
Why Do We Need Weight Decay
in Modern Deep Learning?

Francesco D’Angelo∗, Maksym Andriushchenko,∗ Aditya Varre, Nicolas Flammarion
Theory of Machine Learning Lab

EPFL, Lausanne, Switzerland
{francesco.dangelo,maksym.andriushchenko,aditya.varre,nicolas.flammarion}@epfl.ch

Abstract

Weight decay is a broadly used technique for training state-of-the-art deep networks
from image classification to large language models. Despite its widespread usage
and being extensively studied in the classical literature, its role remains poorly
understood for deep learning. In this work, we highlight that the role of weight
decay in modern deep learning is different from its regularization effect studied in
classical learning theory. For deep networks on vision tasks trained with multipass
SGD, we show how weight decay modifies the optimization dynamics enhancing
the ever-present implicit regularization of SGD via the loss stabilization mechanism.
In contrast, for large language models trained with nearly one-epoch training,
we describe how weight decay balances the bias-variance tradeoff in stochastic
optimization leading to lower training loss and improved training stability. Overall,
we present a unifying perspective from ResNets on vision tasks to LLMs: weight
decay is never useful as an explicit regularizer but instead changes the training
dynamics in a desirable way. The code is available at https://github.com/
tml-epfl/why-weight-decay

1 Introduction

Figure 1: Test error vs. dataset
size on CIFAR-10-5m for a
fixed number of training iteration.
Weight decay is helpful in both:
the over-training and the under-
training, one-pass regime.

The training of modern neural networks broadly falls into two
regimes: over-training, which involves multiple passes through a
dataset and necessitates effective regularization strategies to avoid
overfitting; and under-training, characterized by fewer passes due to
large amounts of training data and computational constraints (Hoff-
mann et al., 2022). Modern deep learning unequivocally embodies
both training regimes: ResNet architectures on computer vision tasks
(He et al., 2016) serve as quintessential examples of the over-training
regime, while the training of large language models (Brown et al.,
2020) stands as a hallmark of the under-training regime. Despite
their differences, both regimes extensively adopt weight decay as
a regularization technique, though its effectiveness and role remain
subjects of ongoing debate. For the first regime, Zhang et al. (2016)
showed that even when using weight decay, neural networks can still
fully memorize the data, thus questioning its regularization prop-
erties. For the second, regularization is inherently unnecessary as
the limited number of passes already prevents overfitting. These
considerations raise important questions about the necessity and purpose of weight decay, introducing
uncertainty about its widespread usage. To illustrate the effect of weight decay in the two regimes,

∗Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/tml-epfl/why-weight-decay
https://github.com/tml-epfl/why-weight-decay

we conduct a simple experiment. We train a ResNet18 on subsets of the CIFAR-5m dataset (Nakkiran
et al., 2020) with sizes from 10 000 to 5 mln. The computational budget of each training session is
fixed to 5 mln iterations, which amounts to a range of passes between 500 and one. In the over-training
regime (left in Fig. 1), weight decay does not prevent the models from achieving zero training error,
but its presence still improves the test error. Attempting to explain this generalization benefit, recent
works (Li & Arora, 2019; Li et al., 2020) bring forth the hypothesis that it is inadequate to think about
weight decay as a capacity constraint since it still bears an effect on the training of scale-invariant
models. As a result, understanding the effect of weight decay on the optimization dynamics becomes
crucial to understanding generalization. Nevertheless, this line of work heavily relies on an effective
learning rate (ELR) which only emerges as a consequence of scale-invariance and therefore does not
apply to general architectures. In the under-training regime (right in Fig. 1), where the generalization
gap vanishes, weight decay seem to facilitate faster training for slightly better accuracy. However, a
characterization of the mechanisms through which weight decay impacts the training speed in this
regime remains underexplored.

Our work delves into the mechanisms underlying the benefits of weight decay by training established
machine learning models in both regimes: ResNet on popular vision tasks (over-training) and
Transformer on text data (under-training). Towards this goal, we make the following contributions:

• In the over-training regime, we unveil the mechanism by which weight decay effectively reduces
the generalization gap. We demonstrate that combining weight decay with large learning rates
enables non-vanishing SGD noise, which through its implicit regularization controls the norm
of the Jacobian leading to improved performance. Moreover, our investigation offers a thorough
explanation for the effectiveness of employing exponential moving average and learning rate decay
in combination with weight decay.

• In the under-training regime, particularly for LLMs trained with one-pass Adam, we confirm
experimentally that weight decay does not bring any regularization effect and is simply equivalent
to a modified ELR. We explain the training curves commonly observed with weight decay: through
this ELR, weight decay better modulates the bias-variance trade-off, resulting in lower loss.
Additionally, we show that weight decay has another important practical benefit: enabling stable
training with the bfloat16 precision.

1.1 Related work

The concept of employing ℓ2 weight penalty traces back to studies on the stability of solutions for
ill-posed problems (Tikhonov, 1943). It has since been extensively explored in statistics (Foster, 1961;
Hoerl, 1962; Hoerl & Kennard, 1970). Krogh & Hertz (1991) present one of the earliest systematic
studies on weight decay tailored for neural networks. Generalization bounds, such as those by
Shalev-Shwartz & Ben-David (2014), suggest that weight decay can be sufficient for generalization,
although not necessary, e.g., due to the implicit regularization of gradient methods (Soudry et al.,
2018). Zhang et al. (2016) argue that while weight decay improves test accuracy, the improvement is
not substantial (≈ 1-2% on ImageNet), indicating the key role of implicit regularization. Loshchilov
& Hutter (2019) highlight the distinct effects of weight decay and ℓ2 regularization, particularly for
Adam, suggesting that Adam combined with weight decay (AdamW) leads to superior regularization
and simpler hyperparameter tuning. For GPT-3 training, Brown et al. (2020) suggest that they include
weight decay to provide a small amount of regularization, although we believe it is not the primary
reason as we discuss in Sec. 3.

Multiple works have focused on weight decay as a tool influencing optimization dynamics.
Van Laarhoven (2017) emphasizes that weight decay’s impact on scale-invariant networks is primarily
seen in terms of an effective learning rate. Zhang et al. (2018) propose three mechanisms of weight
decay regularization: (1) increasing the effective learning rate for scale-invariant networks, although
as we discuss, the same holds for networks beyond scale invariance (2) approximating the regulariza-
tion of the input Jacobian for an optimizer inspired by second-order methods, (3) inducing a specific
dampening effect in this optimizer. Li & Arora (2019); Li et al. (2020) explore the optimization
properties of scale-invariant deep networks for which the effective learning rate can be derived.
Lewkowycz & Gur-Ari (2020) suggest that the best generalization is achieved with the smallest λ
although it necessitates longer training. Additionally, Lewkowycz (2021) propose a criterion for
detecting when to decay the learning rate based on the evolution of the weight norm. Bjorck et al.
(2021) explore the effect of decoupling weight decay, especially in the early stage of training. Li
et al. (2022a) make BERT architecture scale-invariant to enhance training stability and make it more

2

0 100 200 300 400 500
Epochs

10%

20%

40%

60%

90%

Te
st

 E
rro

r

Resnet18 on CIFAR10
LR = 0.001, WD =0.01
LR = 0.001, WD =0.0
LR = 0.1, WD =0.01
LR = 0.1, WD =0.0
LR = 0.25, WD =0.01
LR = 0.25, WD =0.0
SGD iterates
EMA

(a)

0 100 200 300 400 500
Epochs

10 4

10 3

10 2

10 1

100

101

102

Tr
ai

n
Cr

os
s E

nt
ro

py

Resnet18 on CIFAR10

(b)

0 100 200 300 400 500
Epochs

1000

2000

3000

4000

5000

6000

7000

8000

||w
|| 2

Resnet18 on CIFAR10

(c)

0 100 200 300 400 500
Epochs

40%

50%

60%

75%

100%

Te
st

 E
rro

r

Resnet18 on Tiny ImageNet
LR = 0.001, WD =0.005
LR = 0.001, WD =0.0
LR = 0.1, WD =0.005
LR = 0.1, WD =0.0

(d)

Figure 2: Training with and w/o weight decay. We report the test error for Resnet18 on CIFAR-10 (2a) and
Tiny-ImageNet (2d) trained with and without weight decay and with small and large learning rates. We also
include the correspondent EMA, represented by dashed lines. After the first 250 epochs the learning rate is
decayed to η = 10−3 for all the curves. We report also the L2 norm of the parameters (2c) and Train CE (2b)
which after the decay converges to the same value for all the runs with the same λ.

compatible with standard SGD. Recently, Kosson et al. (2023) show a mechanism through which
weight decay balances rotational updates across different layers that motivates a new optimizer.

The seminal paper of Krizhevsky et al. (2012) that introduced AlexNet suggest that weight decay
serves not only as a regularizer but also reduces the model’s training error, functioning as an
optimization tool. In recent work, Hoffmann et al. (2022) briefly observe that weight decay enhances
the training performance of Adam for training LLMs, but only after ≈ 80% of the total iterations.
However, they do not provide an explanation for this behavior, a point we delve into in Sec. 3.

2 Weight decay in the over-training regime

In this section, we delve into the influence of weight decay in the over-training regime, with a specific
focus on image classification tasks. We focus on the training of ResNet models (He et al., 2016)
using SGD on Tiny-ImageNet (Wu et al., 2017) and report additional experiments in appendix C for
VGG, Resnet32 and scale-invariant Resnet architectures on CIFAR10 and CIFAR100 (Krizhevsky &
Hinton, 2009).

Notations and setup. Let (xi, yi)
n
i=1 be the training inputs and labels where xi ∈ Rd, yi ∈ Rc, and

c is number of classes. Let h : Rp × Rd → Rc be the hypothesis class of neural network and for any
parameter w ∈ Rp where the function hw(·) : Rd → Rc represents the network predictions. The
training loss L and the ℓ2-regularized loss Lλ, for λ ≥ 0, are given by:

L(w) =
1

N

N∑
i=1

ℓ (yi, hw(xi)) Lλ(w) = L(w) +
λ

2

∥∥w∥∥2.
where ℓ(·, ·) : Rc × Rc → R denotes the cross-entropy (CE) loss function. With it ∼ U([N]), the
SGD algorithm on Lλ (here with batch size 1 and with replacement) with a learning rate (LR) η is

wt+1 = wt − η∇wℓ (yit , h(wt, xit))− ηλwt. (1)

Along the training we track three different iterates: (1) large-LR denoted by wt which use a large
constant LR to exploit the SGD noise, (2) fine-tuning w̃t which starting from wt use a small LR and
(3) the exponential moving average (EMA) w̄t along the large-LR iterates.

2.1 Loss stabilization and weight decay

To understand whether minimizing the regularized objective Lλ alone ensures optimal generalization,
we compare test errors in Fig. 2a across various settings. Although both large and small LRs
minimize the regularized objective, the evidence that optimal performance is achieved exclusively
with large LRs indicates that the objective alone is insufficient to explain the benefits of WD or
ensure generalization.2 This experiment reaffirms the widely acknowledged consensus that implicit
regularization induced by the LR is crucial (Keskar et al., 2016; Li et al., 2019; Andriushchenko et al.,

2The red, blue and green curves have the same CE 2b and norm 2c, hence same Lλ but different test error 2a.

