOEDx

Pl
at

fo
rm

 A

0 10 6 10 0 0

-10 0 2 6 -8 -10

-6 -2 0 8 -6 -8

-10 -6 -8 0 -12 -12

0 8 6 12 0 0

0 10 8 12 0 0 10

5

0

5

10 Num
ber of benchm

arks A outperform
 B

Figure 12: Performance comparison between each pair of platforms on the 12 benchmark
problems. Each value in the matrix shows the number of benchmarks that platform A
(associated with the row) outperforms platform B (associated with the column), the higher
the better.

performance rank comparison in Figure 11 suggests that BoTorch, OpenBox and AutODEx
outperform other libraries by a great margin overall. While BoTorch and OpenBox share a
better median rank, AutODEx appears to be the stablest that consistently ranks between
1 and 3 on all problems and has a higher lower-bound performance than BoTorch and
OpenBox. Figure 12 also suggest that AutODEx has a competitive performance to BoTorch
and OpenBox, and outperforms other baselines on a wider range of benchmarks.

Appendix E. Ablation Studies

E.1 Synchronous and Asynchronous MOBO

Following the experiment settings in Section 5, we addtionally compare the performance of
synchornous and asynchronous MOBO. As shown in Figure 13, they achieve similar hyper-
volumes whereas asynchronous MOBO spends less than half of the time of its synchronous
counterpart.

E.2 Batch Size

Ablation studies are also conducted on the batch size in asynchronous MOBO. For this
category of experiments, we repeat our practice in Section B.3 while changing the batch

19

0 5 10 15 20
−0.2

0.0

0.2

0.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e
zdt1

0 5 10 15 20
0.40

0.45

0.50

0.55

0.60

zdt2

0 5 10 15 20 25

0.2

0.3

0.4

0.5

zdt3

0 5 10 15 20

1.80

1.85

1.90

1.95

2.00

2.05

2.10
zdt4

0 5 10 15 20

3.6

3.8

4.0

4.2

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

dtlz1

0 5 10 15 20

−0.8

−0.6

−0.4

−0.2
dtlz2

0 5 10 15 20

4.2

4.4

4.6

4.8

5.0

dtlz3

0 5 10 15 20
−1.1

−1.0

−0.9

−0.8

dtlz4

0 5 10 15 20
Time (s)

0.7

0.8

0.9

1.0

1.1

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

oka1

0 5 10 15 20
Time (s)

0.8

0.9

1.0

1.1

1.2
oka2

0 5 10 15 20
Time (s)

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75
vlmop2

0 5 10 15 20
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50
vlmop3

Sync Async

Figure 13: Performance comparison between synchronous and naive asynchronous MOBO
algorithms.

size to 4 and 16, respectively. The results are demonstrated in Figure 14 and 15. Our
proposed BP strategy maintains its relative lead in VLMOP3 and performs comparably
with other variants on the rest of the test problems.

E.3 Acquisition Function

Lastly, we evaluate the asynchronous MOBO variants using the EI acquisition function. Al-
though the change in acquisition function has a clear influence on hypervolume growth, the
proposed BP variant still performs favorably in problems such as ZDT2, DTLZ2, and VL-
MOP2. The performance of BP on the other problems remain comparable to the alternative
strategies.

20

20 40 60 80 100
−0.4

−0.2

0.0

0.2

0.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e
zdt1

20 40 60 80 100
0.40

0.45

0.50

0.55

0.60

zdt2

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

zdt3

20 40 60 80 100

1.7

1.8

1.9

2.0

2.1
zdt4

20 40 60 80 100
3.4

3.6

3.8

4.0

4.2

4.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

dtlz1

20 40 60 80 100

−0.8

−0.6

−0.4

−0.2
dtlz2

20 40 60 80 100

4.2

4.4

4.6

4.8

5.0

dtlz3

20 40 60 80 100

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7
dtlz4

20 40 60 80 100
Number of samples

0.7

0.8

0.9

1.0

1.1

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

oka1

20 40 60 80 100
Number of samples

0.7

0.8

0.9

1.0

1.1

1.2
oka2

20 40 60 80 100
Number of samples

−2.0

−1.5

−1.0

vlmop2

20 40 60 80 100
Number of samples

0.0

0.5

1.0

1.5
vlmop3

Async Async KB Async LP Async BP

Figure 14: Performance comparison between variants of asynchoronous MOBO algorithms
with a batch size of 4.

20 40 60 80 100

−0.2

0.0

0.2

0.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

zdt1

20 40 60 80 100

0.40

0.45

0.50

0.55

0.60

zdt2

20 40 60 80 100

0.2

0.3

0.4

0.5

zdt3

20 40 60 80 100

1.8

1.9

2.0

2.1
zdt4

20 40 60 80 100

3.6

3.8

4.0

4.2

4.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

dtlz1

20 40 60 80 100
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2
dtlz2

20 40 60 80 100

4.2

4.4

4.6

4.8

5.0

dtlz3

20 40 60 80 100

−1.0

−0.9

−0.8

dtlz4

20 40 60 80 100
Number of samples

0.7

0.8

0.9

1.0

1.1

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

oka1

20 40 60 80 100
Number of samples

0.6

0.7

0.8

0.9

1.0

1.1

1.2
oka2

20 40 60 80 100
Number of samples

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75
vlmop2

20 40 60 80 100
Number of samples

−0.5

0.0

0.5

1.0

1.5
vlmop3

Async Async KB Async LP Async BP

Figure 15: Performance comparison between variants of asynchoronous MOBO algorithms
with a batch size of 16.

21

20 40 60 80 100

−0.6

−0.4

−0.2

0.0

0.2

0.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

zdt1

20 40 60 80 100

−0.2

0.0

0.2

0.4

0.6
zdt2

20 40 60 80 100

0.0

0.2

0.4

zdt3

20 40 60 80 100
1.80

1.85

1.90

1.95

2.00

2.05

2.10
zdt4

20 40 60 80 100

3.4

3.6

3.8

4.0

4.2

4.4

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

dtlz1

20 40 60 80 100
−0.375

−0.350

−0.325

−0.300

−0.275

−0.250

−0.225

dtlz2

20 40 60 80 100
4.0

4.2

4.4

4.6

4.8

5.0

dtlz3

20 40 60 80 100

−1.0

−0.9

−0.8

dtlz4

20 40 60 80 100
Number of samples

0.8

0.9

1.0

1.1

Lo
g

hy
pe

rv
ol

um
e

di
ffe

re
nc

e

oka1

20 40 60 80 100
Number of samples

0.6

0.8

1.0

1.2
oka2

20 40 60 80 100
Number of samples

−1.1

−1.0

−0.9

−0.8

−0.7
vlmop2

20 40 60 80 100
Number of samples

−1.0

−0.5

0.0

0.5

1.0

1.5
vlmop3

Async Async KB Async LP Async BP

Figure 16: Performance comparison between variants of asynchoronous MOBO algorithms
with EI as acquisition function.

22

	Introduction
	Related Work
	Problem Formulation
	The AutODEx Platform
	Overall Workflow
	Modular Algorithm Framework
	Intuitive Graphical User Interface

	Experiments
	Conclusion and Future Work
	Platform Features
	Asynchronous Batch Optimization
	Failures of Existing Strategies
	Believer-Penalizer Strategy
	Performance Comparison

	Experimental Setup
	Benchmark Problems
	Hyperparameters
	Real-World Experiment Setup

	Additional Comparisons
	Ablation Studies
	Synchronous and Asynchronous MOBO
	Batch Size
	Acquisition Function