3

2023). Despite revealing an interplay between weight decay and large initial LR, the understanding
of the corresponding dynamics remains limited. In this section, our goal is to comprehensively
understand these dynamics, particularly to elucidate the difference in generalization between training
with and without weight decay and using different learning rates, as observed in Fig. 2a. Given
the regularization of the ℓ2 norm of parameters, it is natural to wonder whether weight decay’s
improvement primarily stems from its ability to control the norm of the trained model. The experiment
in Fig. 2c clearly illustrates that distinct training trajectories, while resulting in the same final ℓ2 norm
for parameters, can yield different levels of generalization stating that the ℓ2-norm of the learned
model’s parameters is inconsequential. This observation suggests that once the norm is constrained by
weight decay, the critical factor influencing the model’s generalization is the subsequent choice of LR.
We should note that neural networks can be explicitly made scale-invariant by means of normalization
layers and small architectural changes. Li & Arora (2019) have used this setting to reveal that the
training dynamics has an effective learning rate which, depending on the L2-norm of the parameters,
reduces the effect of WD to merely a scheduler for the learning rate. Our analysis presents a broader
perspective that does not depend on scale invariance. At the core of our examination are the unique
properties of exponentially tailed loss functions, such as CE: when the data is separable and WD
is not applied, the infimum of the loss is at infinity, leading to the unbounded growth of the weight
norm (Ji & Telgarsky, 2019; Soudry et al., 2018). The application of WD, by inhibiting this growth,
prevents the decrease of CE loss, which in turn, significantly alters the optimization dynamics.

Indeed, examining the parameter norm evolution in Fig. 2c, we notice how it rapidly decreases to
stabilize within a small, approximately constant interval. Similarly, the Train CE in Fig. 2b displays
a stabilization effect beyond which it cannot decrease without a reduction in the learning rate. We
hypothesize that WD enables an optimization dynamic akin to that on the surface of a sphere of
certain radius thus triggering the following essential mechanism:

Constraining the parameter norm hinders the decrease of the CE, thereby enabling non-vanishing
noise in SGD. This allows SGD implicit regularization to unfold and steer the optimization trajectory.

Next, we empirically characterize this implicit regularization mechanism.

2.2 The noise driven process

The long-held belief that the implicit regularization property of SGD is pivotal to the generalization
capabilities of Neural Networks has been a cornerstone in the field of deep learning (Keskar et al.,
2016). Many theoretical studies (Blanc et al., 2020; Li et al., 2021b; Damian et al., 2021), attempting
to understand this phenomenon, draw upon the essential finding that, in the case of regression and
when Gaussian noise is added to the labels, the shape of the covariance of the stochastic gradients
matches the shape of the Hessian. This allows Damian et al. (2021) and Pillaud-Vivien et al. (2022)
to show that the trajectory of the SGD iterates closely tracks the solution of a regularized problem. In
our analysis, we conjecture a similar result; the dynamics of SGD with CE, closely track a regularized
process. The important difference in our statement is that unlike Blanc et al. (2020) and Damian
et al. (2021), we do not need to add noise to the labels at each iteration. Instead, weight decay, in
combination with large-LR induces a label noise-like behavior via loss stabilization (Andriushchenko
et al., 2023). To better understand the interplay between weight decay, loss stabilization and the
noise of SGD, it is convenient to consider the binary classification case where yi ∈ {0, 1}. We also
define the Jacobian of the network as J(xi,w) := ∇hw(xi) ∈ Rp and its norm averaged across
the dataset:

∥∥J(w)
∥∥2
F
= 1

N

∑N
i=1 Tr

(
∇hw(xi)∇hw(xi)

⊤). Denoting the noise of the gradient by
gt = ∇wL(wt)−∇wℓ (yit , h(wt, xit)), the SGD update in equation 1 becomes:

wt+1 = (1− ηλ)wt − η∇L(wt) + ηgt . (2)

Furthermore, we consider a Gaussian approximation of the SGD noise, matching the first and second
moment of gt. A substantial body of research has built upon this approximation and verified its
validity (Li et al., 2020, 2021a; Smith et al., 2020; Xie et al., 2020; Li et al., 2021b). In particular Li
et al. (2021a) demonstrated how modelling the SGD noise by a Gaussian is sufficient to understand
its generalization. The mean is zero due to the unbiased mini-batch gradients: ḡ(wt) := E[gt] = 0

4

0.
00

05

0.
00

1

0.
00

5

0.
01

0.
05 0.

1

0.
15 0.

2

0.
25

η

0.02

0.015

0.0125

0.01

0.0075

0.005

0.0025

0.001

0.0005

0.0

λ

Test Error EMA

0.
00

05

0.
00

1

0.
00

5

0.
01

0.
05 0.

1

0.
15 0.

2

0.
25

η

0.02

0.015

0.0125

0.01

0.0075

0.005

0.0025

0.001

0.0005

0.0

λ

‖J(w̄)‖F

0.4

0.5

0.6

0.7

0.8

0.9

5

15

40

100

200

×102

Figure 3: Resnet18 on Tiny-ImageNet. Heatmap of the test error and Jacobian norm for the EMA for all the
different combinations of η and λ.

whereas for the second moment:

Σwt :=
1

N

N∑
i=1

∇ℓi(wt)∇ℓ⊤i (wt)−∇L(wt)∇L⊤(wt) ≈
1

N

N∑
i=1

∇ℓi(wt)∇ℓ⊤i (wt)

≈ 1

N

N∑
i=1

(ℓ′i(wt))
2∇hwt

(xi)∇hwt
(xi)

⊤ ≈ 1

N
σ2
η,λ(wt)

N∑
i=1

∇hwt
(xi)∇hwt

(xi)
⊤ . (3)

In equation 3, we consider ∇L(wt)∇L⊤(wt) negligible compared to ∇ℓi(wt)∇ℓ⊤i (wt) as the
gradient noise variance dominates the square of the gradient noise mean. This fact has been used
in previous works (Mori et al., 2022; Zhu et al., 2018; Jastrzebski et al., 2017) and in particular
Jastrzebski et al. (2017) and Saxe et al. (2019) empirically verify it. Finally, we assume that the first
derivative is approximately constant across all datapoints: ℓ′i(wt) ≈ ℓ′j(wt) ∀i, j and denote this
common quantity as ση,λ(wt). This last approximation is referred to as "decoupling approximation"
and has been empirically verified for classification (Mori et al., 2022). Furthermore, in App. C.6 we
performed additional experiments to verify the decoupling approximation by comparing the spectrum
of the SGD covariance with and without this approximation during the large LR phase.

Altogether, these considerations lead to the following formulation of the SGD update:

wt+1 ≈ (1− ηλ)wt − η∇L(wt)−
η

N
ση,λ(wt)

N∑
i=1

∇hwt
(xi) ξ

t
i , where ξti ∼ N (0, I). (4)

This series of approximations, allows us to define the quantity ση,λ(wt), which has a fundamental
role in the characterization of the training dynamics. We refer to it as the scale of the noise because it
regulates its intensity. Although η and λ influence the noise scale indirectly through the trajectory
ofwt, we explicitly highlight this dependence to emphasize our objective: to characterize the influence
of WD and LR on the stochastic dynamics of SGD. We develop this characterization building upon
the connection between the Jacobian of the network and the covariance of the SGD noise, which
motivates the introduction of the following implicit regularization mechanism:
Conjecture 1. Consider the algorithm in Eq. 1 with w0 initialized from a distribution µ0

(
R(p)

)
.

For any input x, let wt, h(wt, x) be the random variables that denote the iterate at time t and
its functional value. The stochastic process (h(wt, x))t∈N converges to the stationary distribution

µ∞
η,λ(x) with mean µ̄η,λ(x) = h

(
w∗

η,λ, x
)

for which w∗
η,λ is a first-order stationary point of the

following regularized loss: L̄λ(w) := Lλ(w) + ησ2
η,λ

∥∥J(w)
∥∥2
F
. (5)

The conjecture illustrates how varying noise levels correspond to distinct processes, wherein the mean
of each solves a unique regularized problem. Moreover, it describes how each noise level determines
the strength of the regularization. Using the mean to formulate the conjecture is a natural choice;
even at stationarity,3 the values of the loss L(wt) and the regularizer

∥∥J(w)
∥∥2
F

would be dominated

3Assuming the existence of a stationary distribution, the iterates wt are eventually realizations from it.

5

(a)

10 5 10 4 10 3

0.0

0.2

0.4

0.6

0.8

1.0

,

(b)

10 6 10 5 10 4 10 3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 E
rro

r E
M

A

(c)

10 6 10 5 10 4 10 3

103

104

||J
(w

)||
F

(d)

Figure 4: Resnet18 on Tiny-ImageNet. Training for 200 epochs with different η and λ; the scale of the noise
monotonically increases with the train loss and η × λ Fig. 4a, 4b. The test error instead, presents an optimal
value of η × λ Fig. 4c while the Jacobian norm decreases monotonically Fig. 4d.

by the noise. To unveil the existence of an implicit regularization and to analyze the evolution of
the distribution, we need to look at its summary statistics, in this case, the mean. While insights
from Langevin dynamics suggest employing learning rate annealing to converge towards the mean
of the stationary distribution, this approach introduces additional complexities which we discuss in
Section 2.3. We instead consider an exponential moving average (EMA) (w̄t)t≥0 of the SGD iterates
with parameter β = 0.999.

The most important implication of the conjecture is that the strength of the regularization ση,λ depends
on both the LR η and the WD parameter λ. Our experiments in Fig. 3, provide empirical validation
for this conjecture. When trained with different combinations of η and λ, the EMA converges to
models with different test performances. When fixing λ there exists an optimal value of learning rate
η which gives the best test performance while the Jacobian norm monotonically increases. A similar
picture can be drawn when fixing the learning rate.

Therefore, given two solutions µ̄ηl,λl
and µ̄ηs,λs for which Test error(µ̄ηl,λl

) < Test error(µ̄ηs,λs);
the difference in their performances can be explained with the difference in their regularization
strengths ση,λ. The solution µ̄ηl,λl

benefits from better regularization and therefore endows better
generalization properties. Furthermore, the heatmap for test error in Fig. 3 indicates that the minimum
error is not achieved by a single combination of η and λ, but rather along a contour where their
product η × λ appears to be constant. This observation suggests an optimal trade-off between the
learning rate and weight decay parameter, characterized by a curve in the parameter space where
their product remains constant. Characterizing this relationship might reveal a useful tool which
practitioners can adopt to optimally select values of weight decay and learning rate. Fig. 4c, 4d
confirm that the product ηλ is the quantity controlling the regularization; combinations of η and
λ with the same product show similar test performances and Jacobian norm. For Tiny-Imagenet,
the test error exhibits an optimal value for ηλ ∼ 0.005 where increases beyond this point lead to
over-regularization and decreases result in under-regularization. Simultaneously, the Jacobian norm∥∥J∥∥

F
consistently exhibits a monotonically decreasing trend.

To better understand the properties of the noise scale during training, we can observe in Fig. 4a, 4b
how higher values of the training loss given by larger ηλ correspond to higher values of the noise
scale ση,λ. The latter is measured by computing the Frobenius norm of the first derivative of the
loss with respect to the predictions4 averaged over all training datapoints 1

N

∑N
i=1

∥∥ℓ′i(w)
∥∥
F

. The
scale of the noise and therefore the strength of the regularization vanish when L(w) ≈ 0 which
happens for small values of ηλ. Therefore, WD combined with a large LR stabilizes the CE to a
larger value, preventing the noise from vanishing and regulating the implicit regularization. This
fact further confirms Conjecture 1, demonstrating that with smaller noise scales, the mean (EMA)
tends towards a point where the Jacobian’s norm is higher, compared to trajectories with larger
noise scales. To further validate our conjecture, we created snapshot ensembles in the ResNet18
on CIFAR-10 setting, by averaging in function space along the SGD trajectory every 10 epochs for
the combinations of learning rate (LR) and weight decay (WD) considered. To assess whether the
mean of the stationary distribution in function space aligns closely with the EMA, where the Jacobian
norm is regularized, we compared the performance of snapshot ensembles with that of the EMA.
Additionally, we computed the Total Variation Distance between the softmax outputs of the ensemble
and the EMA. The results are reported in App. C.7 and show a strong alignment.

4In the multi-class setting ℓ′i(wt) ∈ Rc; to quantify the scale, we compute its Frobenius norm.

6

The role of the dynamics of the norm. As discussed at the end of previous sub-section, after a
rapid initial decrease of norm, the optimization resembles the dynamics of SGD projected onto a
sphere. We stress that this is the crucial phase in training and the implicit regularization induced by
SGD during this spherical optimization leads to better generalization. To validate this observation
and isolate it from the initial norm drop, we investigate the behavior of SGD on a sphere with
scale-invariant networks (Li & Arora, 2019). Scale invariance is chosen for its ease of LR tuning and
for comparison with existing works (Kodryan et al., 2022; Li et al., 2020). Fig. 15 depicts a similar
phenomenon as Fig. 3, where the test error vs. LR exhibits a U-shaped curve. While Kodryan et al.
(2022) makes a similar observation, they do not provide an explanation. We demonstrate that the
implicit regularization of the Jacobian norm is the key factor, elucidating its dependence on LR.

Effective learning rate vs. high training loss. Zhang et al. (2018); Van Laarhoven (2017) explored
the relationship between LR and WD, introducing the concept of effective LR ηe = η/

∥∥w∥∥2
2
. These

studies highlight that WD, preventing unbounded growth of the norm, enables the training process to
evolve with a higher effective LR. This hypothesis is justified only with scale-invariance (which does
not hold for general architecture). Furthermore, the underlying mechanism by which a higher LR
enhances generalization is understood only in limited settings (Li et al., 2019). We propose that a high
LR, combined with WD, leads to an increase in ση,λ. This hypothesis allows us to fully characterize
and understand the mechanism through which generalization is enhanced.

Mixing in the function space. A simpler conjecture could have been stated in terms of the mixing of
the iterates (wt)t≥0 towards a solution of the regularized objective w∗

η. However, Li et al. (2020)
shows empirical evidence against mixing in the parameter space, emphasizing the necessity of
considering the function space. Hence, our conjecture is formulated to capture stationarity in function
space.

On the benefit of normalization. Our conjecture characterizes the mixing distribution but does not
delve into the speed of the mixing process. In our experiments, we observe that normalization layers
enable faster mixing. Li et al. (2020) observes a similar phenomenon in the case of scale-invariant
networks, specifically the fast equilibrium conjecture, which is addressed by Li et al. (2022b). We
note that this phenomenon persists even when the models are not exactly scale-invariant.

2.3 EMA and Fine-tuning

The large-LR phase sets the stage for SGD’s inherent biases to emerge but to actually exploit
such bias, reducing the stochastic noise is necessary. This can be attained in two different ways:
averaging (EMA) or decaying the learning rate (fine-tuning), both strategies are widely adopted in
practice. This section illustrates the relation between the two and highlights the benefits of using
one over the other and the implications for our analysis. From a practical standpoint, implementing
EMA is more efficient than LR-decay because it does not require additional gradient iterations or
hyperparameter tuning. While both methods enhance performance, their effectiveness is contingent
on being combined with loss stabilization, supporting the hypothesis that the noisy dynamics is the
underlying factor for their success. Although EMA shows only a slight advantage, our experiments
in Fig. 5b, 2a, 2d demonstrate that it consistently outperforms learning rate decay in various settings.

When empirically validating Conjecture 1, the EMA is useful to characterize the limit point (i.e.,
t → ∞) but cannot adequately capture the dynamics throughout the entire trajectory. This limitation
arises because different points along the trajectory are at different loss values, making the comparison
of any relevant regularized quantities inconsistent. An approach to overcome this inconsistency is
to project the iterate wt onto a manifold of constant loss. This can be achieved via early-stopped
gradient flow (Li et al., 2021b) (SGD with small LR) on the CE loss with λ = 0 where wt is projected
to a nearby point w̃t, such that L(w̃t) ∼ const.,∀t. In practice, this corresponds to fine-tuning via
LR-decay. Since after fine-tuning L(w̃t) ≈ L(w̃t′), ∀t, t′ see Fig. 5a, we can compare

∥∥J(w̃t)
∥∥
F

and
∥∥J(w̃t′)

∥∥
F

and understand its evolution. In the experiments detailed in Fig. 5c, we report
∥∥J∥∥

F

along the fine-tuned iterates w̃t and observe a decreasing trend, i.e., the sequence
{∥∥J(w̃t)

∥∥}
t≥0

is
decreasing. This fact empirically validates that the entire trajectory of the iterates (wt)t≥0, closely
following the trajectory of the fine-tuned iterates (w̃t)t≥0, bias the model towards a regularized
solution that might enhances generalization. This also explains why learning rate schedules, such as
step-decay, which starts with a large value and then decrease it, can enhance generalization.

7

0 20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
Cr

os
s E

nt
ro

py

lr = 0.25
lr = 0.2
lr = 0.15
lr = 0.1
lr = 0.05
SGD iterates
EMA
Fine-tuning

(a)

0 20 40 60 80 100

Epochs

10%

20%

30%

40%

60%

90%

T
es

t
E

rr
or

(b)

0 20 40 60 80 100

Epochs

1

4

10

20

30

‖J
(w̄

)‖
F

×102

(c)

0 20 40 60 80 100

Epochs

9.0

9.5

10.0

10.5

11.0

11.5

12.0

‖(
w

)‖
2

(d)

Figure 5: EMA vs Fine-tuning. Training of standard Resnet18 on CIFAR-10 for 100 epochs fixing λ = 0.0125
and varying the learning rate. In Fig. 5a we report different levels of loss stabilization, in Fig. 5b we report the
test errors and in Fig. 5c and Fig. 5d the norm of the Jacobian and of the weights respectively. The quantities are
measured for the SGD iterates, the EMA and the fine-tuning. The latter is performed for 100 epochs every 3
with η = 10−3.

Despite providing a straightforward methodology to analyze the trajectory, LR-decay introduces
additional complexities that cause deviations from the conjecture. Indeed, in Fig. 5c we observe that
the final points of the fine-tuned iterates report the opposite trend compared to the EMA (smaller η lead
to larger

∥∥J∥∥
F

). This discrepancy is potentially due to the state-dependent nature of the SGD noise
covariance in equation 3; decreasing the LR and removing WD can alter the stationary distribution
and the regularized objective, leading to a different solution than anticipated by Conjecture 1.

3 Weight decay in the under-training regime
In this section, we investigate how WD enhances optimization in the under-training regime. Although
the phenomenon is more general, we focus on LLMs for which one-epoch training is typically used.

10000 20000 30000 40000 50000 60000
Iteration

3.2

3.3

3.4

3.5

3.6

3.7
Tr

ai
ni

ng
 lo

ss
WD = 0.0, wt

WD = 0.1, wt

WD = 0.3, wt

WD = 0.0, wt tiny LR
WD = 0.1, wt tiny LR
WD = 0.3, wt tiny LR

Figure 6: GPT-2-124M on OpenWeb-
Text. We reproduce the improvement
from WD as in Hoffmann et al. (2022)
but at a much smaller scale. Performing
fine-tuning with a tiny LR reveals that a
higher starting training loss can still be
a better point in terms of the final loss
after fine-tuning.

Two key effects of weight decay in the under-training
regime. WD is widely used in training state-of-the-art LLMs
like GPT-3, Chinchilla, and Llama (Brown et al., 2020; Hoff-
mann et al., 2022; Touvron et al., 2023). While Brown et al.
(2020) suggest that WD offers "a small amount of regulariza-
tion," its necessity remains unclear in the context of one-pass
training where the population loss is directly minimized. As
a sanity check, in Fig. 19 in Appendix, we verify that the
generalization gap is close to zero even for models trained
without WD. Instead of the regularization effect, we suggest
that the two most crucial effects of WD in the under-training
regime are (1) better optimization of the training loss as briefly
observed by Hoffmann et al. (2022), (2) prevention of loss
divergences under the bfloat16 weight precision. We repro-
duce this phenomenon at a smaller scale with 124M parameters
in Fig. 6: the final training loss is smaller for λ equal to 0.1
and 0.3 compared to 0. We study both mechanisms which
stand in contrast to the over-training regime of Sec. 2, where
the primary concerns are not optimization and stability, but rather generalization.

Experimental setup. We use the NanoGPT repository (Karpathy, 2023) for training GPT-2 models
(Radford et al., 2019) on OpenWebText. We train a 124M parameter model (known as GPT-2-Small)
for 50 000 iterations with a batch size of 256. For most experiments, we reduce the default context
length from 1024 to 256 to ensure practicality within an academic budget. Alternatively, we could
have reduced the number of training iterations or batch size, but this would lead to insufficiently
trained models. Unless mentioned otherwise, we train with AdamW using the default LR 0.0006,
a short 400-iteration LR warmup, gradient clipping with the ℓ2-threshold 1.0, and 10× cosine LR
decay. We keep all other hyperparameters at their default values (see App. B).

Better optimization with WD is reproducible at a smaller scale. The findings from Hoffmann et al.
(2022) (Fig. A7 therein) indicate that WD in AdamW leads to lower training loss (≈ 0.02 lower),
primarily towards the end of training. The reduction of training loss directly translates to a better
downstream performance and makes this observation practically relevant. Additionally, performing
fine-tuning with a tiny LR reveals that a higher starting training loss can still be a better starting point

8

0 10000 20000 30000 40000 50000
Iteration

10 7

10 6

Ef
fe

ct
iv

e
le

ar
ni

ng
 ra

te

10 × LR decay, WD = 0.0
10 × LR decay, WD = 0.1
10 × LR decay, WD = 0.3

0 10000 20000 30000 40000 50000
Iteration

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Le
ar

ni
ng

 ra
te

WD = 0.0
WD = 0.0, ELR of WD = 0.1
WD = 0.0, ELR of WD = 0.3

10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 lo
ss

WD = 0.0
WD = 0.1
WD = 0.3
WD = 0.0, ELR of WD = 0.1, bf16
WD = 0.0, ELR of WD = 0.3, bf16
WD = 0.0, ELR of WD = 0.1, fp32
WD = 0.0, ELR of WD = 0.3, fp32

Figure 7: GPT-2-124M on OpenWebText. Left: The effective LR ηt/∥wt∥2 for the models reported in Fig. 6.
Middle: The LR schedule that matches the effective LR ηt/∥wt∥2 of the runs with weight decay 0.1 and 0.3.
Right: Matching the effective LR is sufficient to match the whole training dynamics of the loss if we avoid the
loss spikes by using full precision (float32 instead of bfloat16).

in terms of the final loss after fine-tuning. Moreover, in Fig. 21, we show that decoupling WD, as
advocated by Loshchilov & Hutter (2019), is not necessary to achieve this effect: a simple ℓ2 penalty
added to the loss suffices. Lastly, in Fig. 22, we show that a similar improvement in training loss is
observed for SGD with momentum suggesting that adaptive LRs are not key for this phenomenon.

Effective LR induced by weight decay in AdamW. We hypothesize that the use of WD for LLM
training results in an increased effective LR, even in the absence of scale invariance of the training
loss for modern transformer architectures. Here we show that WD in combination with sign SGD—
utilized as a surrogate for Adam (Balles & Hennig, 2018)—is equivalent to projected SGD on the
sphere, with an effective LR ηeff ∝ ηt/∥wt∥2, similarly to Van Laarhoven (2017). Consider the update
rule of sign SGD on loss ℓ with WD:

wt+1 = (1− ηtλt)wt − ηt sign(∇ℓt(wt)) = (1− ηtλt)
∥∥wt

∥∥
2

[
wt∥∥wt

∥∥
2

− ηt · sign(∇ℓt(wt))

(1− ηtλt)
∥∥wt

∥∥
2

]
.

Considering the evolution of the direction w̃ := w/
∥∥w∥∥

2
,

w̃t+1 ∝
[
w̃t −

ηt

(1− ηtλt)
∥∥wt

∥∥
2

· sign(∇ℓt(wt))

]
.

When sign(∇ℓt(wt)) is determined solely by the direction w̃t, the evolution of the direction of
weights becomes the primary matter. This scenario occurs when the function ℓ is scale-invariant or
homogeneous. Observing the trend of the gradient norm and the parameter norm

∥∥wt

∥∥
2

from Fig. 26,
we note an inverse relationship, i.e., the gradient norm is higher when the parameter norm is lower.
This behavior is reminiscent of scale-invariant networks for which ∇ℓ(αw) = 1

α∇ℓ(αw), for any
α ̸= 0. Thus, controlling parameter norms with WD allows implicit changes to the LR schedule
which we verify experimentally next.

Matching the effective LR without weight decay. To verify the key role of the ELR ηt/∥wt∥2, we
train a model without WD but with ELR corresponding to models trained with λ ∈ {0.1, 0.3} and
report results in Fig. 7. We observe that the whole training dynamics is matched which confirms our
hypothesis. This fully explains the observation from Hoffmann et al. (2022) about the advantage of
AdamW over Adam: there exists an LR schedule (albeit a non-standard one) shown in Fig. 7 (middle)
that leads to the same loss profile as the original AdamW run. However, we note that this holds only
for full float32 precision, and models trained with bfloat16 precision diverge in the middle of
training. This experience suggests that WD is still necessary in practice to prevent loss divergence.
We also note that matching the ELR ηt/∥wt∥2 derived above for sign SGD instead of ηt/∥wt∥2

2 for
plain SGD (Zhang et al., 2018; Hoffer et al., 2018) is critical for AdamW. Otherwise, the runs diverge
very early in training, even with float32 parameter precision.

Explaining the training dynamics of AdamW. Classical optimization theory suggests that con-
vergence of SGD-based algorithms primarily depends on two factors: the bias term that influences
the rate at which initial conditions are forgotten and the variance term that results from noise in
the gradient estimates (Moulines & Bach, 2011). We argue that these two factors, together with the
observation about higher ELR for WD, can explain the loss profiles from Fig. 6. If we consider the
simple case of SGD with a constant LR η applied to a linear least-squares problem, the expected
excess risk after t iterations can be bounded as a sum of a bias and variance terms:

Excess Risk ≲ (1− ηµ)t
∥∥w0 −w∗

∥∥2 + ησ2,

9

where σ is a uniform bound on the variance of the noise of gradient estimates, µ a lower bound on
the objective function’s Hessian, w0 the initial point and w∗ the optimum. For linear models, it is
well-established that a larger LR accelerates the contraction of the bias term but has a detrimental
impact on the variance term, ultimately leading the variance term to dominate. Coming back to the
dynamics in Fig. 6, with a large ELR at the start, the convergence becomes primarily bottlenecked by
the high variance term proprtional to the learning rate, leading to higher loss values in the presence of
WD. Conversely, towards the end of training, when ELR and the variance term are reduced, we see
that WD catches up and performs better at the end, thanks to its relatively higher ELR throughout
the training and thus better bias contraction. This perspective sheds light on the observation that
EMA for LLMs is most advantageous when employed with large LRs (Sanyal et al., 2023) as we also
illustrate in Fig. 23. As the variance dominates in this case, variance reduction of the averaging helps.

Experiments with bfloat16. Training in reduced precision is essential for speeding up training
and reducing GPU memory requirements (Kalamkar et al., 2019). We further elaborate on the
fact that WD is not fully equivalent to higher ELR and remains necessary for stable bfloat16
training. While Scao et al. (2022) observe that usage of float16 can cause loss divergences,
bfloat16 is considered much more stable and is de-facto standard in LLM training. Although
bfloat16 shares the same floating-point exponent size as float32 (thus, the range of possi-
ble values is the same), it offers lower precision, with only 7 bits for the fraction instead of 23.

10000 20000 30000 40000 50000
Iteration

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

Tr
ai

ni
ng

 lo
ss

bfloat16, LR = 0.001, WD = 0.0
bfloat16, LR = 0.001, WD = 0.1
bfloat16, LR = 0.001, WD = 0.3
float32, LR = 0.001, WD = 0.0

Figure 8: GPT-2-124M on OpenWeb-
Text with context length 1024. Weight
decay prevents divergence for LR 0.001
and enables stable bfloat16 training.
The three random seeds are denoted with
—, - - -, · · · lines.

We observe that even more stable bfloat16 data type can still
exhibit late-training spikes that irreparably harm model per-
formance in standard practical settings, such as with a larger
context length (e.g., 1024 instead of 256 as in the previous
experiments). Therefore, we focus on this configuration for the
experiments shown in Fig. 8. Runs with a moderate LR 0.001
(the default LR of Adam) without WD exhibit late-training
divergence for all random seeds when using bfloat16. By
comparison, training with float32 remains entirely stable.
Importantly, we observe that the model does not recover after
the loss spikes which contrasts with the loss spikes described in
the Edge of Stability phenomenon (Cohen et al., 2021, 2022).
We emphasize that all these runs use gradient clipping with the
standard ℓ2-threshold. Finally, we observe that divergences can
be prevented by reducing the LR, e.g., from 0.001 to 0.0006.
However, this adjustment leads to slower training, as illustrated
in Fig. 24 in the Appendix. Instead, the most effective approach
is to use a higher LR of 0.001 with WD, which enables stable bfloat16 training and yields a better
final training loss.

4 Conclusions

In this paper, we demonstrate how weight decay, a single hyperparameter, can manifest three distinct
effects across different training regimes: it offers regularization when combined with stochastic
noise, improves optimization of the training loss, and guarantees stability in low-precision training
environments. In the over-training regime, the scale of the noise ση,λ is the fundamental quantity
governing the implicit regularization strength of SGD. Weight decay combined with large LR enables
the noisy dynamics to evolve by maintaining the scale at a constant level. Techniques such as EMA or
fine-tuning work by reducing noise, thereby allowing for the effective exploitation of the accumulated
hidden regularization. Coming to the under-training regime, AdamW (Loshchilov & Hutter, 2019)
was introduced as a regularization method. Instead, we argue that it is effective as it modulates
the ELR to attune the bias-variance tradeoff. In addition, it also improves the stability of training.
In summary, weight decay is seldom valuable as an explicit regularizer; instead, its widespread
adoption can be attributed to its ability to induce desirable changes in optimization dynamics. We
also acknowledge limitations of our work: given our limited computational resources, we do not
conduct truly large-scale experiments. Moreover, we do not prove new theoretical results. Instead, we
strive to provide a clear experimental picture and formulate general explanations for the effectiveness
of weight decay in different training regimes.

10

Acknowledgements

We thank Atli Kosson and Alex Damian for fruitful discussions and suggestions. M.A. was supported
by the Google Fellowship and Open Phil AI Fellowship. A.V. was supported by the Swiss Data
Science Center Fellowship. F.D. was supported by the Swiss National Science Foundation (grant
number 212111)

References
Andriushchenko, M., Varre, A., Pillaud-Vivien, L., and Flammarion, N. SGD with large step sizes

learns sparse features. In International Conference on Machine Learning, 2023.

Balles, L. and Hennig, P. Dissecting adam: The sign, magnitude and variance of stochastic gradients.
In Dy, J. and Krause, A. (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 404–413. PMLR, 10–15
Jul 2018.

Bjorck, J., Weinberger, K. Q., and Gomes, C. Understanding decoupled and early weight decay. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6777–6785, 2021.

Blanc, G., Gupta, N., Valiant, G., and Valiant, P. Implicit regularization for deep neural networks
driven by an Ornstein-Uhlenbeck like process. In Conference on Learning Theory, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A. Gradient descent on neural networks
typically occurs at the edge of stability. In International Conference on Learning Representations,
2021.

Cohen, J. M., Ghorbani, B., Krishnan, S., Agarwal, N., Medapati, S., Badura, M., Suo, D., Cardoze,
D., Nado, Z., Dahl, G. E., et al. Adaptive gradient methods at the edge of stability. arXiv preprint
arXiv:2207.14484, 2022.

Damian, A., Ma, T., and Lee, J. D. Label noise sgd provably prefers flat global minimizers. In
Advances in Neural Information Processing Systems, volume 34, pp. 27449–27461, 2021.

Foster, M. An application of the wiener-kolmogorov smoothing theory to matrix inversion. Journal
of the Society for Industrial and Applied Mathematics, 9(3):387–392, 1961.

Gokaslan, A., Cohen, V., Pavlick, E., and Tellex, S. Openwebtext corpus, 2019. http:
//Skylion007.github.io/OpenWebTextCorpus.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. ICCV, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In CVPR, 2016.

Hoerl, A. E. and Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970.

Hoerl, A. R. Application of ridge analysis to regression problems. Chemical Engineering Progress,
58:54–59, 1962.

Hoffer, E., Banner, R., Golan, I., and Soudry, D. Norm matters: efficient and accurate normalization
schemes in deep networks. Advances in Neural Information Processing Systems, 31, 2018.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. d. L.,
Hendricks, L. A., Welbl, J., Clark, A., et al. Training compute-optimal large language models. In
Advances in Neural Information Processing Systems, 2022.

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and Weinberger, K. Q. Snapshot ensembles:
Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A., Bengio, Y., and Storkey, A. Three
factors influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

Ji, Z. and Telgarsky, M. The implicit bias of gradient descent on nonseparable data. In Conference on
Learning Theory, pp. 1772–1798. PMLR, 2019.

Kalamkar, D., Mudigere, D., Mellempudi, N., Das, D., Banerjee, K., Avancha, S., Vooturi, D. T.,
Jammalamadaka, N., Huang, J., Yuen, H., et al. A study of bfloat16 for deep learning training.
arXiv preprint arXiv:1905.12322, 2019.

Karpathy, A. Nanogpt repository, 2023. URL https://github.com/karpathy/nanoGPT/.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. On large-batch training
for deep learning: Generalization gap and sharp minima. In International Conference on Learning
Representations, 2016.

Kodryan, M., Lobacheva, E., Nakhodnov, M., and Vetrov, D. P. Training scale-invariant neural
networks on the sphere can happen in three regimes. Advances in Neural Information Processing
Systems, 35:14058–14070, 2022.

Kosson, A., Messmer, B., and Jaggi, M. Rotational equilibrium: How weight decay balances learning
across neural networks. In NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning,
2023.

Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. Technical
Report, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, 2012.

Krogh, A. and Hertz, J. A simple weight decay can improve generalization. Advances in Neural
Information Processing Systems, 1991.

Lewkowycz, A. How to decay your learning rate. arXiv preprint arXiv:2103.12682, 2021.

Lewkowycz, A. and Gur-Ari, G. On the training dynamics of deep networks with l_2 regularization.
In Advances in Neural Information Processing Systems, volume 33, pp. 4790–4799, 2020.

Li, Y., Wei, C., and Ma, T. Towards explaining the regularization effect of initial large learning rate
in training neural networks. In Advances in Neural Information Processing Systems, 2019.

Li, Z. and Arora, S. An exponential learning rate schedule for deep learning. arXiv preprint
arXiv:1910.07454, 2019.

Li, Z., Lyu, K., and Arora, S. Reconciling modern deep learning with traditional optimization
analyses: The intrinsic learning rate. In Advances in Neural Information Processing Systems,
volume 33, pp. 14544–14555, 2020.

Li, Z., Malladi, S., and Arora, S. On the validity of modeling sgd with stochastic differential equations
(sdes). In Advances in Neural Information Processing Systems, 2021a.

Li, Z., Wang, T., and Arora, S. What happens after sgd reaches zero loss?–a mathematical framework.
arXiv preprint arXiv:2110.06914, 2021b.

Li, Z., Bhojanapalli, S., Zaheer, M., Reddi, S., and Kumar, S. Robust training of neural networks
using scale invariant architectures. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 12656–12684. PMLR,
17–23 Jul 2022a.

Li, Z., Wang, T., and Yu, D. Fast mixing of stochastic gradient descent with normalization and weight
decay. In Advances in Neural Information Processing Systems, 2022b.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

12

https://github.com/karpathy/nanoGPT/

Mori, T., Liu, Z., Liu, K., and Ueda, M. Power-law escape rate of SGD. In International Conference
on Machine Learning. PMLR, 2022.

Moulines, E. and Bach, F. Non-asymptotic analysis of stochastic approximation algorithms for
machine learning. In Advances in Neural Information Processing Systems, volume 24, 2011.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. Deep double descent:
Where bigger models and more data hurt. In International Conference on Learning Representations,
2020.

Papyan, V. The full spectrum of deepnet hessians at scale: Dynamics with sgd training and sample
size. arXiv preprint arXiv:1811.07062, 2018.

Pillaud-Vivien, L., Reygner, J., and Flammarion, N. Label noise (stochastic) gradient descent
implicitly solves the lasso for quadratic parametrisation. In Conference on Learning Theory, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou, L. Empirical analysis of the hessian of
over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Sanyal, S., Kaddour, J., Kumar, A., and Sanghavi, S. Understanding the effectiveness of early weight
averaging for training large language models. arXiv preprint arXiv:2306.03241, 2023.

Saxe, A. M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky, A., Tracey, B. D., and Cox, D. D. On
the information bottleneck theory of deep learning. Journal of Statistical Mechanics: Theory and
Experiment, 2019(12):124020, 2019.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon,
F., Gallé, M., et al. Bloom: A 176b-parameter open-access multilingual language model. arXiv
preprint arXiv:2211.05100, 2022.

Shalev-Shwartz, S. and Ben-David, S. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Smith, S., Elsen, E., and De, S. On the generalization benefit of noise in stochastic gradient descent.
In International Conference on Machine Learning, pp. 9058–9067. PMLR, 2020.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. The implicit bias of gradient
descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878, 2018.

Tikhonov, A. N. On the stability of inverse problems. In Dokl. Akad. Nauk SSSR, volume 39, pp.
195–198, 1943.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

Van Laarhoven, T. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

Wojtowytsch, S. Stochastic gradient descent with noise of machine learning type. Part I: Discrete
time analysis. arXiv preprint arXiv:2105.01650, 2021.

Wu, J., Zhang, Q., and Xu, G. Tiny imagenet challenge. Technical report, 2017.

Xie, Z., Sato, I., and Sugiyama, M. A diffusion theory for deep learning dynamics: Stochastic
gradient descent exponentially favors flat minima. arXiv preprint arXiv:2002.03495, 2020.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Pyhessian: Neural networks through the lens
of the hessian. In 2020 IEEE international conference on big data (Big data), pp. 581–590. IEEE,
2020.

13

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning requires
rethinking generalization. In International Conference on Learning Representations, 2016.

Zhang, G., Wang, C., Xu, B., and Grosse, R. Three mechanisms of weight decay regularization. In
International Conference on Learning Representations, 2018.

Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. The anisotropic noise in stochastic gradient descent: Its be-
havior of escaping from sharp minima and regularization effects. arXiv preprint arXiv:1803.00195,
2018.

14

A An additional comparison with related works

Our focus in Section 2 is on an empirical illustration of the implicit regularization phenomenon,
hence we refrain from attempting to prove this general conjecture, which we believe is a challenging
task. The existing theoretical works Blanc et al. (2020); Li et al. (2021b); Damian et al. (2021)
present two major weaknesses; they are essentially limiting analysis and as such fail at capturing the
entire optimization trajectory and they primarily target regression tasks. The powerful mathematical
framework for scale-invariant networks developed by Li & Arora (2019); Li et al. (2020) allows
them to study in detail the benefits of normalization and its interplay with weight decay. By means
of this framework, they state a fast equilibrium conjecture, which gives qualitative guarantees for
the speed of convergence of the stochastic process to the stationary distribution in function space.
They disentangle the evolution of the norm and the direction of the parameters and show how
the evolution of the direction only depends on the intrinsic LR λi = ηλ. However, a qualitative
description of the stationary distribution, its dependence on this intrinsic LR and the relationship
with generalization is missing Li et al. (2020). We attempt to fill this gap by providing a qualitative
depiction of the stationary distribution and its dependence on the intrinsic LR shading some light
towards understanding the relationship with generalization. The work of Kodryan et al. (2022) reports
a similar observation, where the best test loss is achieved at a LR where the loss neither converges
nor diverges but does not provide any explanation.

Table 1: Comparison of our work with closely related works on regression and implicit regularization phe-
nomenon induced by noise in the algorithm.

Paper Loss function Algorithm Implicit regularization
Damian et al. (2021) & Squared loss & Label noise GD Trace of HessianLi et al. (2021b) CE + label smoothing

Blanc et al. (2020) Squared loss Label noise GD Jacobian norm
Li et al. (2020) Scale-invariant loss SGD -

Andriushchenko et al. (2023) Squared loss SGD with large LR Jacobian norm
Our work Regularized CE SGD with large LR Jacobian norm

B Training details

Full experimental details are available in our public repository https://github.com/tml-epfl/
why-weight-decay but we also list the main training details here. All the experiments are conducted
for 3 different random seeds, the error-bars report one standard deviation. CIFAR-10/100 experi-
ments. We train a VGG network without BatchNorm and preactivation ResNet-18 on CIFAR-10 and
ResNet-34 on CIFAR-100 without data augmentations. We use standard SGD without momentum
for all experiments. We note that ℓ2 regularization and weight decay are exactly the same in this
case. We use the standard He initialization (He et al., 2015) for all parameters. To make ResNets
scale-invariant, we follow the approach of Li et al. (2020) consisting of fixing the last layer, removing
the learnable parameters of the normalization layers and adding a normalization layer in the skip
connection. For the experiments in Fig.11, VGG is trained with LR = 0.1 and LR = 0.01 and weight
decay parameter is fixed to be either λ = 0.0 or λ = 0.008. The ResNet-18 is trained with LR = 0.08
and LR = 0.001 and λ = 0.0 or λ = 0.0125. The ResNet-34 is trained with LR = 0.15 and LR =
0.001 and weight decay parameter λ = 0.0 or λ = 0.01. The total number of epochs is 1000 in all
experiments in Fig.11 and all the LR are decayed at epoch 500 to 0.0001. For the experiments in
Fig. 15 we use scale-invariant ResNet-18 and project the SGD iterates on the unitary sphere. We test
the following LRs in the large-LR phase (0.0001, 0.0005, 0.00075, 0.001, 0.002, 0.003, 0.004, 0.005)
to show different generalization performance. After 100 epochs all the learning rates are decayed
to the same value 0.0001. In Fig. 15 we fine-tune every 2 epochs for 100 additional epochs with
LR=0.0001. To measure the Norm of the Jacobian or the Trace of the Hessian we use a subset of
5000 training datapoints. Each run requires approximately 2 GPU hours on an Nvidia A100 GPU.

Tiny-ImageNet experiments. We train Resnet-18 without data augmentation. We use stan-
dard SGD without momentum in all our experiments. We use the following learning rates
(0.0005, 0.0010, 0.0050, 0.0100, 0.0500, 0.1000, 0.1500, 0.2000, 0.2500) and weight decay param-
eter (0.0200, 0.0150, 0.0125, 0.0100, 0.0075, 0.0050, 0.0025, 0.0010, 0.0005, 0.0000). To measure

15

https://github.com/tml-epfl/why-weight-decay
https://github.com/tml-epfl/why-weight-decay

the norm of the Jacobian we use a subset of the training data of 2500 examples. Each run requires
approximately 5GPU hour on A100.

LLM experiments. We use the NanoGPT repository (Karpathy, 2023) for training GPT-2 models
(Radford et al., 2019) on OpenWebText (Gokaslan et al., 2019). All training documents are con-
catenated in a single stream from which a new batch is sampled with replacement on every iteration
of training. We train a 124M parameter model known as GPT-2-small for 50 000 iterations instead
of the default 600 000 to make grid searches over the learning rate and weight decay parameters
more accessible within an academic budget. We mostly use the context length of 256 for faster
experiments except for Fig. 8 where we use the context length of 1024 since we observed that a
larger context length is crucial to observe loss divergences with moderate learning rates (such as
0.001 for Adam). We train with AdamW (Loshchilov & Hutter, 2019) using batch size 256, default
LR 0.0006 (unless mentioned otherwise), β1 = 0.9, β2 = 0.95, a short 400-iteration LR warmup,
and 10× cosine LR decay. For the runs with SGD with momentum, we use the learning rate 0.3 and
momentum parameter 0.9 using the same LR schedule as for AdamW. We initialize all parameters
with the standard deviation equal to 0.02. We keep all other hyperparameters at their default values
as in the NanoGPT repository. We perform all experiments on A100 Nvidia GPUs that support fast
bfloat16 training. Each training run of GPT-2-small for 50 000 iterations takes around 12 hours on
a single GPU.

C Weight decay for overparametrized deep networks: additional experiments
and details

C.1 A graphical illustration of the fine-tuning phase

Here, we plot an illustrative graphic in Fig. 9 to give an idea of what happens during the fine-tuning
phase.

Figure 9: A graphical illustration of the fine-tuning phase.

C.2 Supporting derivations

Here we prove that the scale of noise is well approximated by training loss in the case of binary
classification instead of classification in the case of multiple classes. The proof follows the lines
of Wojtowytsch (2021).
Proposition 2. Assume

∥∥w∥∥ ∈ [a, b], for any x ∈ D,
∥∥∇h (w, x)

∥∥ ∈ [m,M] holds. For n
sufficiently large, there exists constants c1, c2 such that

E
[∥∥g(w)

∥∥2] ≤ c2L(w)

Proof. The noise in the case when the gradient is computed at (xi, yi) is

g(w) = ℓ
′
(yi, h(w, xi))∇h(w, xi)−

1

n

∑
i

∇ℓ
′
(yi, h(w, xi))∇h(w, xi),

16

Taking the expectation over uniform sampling over i, we have,

E
∥∥g∥∥2 =

1

n

n∑
i=1

(
ℓ
′
(yi, h(w, xi)

)2 ∥∥∇h(w, xi)
∥∥2 − 1

n2

∥∥∑
i

∇ℓ
′
(yi, h(w, xi))∇h(w, xi)

∥∥2 (6)

Upper bound: Using the self-bounding property of the binary CE, i.e.,
(
ℓ′2

)
≤ l and∥∥∇h (w, x)

∥∥2 ≤ M2.

E
∥∥g∥∥2 ≤ M2 1

n

n∑
i=1

ℓ(yi, h(w, xi)) = M2L(w).

Comment on the Lower bound: Since the iterates are bound, we can assume there exists a constant
c such that

(
ℓ′2

)
≥ cl. as the second term in 6 is decreasing with O(n−2), we can assume that the

first term is dominating and relevant and can lower bound the first term as,

E
∥∥g∥∥2 ≥ cm2 1

n

n∑
i=1

ℓ(yi, h(w, xi)) = cm2L(w).

C.3 Additional figures for the over-training regime

In this section, we report additional experimental results related to Section 2 in the main text. In
Fig. 10 we report analogous results for the jacobian norm and test error of the EMA for Resnet18
on CIFAR10. In Fig. 11 and 2 we report the train CE for VGG and ResNet18 on CIFAR-10 and
ResNet34 trained on CIFAR-100. We can observe how when weight decay is used in combination
with large LR, the train CE stabilizes at some approximately constant level.

0.005 0.01 0.025 0.05 0.1 0.15 0.2 0.25

η

0.
02

0.
01

5
0.

01
25

0.
01

0.
00

75
0.

00
5

0.
00

25
0.

00
1

0.
00

05
0.

0

λ

Test Error EMA

0.005 0.01 0.025 0.05 0.1 0.15 0.2 0.25

η

0.
02

0.
01

5
0.

01
25

0.
01

0.
00

75
0.

00
5

0.
00

25
0.

00
1

0.
00

05
0.

0

λ

‖J(w̄)‖F

10−1

2× 10−1

103

×102

(a)

10−5 10−4 10−3

ηλ

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
es

t
E

rr
or

E
M

A

lr = 0.005

lr = 0.01

lr = 0.025

lr = 0.05

lr = 0.1

lr = 0.15

lr = 0.2

lr = 0.25

10−5 10−4 10−3

ηλ

102

103

‖J
(w̄

)‖
F

(b)

Figure 10: Resnet18 on CIFAR10 We train Resnet18 on CIFAR10 for 100 epochs with different η and λ.
Fig. 10a reports a heatmap of the test error and Jacobian norm for the EMA for all the different combinations of
parameters. The test error presents an optimal value of η when λ is fixed and, consistently with conjecture 1, the
Jacobian norm decreases monotonically. More over, Fig. 10b shows how the optimality might depend only on
the product ηλ for which the test error has a U-shape and the Jacobian norm decreases monotonically.

0 200 400 600 800 1000
Epochs

15%

20%

30%

40%

60%

90%

Te
st

 E
rro

r

VGG on CIFAR10
LR = 0.1, WD =0.008
LR = 0.1, WD =0.0
LR = 0.01, WD =0.008
LR = 0.01, WD =0.0

(a)

0 200 400 600 800 1000
Epochs

10%

20%

30%

40%

60%

Resnet on CIFAR10
LR = 0.08, WD =0.0125
LR = 0.08, WD =0.0
LR = 0.001, WD =0.0125
LR = 0.001, WD =0.0

(b)

0 200 400 600 800 1000
Epochs

30%

40%

60%

100%
Resnet on CIFAR100

LR = 0.15, WD =0.01
LR = 0.15, WD =0.0
LR = 0.001, WD =0.01
LR = 0.001, WD =0.0

(c)

Figure 11: Training with and w/o weight decay. We report the test error for VGG (11a) and ResNet (11b, 11c)
trained on CIFAR-10/100 with and without weight decay and with small and large learning rates. After the first
500 epochs the learning rate is decayed to η = 10−4 for all the curves.

17

0 200 400 600 800 1000
Epochs

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Tr
ai

n
Cr

os
s E

nt
ro

py

VGG on CIFAR10

LR = 0.1, WD =0.008
LR = 0.1, WD =0.0
LR = 0.01, WD =0.008
LR = 0.01, WD =0.0

(a)

0 200 400 600 800 1000
Epochs

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Resnet on CIFAR10

LR = 0.08, WD =0.0125
LR = 0.08, WD =0.0
LR = 0.001, WD =0.0125
LR = 0.001, WD =0.0

(b)

0 200 400 600 800 1000
Epochs

10 5

10 4

10 3

10 2

10 1

100

Resnet on CIFAR100
LR = 0.15, WD =0.01
LR = 0.15, WD =0.0
LR = 0.001, WD =0.01
LR = 0.001, WD =0.0

(c)

Figure 12: Training with and w/o weight decay. We report the train CE for VGG (12a) and ResNet (12b, 12c)
trained on CIFAR-10/100 with and without weight decay and with small and large learning rates. After the first
500 epochs the learning rate is decayed to η = 10−4 for all the curves.

Connection between SGD covariance and Hessian. Much of the literature related to implicit bias
relies on the assumption that the covariance of the noise of SGD is strictly related to the hessian of the
loss function as discussed in Sec 2. Denoting the Hessian H(w) := ∇2L(w) we can write it as the
so-called Gauss-Newton decomposition (Sagun et al., 2017; Papyan, 2018) H(w) = G(w) + E(w).
To measure the cosine similarity (CS) between H(w) and the covariance Σt we compute

CS = E [cos (H(w)v,Σtv)]

where v is sampled from the Gaussian distribution in Rp and cos(u,v) = ⟨u,v⟩/
∥∥u∥∥∥∥v∥∥. The results

are reported in Fig. 13.

Figure 13: Cosine similarity between hessian and Noise covariance: we compute the cosine similarity
between the hessian and the covariance of the SGD noise for a scale-invariant ResNet after one epoch with
large lr η = 0.005. The results show how the two matrices are correlated and in particular how the SGD noise
covariance is highly correlated with G(w).

18

C.4 Trace of Hessian and Jacobian Norm

As reported in Table 1 previous works related with label noise, theoretically derived the connection
between the trajectory of SGD and a trajectory which regularizes either the trace of the Hessian or
the Jacobian norm. The Hessian of a loss function L can be decomposed as:

∇2L(w) =

N∑
i=1

[
∇h(xi;w)

[
∇2

hl(h(xi;w))
]
∇h(xi;w)⊤︸ ︷︷ ︸

Gi(w)

+

K∑
c=1

[∇hl(h(xi;w))]c∇2h(xi;w)︸ ︷︷ ︸
Ei(w)

]
.

Many works demonstrated empirically that the Gi is the dominant part of the Hessian decomposition
and ∇2L(w) ∼ ∑

i Gi (Sagun et al., 2017). The Jacobian (J) norm instead is defined as:

∥∥J(w)
∥∥2
F
=

1

N

N∑
i=1

Tr
(
∇hw(xi)∇hw(xi)

⊤) , (7)

in the case of square loss, ∇2
hl = I where I is the identity matrix. Hence, Tr

(
∇2L(w)

)
∼

∥∥J∥∥2
F
.

The similarity is an exact equality at an interpolating solution since ∇hl(h(xi;w)) = 0 and therefore
not much ambiguity is left regarding which quantity to study. However, in the case of classification,
this fact does not hold. In particular, the trace of ∇2

hl can significantly deviate from the identity matrix
and varies depending on the value of the training loss. Consequently, although the two quantities
seem closely related even when using the CE, we opt for analyzing

∥∥J∥∥
F

. This choice is motivated
by its lack of explicit dependence on the training loss, enabling straightforward comparisons between
different solutions.In the following, we report an empirical comparison of the two quantities along
the training trajectory. In Fig. (14) we report a comparison between the trace of the Hessian and
the Jacobian norm for both the fine-tuned iterates and the EMA. We can observe that for the fine-
tuned iterates, both quantities display a decreasing trend; nevertheless, the ranking appears to be
inverted to what is expected from previous theoretical works, i.e. larger LRs should lead to a stronger
regularization effect. If we compare the EMA instead, we can see that both quantities are still
decreasing along the iterations but for the Hessian we don’t observe any meaningful ranking for the
final solutions whereas the Jacobian norm is lower for higher LRs.

0 20 40 60 80 100

10.0%

15.0%

20.0%

30.0%

Te
st

 E
rro

r

lr = 0.2
lr = 0.15
lr = 0.1
lr = 0.05
EMA
Fine-tuning

(a)

0 20 40 60 80 100
Epochs

10

20

50

100

Tr
(

2
(w

))

×102

(b)

0 20 40 60 80 100
Epochs

2

10

30

100

Tr
(

2
(w

))

×102

(c)

0 20 40 60 80 100

Epochs

1

4

10

20

30

‖J
(w̄

)‖
F

×102

(d)

Figure 14: Trace of Hessian and Jacobian Norm We train standard Resnet18 on CIFAR-10 for 100 epochs
fixing λ = 0.0125 and varying the learning rate. We report the EMA and we finetune for 100 epochs every 3
with η = 10−3.

C.5 Experiments with scale-invariant Resnet on the sphere

In order to isolate the implicit regularization mechanism from the large initial drop and even small
fluctuations in the dynamics of the ℓ2 norm, we consider a simplified setting. We train scale-invariant
networks (Li & Arora, 2019; Li et al., 2020) with projected SGD on the unitary sphere S(p−1). We
project the SGD iterates on the unitary sphere S(p−1) within the context of scale-invariant ResNet
architectures (Li & Arora, 2019; Li et al., 2020). This setup is helpful for two reasons: (a) it simplifies
the selection of the LR and hence tremendously reduces the experimental overhead (b) scale-invariant
networks have been extensively studied in previous works Li & Arora (2019); Li et al. (2020);
Kodryan et al. (2022). Moreover, in the context of scale invariance, the optimization on the sphere
is the natural object to study as the evolution of the direction is the only quantity that matters. The

19

projected SGD update writes as

wt+1 = ΠS(p−1) (wt − η∇wℓ (yit , h(wt, xit))) (8)

where ΠS(p−1) : w 7→ w/
∥∥w∥∥

2
. (9)

The training framework still consists of two phases separated by a LR decay. The primary insight
from our experiments on the sphere is depicted in Fig. 15: the test performance achieved in the
fine-tuning phase depends on the LR used in the large-LR phase and, moreover, there is an optimal
value. The work of Kodryan et al. (2022) reports a similar observation, where the best test loss
is achieved at a LR where the loss neither converges too fast nor diverges but doesn’t provide any
explanation. Once again, our investigation reveals that the key to understand this behaviour and
the dependence on the LR lies in the noisy dynamics in the large LR phase which closely tracks a
regularized process. To summarize this idea we postulate a conjecture similar to the one reported in
Section 2.2.
Conjecture 3. Consider the algorithm Eq. 8 with w0 initialized from a distribution µ0

(
S(p−1)

)
.

For any input x, let wt, h(wt, x) be the random variables that denote the iterate at time t and its
functional value. The stochastic process (h(wt, x))t∈N will converge to a stationary distribution
µ∞
η (x) with mean µ̄η(x) for which w∗

η is a first-order stationary point of the following regularized
loss:

L̄(w) := L(w) + ησ2
η

∥∥J(w)
∥∥2
F
. (10)

0.0001 0.0003 0.001 0.005
LR in Large-LR phase

10.0%

11.0%

12.0%

13.0%

14.0%

15.0%

16.0%

Te
st

 E
rro

r f
in

e
tu

ni
ng

(a)

0 20 40 60 80 100
Epochs

10%

20%

30%

40%

60%

90%

Te
st

 E
rro

r

(b)

0 20 40 60 80 100
Epochs

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

Te
st

 E
rro

r f
in

e
tu

ni
ng

(c)

0 20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
Cr

os
s E

nt
ro

py

lr = 0.001
lr = 0.003
lr = 0.004
lr = 0.005
SGD iterates
EMA
Fine-tuning

(d)

0 20 40 60 80 100
Epochs

3

4

6

10

||
J(w

)||
F

×103

(e) (f)

Figure 15: Training scale-invariant ResNets on the sphere. We train on CIFAR-10 with different large LR
for the first 100 epochs and decay it to η = 10−4 afterwards. Fig. (15a) reports the test error with respect to
different LRs in the first phase showing the existence of an optimal value. Fig. (15b) reports the test error for
the SGD iterates (−) and for the EMA (−−). Figure (15c) reports the decreasing trend of the test error after
fine-tuning for 100 epochs with η = 10−4 every 2 epochs. Finally, Fig. (15e) reports the norm of the Jacobian
for the EMA and the fine-tuned iterates and Figure (15f) reports a comparison with the trace of the Hessian for
the fine-tuning iterates.

20

C.6 Empirical validation of Covariance approximation

We empirically verify the validity of the "decoupling approximation" introduced in Sec. 2.2 we use
Stochastic Lanczos Quadrature (Yao et al., 2020) to estimate the empirical spectral density of the
SGD covariance with and without the decoupling approximation, during the large-LR phase. The
experiments are performed for ResNet-18 trained on the cifar10 dataset for different combinations of
learning rate and weight decay which are used in the manuscript. The results in Figures 16, 17, and
18 illustrate a substantial overlap in the two spectra which serves as a validation of the reliability of
our approximation.

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue

10 17

10 14

10 11

10 8

10 5

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.001 wd=0.0005
our approx
SGD

(a) lr=0.001 wd=0.0005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 30

10 25

10 20

10 15

10 10

10 5

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.001 wd=0.001
our approx
SGD

(b) lr=0.001 wd=0.001

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue

10 22

10 18

10 14

10 10

10 6

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.001 wd=0.0025
our approx
SGD

(c) lr=0.001 wd=0.0025

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue

10 26

10 22

10 18

10 14

10 10

10 6

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.001 wd=0.005
our approx
SGD

(d) lr=0.001 wd=0.005

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue

10 24

10 20

10 16

10 12

10 8

10 4

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.001 wd=0.0075
our approx
SGD

(e) lr=0.001 wd=0.0075

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue

10 20

10 17

10 14

10 11

10 8

10 5

10 2

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.001 wd=0.01
our approx
SGD

(f) lr=0.001 wd=0.01

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Eigenvalue

10 17

10 14

10 11

10 8

10 5

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.005 wd=0.0005
our approx
SGD

(g) lr=0.005 wd=0.0005

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.005 wd=0.001
our approx
SGD

(h) lr=0.005 wd=0.001

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 20

10 17

10 14

10 11

10 8

10 5

10 2

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.005 wd=0.0025
our approx
SGD

(i) lr=0.005 wd=0.0025

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 23

10 19

10 15

10 11

10 7

10 3

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.005 wd=0.005
our approx
SGD

(j) lr=0.005 wd=0.005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 22

10 19

10 16

10 13

10 10

10 7

10 4

10 1

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.005 wd=0.0075
our approx
SGD

(k) lr=0.005 wd=0.0075

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 30

10 25

10 20

10 15

10 10

10 5

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.005 wd=0.01
our approx
SGD

(l) lr=0.005 wd=0.01

Figure 16: We use Stochastic Lanczos Quadrature to estimate the empirical spectral density of the SGD
covariance, with and without the decoupling approximation, during the large-LR phase. Experiments with
ResNet-18 on the CIFAR-10 dataset, varying learning rate and weight decay, show a substantial overlap in the
two spectra, validating our approximation.

21

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 20

10 17

10 14

10 11

10 8

10 5

10 2

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.01 wd=0.0005
our approx
SGD

(a) lr=0.01 wd=0.0005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.01 wd=0.001
our approx
SGD

(b) lr=0.01 wd=0.001

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 23

10 19

10 15

10 11

10 7

10 3

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.01 wd=0.0025
our approx
SGD

(c) lr=0.01 wd=0.0025

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 25

10 21

10 17

10 13

10 9

10 5

10 1

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.01 wd=0.005
our approx
SGD

(d) lr=0.01 wd=0.005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 39

10 33

10 27

10 21

10 15

10 9

10 3

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.01 wd=0.0075
our approx
SGD

(e) lr=0.01 wd=0.0075

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 32

10 27

10 22

10 17

10 12

10 7

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.01 wd=0.01
our approx
SGD

(f) lr=0.01 wd=0.01

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.025 wd=0.0005
our approx
SGD

(g) lr=0.025 wd=0.0005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 23

10 19

10 15

10 11

10 7

10 3

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.025 wd=0.001
our approx
SGD

(h) lr=0.025 wd=0.001

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 36

10 31

10 26

10 21

10 16

10 11

10 6

10 1

De
ns

ity
 o

f S
pe

ct
ru

m
Spectrum of SGD covariance lr=0.025 wd=0.0025

our approx
SGD

(i) lr=0.025 wd=0.0025

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 32

10 27

10 22

10 17

10 12

10 7

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.025 wd=0.005
our approx
SGD

(j) lr=0.025 wd=0.005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 30

10 25

10 20

10 15

10 10

10 5

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.025 wd=0.0075
our approx
SGD

(k) lr=0.025 wd=0.0075

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 36

10 31

10 26

10 21

10 16

10 11

10 6

10 1

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.025 wd=0.01
our approx
SGD

(l) lr=0.025 wd=0.01

Figure 17: We use Stochastic Lanczos Quadrature to estimate the empirical spectral density of the SGD
covariance, with and without the decoupling approximation, during the large-LR phase. Experiments with
ResNet-18 on the CIFAR-10 dataset, varying learning rate and weight decay, show a substantial overlap in the
two spectra, validating our approximation.

22

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 24

10 20

10 16

10 12

10 8

10 4

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.05 wd=0.0005
our approx
SGD

(a) lr=0.05 wd=0.0005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 22

10 18

10 14

10 10

10 6

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.05 wd=0.001
our approx
SGD

(b) lr=0.05 wd=0.001

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 30

10 25

10 20

10 15

10 10

10 5

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.05 wd=0.0025
our approx
SGD

(c) lr=0.05 wd=0.0025

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 28

10 24

10 20

10 16

10 12

10 8

10 4

100

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.05 wd=0.005
our approx
SGD

(d) lr=0.05 wd=0.005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 23

10 19

10 15

10 11

10 7

10 3

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.05 wd=0.0075
our approx
SGD

(e) lr=0.05 wd=0.0075

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.05 wd=0.01
our approx
SGD

(f) lr=0.05 wd=0.01

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 34

10 29

10 24

10 19

10 14

10 9

10 4

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.1 wd=0.0005
our approx
SGD

(g) lr=0.1 wd=0.0005

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 32

10 27

10 22

10 17

10 12

10 7

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.1 wd=0.001
our approx
SGD

(h) lr=0.1 wd=0.001

0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 29

10 25

10 21

10 17

10 13

10 9

10 5

10 1

De
ns

ity
 o

f S
pe

ct
ru

m
Spectrum of SGD covariance lr=0.1 wd=0.0025

our approx
SGD

(i) lr=0.1 wd=0.0025

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 37

10 32

10 27

10 22

10 17

10 12

10 7

10 2

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.1 wd=0.005
our approx
SGD

(j) lr=0.1 wd=0.005

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 29

10 25

10 21

10 17

10 13

10 9

10 5

10 1

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.1 wd=0.0075
our approx
SGD

(k) lr=0.1 wd=0.0075

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Eigenvalue

10 23

10 19

10 15

10 11

10 7

10 3

101

De
ns

ity
 o

f S
pe

ct
ru

m

Spectrum of SGD covariance lr=0.1 wd=0.01
our approx
SGD

(l) lr=0.1 wd=0.01

Figure 18: We use Stochastic Lanczos Quadrature to estimate the empirical spectral density of the SGD
covariance, with and without the decoupling approximation, during the large-LR phase. Experiments with
ResNet-18 on the CIFAR-10 dataset, varying learning rate and weight decay, show a substantial overlap in the
two spectra, validating our approximation.

23

C.7 Empirical verification of the conjecture through snapshot ensembles

To further validate our conjecture, we performed additional experiments. Specifically, within the
same ResNet18 on CIFAR-10 setting as in our main experiments, we created snapshot ensembles
(Huang et al., 2017) by averaging in function space along the SGD trajectory every 10 epochs for the
combinations of learning rate (LR) and weight decay (WD) considered in the paper.

To assess whether the mean of the stationary distribution in function space aligns closely with the
EMA, where the Jacobian norm is regularized, we compared the performance of snapshot ensembles
with that of the EMA. Additionally, we computed the Total Variation Distance DTV between the
softmax outputs of the ensemble and the EMA on the Test set

DTV =
1

2N

N∑
i=1

C∑
j=1

∣∣∣p(i)ensemble,j − p
(i)
EMA,j

∣∣∣ .
The results in Table 2 show a strong alignment in test accuracies, while those in Table 3 indicate a
low Total Variation across all combinations. Together, these findings offer further validation for our
conjecture.

Table 2: Test Error for Snapshot Ensemble and EMA for different values of learning rate (LR) and weight decay
(WD).

WD LR=0.001 LR=0.005 LR=0.01 LR=0.025 LR=0.05 LR=0.1 LR=0.15

ENS EMA ENS EMA ENS EMA ENS EMA ENS EMA ENS EMA ENS EMA

0.0000 0.32 0.33 0.27 0.26 0.24 0.25 0.17 0.17 0.17 0.17 0.13 0.13 0.13 0.13
0.0005 0.32 0.32 0.29 0.29 0.24 0.24 0.18 0.17 0.13 0.16 0.13 0.13 0.11 0.13
0.0010 0.32 0.33 0.25 0.27 0.21 0.21 0.13 0.19 0.10 0.13 0.10 0.11 0.11 0.11
0.0015 0.32 0.34 0.23 0.22 0.22 0.25 0.11 0.14 0.10 0.12 0.10 0.10 0.09 0.09
0.0025 0.30 0.30 0.22 0.22 0.19 0.20 0.09 0.10 0.10 0.11 0.10 0.10 0.10 0.11
0.0050 0.33 0.34 0.21 0.20 0.12 0.16 0.10 0.10 0.10 0.10 0.09 0.09 0.10 0.09
0.0075 0.35 0.37 0.15 0.16 0.10 0.11 0.11 0.11 0.09 0.08 0.10 0.09 0.12 0.10
0.0100 0.31 0.34 0.13 0.15 0.11 0.11 0.10 0.10 0.11 0.10 0.11 0.09 0.13 0.13

Table 3: Total Variation Distance between softmax output of Ensemble and EMA.

WD LR=0.001 LR=0.005 LR=0.01 LR=0.025 LR=0.05 LR=0.1 LR=0.15

0.0000 0.03 0.02 0.01 0.01 0.01 0.01 0.01
0.0005 0.04 0.02 0.02 0.03 0.09 0.08 0.07
0.0010 0.04 0.05 0.04 0.10 0.09 0.07 0.07
0.0015 0.04 0.07 0.07 0.08 0.08 0.07 0.07
0.0025 0.04 0.11 0.10 0.06 0.08 0.08 0.09
0.0050 0.06 0.15 0.11 0.09 0.08 0.10 0.11
0.0075 0.08 0.12 0.10 0.10 0.10 0.11 0.12
0.0100 0.10 0.09 0.10 0.10 0.11 0.12 0.13

24

D Weight decay for large language models: additional figures and details

We present the following additional figures related to the LLM experiments. We show that the
validation loss of a GPT-2-124M model is determined by the training loss and not influenced by
λ in Fig. 19. We also show that the generalization gap stays close to zero throughout training for
different λ for both 124M and 774M parameter models. We show the results for models trained
weight decay on LayerNorm weights in Fig. 20. We see that penalizing all parameters in weight
decay (i.e., including the LayerNorm parameters) leads to the same effect for smaller λ (like 0.1) but
underperforms on larger λ (like 0.3). Note that when WD is applied on all weights, this changes the
optimal value of the objective. In Fig. 21, we train models with ℓ2 regularization instead of decoupled
weight decay as in AdamW (Loshchilov & Hutter, 2019). We observe that ℓ2 regularization instead
of weight decay leads to the same effect as decoupled weight decay (Loshchilov & Hutter, 2019). We
train models using SGD with momentum and show the results in Fig. 22. We see that weight decay
leads to a similar improvement in training loss for SGD with momentum as well. We show multiple
metrics in Fig. 26 for the models shown in Fig. 6: gradient variance, gradient norm, and weight norm
plots that complement Fig. 7 in the main part. In Fig. 23, we show results of weight averaging that
suggests the suboptimality gap between runs with different λ is much smaller than what the loss at wt

suggests. However, weight averaging is still less effective than fine-tuning with a tiny LR as in Fig. 6.
Finally, in Fig. 25, we show results of models trained context length 1024. We see that the training
loss over iterations for models trained with a range of LR and WD (all are bfloat16). All runs with
LR smaller than 0.001 successfully converge but the final training loss is higher than for LR 0.001.
In addition, we observe that lower learning rates prevent the weights from growing too much.

3.3 3.4 3.5 3.6 3.7 3.8
Training loss

3.3

3.4

3.5

3.6

3.7

3.8

Va
lid

at
io

n
lo

ss

WD = 0.0
WD = 0.1
WD = 0.3

0 10000 20000 30000 40000 50000
Iteration

0.02

0.00

0.02

0.04

0.06

0.08

Ge
ne

ra
liz

at
io

n
ga

p

774M param, WD = 0.0
774M param, WD = 0.1
774M param, WD = 0.3
124M param, WD = 0.0
124M param, WD = 0.1
124M param, WD = 0.3

Figure 19: Left: The validation loss of a GPT-2-124M model is determined by the training loss and not influenced
by λ. Right: The generalization gap stays close to zero throughout training for different λ for both 124M and
774M parameter models.

10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 lo
ss

WD = 0.0
WD = 0.03
WD = 0.1
WD = 0.15
WD = 0.3

Figure 20: GPT-2-124M on OpenWebText with weight decay on LayerNorm weights. Penalizing all
parameters in weight decay (i.e., including the LayerNorm parameters) leads to the same effect for smaller λ
(like 0.1) but underperforms on larger λ (like 0.3). Note that when WD is applied on all weights, this changes
the optimal value of the objective.

25

10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 lo
ss

WD = 0.0
WD = 1 10 6

WD = 3 10 6

Figure 21: GPT-2-124M on OpenWebText with ℓ2 regularization. We observe that ℓ2 regularization instead
of weight decay leads to the same effect as decoupled weight decay (Loshchilov & Hutter, 2019).

10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration

3.5

3.6

3.7

3.8

3.9

Tr
ai

ni
ng

 lo
ss

WD = 0.0
WD = 1 10 5

WD = 3 10 5

Figure 22: GPT-2-124M on OpenWebText trained with SGD with momentum. Weight decay leads to a
similar improvement in training loss for SGD with momentum as well (all other experiments are done with
AdamW).

AdamW, 10× cosine LR decay AdamW, constant LR SGD+M, 10× cosine LR decay

10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 lo
ss

WD = 0.0, wt

WD = 0.1, wt

WD = 0.3, wt

WD = 0.0, wavg
t

WD = 0.1, wavg
t

WD = 0.3, wavg
t

0 10000 20000 30000 40000 50000
Iteration

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 lo
ss

WD = 0.0, wt

WD = 0.1, wt

WD = 0.3, wt

WD = 0.0, wavg
t

WD = 0.1, wavg
t

WD = 0.3, wavg
t

10000 15000 20000 25000 30000 35000 40000 45000 50000
Iteration

3.4

3.5

3.6

3.7

3.8

Tr
ai

ni
ng

 lo
ss

WD = 0.0, wt

WD = 1 10 5, wt

WD = 3 10 5, wt

WD = 0.0, wavg
t

WD = 1 10 5, wavg
t

WD = 3 10 5, wavg
t

Figure 23: Weight averaging for GPT-2-124M on OpenWebText. Weight averaging (wavg
t) shows that the

suboptimality gap between runs with different λ is much smaller than what the loss at wt suggests. However,
weight averaging is still less effective than fine-tuning with a tiny LR as in Fig. 6.

26

10000 20000 30000 40000 50000
Iteration

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

Tr
ai

ni
ng

 lo
ss

bfloat16, LR = 0.0003, WD = 0.0
bfloat16, LR = 0.0006, WD = 0.0
bfloat16, LR = 0.001, WD = 0.0
float32, LR = 0.001, WD = 0.0

Figure 24: GPT-2-124M on OpenWebText with context length 1024. The model trained with a moderate
LR 0.001 diverges for bfloat16 but not for float32; lowering the LR prevents the divergence but leads to a
worse loss.

10000 20000 30000 40000 50000
Iteration

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

Tr
ai

ni
ng

 lo
ss

LR = 0.0003, WD = 0.0
LR = 0.0003, WD = 0.1
LR = 0.0003, WD = 0.3
LR = 0.0006, WD = 0.0
LR = 0.0006, WD = 0.1
LR = 0.0006, WD = 0.3
LR = 0.001, WD = 0.0
LR = 0.001, WD = 0.1
LR = 0.001, WD = 0.3

0 10000 20000 30000 40000 50000
Iteration

103

3 × 102

4 × 102

6 × 102

W
ei

gh
t n

or
m

LR = 0.0003, WD = 0.0
LR = 0.0003, WD = 0.1
LR = 0.0003, WD = 0.3
LR = 0.0006, WD = 0.0
LR = 0.0006, WD = 0.1
LR = 0.0006, WD = 0.3
LR = 0.001, WD = 0.0
LR = 0.001, WD = 0.1
LR = 0.001, WD = 0.3

Figure 25: GPT-2-124M on OpenWebText with context length 1024. (Left) The training loss over iterations
for models trained with a range of LR and WD (all are bfloat16). All runs with LR smaller than 0.001
successfully converge but the final training loss is higher than for LR 0.001. (Right) Weight norms for LR
in 0.0003, 0.0006, 0.001 for λ = 0.1 which does not diverge. Lower learning rates prevent the weights from
growing too much.

0 10000 20000 30000 40000 50000
Iteration

100

101

Gr
ad

ie
nt

 n
or

m

WD = 0.0
WD = 0.1
WD = 0.3

0 10000 20000 30000 40000 50000
Iteration

3 × 102

4 × 102

6 × 102

W
ei

gh
t n

or
m

WD = 0.0
WD = 0.1
WD = 0.3

Figure 26: GPT-2-124M on OpenWebText. The gradient norm and weight norm plots for the models reported
in Fig. 7.

27

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect all our
contributions presented in the paper.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We mention the limitations of our work at the end of Section 4.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

28

Justification: We do not have new standalone theoretical results like theorems or lemma,
but we provide short derivations presented in Section 2.2, Section 3, and Appendix C.2 that
support our experimental results.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed settings of our experiments in Appendix B.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

29

Answer: [Yes]
Justification: The code is uploaded in supplemental material.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe them in the corresponding sections (Section 2 and Section 3) and
provide further details in Appendix B.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars in figures wherever it is feasible (i.e., most experiments
in Section 2), but we omit them in Section 3 since LLM experiments are much more
computationally demanding.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these details in Appendix B.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our submissions complies with the Code of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: In our opinion, this work does not directly lead to societal impacts since
it focuses on a general improvement of our understanding of deep learning optimization
methods.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate

31

https://neurips.cc/public/EthicsGuidelines

deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the code, data, and models we use in our work, most of them directly
when we discuss the corresponding experimental results (Section 2 and Section 3) and some
of them in the appendix (Appendix B).

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

32

paperswithcode.com/datasets

Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not conduct studies with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not require an IRB approval.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Related work

	Weight decay in the over-training regime
	Loss stabilization and weight decay
	The noise driven process
	EMA and Fine-tuning

	Weight decay in the under-training regime
	Conclusions
	An additional comparison with related works
	Training details
	Weight decay for overparametrized deep networks: additional experiments and details
	A graphical illustration of the fine-tuning phase
	Supporting derivations
	Additional figures for the over-training regime
	Trace of Hessian and Jacobian Norm
	Experiments with scale-invariant Resnet on the sphere
	Empirical validation of Covariance approximation
	Empirical verification of the conjecture through snapshot ensembles

	Weight decay for large language models: additional figures and details

